SISMID Module 6: Stochastic Epidemic Models with Inference Exercise Session 2

Dongni Zhang, Stockholm University
July 13, 2021

Introductions to Exercise 2.1

Estimation of $R_{0}(\mathrm{a})$

- Assume a homogeneous mixing population and all individuals are initially susceptible.
- No prevention measures.
- In case of a large outbreak, we observe that a fraction $\tilde{\tau}$ get infected.

The estimate of R_{0} is given by the observed value:

$$
\hat{R}_{0}=-\ln (1-\tilde{\tau}) / \tilde{\tau}
$$

Estimation of $R_{0}(\mathrm{~b})$

Now if we know that a fraction r was initially immune, and there were a fraction $\tau_{\text {overall }}$ infected during the outbreak.

- The fraction infected among those initially susceptibles

$$
\tilde{\tau}=\tau_{\text {overall }} /(1-r) .
$$

- The estimate of R_{0} is now given by

$$
\hat{R}_{0}=-\ln (1-\tilde{\tau}) /(1-r) \tilde{\tau}
$$

Introductions to Exercise 2.2

Estimating parameters: SIR model

Background: Classical Swine Fever Virus(CSFV) in the Netherlands

- A highly contagious disease of pigs and wild boar.
- A huge outbreak in the Netherlands took place between February 1997 and May 1998.
- There were 429 infected herds detected and stamped out.
- Netherlands has approximately $N=21500$ pig herds.

Plot of the weekly number of infectious herds

Estimating parameters: Gaussian observations

- We have n observations $y_{i}=I\left(t_{i}\right)$ at time points t_{1}, \cdots, t_{n} with mean $\mathbf{E}\left[y_{i} ; \theta\right]$, which is determined by the SIR differential system.
- Least squares estimates $\theta=(\beta, \gamma)$ minimizing the function

$$
l(\theta)=\sum_{i=1}^{n}\left(y_{i}-\mathbf{E}\left[y_{i} ; \theta\right]\right)^{2}
$$

corresponds to Maximum Likelihood Estimate for Gaussian observations with

$$
I\left(t_{i}\right) \sim N\left(\mathbf{E}\left[y_{i} ; \theta\right] ; \sigma^{2}\right)
$$

with the variance of the observation noise σ^{2}.

Estimating parameters: MLE for CSFV Data(1)

Define the log-likelihood function
ll.gauss <- function(theta)\{ \#determine the solution of SIR ODE
... <- lsoda(...)
return(sum(dnorm(data, mean $=. . .$, sd $=1, \log =$ TRUE)))
\}.

Estimating parameters: MLE for CSFV Data(2)

```
Maximize the log-likelihood and compute MLE
mle <- optim(
#initial values for theta to be optimized over
#log-likelihood function
fn = ll.gauss,
#maximize the function
control = list(fnscale = -1) ).
```

Introductions to Exercise 2.3

Estimating parameters: SEIR model(1)

In this exercise, we are supposed to fit the SEIR model with time changing $\beta(t)$ from Exercise 1.3 to the data of reported cases in Stockholm during Feb-Apr 2020.

$$
\beta(t)=\left\{\begin{array}{l}
\beta_{0}, \text { if } t \leq t_{1}-w \\
\beta_{0}+\frac{\beta_{1}-\beta_{0}}{2 w}\left(t-\left(t_{1}-w\right)\right), \text { if } t_{1}-w<t \leq t_{1}+w \\
\beta_{1}, \text { if } t>t_{1}+w
\end{array}\right.
$$

Plot of beta(t)
The parameters here to optimize for are

$$
\theta=\left(\beta_{0}, \beta_{1}, t_{1}, w, \gamma\right)
$$

Estimating parameters: SEIR model(2)

Assumptions:

- $N=2374550, \rho=1 / 5$.
- let $I(t)$ match the number of reports on calendar day t , with $I(0)=1$ and $t=0$ is equal to 2020-02-17.

Plot of the time series:

Least Square Approach for fitting(1)

> Define the Least Square function ll.sq <- function(theta,IO)\{ \#determine the solution of SEIR ODE sol <- lsoda(y=, times=, func=, parms=exp(theta)) sum((...-...)^2) \}.

Least Square Approach for fitting(2)

Compute the estimates
theta_hat <- optim(\#starting values ..., fn = ll.sq,
\#minimize the function method="Nelder-Mead", IO=1)

Note: While using optim, try out more starting values (t_{1} is not too small, γ not too large, $\beta_{1}<\beta_{0} \ldots$) to get a reasonably well-fitted curve.

