
Using Trees in Microbiome Analysis
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• Phylogenetic (Evolutionary) Trees

• Tree-Building (“quick” overview)

• Tree formats (Newick, Ape’s “phylo")

• Manipulating Trees in phyloseq/ape

•  Tree plots (Examples, how to interpret)

• Using Trees and contingency tables together

• UniFrac and variants

• DPCoA

Using Trees in Microbiome Analysis
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Pace, N. R. (1997). A molecular view of microbial diversity and the biosphere. Science, 276(5313), 734–740.
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Hug & Banfield (2016) 
A new view of the tree of life. 
Nature Microbiology
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(1) Reconstructing evolutionary history from incomplete information

(2) Robust summary of the similarity of related biological sequences
     (a lot like hclust)

The data - biological sequences
- mostly proteins, sometimes DNA/RNA (16S rRNA), etc.

Phylogenetic Trees

Motivation:
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Phylogenetics

• The study of evolutionary relationships.

• Conversion of DNA or protein sequence data into a branching diagram 
(“tree”) that shows the relationships between the sequences.
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Phylogenetics
the anatomy of a tree

time

A

B

C

D

Terminal nodes
Taxa
Sequences
OTUs

Branches
Edges

Nodes

Clades

Clades

Leaves
Tips

Most Recent Common Ancestor (MRCA) of A, B, C; but not D

Adapted from N. Provart & D. Guttman

Phylogenetic Trees Nomenclature
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Phylogenetics
the many shapes of trees
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2N-1 possible arrangements for a particular rooting
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Phylogenetics
tree growth

Rotating internal nodes is not meaningful:

Adapted from N. Provart & D. Guttman

Phylogenetic Trees
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Phylogenetics
tree growth
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Unrooted Tree
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Rooting Trees
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– have one node from which all other nodes descend
– imply direction corresponding to evolutionary time

Adapted from N. Provart & D. Guttman

Phylogenetic Trees example
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Rooting Trees

Outgroup
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Ancestral State
• a.k.a. plesiomorphy

Derived State

• a.k.a. apomorphy
o Autapomorphy = unique derived state
o Synapomorphy = shared derived state

Homoplasy

• Similarity due to parallel evolution, convergent evolution or 
secondary loss

Homology

• Similarity due to common ancestry

Phylogenetics
terminology

Using an “Outgroup”

Adapted from N. Provart & D. Guttman
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Phylogenetics
tree growth
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– have one node from which all other nodes descend
– imply direction corresponding to evolutionary time

Adapted from N. Provart & D. Guttman
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Ancestral
Character

Derived
Character Homoplasy

Phylogenetics
terminology

Ancestral
State
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Parallel 
Evolution

Independent evolution of 
same character from 
same ancestral state

Convergent 
Evolution

Independent evolution of 
same character from 

different ancestral state

Secondary
Loss

Reversion to ancestral 
state

Phylogenetics
homoplasy

More Terminology

Homoplasy - Similarity due to parallel evolution, 
convergent evolution, or secondary loss

Homology - Similarity due to common ancestry

Adapted from N. Provart & D. Guttman
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Ancestral
Character

Derived
Character Homoplasy

Phylogenetics
terminology

Ancestral
State
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Parallel 
Evolution

Independent evolution of 
same character from 
same ancestral state

Convergent 
Evolution

Independent evolution of 
same character from 

different ancestral state

Secondary
Loss

Reversion to ancestral 
state

Phylogenetics
homoplasy

Forms of homoplasy...

E.g. Ni-Fe and Fe-only hydrogenases: 
highly-similar enzymatic activity, no 
detectable shared ancestry

Adapted from N. Provart & D. Guttman
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+Back sustitution

*

+

Ancestral Sequence

*

Phylogenetics
homoplasy

*Convergent substitution
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Taxa
• Sampling

Loci

• Homology
• Variation
• Independence

Analysis

• Data
• Sequence alignments
• Phylogenetic methods
• Statistical support

Phylogenetics
fundamental elements

ancestral sequence

Adapted from N. Provart & D. Guttman
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Phylogenetic Tree Construction Methods
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All tree-building begins 
with multiple-alignment
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– have one node from which all other nodes descend
– imply direction corresponding to evolutionary time

Naïve multiple sequence alignment is NP-complete. No students indicated they 
wanted to learn about it this quarter, so Susan forbade me from spending any time 
on it. Just read about / use one of the following multiple-alignment algorithms:

Muscle

MAFFT

Mauve, Lagan, etc. Whole genome alignment...

NOTE:  You will not create a meaningful tree from a meaningless alignment. 
Spending time selecting the appropriate alignment tools and checking your 
alignment is probably a worthwhile thing to do.

Katoh, Misawa, Kuma, Miyata 2002 (Nucleic Acids Res. 30:3059-3066)
MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.

ClustalW Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of 
progressive multiple sequence alignment... Nucleic Acids Research, 22(22), 4673–4680.

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput.
Nucleic Acids Research, 32(5), 1792–1797.

Multiple Sequence Alignment:

15

Distance Methods

Character-based (discrete) Methods

UPGMA

Neighbor-Joining

Maximum Parsimony

Maximum Likelihood

Bad, don’t use. Implemented as guesses in better, more 
complex algorithms for m-alignment / tree construction

Also not very good, only use if other methods intractable,
or use as initial guess for parsimony or ML tree.

Bayesian Methods

Phylogenetic Tree Construction Methods

16



Distance Methods

8
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Distance methods
• UPGMA (Unweighted Pair Group Method with Arithmetic mean )

• Neighbour-joining

Character-based (discrete) methods

• Maximum parsimony
• Maximum likelihood

Phylogenetics and Recombination – how would recombination affect 
interpretation of a tree?

Phylogenetics
tree building methods
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Relationships based upon sequence similarity.

Advantages

• Computationally fast.

• Single “best tree” found.

Disadvantages

• Assumptions

o additive distances (always)

o molecular clock (sometimes)

• Information loss occurs due to data transformation

• Uninterpretable branch lengths

• Single “best tree” found.

Phylogenetics
distance-based methods

Phylogenetic Tree Construction Methods

17

UPGMA

Not much point in discussing. Not very 
good. You know how to do it from 
clustering lecture(s).

Details:

* Assumes rates of evolution are same among different lineages (severely unrealistic)
* Very sensitive to unequal evolutionary rates
* Tends to be reliable only if data/phylogeny is essentially ultrametric (severely unrealistic)

Phylogenetic Tree Construction Methods
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1. Calculate pairwise distances

2. Create distance matrix

3. Determine net divergence for each terminal node

4. Create rate-corrected distance matrix

5. Identify taxa with minimum rate-corrected distance

6. Connect taxa with minimum rate-corrected distance via a new node, and 
determine their distance from this new node 

7. Determine the distance of new node from rest of taxa or nodes

8. Regenerate distance matrix

9. Return to step 2

Neighbour-Joining

CSB352 N. Provart & D. Guttman · CSB352 · Intro for Lab 4 · Slide 18

Distance-Based Phylogenetic Methods
UPGMA vs. Neighbour-Joining

B
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C

D

B
E

A
C

D

5 

A B C D E
A - 17 21 31 23
B - 30 34 21
C - 28 39
D - 43
E -

Neighbor Joining

Adapted from N. Provart & D. Guttman

Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for 
reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406–425.

Phylogenetic Tree Construction Methods
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Distance-Based Phylogenetic Methods
UPGMA vs. Neighbour-Joining
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Adapted from N. Provart & D. Guttman

UPGMA

NJ

20



Character-based (discrete) Methods

Maximum Parsimony

Maximum Likelihood

Bayesian Methods

These methods attempt to map the 
history of gene sequences onto a tree.
(And decide what the tree looks like)

Phylogenetic Trees

21

Models of Sequence Evolution
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Jukes-Cantor (JC)
Equal base freq    (pA = pC, = pG = pT) 

All subst equally likely (a = b)

Kimura 2 Parameter (K2P)
Equal base freq    (pA = pC, = pG = pT) 

Ts and Tv diff subst rates (a z b)

Felsenstein (F81)
Unequal base freq    (pA z pC, z pG z pT)

All subst equally likely (a = b)

Hasegawa et al. (HKA85)
Unequal base freq    (pA z pC, z pG z pT)

Ts and Tv diff subst rates (a z b)

General Time-Reversible (GTR)
Unequal base freq    (pA z pC, z pG z pT)

All six pairs of subst have diff rates

Allow for ts / tv bias Allow base freq to vary

Allow base freq to vary Allow for ts / tv bias

Allow all six pairs of subst to have diff rates

Models of Sequence Evolution
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Phylogenetic Confidence
Bootstrapping

Original Sequence and Tree

seqA AGGCTCCAAA
seqB AGGTTCGAAA
seqC AGCCCCGAAA
seqD ATTTCCGAAC

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

pseudo-replicate 1

seqA AGGGGTCAAA
seqB AGGGGUCAAA
seqC AGGGCCCAAA
seqD ATTTTCCACC

pseudo-replicate 2

seqA ATTCCCCAAA
seqB ATTCCGGAAA
seqC ACCCCGGAAA
seqD ACCCCGGCCC

pseudo-replicate 3

seqA GGGTTTTCAA
seqB GGGTTTTGAA
seqC GCCCCCCGAA
seqD TTTCCCCGAA

pseudo-replicate 1000

seqA AGTTCCAAAA
seqB AGTTCCAAAA
seqC ACCCCCAAAA
seqD ATCCCCAACC

...

Pseudo-Replicated Data and Trees

A

B

C

D

100

75

Bootstrapped Tree

pr1 1310110012
pr2 1000222003
pr3 0120401200
…

pr1000 1010220112

Adapted from N. Provart & D. Guttman
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Farris (1983), has a justification for parsimony:
“minimizes requirements of ad hoc hypotheses of homoplasy”.

Analogy is made between homoplasies and residuals, (part of the data 
that the tree does not explain), minimizing homoplasies is akin to 
minimizing residuals in regression.

Based on the assumption that “evolution is parsimonious” which means 
that there should be no more evolutionary steps than necessary.

The best tree(s) minimize the number of changes between ancestors 
and descendants. 

Under independence of each of the characters, this has a clear 
combinatorial translation.

Maximum Parsimony Works under the principle of “Occam's razor”

Phylogenetic Trees

23

Maximum Parsimony
Implementation:

- In parsimony, the score is simply the minimum number of mutations that could possibly 
produce the data.
- There are fast algorithms that guarantee that any tree can be scored correctly
- There are lots of possible trees to choose between...

Math people:
If you take it in terms of distance on a graph the inner points are what are known as Steiner 
points and the problem of finding the tree is equivalent to the Steiner tree problem...

 Drawbacks:   

- the score of a tree is completely determined by the minimum number of mutations among 
all of the reconstructions of ancestral sequences. 
- fails to account for the fact that the number of changes is unlikely to be equal on all 
branches in the tree.
- As a result, susceptible to “long-branch attraction”, in which two long branches that are 
not adjacent on the true tree are inferred to be closest relatives
- in practice this is still pretty good... ML/Bayesian better

Phylogenetic Trees

24
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Character-Based Phylogenetic Methods
Maximum Likelihood

Attempts to answer the question:  
• What is the probability of observing the data, given a particular model of evolution and 

evolutionary history?
o data = MSA
o model = transition probabilities, base frequencies, rate heterogeneity...
o evolutionary history = phylogenetic tree

Evaluates the likelihood of every substitution of every possible tree.

All possible trees are considered, and the number of substitutions that must have occurred are 
calculated.

The tree with the highest likelihood is assumed to be the correct tree.

CSB352 N. Provart & D. Guttman · CSB352 · Intro for Lab 4 · Slide 20

Likelihood
coin example

Likelihood (L) =  Probability (dataobserved | model)

Data : HHTHTH

Model 1 : fair coin     Prob(H) = 0.5,  Prob(T) = 0.5
Model 2 : 2-head coin  Prob(H) = 1.0,  Prob(T) = 0.0
Model 3 : 2-tail coin   Prob(H) = 0.0,  Prob(T) = 1.0

L (Data|Model1)
= Prob(H|Model1) * Prob(H|Model1) * Prob(T|Model1) * Prob(H|Model1) * 

Prob(T|Model1) * Prob(H|Model1)
= 0.5 * 0.5 * 0.5 * 0.5 * 0.5 * 0.5 = 0.0156

L (Data|Model2) = 1.0 * 1.0 * 0.0 * 1.0 * 0.0 * 1.0 = 0.0

L (Data|Model3) = 0.0 * 0.0 * 1.0 * 0.0 * 1.0 * 0.0 = 0.0 

Adapted from N. Provart & D. Guttman

Phylogenetic Trees Maximum 
Likelihood
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Maximum Likelihood

Advantages of ML methods
• Based on explicit evolutionary models.
• Permits statistical evaluation of the likelihood of specific tree topologies.
• Often returns many equally likely trees.
• Usually outperforms other methods.

Disadvantages
• Computationally very intensive.
• Often returns many equally likely trees.

CSB352 N. Provart & D. Guttman · CSB352 · Intro for Lab 4 · Slide 24

1.........j........N
1 C…GGACACGTTTA…C
2 C…AGACACCTCTA…C
3 C…GGATAAGTTAA…C
4 C…GGATAGCCTAG…C

1

2

3

4

C C A G
(1) (2) (3) (4)

(5)

(6)

Unrooted tree for 
the 4 taxa

Arbitrarily rooted tree 
for site j

Maximum Likelihood

Adapted from N. Provart & D. Guttman

Phylogenetic Trees Maximum 
Likelihood
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Lj =

Maximum Likelihood
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Likelihood of the tree = product of the likelihoods for each site.

Usually evaluated as the sum of the log likelihoods.

Maximum Likelihood

ML evaluates: 
• all possible ancestral states 

• at all variable site
• in all possible tree topologies

oThe most likely (best) tree is the topology that has the highest 
overall likelihood.

Adapted from N. Provart & D. Guttman

Phylogenetic Trees Maximum 
Likelihood
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Likelihood of the tree = product of the likelihoods for each site.

Usually evaluated as the sum of the log likelihoods.

Maximum Likelihood

ML evaluates: 
• all possible ancestral states 

• at all variable site
• in all possible tree topologies

oThe most likely (best) tree is the topology that has the highest 
overall likelihood.

Adapted from N. Provart & D. Guttman

Phylogenetic Trees Maximum 
Likelihood
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Maximum Likelihood

Advantages of ML methods
• Based on explicit evolutionary models.
• Permits statistical evaluation of the likelihood of specific tree topologies.
• Often returns many equally likely trees.
• Usually outperforms other methods.

Disadvantages
• Computationally very intensive.
• Often returns many equally likely trees.
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Adapted from N. Provart & D. Guttman

Phylogenetic Trees Maximum 
Likelihood
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Bayesian Approach to Phylogeny Estimation

Approach:

Uses the likelihood function

Normally implemented using same models of evolutionary change used in ML

Metropolis-Hastings - Metropolis-Coupled Markov Chain Monte Carlo (MC3)

Ronquist, F. and J.P. Huelsenbeck. (2003) MrBayes3: Bayesian phylogenetic inference... Bioinformatics, 19, 1572–1574.

Assumptions:

Same set of parameter choices for evolutionary model as for ML

Must also choose initial set of prior probabilities.

Holder, M., & Lewis, P. O. (2003). Phylogeny estimation: traditional and Bayesian approaches. Nature reviews Genetics, 4(4), 275–284.
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R E V I EW S

In short, NJ is an extremely fast estimator of phylo-
genetic trees that does relatively well on clean data (for
example, data from sequences that have diverged
recently). When the goal is to infer older relationships, it
can be difficult to arrive at reliable values for the dis-
tance matrix that is the input for NJ; obviously, if the
input into an algorithm is poor, the algorithm has little
chance of succeeding.

Tree searches under optimality criteria. The NJ tree is
often treated as the starting point for a computationally
intensive search for the best phylogeny (TABLE 2). To per-
form a tree search, a standard must be used for com-
paring trees — an optimality criterion, in the jargon of
phylogenetics. The most popular criteria are parsi-
mony, minimum evolution and ML. Minimum evolu-
tion (ME), like NJ, requires that the data be compressed
into a distance matrix; therefore, like NJ, its success is
dependent on the sequence divergences being ade-
quately corrected for multiple hits (or the tree being so
easy to infer that poor distance estimates are sufficient).

sequences). A potentially serious weakness for distance
methods such as NJ, is that the observed differences
between sequences are not accurate reflections of the
evolutionary distances between them. Multiple substitu-
tions at the same site obscure the true distance and
make sequences seem artificially close to each other. If
the rate of evolution is constant over the entire tree (that
is, if the ‘molecular clock’ hypothesis holds), correcting
for multiple substitutions on tree estimation might be
relatively unimportant9.

Unfortunately, the molecular clock assumption is
usually inappropriate for distantly related sequences. In
this situation, a correction of the pairwise distances that
accounts for multiple ‘hits’ to the same site should be
used. There are many models for how sequence evolution
occurs, each of which implies a different way to correct
pairwise distances (see REF. 10 for some suggestions), so
there is considerable debate on which correction to use
(see BOX 2 for a discussion of model selection).
Furthermore, these corrections have substantial variance
when the distances are large.

CONSENSUS METHOD

A summary of a set of trees in
which branches that are not in
most of the trees are collapsed to
indicate uncertainty.

AGREEMENT SUBTREES

A tree containing the largest
subset of sequences for which
the relationships among
sequences are invariant across all
the phylogenies included.

Box 2 | The phylogenetic inference process

The flowchart puts phylogenetic estimation (shown in the green box) into the context of an
entire study. After new sequence data are collected, the first step is usually downloading other
relevant sequences. Typically, a few outgroup sequences are included in a study to root the
tree (that is, to indicate which nodes in the tree are the oldest), provide clues about the early
ancestral sequences and improve the estimates of parameters in the model of evolution.

Insertions and deletions obscure which of the sites are homologous. Multiple-sequence
alignment is the process of adding gaps to a matrix of data so that the nucleotides (or amino
acids) in one column of the matrix are related to each other by descent from a common ancestral
residue (a gap in a sequence indicates that the site has been lost in that species, or that a base was
inserted at that position in some of the other species). Although models of sequence evolution
that incorporate insertions and deletions have been proposed55–58, most phylogenetic methods
proceed using an aligned matrix as the input (see REF. 59 for a review of the interplay between
alignment and tree inference).

In addition to the data, the scientist must choose a model of
sequence evolution (even if this means just choosing a family of
models and letting software infer the parameters of these models).
Increasing model complexity improves the fit to the data but also
increases variance in estimated parameters. Model selection60–63

strategies attempt to find the appropriate level of complexity on the
basis of the available data. Model complexity can often lead to
computational intractability, so pragmatic concerns sometimes
outweigh statistical ones (for example, NJ and parsimony are mainly
justifiable by their speed).

As discussed in BOX 3, data and a model can be used to create a sample
of trees through either Markov chain Monte Carlo (MCMC) or multiple
tree searches on bootstrapped data (the ‘traditional’ approach). This
collection of trees is often summarized using consensus-tree techniques,
which show the parts of the tree that are found in most, or all, of the
trees in a set. Although useful, CONSENSUS METHODS are just one way of
summarizing the information in a group of trees. AGREEMENT SUBTREES are
more resistant to ‘rogue sequences’ (one or a few sequences that are
difficult to place on the tree); the presence of such sequences can make a
consensus tree relatively unresolved, even when there is considerable
agreement on the relationships between the other sequences.
Sometimes, the bootstrap or MCMC sample might show substantial
support for multiple trees that are not topologically similar. In such
cases, presenting more than one tree (or more than one consensus of
trees) might be the only way to appropriately summarize the data.

Homo sapiens
Pan
Gorilla
Pongo
Hylobates

100
89

MCMC

Model selection

'Best' tree with measures of support

Traditional 
approaches

Bayesian
approaches

Hypothesis testing

Estimate
'best' tree 

Assess
confidence

C-TAC-T-GTAG-C-AG-TC
CTTA-ATCGTAG-CTAGATC
CTTACATCGTAGCCTAGATC

Multiple sequence 
alignment

CTACTGTAGCAGTCCGTAGA
GCTTAATCGTAGCTAGATCA
CTTACATCGTAGCCTAGATC

Retrieve homologous 
sequences

CTTACATCGTAGCCTAGATC

Collect data

begin characters;
 dimensions nchar=898;
 format missing=? gap=- 
matchchar=. 
interleave datatype=dna;
 options gapmode=missing;
 matrix
Lemur_catta AAGCTTCATAGGAGCAACCAT
Homo_sapiens AAGCTTCACCGGCGCAGTCAT
Pan          AAGCTTCACCGGCGCAATTAT
Gorilla AAGCTTCACCGGCGCAGTTGT
Pongo AAGCTTCACCGGCGCAACCAC

Input for phylogenetic
estimation

Holder, M., & Lewis, P. O. (2003). Phylogeny estimation: traditional and Bayesian approaches. Nature reviews Genetics, 4(4), 275–284.
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Consider using a phylogenetic analysis to determine
whether an unknown virus belongs to ‘group A’ or
‘group B’. A tree with representatives of both candidate
groups and the unknown sample is constructed, and
the unknown sequence is intermingled with those
from group A. Is it possible that the unknown sample
was incorrectly placed because the data set is too small?
After all, even if the data are equivocal, the unknown
will be placed somewhere on the tree. The traditional
approach to answering such a question involves find-
ing the best tree in which the unknown sample clusters
with the group B viruses, and then assessing how
much worse this tree is compared to the best tree
found in the original search. If the placement of the
unknown with group B scores much worse than the
optimal solution, then the data reject the possibility of

used to overcome an inappropriate analysis of the data.
It might be said that high bootstrap proportions are a
necessary, but not sufficient, condition for having high
confidence in a group.

The chief drawback of bootstrapping is the compu-
tational burden: the computational effort needed for
the original analysis must be repeated several hundred
times (once for each bootstrap replicate data set). This
is not a concern when a fast analysis (like NJ) is
employed, but it can be an obstacle when ML is used.
BOX 3 summarizes the process of collecting a group of
trees by bootstrapping.

Hypothesis testing. Bootstrapping gives coarse estimates
of which parts of the tree are supported. Often, a
researcher is interested in rejecting a specific hypothesis.

PRIOR PROBABILITY

(The ‘prior’). The probability of
a hypothesis (or parameter
value) without reference to the
available data. Priors can be
derived from first principles, or
based on general knowledge or
previous experiments.

Box 3 | Bootstrapping and Markov chain Monte Carlo generate a sample of trees 

The number of times a particular group of sequences occurs in the trees from this sample can be used as a measure of
how strongly the data supports that group. The bootstrapping approach (a) involves the generation of pseudo-
replicate data sets by re-sampling with replacemtent the sites in the original data matrix. When optimality-criterion
methods are used, a tree search (green box) is performed for each data set, and the resulting tree is added to the final
collection of trees. A wide variety of tree-search strategies have been developed, but most are variants of the same basic
strategy. An initial tree is chosen, either randomly or as the result of an algorithm — such as neighbour joining (NJ) or
stepwise addition. Changes to this tree are proposed; the type of move can be selected randomly or the search can
involve trying every possible variant of a particular type of move (TABLE 2; REF. 6). The new tree is scored and possibly
accepted. Some search strategies are strict hill-climbers — they never accept moves that result in lower scores; others
(genetic algorithms64–66 or simulated annealing67) occasionally accept worse trees in an attempt to explore the tree
space more fully. Making searching more accurate and faster is an active area of research66,68. For methods that use a
tree-building algorithm, such as NJ, bootstrapping involves the application of the algorithm to each of the pseudo-
replicate data sets instead of the tree-searching procedure.

The Markov chain Monte Carlo (MCMC) methodology (b) is similar to the tree-searching algorithm, but the rules
are stricter. From an initial tree, a new tree is proposed. The moves that change the tree must involve a random choice
that satisfies several conditions43,44. The MCMC algorithm also specifies the rules for when to accept or reject a tree.

Note that MCMC yields a much larger sample of trees in the same computational time, because it produces one
tree for every proposal cycle versus one tree per tree search (which assesses numerous alternative trees) in the
traditional approach. However, the sample of trees produced by MCMC is highly auto-correlated. As a result,
millions of cycles through MCMC are usually required, whereas many fewer (of the order of 1,000) bootstrap
replicates are sufficient for most problems.

Tree 
search

Aligned data matrix
and model

Generate pseudo-replicate
 data matrix

Bootstrap
the data

Current 
tree

Score the
new tree

Accept or reject
new tree

Propose a 
new tree

Stop after
many cycles

Add final tree to
the sample

a
Choose a 

starting
tree and model

Randomly propose
a new tree

Stop after
many cycles

Add tree to
the sample

Current 
tree

Accept or reject
the proposal

Calculate the 
posterior 

for proposal

bML-bootstrap Bayesian MC3
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(CMGM has a site-license)

phangorn - MP, ML, and Bayesian tree estimation
ape      - tree-handling in R, tree-build, graphics
picante  - 
phyloseq - integrated tree-abundance ana./graphics
ggdendro - ggplot2 hclust graphics

RAxML

MrBayes

NJ, UPGMA, PAUP*, PhyML, MrBayes
(including “cloud” MrBayes)

Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees.
Bioinformatics (Oxford, England), 17(8), 754–755.

BEAUti / BEAST 1.7 Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). 
Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular biology and evolution.
http://beast.bio.ed.ac.uk/

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with
thousands of taxa and mixed models. Bioinformatics (Oxford, England), 22(21), 2688–2690.

http://en.wikipedia.org/wiki/List_of_phylogenetics_software

Recommended 
SoftwarePhylogenetic Tree Construction Methods
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But we’re not going to spend any time worrying about 
building trees ourselves in this course…

Why we won’t:
- There are many manually-curated public trees
- Optimal tree is not really known, lots to argue over
- For our purposes small differences should not matter

Why you might want to calculate a new tree:
- You have counts from non-16S rRNA gene
- Have concatenated whole genome sequence data
- Basically any time you have new biological sequence 

data for which a public reference tree is not available

Phylogenetic Tree Construction Methods
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Tree file format, data representation: Newick
Green Genes Tree in Newick format:
((((((((836:0.06877,
((549322:0.00892,522457:0.01408)1.000:0. ,
314761:0.09977)0.161:0.01566)0.882:0.00924,
(((311539:0.0484 (((174835:0.01627,
(34207:0.00082,45996:0.00334)0.863:0.00433 
1.000.3:0.09792)1.000.4:0.04652,(((((945:0.08077, 
(178877:0.01342,
(29928:0.00726,35548:0.00187)0.748:0.01216) 
1.000.5:0.05924)0.975:0.01729, ...;

A simple Newick tree with branch lengths is noted:
((1 : 1, 4 : 1) : 3, ((2 : 1, 3 : 1), 5 : 2) : 1);

http://evolution.genetics.washington.edu/phylip/newick_doc.html
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Tree file format, data representation: phylo (ape) 

Terminology and Notations:

branch: edge, vertex
node: internal node
degree: the number of edges that meet at a node
tip: terminal node, leaf, node of degree 1
n: number of tips
m: number of nodes

http://ape-package.ird.fr/misc/FormatTreeR_24Oct2012.pdf
36



Tree file format, data representation: phylo (ape) 
Definition of the Class "phylo"
The class "phylo" is used to code “acyclical” phylogenetic trees. These trees
have no reticulations, and all their internal nodes are of degree 3 or more, except 
the root (in the case of rooted trees) which is of degree 2 or more. An object of 
class "phylo" is a list with the following mandatory elements:

1.  A numeric matrix named edge with two columns and as many rows as
there are branches in the tree;
2.  A character vector of length n named tip.label with the labels of the tips;
3.  An integer value named Nnode giving the number of (internal) nodes;
4.  An attribute class equal to “phylo”.

In the matrix edge, each branch is coded by the nodes it connects: tips are
coded 1, . . . , n, and internal nodes are coded n+ 1, . . . , n+m (n+ 1 is the root).
Both series are numbered without gaps.

edge.length, node.label, root.edge are optional annotation slots in “phylo” list

http://ape-package.ird.fr/misc/FormatTreeR_24Oct2012.pdf
37

The “ape::phylo” edge-matrix has the following properties:

1. The first column has only values greater than n (thus, values less than or 
equal to n appear only in the second column).

2. All nodes appear in the first column at least twice.
3. The number of occurrences of a node in the first column is related to the 

nature of the node: twice if it is dichotomous (i.e., of degree 3), three 
times if it is trichotomous (degree 4), and so on.

4. All elements, except the root n + 1, appear once in the second column.

Tree file format, data representation: phylo (ape) 
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Example Tree Plots: “How to Read a Tree”

Example 1: Determine species names of unlabeled 
Lactobacillus species in the GreenGenes database

39

Full Length 16S database and type strains

Example 1: Determine species names of unlabeled 
Lactobacillus species in the GreenGenes database
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Full Length 16S database and type strains

Example 1: Determine species names of unlabeled 
Lactobacillus species in the GreenGenes database

41

Does the sequenced 
region of 16S rRNA 
actually discriminate 
Lactobacillus species?

Example 1: Determine species names of unlabeled 
Lactobacillus species in the GreenGenes database
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GGOTUID - Species
129798  - L. iners
4428313 - L. gasseri
31171   - L. jensenii
4447432 - L. crispatus / acidophilus
137043  - L. reuteri / vaginalis
338757  - L. mucosae
4441804 - L. brevis
4463108 - L. ruminis
4480189 - L. zeae
586141  - ??
577716  - ??
3851582 - ??
1757845  - ??
4416659 - ??
137043  - ??

L. mucosae UPARSE/USEARCH

L. brevis UPARSE/USEARCH

L. ruminis UPARSE/USEARCH
L. salivarius UPARSE/USEARCH

L. zeae UPARSE/USEARCH

Example 1: Determine species names of unlabeled 
Lactobacillus species in the GreenGenes database

43

Manipulating Trees in 
phyloseq/ape

• Use standard OTU/species functions

• prune_taxa(), filter_taxa(), subset_taxa()

• tip_glom(), tax_glom()

• ape functions after accession:

• plot.tree(phy_tree(physeq))

• root(phy_tree(physeq), …)

44



Tree Method: UniFrac

45

(Unweighted) UniFrac Distance
A proposal for using the phylogenetic tree and OTU table

Lozupone & Knight (2005) Applied and Environmental Microbiology
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KVSYT�& FYX�RSX�FSXL�XS�XLI�XSXEP�FVERGL�PIRKXL�SJ�XLI
XVII�

“Since we compared environments on a large scale, the ability of particular 
lineages of organisms to survive in each environment is more likely to 
represent the relevant aspects of similarity between environments than 
the relative abundance of each surviving lineage”

46



primers, we excluded all nonbacterial sequences from the analysis. We added the
aligned sequences to a tree representing a range of phylogenetic groups from the
Ribosomal Database Project II (29) by Phil Hugenholtz (15). This sequence
addition used the parsimony insertion tool and a lane mask (lanemaskPH)
supplied in the same database so that only phylogenetically conserved regions
were considered. We exported the tree from Arb and annotated each sequence
with 1 of 20 sample designations (Table 1). We then performed significance tests,
UPGMA clustering, and principal coordinate analysis using UniFrac.

Jackknifing. We used jackknifing to determine how the number and evenness
of sequences in the different environments affected the UPGMA clustering
results. Specifically, we repeated the UniFrac analysis with trees that contained
only a subset of the sequences and measured the number of times we recovered
each node that occurred in the UPGMA tree from the full data set. In each
simulation, we evaluated 100 reduced trees in which all of the environments were
represented by the same specified number of sequences, using sample sizes of 17,

20, 31, 36, 40, and 58 sequences. These thresholds reflect the sample sizes from
different environments in our original data set. If an environment had more than
the specified number of sequences, we removed sequences at random; environ-
ments with fewer sequences were removed from the tree entirely.

RESULTS

We used UniFrac to determine which of the microbial com-
munities represented by the 20 different samples were signifi-
cantly different (Table 2) and as the basis for a distance matrix
to cluster the samples using UPGMA (Fig. 2) and to perform
principal coordinate analysis (Fig. 3). We used jackknifing to
assess confidence in the nodes of the UPGMA tree (Table 3).

FIG. 1. Calculation of the UniFrac distance metric. Squares, triangles, and circles denote sequences derived from different communities.
Branches attached to nodes are colored black if they are unique to a particular environment and gray if they are shared. (A) Tree representing
phylogenetically similar communities, where a significant fraction of the branch length in the tree is shared (gray). (B) Tree representing two
communities that are maximally different so that 100% of the branch length is unique to either the circle or square environment. (C) Using the
UniFrac metric to determine if the circle and square communities are significantly different. For n replicates (r), the environment assignments of
the sequences were randomized, and the fraction of unique (black) branch lengths was calculated. The reported P value is the fraction of random
trees that have at least as much unique branch length as the true tree (arrow). If this P value is below a defined threshold, the samples are
considered to be significantly different. (D) The UniFrac metric can be calculated for all pairwise combinations of environments in a tree to make
a distance matrix. This matrix can be used with standard multivariate statistical techniques such as UPGMA and principal coordinate analysis to
compare the biotas in the environments.

8230 LOZUPONE AND KNIGHT APPL. ENVIRON. MICROBIOL.

(Unweighted) UniFrac Distance
A proposal for using the phylogenetic tree and OTU table

Lozupone & Knight (2005) Applied and Environmental Microbiology
47

Weighted UniFrac Distance
A modification of (unweighted) UniFrac
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Lozupone et al., 2007
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UniFrac Comparison

Unweighted Weighted

cally defined by a sequence similarity threshold) in the sample
as equally related. Newer ! diversity measures that incorporate
phylogenetic information are more powerful because they ac-
count for the degree of divergence between sequences (13, 18,
29, 30). Phylogenetic ! diversity measures can also be either
quantitative or qualitative depending on whether abundance is
taken into account. The original, unweighted UniFrac measure
(13) is a qualitative measure. Unweighted UniFrac measures
the distance between two communities by calculating the frac-
tion of the branch length in a phylogenetic tree that leads to
descendants in either, but not both, of the two communities
(Fig. 1A). The fixation index (FST), which measures the
distance between two communities by comparing the genetic
diversity within each community to the total genetic diversity of
the communities combined (18), is a quantitative measure that
accounts for different levels of divergence between sequences.
The phylogenetic test (P test), which measures the significance
of the association between environment and phylogeny (18), is
typically used as a qualitative measure because duplicate se-
quences are usually removed from the tree. However, the P
test may be used in a semiquantitative manner if all clones,
even those with identical or near-identical sequences, are in-
cluded in the tree (13).

Here we describe a quantitative version of UniFrac that we
call “weighted UniFrac.” We show that weighted UniFrac be-
haves similarly to the FST test in situations where both are

applicable. However, weighted UniFrac has a major advantage
over FST because it can be used to combine data in which
different parts of the 16S rRNA were sequenced (e.g., when
nonoverlapping sequences can be combined into a single tree
using full-length sequences as guides). We use two different
data sets to illustrate how analyses with quantitative and qual-
itative ! diversity measures can lead to dramatically different
conclusions about the main factors that structure microbial
diversity. Specifically, qualitative measures that disregard rel-
ative abundance can better detect effects of different founding
populations, such as the source of bacteria that first colonize
the gut of newborn mice and the effects of factors that are
restrictive for microbial growth such as temperature. In con-
trast, quantitative measures that account for the relative abun-
dance of microbial lineages can reveal the effects of more
transient factors such as nutrient availability.

MATERIALS AND METHODS

Weighted UniFrac. Weighted UniFrac is a new variant of the original un-
weighted UniFrac measure that weights the branches of a phylogenetic tree
based on the abundance of information (Fig. 1B). Weighted UniFrac is thus a
quantitative measure of ! diversity that can detect changes in how many se-
quences from each lineage are present, as well as detect changes in which taxa
are present. This ability is important because the relative abundance of different
kinds of bacteria can be critical for describing community changes. In contrast,
the original, unweighted UniFrac (Fig. 1A) is a qualitative ! diversity measure
because duplicate sequences contribute no additional branch length to the tree
(by definition, the branch length that separates a pair of duplicate sequences is
zero, because no substitutions separate them).

The first step in applying weighted UniFrac is to calculate the raw weighted
UniFrac value (u), according to the first equation:

u ! !
i

n

bi " "Ai

AT
#

Bi

BT
"

Here, n is the total number of branches in the tree, bi is the length of branch i,
Ai and Bi are the numbers of sequences that descend from branch i in commu-
nities A and B, respectively, and AT and BT are the total numbers of sequences
in communities A and B, respectively. In order to control for unequal sampling
effort, Ai and Bi are divided by AT and BT.

If the phylogenetic tree is not ultrametric (i.e., if different sequences in the
sample have evolved at different rates), clustering with weighted UniFrac will
place more emphasis on communities that contain quickly evolving taxa. Since
these taxa are assigned more branch length, a comparison of the communities
that contain them will tend to produce higher values of u. In some situations, it
may be desirable to normalize u so that it has a value of 0 for identical commu-
nities and 1 for nonoverlapping communities. This is accomplished by dividing u
by a scaling factor (D), which is the average distance of each sequence from the
root, as shown in the equation as follows:

D ! !
j

n

dj " #Aj

AT
$

Bj

BT
$

Here, dj is the distance of sequence j from the root, Aj and Bj are the numbers
of times the sequences were observed in communities A and B, respectively, and
AT and BT are the total numbers of sequences from communities A and B,
respectively.

Clustering with normalized u values treats each sample equally instead of

TABLE 1. Measurements of diversity

Measure Measurement of " diversity Measurement of ! diversity

Only presence/absence of taxa considered Qualitative (species richness) Qualitative
Additionally accounts for the no. of times that

each taxon was observed
Quantitative (species richness and evenness) Quantitative

FIG. 1. Calculation of the unweighted and the weighted UniFrac
measures. Squares and circles represent sequences from two different
environments. (a) In unweighted UniFrac, the distance between the
circle and square communities is calculated as the fraction of the
branch length that has descendants from either the square or the circle
environment (black) but not both (gray). (b) In weighted UniFrac,
branch lengths are weighted by the relative abundance of sequences in
the square and circle communities; square sequences are weighted
twice as much as circle sequences because there are twice as many total
circle sequences in the data set. The width of branches is proportional
to the degree to which each branch is weighted in the calculations, and
gray branches have no weight. Branches 1 and 2 have heavy weights
since the descendants are biased toward the square and circles, respec-
tively. Branch 3 contributes no value since it has an equal contribution
from circle and square sequences after normalization.

VOL. 73, 2007 PHYLOGENETICALLY COMPARING MICROBIAL COMMUNITIES 1577

gray branches have no weight

Lozupone, et al (2007). Quantitative and qualitative… Applied and Environmental Microbiology

(Fraction of branch lengths not shared)
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Tree Method: UniFrac
Ordination Examples:
- PCoA/MDS (very common)
- NMDS

Exploratory Analyses often
rarefy - UniFrac - PCoA - Write Paper
(Not that we recommend this approach)
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Tree Method: DPCoA
“Double Principle Coordinates Analysis”, DPCoA, implemented in ade4
 
Suppose we have n species in p locations and a (euclidean) matrix ∆ giving the 
squares of the pairwise distances between the species. Then we can

• Use the distances between species to find an embedding in 
(n − 1)-dimensional space such that the euclidean distances between the 
species is the same as the distances between the species defined in ∆. 

• Place each of the p locations at the barycenter of its species profile. The 
euclidean distances between the locations will be the same as the square 
root of the Rao dissimilarity between them. (Rao 1986) 

• Use PCA to find a lower-dimensional representation of the locations.
• Gives the species and sample coordinates such that the inertia 

decomposes the same way the diversity does.
• Note: Don’t have to use patristic distance. Could use other D for species

Pavoine, et al. (2004). From dissimilarities among species to dissimilarities among communities: 
a double principal coordinate analysis. Journal of Theoretical Biology, 228(4), 523–537
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Comparison of 
UniFrac and DPCoA
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[
∑

M FM(%M/%8 − &M/&8)2]1/2 1SWX�WIRWMXMZI�XS�SYXPMIVW� PIEWX
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M FM |%M/%8 − &M/&8|

∑
M FM |%M/%8 − &M/&8| 0IWW� WIRWMXMZI� XS� SYXPMIVW�QSVI

WIRWMXMZI�XS�RSMWI�XLER�(4'S%
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I\EGXP]�SRI�KVSYT

∑
M FM�{

%M/%8−&M/&8
%M/%8+&M/&8

≥ 1} 7IRWMXMZI� XS� RSMWI� YT[IMKLXW
WLEPPS[�HMJJIVIRGIW�SR�XLI�XVII

7YQQEV]�SJ�XLI�QIXLSHW�YRHIV�GSRWMHIVEXMSR� ´3YXPMIVWµ
VIJIVW�XS�LMKLP]�EFYRHERX�389W� ERH�RSMWI�VIJIVW�XS�RSMWI
MR�HIXIGXMRK�PS[�EFYRHERGI�389W��WII�XLI�XI\X�JSV�QSVI
HIXEMP
�

Summary of the methods under consideration. “Outliers” refers to 
highly abundant OTUs, and noise refers to noise in detecting low-
abundance OTUs (see Fukuyama and Holmes, 2012)
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UniFrac and DPCoA

Microbiome Example: Antibiotic Timecourse
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(a) PCoA/MDS of the OTUs based on the patristic distance
(b) community and 
(c) species points for DPCoA after removing two outlying species.
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