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Outline:
- Mixture Models (Negative Binomial)
- DESeq2 / Don’t Rarefy. Ever. 
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Hypothesis Tests - reminder

• A hypothesis is a precise disprovable statement.

• “Null hypothesis” - the default position. “Nothing special”

• Alternative/Rejection: Evidence disagrees with the Null

• Null hypothesis cannot be confirmed by the data.

3

Hypothesis Tests - some examples

test R function
t-test t.test
Mann-Whitney U-test wilcox.test
correlation test cor.test
Chi-Square test chisq.test
Neg-Binom Wald test DESeq2::nbinomWaldTest
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Multiple Testing
• In “Big Data”, we often want to test many hypotheses in one batch.
• p-values are distributed uniformly when null hypothesis is true
• The expected number of rejections by chance is m*α 
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Poisson-only Count Simulation• Uncertainty 
Depends on 
Library Size True Species (or Gene) Proportion in Simulation

Proportion

Species or Gene

Model Uncertainty in NGS Count Data

6



Poisson-only Count Simulation• Uncertainty 
Depends on 
Library Size One realization of the simulation (blue)

Proportion

Species or Gene

Model Uncertainty in NGS Count Data
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Poisson-only Count Simulation

Species or Gene

• Uncertainty 
Depends on 
Library Size

• Repeat 
simulation 
(resampling) 
many times 
and different 
library sizes

100

2000

30000

Library Size

Model Uncertainty in NGS Count Data
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Mean Count

• Uncertainty 
Depends on 
Library Size

• Repeat 
simulation 
many times 
and different 
library sizes

• This turns out 
to describe 
technical 
sequencing 
replicates

100

2000

30000

Library Size

Poisson-only Count Simulation

Model Uncertainty in NGS Count Data

Observed 
Variance
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Mean Count

Common Scale Rarefied
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• Over-dispersion

• Strong Function 
of Mean

• Share 
Information 
Across Genes to 
Improve Fit 
(Performance)
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Negative Binomial
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• Negative Binomial is an infinite mixture of Poisson R.V.

• Intuition: relevant when we have (almost) as many different 
distributions (poisson means) as observations

• Borrow from RNA-Seq analysis implementations? (Yes)

• Robinson, Oshlack (2010). A scaling normalization… RNA-Seq data. Genome Biology
• Anders, & Huber (2010). Differential expression … sequence count data. Genome Biology

Independent Filtering. More effort is needed to optimize
Independent Filtering for differential abundance detection, and
rigorously define the theoretical basis and heuristics applicable to
microbiome data. Ideally a formal application of Independent
Filtering of OTUs would replace many of the current ad hoc
approaches that often include poor reproducibility, poor justifica-
tion, and the opportunity to introduce bias.

Some of the justification for the rarefying procedure has
originated from exploratory sample-wise comparisons of micro-
biomes for which it was observed that a larger library size also
results in additional observations of rare species, leading to a
library size dependent increase in estimates of both alpha- and
beta-diversity [24,69], especially UniFrac [70]. It should be
emphasized that this represents a failure of the implementation
of these methods to properly account for rare species and not
evidence that diversity depends on library size. Rarefying is far
from the optimal method for addressing rare species, even when
analysis is restricted solely to sample-wise comparisons. As we
demonstrate here, it is more data-efficient to model the noise and

address extra species using statistical normalization methods based
on variance stabilization and robustification/filtering. Though
beyond the scope of this work, a Bayesian approach to species
abundance estimation would allow the inclusion of pseudo-counts
from a Dirichlet prior that should also substantially increase
robustness to rare species.

Our results have substantial implications for past and future
microbiome analyses, particularly regarding the interpretation of
differential abundance. Most microbiome studies utilizing high-
throughput DNA sequencing to acquire culture-independent
counts of species/OTUs have used either proportions or rarefied
counts to address widely varying library sizes. Left alone, both of
these approaches suffer from a failure to address overdispersion
among biological replicates, with rarefied counts also suffering
from a loss of power, and proportions failing to account for
heteroscedasticity. Previous reports of differential abundance
based on rarefied counts or proportions bear a strong risk of bias
toward false positives, and may warrant re-evaluation. Current
and future investigations into microbial differential abundance

Figure 6. Performance of differential abundance detection with and without rarefying. Performance summarized here by the ‘‘Area Under
the Curve’’ (AUC) metric of a Receiver Operator Curve (ROC) [59] (vertical axis). Briefly, the AUC value varies from 0.5 (random) to 1.0 (perfect),
incorporating both sensitivity and specificity. The horizontal axis indicates the effect size, shown as the actual multiplication factor applied to OTU
counts in the test class to simulate a differential abundance. Each curve traces the respective normalization method’s mean performance of that
panel, with a vertical bar indicating a standard deviation in performance across all replicates and microbiome templates. The right-hand side of the
panel rows indicates the median library size, ~NNL, while the darkness of line shading indicates the number of samples per simulated experiment. Color
shade and shape indicate the normalization method. See Methods section for the definitions of each normalization and testing method. For all
methods, detection among multiple tests was defined using a False Discovery Rate (Benjamini-Hochberg [52]) significance threshold of 0.05.
doi:10.1371/journal.pcbi.1003531.g006

Rarefying Microbiome Data Is Inadmissible
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Negative Binomial t-distribution

A.U.C.

Effect Size Effect Size

McMurdie & Holmes (2014).  PLoS 
Computational Biology

Model Uncertainty in NGS Count Data
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Transition: Mixture Models

Technical details in: 
mixture-model-Holmes-mathy-details.pdf
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Example: Finite mixture of two 
normals
Flip a fair coin.
If it comes up heads
Generate a random number from a Normal 
with mean 1 and variance 0.25. R: `rnorm` 
function.

If it comes up tails
Generate a random number from a Normal 
with mean 2 and variance 0.25.

This is what the resulting histogram 
would look like if we did this 10,000 
times.

Finite Mixture Model
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Example: Finite mixture of two 
normals
However in many cases the 
separation is not so clear.
Challenge: Here is a histogram 
generated by two Normals with the 
same variances. 
Can you guess the two parameters for 
these two Normals?

Finite Mixture Model
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Here we knew the answer
(the source every data point)

In practice, this information is usually 
missing, and we call it a latent variable

Discovering the hidden class: EM
For simple parametric components, 
can  use EM (Expectation-
Maximization) algorithm to infer the 
value of the hidden variable.

Finite Mixture Model
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Very popular iterative procedure

Lots of implementations. E.g. FlexMix

http://cran.r-project.org/web/views/Cluster.html

http://cran.r-project.org/web/packages/flexmix/index.html

Expectation Maximization (EM)

http://en.wikipedia.org/wiki/Expectation–maximization_algorithm

1. First, initialize θ to some random values.
2.Compute best value for U.
3. Use the just-computed values of U
to compute a better estimate for θ. 
Parameters associated with a particular 
value of U only use data points whose 
associated latent variable has that value.
4. Iterate steps 2 and 3 until convergence
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Infinite Mixture Model
Sometimes mixtures can be useful without us having to find 
who came from which distribution. 
This is especially the case when we have (almost) as many 
different distributions as observations.
In some cases the total distribution can still be studied, 
even if we don’t know the source of each component 
distribution.

e.g. Gamma-Poisson a.k.a. Negative Binomial
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Infinite Mixture Model - N.B.
Generative Description:

Negative Binomial is useful for modeling:
• Overdispersion (in Ecology)
• Simplest Mixture Model for Counts
• Different evolutionary mutation rates
• Throughout Bioinformatics and Bayesian Statistics
• Abundance data

Summarized Mathematically:

variance:
Poisson Overdispersion
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Finite Mixture Models
Mixture of Normals with different means and variances.
Mixtures of multivariate Normals with different means and covariance 
matrices
Decomposing the mixtures using the EM algorithm.

Common Infinite Mixture Models
Gamma-Poisson for read counts  
Dirichlet-Multinomial (Birthday problem and the Bayesian setting).

Summary of Mixture Models
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• Modern sequencing creates libraries of unequal sizes

• Early analyses focused on library-wise distances:

paradigm:   rarefy - UniFrac - PCoA - Write Paper

• This approach has “leaked” into formal settings, 
standard normalization method is “rarefying”

Inefficient Normalization by “rarefying”

species

samples

species 
counts

& applicability of Negative Binomial Mixture Model 
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the original idea…
rarefaction curves

• Sanders 1968
• non-parametric richness
• estimate coverage
• Normalize? - No.

Sanders, H. L. (1968). Marine 
benthic diversity: a comparative 
study. American Naturalist

Inefficient Normalization by “rarefying”
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Gotelli, & Colwell (2001) Ecology Letters

Hughes & Hellmann (2005) Methods in Enzymology

1. Select a minimum library size NL,min


2. Discard libraries (samples) that are 
smaller than NL,min


3. Subsample the remaining libraries 
without replacement such that 
they all have size NL,min

Library Sizes 
(column sums)

0

1750

3500

5250

7000

A B C D E

N

Inefficient Normalization by “rarefying”
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Gotelli, & Colwell (2001) Ecology Letters

Hughes & Hellmann (2005) Methods in Enzymology

Library Sizes 
(column sums)

0

1750

3500

5250

7000

A B C D E

N

removed from dataset

1. Select a minimum library size NL,min


2. Discard libraries (samples) that are 
smaller than NL,min


3. Subsample the remaining libraries 
without replacement such that 
they all have size NL,min

Inefficient Normalization by “rarefying”
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Microbiome 
Clustering 
Simulation

samples

O
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s

test null

O
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0
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0
0
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899
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0 0 0 82 244 7 24

0 0 0 354 452 92 1

0 0 0 14 9 33 251

samples

O
TU

s

Ocean Feces

O
TU

s
Ocean Feces

1. Sum rows. A multinomial for each sample class.

2. Deterministic mixing. 
Mix multinomials in 
precise proportion.

Ocean Feces

Microbiome Clustering Simulation
samples

O
TU

s

Environment

O
TU

s

1. Sum rows for each 
environment.

2. Sample from 
multinomial.

Differential Abundance Simulation

3. Multiply 
randomly 

selected 
OTUs within 
test class by 

effect size.

4. Perform differential 
abundance tests, 

evaluate performance.

158 56 214 39 47 4 11 11 5 3

124 54 212 29 40 3 10 7 8 6

129 46 216 33 42 4 13 7 3 6

11 3 14 3 1 39 95 63 29 37

19 7 34 7 0 88 237 137 73 86

9 1 15 1 2 29 84 51 14 29

O
TU

s

samples

Simulated Ocean Simulated Feces

3. Sample from these 
multinomials.

4. Perform clustering, 
evaluate accuracy.

BA

Microbiome count 
data from the Global 

Patterns dataset

Repeat for each effect 
size and media 
library size.

Repeat for each environ-
ment, number of sam-
ples, effect size, and 
median library size.

Amount added is 
library size / effect size
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Microbiome Clustering - Simulation

Bray −Curtis Euclidean PoissonDist top −MSD UniFrac − u UniFrac −w
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Performance Depends on ÑL
Microbiome Clustering - Simulation

ES = 1.15 ES = 1.25 ES = 1.5
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Issues with rarefying — clustering

• Loss of Power:

1. Microbiome samples that cannot be classified 
because they were discarded (< NL,min).

2. Samples that are poorly distinguishable because of 
the discarded fraction of the original library. 

• Arbitrary threshold:

1. Choice clearly affects performance

2. Optimum value, *NL, min, can’t be known in practice
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Differential Abundance

species

samples species 
counts

test null

Which species have proportions that are 
different between the sample classes?

29

Differential Abundance

Mortazavi, et al (2008). Mapping & quantifying … transcriptomes by RNA-Seq. Nature Methods

genes

samples

species

samples

RNA-Seq

species 
counts

gene 
counts

What about NB Mixture Model? 
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1. Is there appreciable overdispersion?
2. Is there a useful across-species trend? 

2

a Poisson random variable in most cases [5]. How-
ever, we are usually interested in understanding vari-
ation among biological replicates, wherein a mixture
model is necessary to account for the added uncer-
tainty [6]. Taking a hierarchical model approach with
the Gamma-Poisson has provided a satisfactory fit to
RNA-Seq data [7], as well as a valid regression frame-
work that uses generalized linear models [8]. A Gamma
mixture of Poisson variables gives the negative binomial
(NB) distribution [6, 7] and several RNA-Seq analysis
packages now model the counts, K, for gene i, in sam-
ple j according to:

Kij ⇠ NB(sjµi,�i) (1)

where sj is a linear scaling factor for sample j that
accounts for its library size, µi is the mean proportion
for gene i, and �i is the dispersion parameter for gene
i. The variance is ⌫i = sjµi + �isjµ

2
i , with the NB

distribution becoming Poisson when � = 0. Recogniz-
ing that � > 0 and estimating its value is important in
gene-level tests. This reduces false positive genes that
appear significant under a Poisson distribution, but not
after accounting for non-zero dispersion.

The uncertainty in estimating �i for every gene when
there is a small number of samples — or a small num-
ber of biological replicates — can be mitigated by shar-
ing information across the thousands of genes in an ex-
periment, leveraging a systematic trend in the mean-
dispersion relationship [7]. This approach substantially
increases the power to detect differences in proportions
(differential expression) while still adequately control-
ling for false positives [9]. Many R packages imple-
menting this model of RNA-Seq data are now available,
differing mainly in their approach to modeling disper-
sion across genes [10].

Analogous to the development of gene expression re-
search, culture independent [11] microbial ecology re-
search has migrated away from detection of species (or
Operational Taxonomic Units, OTUs) through microar-
ray hybridization of rRNA gene PCR amplicons [12]
to direct sequencing of highly-variable regions of these
amplicons [13], or even direct shotgun sequencing of
microbiome metagenomic DNA [14]. Although these
latter microbiome investigations use the same DNA
sequencing platforms and represent the processed se-
quence data in the same manner — a feature-by-sample
contingency table where the features are OTUs instead
of genes — the modeling and normalization methods
just described for RNA-Seq analysis have not been

transferred to microbiome research [15, 16].
Standard microbiome analysis workflows begin with

an ad hoc library size normalization by random subsam-
pling without replacement, or so-called rarefying [17].
Rarefying is most often defined by the following steps.

1. Select a minimum library size, NL.

2. Discard libraries (samples) that are smaller than
NL in size.

3. Subsample the remaining libraries without replace-
ment such that they all have size NL.

Often NL is chosen to be equal to the size of the small-
est library that is not considered an artifact, though in
experiments with large variation in library size iden-
tifying artifact samples can be subjective. In many
cases researchers have also failed to repeat the random
subsampling step or record the pseudorandom num-
ber generation seed/process – both of which are es-
sential for reproducibility. To our knowledge, rare-
fying was first recommended for microbiome counts
in order to moderate the sensitivity of the UniFrac
distance [18] to library size, especially differences
in the presence of rare OTUs attributable to library
size [19]. In these and similar studies the principal
objective is to compare microbiome samples from dif-
ferent sources, a research task that is increasingly ac-
cessible with declining sequencing costs and the ability
to sequence many samples in parallel using barcoded
primers [20,21]. Rarefying is now an exceedingly com-
mon precursor to microbiome multivariate workflows
that seek to relate sample covariates to sample-wise
distance matrices [17, 22, 23]; for example, integrated
as a recommended option in QIIME’s [24] beta_-
diversity_through_plots.py workflow, in
Sub.sample in the mothur software library [25], and
in daisychopper.pl [26]. This perception in the
microbiome literature of “rarefying to even sampling
depth” as a standard normalization procedure appears
to explain why rarefied counts are also used in studies
that attempt to detect differential abundance of OTUs
between predefined classes of samples [27–31], in addi-
tion to studies that use proportions directly [32].

Statistical motivation
Unfortunately, rarefying biological count data is unjus-
tified despite its current ubiquity in microbiome anal-
yses. The following is a minimal example to explain
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Statistical motivation
Unfortunately, rarefying biological count data is unjus-
tified despite its current ubiquity in microbiome anal-
yses. The following is a minimal example to explain

Is Negative Binomial effective for this data?

Differential Abundance
What about NB Mixture Model? 

• Robinson, Oshlack (2010). A scaling normalization… RNA-Seq data. Genome Biology
• Anders, & Huber (2010). Differential expression … sequence count data. Genome Biology
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Differential 
Abundance 
Simulation

species

samples species 
counts

test null

Which species have proportions that are 
different between the sample classes?
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Differential 
Abundance 
Simulation

38 10 6 12 15 14 26 9
13 13 0 11 4 3 13 7
15 10 1 13 9 8 24 6
47 21 7 39 23 17 42 23
98 48 11 70 49 36 108 36
25 12 3 20 14 8 23 13

380 100 60 120 15 14 26 9
13 13 0 11 4 3 13 7
15 10 1 13 9 8 24 6
470 210 70 390 23 17 42 23
98 48 11 70 49 36 108 36
25 12 3 20 14 8 23 13

samples

O
TU

s

test null

O
TU

s

50
28
36
89
180
47

34 1 15
4 20 4
29 1 6
1 85 3

161 6 13
42 2 3

samples

O
TU

s

Ocean Feces

O
TU

s

Ocean Feces

1. Sum rows. A multinomial for each sample class.

2. Deterministic mixing. 
Mix multinomials in 
precise proportion.

Ocean Feces

Microbiome Clustering Simulation
samples

O
TU

s

Environment

O
TU

s

1. Sum rows for each 
environment.

2. Sample from 
multinomial.

Differential Abundance Simulation

3. Multiply 
randomly 

selected 
OTUs within 
test class by 

effect size.

4. Perform differential 
abundance tests, 

evaluate performance.

O
TU

s

samples

Simulated Ocean Simulated Feces

3. Sample from these 
multinomials.

4. Perform clustering, 
evaluate accuracy.

BA

Microbiome count 
data from the Global 

Patterns dataset

Repeat for each effect 
size and media 
library size.

Repeat for each environ-
ment, number of sam-
ples, effect size, and 
median library size.

Amount added is 
library size / effect size
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Differential Abundance - Simulation

DESeq2 − nbinomWaldTest DESeq − nbinomTest edgeR − exactTest metagenomeSeq − fitZig two sided Welch t−test
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DESeq − nbinomTest edgeR − exactTest metagenomeSeq − fitZig Voom mt
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Wilcoxon rank-sum (wrs)DESeq2 − nbinomWaldTest

Differential Abundance - Alt Simulation (Courtesy: Sophie Weiss, UC Boulder)
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Differential Abundance - Simulation — False Positive Rates

37

1. Rarefied counts worse sensitivity in every 
analysis method we attempted.

2. Rarefied counts also worse specificity (high FPs) 

• No accounting for overdispersion

• Added noise from subsampling step

Issues with rarefying — Differential 
Abundance
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Transition:   Lab 3

Negative Binomial mixture model for 
differential abundance multiple testing
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