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Lecture 2: Descriptive statistics,
normalizations & testing

From sequences to OTU table

' — Sequencing —)

T sample 1 | sample 2 |- [ sampleN
=

Abundances of each
microbial taxon
in each of the
N samples
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Normalizing OTU tables for sequencing effort

Raw Counts Proportions
| sample1).. |SampleN [N [sample1l.. [Sample N _
. N1 naN . P11 Pan
6 n21 nan 6 p21 pan
. s N3N — P31 P3n
N4y Nan Pa1 Pan
. Nsy Nsn . Ps1 Psn
. Ne1 NeN . Pe1 PeN
. N7 n7n ! P71 PN
n. n. 1 1

Other normalizations

* Normalized by 1 component, ng

s
* y;j =log (n—;’) = log(n;;) — log(ng;)

* ng >0 foralld

* Assuming the true abundance of OTU d is the same across all samples

* Normalized by geometric mean (centered)
n;j
*yij = log(g( — = log(nij) — log(g(nlj, ...,nTj))

Nyj,liT}) ;
1/T
* 9("1]': ""nTj) = (HiT=1nij)

* Note: log[0] -> -oo; so often we add ‘pseudo-counts’ before these
transformations.
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Other normalizations

* DESeq2: normalizes by estimating the negative binomial distribution
for each taxonin each sample;

* MetagenomeSeq: uses sample quantiles to normalize accounting for
undersampling.

Describing microbiomic community is alike to
taking a demographic census

I SN I Hovw many professions are
11 PN

— represented?
banker  pa Pan * How well represented are the
student  ps P3N different professions?
teacher Pa1 Pan .
* Are some professions more

doctor Ps1 PsN | 2
police Ps1 Pen pOpU ar:
chef p71 p7n

1 1
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Alpha diversity definition(s)

* Alpha diversity describes the diversity of a single community
(specimen).
* In statistical terms, it is a scalar statistic computed for a single

observation (column) that represents the diversity of that
observation.

* There are many statistics that can describe diverstiy: e.g. taxonomical
richness, evenness, dominance, etc.

Species richness

* Suppose we observe a community that can contain up to k ‘species’.
* The relative proportions of the species areP = {p,, ..., pi}-

* Richness is computed as

R=1(p1) + L(py) + ... + 1(px),
where 1(.) is anindicator function, i.e. 1(x) = 1 if p;#0, and 0 otherwise.

* Higher R means greater diversity

* Very dependent upon depth of sampling and sensitive to presence of
rare species
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Rarefaction curves

Note: rarefication as a means for normalization is from statistical

standpoint a bad idea. Don’t throw away information!

estimates.

Idea:

Rarefaction curves are not the same!
Useful to assess sensitivity of sample size to observed alpha-diversity

* Let Ny, ..., Nc bea set of numbersN; < N;,;;
* Let n’;® beabundance of taxon i in sample j subsampled to N, total counts per

sample;

* Estimate average alphadiversity for each N, over a several repeated subsamplings;
* Plot theaverage alphadiversity as a function of samplesize.

Rarefactions
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Supplementary Figure 6. Rarefaction curves measuring alpha diversity in fecal
and cecal communities. The vertical axis shows the number of 0TUs observed
after sampling the number of tags or sequences shown on the horizontal axis.
Curvature toward horizontal indicates that increased sequencing effort is required
to observe novel OTUs, when only rare OTUs remain to be discovered. Rarefaction
curves were based on the V3 16S rRNA sequences and analyzed at OTU-level
phylotypes, defined by 297% identity. Values represent the Mean * 95% confidence

interval.

Cho, I.,Meth, BA., Nondorf, L.,Li, K., Alekseyenko, AV, Blaser, MJ. "Subtherapeutic antibiotics alter the murine colonic microbiome
and early life adiposity", Nature 488, 621 -- 626 (30 August 2012).
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Chaol index

* Species richness index is often too sensitive to depth of sampling,

 Chaol index overcomes this problem by applying a correction
ft
*R;,=S,ps + (),
C obs (Zfz)

* Where f; is the number of taxa with a single observation (singletons),
f, is the number of taxa with exactly two observations.

* If a sample contains a lot of singleton taxa, then there is a greater
chance that this sample is undersampled.

Shannon index

* Suppose we observe a community that can contain up to k
‘species’.

* The relative proportions of the species are P={p, ..., p«}.

* Shannon index is related to the notion of information content

from information theorY. It roughly represents the amount of
information that is available for the distribution of P.

* When p; = p;, for all i andc{,then we have no information about
which species a random draw will resultin. As the inequality
becomes more pronounced, we gain more information about
the possible outcome of the draw. The Shannon index captures
this property of the distribution.

* Shannon index is computed as

Si= = p1log,p1 — pylog,p; — ... — pilog,pi
Note as p; =0, log,p; = —°, we therefore define p;log,p; = 0.

* Higher Sy means higher diversity
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From Shannon to Evenness

* Shannon index for acommunity of k species has a maximum at log,k

* We can make different communities more comparable if we
normalize by the maximum

* Evenness index is computed as
Ei=S«/logak
* E,=1 means total evenness

Simpson index

* Suppose we observe a community that can contain up to k ‘species’.

* The relative proportions of the species are P ={p4, ..., P«}-

* Simpson index is the probability of resampling the same specie on two
consecutive draws with replacement.

* Suppose on the firstdraw we picked specie i, this event has probability p;,
hence the probability of drawing that species twice is p;*p;.

* Simpson index is thus computed as

D=1—(ps*+ P> + ... + p?)
* D =0 means nodiversity (1 species is completely dominant)
* D =1 means complete diversity
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Phylogenetic Diversity (Faith’s D)

* Faith (Biological Conservation 1992, 61, 1-
10) considered the problem of selecting
species for conservation so as to preserve
diversity.
* Faith defines PD (phylogenetic diversity) as ; .
the sum of all the branch lengths. PD is
analogous to total information in the tree.

* The marginal contribution of a tip xis then
min; ;(Dy; + Dy — D; ;). Higher value suggest a
greater impact on conservation.

15

Numbers equivalent diversity

* Often it is convenient to talk about alpha diversity in terms of
equivalent units:

* How many equally abundant taxa will it take to get the same diversity as we
seein a given community?

* For richness thereis no difference in statistic

* For Shannon, remember thatlog,k is the maximum which is attained
when all species are equally represented. Hence the diversity in
equivalent units is 25

* For Simpson the equivalent units measure of diversity is 1/(1-D)
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Hypothesis testing

Motivating example

Sub-Therapeutic Antibiotic Treatment (STAT)

Control =]
(water)
Tetracycline > . .
Microbiota
Penicillin 5 Hormone levels from fecal
Fat levels and cecal
Vancomycin Bone mineral content contents
Tetracycline + e
Vancomycin
Weaning Sacrifice

Cho, 1., Meth, BA., Nondorf, L, Li K., Alekseyenko, AV., Blaser; MJ. “Subtherapeutic antibiotics

alter the colonic microbiome and early life adiposity in mice”. Nature. 2012 Aug 30;488(7413):621-6.
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Questions

* Are there any specific taxa, which are
associated with antibiotic treatment?
* By presence/absence patterns

STAT
?

Microbiome
* By relative abundance
* Isthere correlation between

abundance of any taxa and metabolic

phenotypes (hormone levels, fat, Microbiome

bone)? ,
Phenotypes

Hypotheses

* Are precise statements that are amenable to being proven false using

data.

* Null hypothesis: a proposition that corresponds to default position.

(“Nothing special is happening”)

* Alternative hypothesis: a proposition that describes a non default
outcome (“Something interesting is going on”)

* The inference is obtained by rejecting the Null hypothesis. Null
hypothesis can never be confirmed by the data, nor does it have to

be!

10
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Example of hypotheses

* General guestion: Are any taxa associated with gy Microbiome
antibiotic treatment? (many taxa)
?

e Univariate hypothesis question:Istaxon T
associated with antibiotic treatment?

* Null hypothesis: abundance of taxon T follow the
same 5|sfr|5uf|on in treated and control groups. m
¢ Alternative hypothesis 1: abundance of taxon T

follow distribution of different form in thetwo e
groups.

* Alternative hypothesis 2: abundance oftaxon T
folTow thesame form of distribution but with
different mean/median between groups.
¢ Alternative hypothesis 3: abundance of taxon T

follow the same form of distributionbut with
different variance between groups.

zzzzzzzzzzzzz

ST . TaxonT

\\\\\\\\\\
rrrrrrrrrrrrrr

21

P-values

* If the Null Hypothesis was in fact true a statistic, used to perform
the test, would follow a certain distribution: the null distribution.

* P-value isthe tail probability under the null distribution.

Two-tail p-value One-tail p-value
< <
o o
@ _| @
o o
2 2
7] o ‘@ (S
$ o & ©
© ©
5 5
o | o |
© T T T T T T © T T T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
statistic statistic
22
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Distribution of OTU abundance data

* Justifiable distribution assumptions often allow for better statistical tests.

* Properties of OTU abundance data:
* Correlated: Sumsto 1, henceto increase something, something else has to decrease
* Variable across subjects

* Can possibly be modeled through compound Dirichlet-Multinomial
distribution (we will talk about this distribution later in the course).
Marginal univariate (Beta-binomial) tests have to be derived.

* When distribution specific tests are not available, we have to rely on non-

parametric (distribution free) tests, possibly at the cost of decreasing the
power of the tests.

23

Chi Squared test for taxon incidence

* Raw Counts * Incidence table
sample N Sample 1].. | Sample N |
,ilm_ nin . 1 Ly
e (P31 nan e 1n Loy
. ha N3y 13 13y
Na1 NaN 1y 1an
. Ns; Nsy . 15 1sn
. Ne1 Nen . 16 1oy
. n71 n7n . 17 17
n. n.
1, if n; > 0

ij .
0, otherwise
24
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Chi Squared test for taxon incidence
Tax m

* Wefocus on a single taxon e
* Suppose the observations of the taxon
come from two groups (e.g. control vs.

STAT) lor0 STAT

* Question: Is the frequency of
occurrence of this taxon in two groups
different?

* Null hypothesis: the frequency is the
same. R

* Significant ChiSquare test indicates a  Present nu N N
difference in the rate of occurrence of
the taxon. Absent ng np» N

*InR: chisqg.test

ni n. N

25

Mann-Whitney U or Wilcoxon rank-sum two-sample test

* Assumptions:
* Independent observations
* Observations can be ordered with respect to each other

* Null hypothesis: The distribution in two samples is the same. If one
randomly draws one observation from each sample X, Y; then Pr(X>Y) =
Pr(Y>X)

* Two-sided alternative hypothesis: Pr(X>Y) # Pr(Y>X)

* Interpretation: for continuous observations, significant tests indicate
change in the median

* Example: Is the abundance of a taxon different between STAT and Control?
*InR:wilcox.test

26
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Connection with predictivity

Sample 1 Sample2 |Ranks 1 Ranks 2

* Mann-Whitney U-statistic calculation:

X 0.135 2.680 8 1
* Convert the observations to ranks

X -0.907 1.078 18 2

* Compute the sum of ranks in each sample,
R; and R, -0.801 0.080 16 9
e U =Ry —ny(n; +1)/2 0.452 0.493 6 5
s Uy=Ry —my(ny +1)/2 -0.523 0.010 15 11
* U=min(Uy, Uy) 0.075 -0.322 10 13
1.038 -0.370 3 14

* One can show that U statistic is
equivalent to AUC. AUC = U/(n; n,) -1.140 0.633 19 4

. -2.308 -0.020 20 12
* AUC, area under receiver operator

characteristic (ROC) curve, measures how -0.808 0.368 17 /
well we can distinguish one sample from Rank Sums 132 78
another. AUC = 0.5 means predictivity no U 77 23
better than random, AUC = 1.0 perfect U statistic 23

predictivity. AUC 077 023

Kruskal-Wallis one-way analysis of variance (more than two
samples/groups)

* Assumptions:

* Independent observations that follow distribution with the same shape and
scale

* Observations can be ordered with respect to each other
* Null hypothesis: The location (median) of all the groups is the same.

* Alternative hypothesis: Location for at least one group is different
from location of at least one other group

* Example: Is the abundance of a taxon different in STAT/control over 3
sampled time points?

* InR: kruskal.test

28
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Correlation coefficients, rank correlations

°

* Linear correlation
coefficient (Pearson)
assumes linear
dependence between two 1

4e+08

1/(exp(-x))"8
26408
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* Rank correlation x
coefficient measure the Pearson correlation coefficient: 0.66 (not
extent of monotonicity significant, p=0.15)

between two variables

* Null hypothesis for
correlation testing:
correlation coefficient is
equal to 0.

1e+08

1e+04

1/(exp(~x))"8 (log-scale)
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Diaconis, P. (1988), Group Representations in Probability and Statistics, Lecture Notes-Monograph
Series, Hayward, CA: Institute of Mathematical Statistics, ISBN 0-940600-14-5 29

Rank correlation coefficients

* Spearman’s p: Rank correlation measure defined as the Pearson
correlation of the two variables after conversion to ranks

* Kendall’s T: Rank correlation measure based on counting concordant
pairs. [(x;,y;) and (x,,y,) are concordant if x,>x, when y,;>y,]

* Example: Is there correlation between any given two taxa? Is there
correlation between a given metabolic variable and a given taxon?
*InR:
* cor.test(x, y, method=’'spearman’)
* cor.test(x, y, method=‘kendall’)

15
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Problems with testing many hypotheses
simultaneously

* We have many OTUs that we would like to apply the test to.

* If the testis applied at specified significance level (probability
of falsely rel!] cting the null, when it is true), we cannot
guarantee that combined resultis at the 5|gn|f|cance level
originally specified.

* Since p-values are distributed uniformly if the null hypothesis
is true the expected number of rejections by mere chance
m*a

* How do we control significance for multiple tests?

a=runif (100, 0, 1)

plot(a, rep(l, length(a)),
axes=F, ylab="",
xlab=*p”, pch= 19)

T T T T 1
02 04 06 08 10 axis(1l)

abline(v=0.05, col="red”,
lty=*dotted”)

31

FWER: Family-wise error rate

# not- Total
rejected rejected ® SUppOSE we perform m tests (e g.

# true null m taxa are tested for association
hypotheses with antibiotic treatment)

# non-true * The number of true null

null v E 1 hypotheses is unknown mg
hypotheses

—" p—_ . " * Vis false positive rate (Type | error)

* Tis false negative rate (Type |l

FWER control methods adjust the error)
significance of each individual test * WeobserveR, butS, T, U,V are

to ensure overall significance at unobserved
given o * FWER = Pr(V21)
FWER result in more stringent

tests.

32
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Example: Bonferroni correction

* To ensure overall significance ata given a, one performs each
individual test at o’ = a/m

* Very stringent, results in loss of power (increase in Type Il error)

33

FDR: false discovery rate

* Modifies the idea of controlling -
Type | error, to instead control the ; : :
# true nul
U A mo

rate at which type |l errors do occur e

* FDRis the expected value of V/R # non-true
null T S m-mg
* Methods for FDR control hypotheses
* Benjamini—-Hochberg Total m-R R m

* Assumes tests are independent
* Benjamini—Hochberg—Yekutieli
¢ Assumes thattests are uniformly
correlated:

* Positively correlated: if one test has low
p-value, othertests are more likely to
also be significant

* Negatively correlated: if one test has
low p-value, other testsare /ess likely to
be significant

34
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FDR in R

* FDR is implemented in R as a p-value adjustment procedure.
* Input: p-values for a set of univariate tests
* Qutput: p-values that are adjusted to FDR

* E.g.0.05 adjusted p-value means that expected rate of false positives
is 0.05 for tests significant at that adjusted level

* p.adjust
* Methods:
* method = ‘fdr’: Benjamini-Hochberg
* method = ‘BY’: Benjamini-Hochberg-Yekutieli

Filtering: reducing the number of tests

* Wecan improvethe overall power of the tests by
performingless simultaneous tests.

* Eliminate “uninteresting” taxa, e.g. a taxon does not have
deep taxonomic resolution.

* Eliminate taxa that show low variability. These are not
changing much overall thus are not likely to be different
across factor levels.

* Eliminate taxa with low abundance. These are usually not
measured very well and are likely to have little biological
significance anyway.

* Note: A care needs to be taken with filtering procedures
so as not to introduce selection bias, which will invalidate
multiple comparison assumptions. A safe practice is for
filtering to be blind towards the factor you would like to
test.
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