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Lecture	6:	Generalized	
multivariate	analysis	of	variance

Measuring	association	of	the	‘entire’	
microbiome with	other	variables
• Distance	matrices	capture	some	
aspects	of	the	data	(e.g.	microbiome
composition,	relative	abundance,	
phylogenetic	relationships).
• Euclidean	distance	(square-root	of	
sums	of	square	differences	between	
components	of	the	centered	data)	
captures	the	covariances of	the	
variables.	
• Can	these	characteristics	be	used	to	
draw	association	of	the	entire	
microbiomewith	other	variables	of	
interest	(e.g.	treatment	group,	 locus	
of	sampling,	etc.)?	
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Measuring	association	of	the	‘entire’	
microbiome with	other	variables
• Distance	matrices	capture	some	aspects	of	the	data	(e.g.	microbiome
composition,	 relative	abundance,	 phylogenetic	relationships).
• Euclidean	distance	(square-root	of	sums	of	square	differences	
between	components	 of	the	centered	data)	captures	the	covariances
of	the	variables.	
• Can	these	characteristics	be	used	 to	draw	association	of	the	entire	
microbiome with	other	variables	of	interest	(e.g.	treatment	group,	
locus	 of	sampling,	 etc.)?	
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A	general	strategy	for	multivariate	analysis

• Apply	 a	normalization	to	the	data	(e.g.	relative	abundance);
• Calculate	a	distance	metric	between	the	observations	 (e.g.	Unifrac,	
Jensen-Shannon,	 Chi-Square);
• Perform	ordination	 and/or	clustering	analysis	 to	visualize	
relationships	 between	observations;
• Test	for	differences	between	predefined	groups	(e.g.	treatment	
levels,	phenotypes)
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ANOVA

• Idea:	SStotal =	SSerror +	SStreatments

• F	test:	F	=	[SStreatments/(I	 – 1)]/[SSerror/(nT - I)]
• F	=	(variance	between)/(variance	within	treatments)
• I	– number	of	treatments
• nT – total	number	of	cases
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ANOVA	example
a1 a2 a3

6 8 13

8 12 9

4 9 11

5 11 8

3 6 7

4 8 12

1. Within	group	means
• Y1 =	(6+8+4+5+3+4)/6	=	5
• Y2 =	…	=	9
• Y3 =	…	=	10

2. Overall	mean	Y	=	8
3. Between	group	sum	of	squares	

• SStreatments =	n1(Y1-Y)2+n2(Y2-Y)2+n3(Y3-Y)2	=	84
• (k	– 1)	=	3	– 1	=	2

4. Within	group	sum	of	squares
• SSerror=	68
• (nT – k)	=	18	– 3	=	15

5. F	=	(84/2)	/	(68/15)	=	42/4.5	=		9.3
6. Fcritical (	2,	15)	=	3.68
7. Conclusion:	The	group	effects	are	statistically	

significantly	different.
8. Next:	perform	post-hoc	pairwise	tests	to	detect	the	

pairs	that	are	different

SS1 SS2 SS3
(6	– Y1)2=(6	– 5)^2	=	

1
1 9

(8 – 5)2 =	9 9 1

(4	– 5)2 =	1 0 1

(5	– 5)2 =	0 4 4

(3	– 5)2 =	4 9 9

(4 – 5)2 =	1 1 4
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Euclidean	MANOVA

• A	direct	extension	of	the	univariate ANOVA	to	multiple	variables.
• SS	=	Σ(Yi – Y)T(Yi – Y)
• SS	=	Σ d2,	where	d	is	the	Euclidean	distance	from	the	center.
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Geometric	representation	of	MANOVA
(Anderson,	2001)

of a P-value using some method of permutation. I will
describe the method, which I shall simply call non-
parametric MANOVA, first for the one-way design and
then for more complex designs, followed by some eco-
logical examples. I deal here only with the case of
balanced ANOVA designs, but analogous statistics for any
linear model, including multiple regression and/or
unbalanced data, can be constructed, as described by
McArdle and Anderson (in press).

The test statistic: an F-ratio

The essence of analysis of variance is to compare vari-
ability within groups versus variability among different
groups, using the ratio of the F-statistic. The larger the
value of F, the more likely it is that the null hypothesis
(H0) of no differences among the group means (i.e.
locations) is false. For univariate ANOVA, partitioning
of the total sum of squares, SST, is achieved by calcu-
lating sums of squared differences (i) between indiv-
idual replicates and their group mean (SSW, the
within-group sum of squares; Table 1a), and (ii)
between group means and the overall sample mean
(SSA, the among-group sum of squares). Next, consider
the multivariate case where p variables are measured
simultaneously for each of n replicates in each of a
groups, yielding a matrix of data where rows are obser-
vations and columns are variables. A natural multi-
variate analogue may be obtained by simply adding up
the sums of squares across all variables (Table 1b). An
F-ratio can then be constructed, as in the univariate
case.

This multivariate analogue can also be thought of
geometrically (e.g. Caliński & Harabasz 1974; Mielke
et al. 1976; Edgington 1995; Pillar & Orlóci 1996), as
shown in Fig. 1 for the case of two groups and two vari-
ables (dimensions). Here, SSW is the sum of the
squared Euclidean distances between each individual
replicate and its group centroid (the point corres-
ponding to the averages for each variable, Fig. 1 and
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Table 1. Calculations of within-group sums of squares for partitioning in (a) univariate ANOVA, (b) a multivariate analogue
obtained by summing across variables, (c) a multivariate analogue equivalent to (b) obtained using sums of squared Euclidean
distances, (d) the traditional MANOVA approach, which yields an entire matrix (W) of within-group sums of squares and cross
products, and (e) the partitioning using inter-point distances advocated here, equivalent to (b) and (c) if Euclidean distances
are used

Univariate
(a) One variable SSW ! "

a
i ! 1 "

n
j ! 1 ( yij – y–i.)2

Multivariate
(b) Summed across variables SSW ! "

a
i ! 1 "

n
j ! 1 "

p
k ! 1 ( yijk – y–i.k)2

(c) Geometric approach SSW ! "
a
i ! 1 "

n
j ! 1 ( yij – y–i.)T( yij – y–i.)

(inner product, a scalar, based on Euclidean distances, correlations between 
variables ignored)

(d) Traditional MANOVA W ! "
a
i ! 1 "

n
j ! 1 ( yij – yy–i.)( yij – yy–i.)T

(outer product, a matrix, based on Euclidean distances, correlations between 
variables matter)

(e) Inter-point geometric approach
(a scalar, based on any distance measure, correlations between variables ignored) SS1 !

1
"

N – 1
i ! 1 "

N
j ! i # 1 d2

ij $ijn

yij, univariate observation of the jth replicate (j ! 1,…, n) in the ith group (i ! 1,…, a); yijk, observation of yij for the kth
variable (k ! 1,…, p); yij, vector of length p, indicating a point in multivariate space according to p variables (dimensions) for
observation j in group i. A superscript !T% indicates the transpose of the vector, bars over letters indicate averages and a dot
subscript indicates averaging was done over that subscripted variable.

Fig. 1. A geometric representation of MANOVA for two
groups in two dimensions where the groups differ in location.
The within-group sum of squares is the sum of squared dis-
tances from individual replicates to their group centroid. The
among-group sum of squares is the sum of squared distances
from group centroids to the overall centroid. (——) Distances
from points to group centroids; (•••••••) distances from group
centroids to overall centroid; (!), overall centroid; ("), group
centroid; (#), individual observation.

partitioning (in terms of ‘average’ differences among
groups) has not been previously achieved using
Bray–Curtis (or other semimetric) distances. However,
the relationship shown in Fig. 2 can be applied to
achieve the partitioning directly from interpoint
distances.

Thus, consider a matrix of distances between every
pair of observations (Fig. 3a). If we let N ! an, the total
number of observations (points), and let dij be the dis-
tance between observation i ! 1,…, N and observation
j ! 1,…, N, the total sum of squares is

1
SST ! "

N–1

i ! l
"
N

j ! i #1
d2

ij (1)
N

That is, add up the squares of all of the distances in
the subdiagonal (or upper-diagonal) half of the distance
matrix (not including the diagonal) and divide by N
(Fig. 3b). In a similar fashion, the within-group or
residual sum of squares is

1
SSW ! "

N–1

i ! l
"
N

j ! i #1
d2

ij $ij (2)
n

where $ij takes the value 1 if observation i and obser-
vation j are in the same group, otherwise it takes the
value of zero. That is, add up the squares of all of the
distances between observations that occur in the same
group and divide by n, the number of observations per
group (Fig. 3b). Then SSA ! SST – SSW and a pseudo
F-ratio to test the multivariate hypothesis is

SSA /(a – 1)
F ! (3)

SSW /(N – a)

If the points from different groups have different cen-
tral locations (centroids in the case of Euclidean dis-
tances) in multivariate space, then the among-group
distances will be relatively large compared to the within-
group distances, and the resulting pseudo F-ratio will
be relatively large.

One can calculate the sums of squares in equations
(1) and (2) and the statistic in equation (3) from a 
distance matrix obtained using any distance measure.
The statistic in equation (3) corresponds exactly to 
the statistic in equation (4) of McArdle and Anderson
(in press), who have shown more generally how 
partitioning for any linear model can be done directly
from the distance matrix, regardless of the distance
measure used. Another important aspect of the stat-
istic described above is that, in the case of a Euclidean
distance matrix calculated from only one variable,
equation (3) gives the same value as the traditional
parametric univariate F-statistic.

This is proposed as a new non-parametric MANOVA

statistic that is intuitively appealing, due to its analogy
with univariate ANOVA, and that is extremely relevant
for ecological applications. The results (in terms of
sums of squares, mean squares and pseudo F-ratios)
obtained for individual terms in a multivariate analysis

can be interpreted in the same way as they usually are
for univariate ANOVA. The difference is that the hypoth-
esis being tested for any particular term is a multivariate
hypothesis.

OBTAINING A P-VALUE USING
PERMUTATIONS

The multivariate version of the F-statistic described
here is not distributed like Fisher’s F-ratio under the
null hypothesis. This is so because (i) we do not expect
the individual variables to be normally distributed, and
(ii) we do not expect that the Euclidean distance will
necessarily be used for the analysis. Even if each of the
variables were normally distributed and the Euclidean
distance used, the mean squares calculated for the mul-
tivariate data would not each consist of sums of inde-
pendent %2 variables, because, although individual
observations are expected to be independent, individ-
ual species variables are not independent of one
another. Thus, traditional tabled P-values cannot be
used. A distribution of the statistic under the null
hypothesis can be created, however, using permutations
of the observations (e.g. Edgington 1995; Manly
1997). The only situation in which one could use the
traditional tabled probabilities would be if one had a
single variable that could reasonably be assumed to be
normally distributed and one used Euclidean distances
for the analysis.

Suppose the null hypothesis is true and the groups
are not really different (in terms of their composition
and/or their relative abundances of species, as measured
by the Bray–Curtis distances). If this were the case,
then the multivariate observations (rows) would be
exchangeable among the different groups. Thus, the
labels on the rows that identify them as belonging to a
particular group could be randomly shuffled (per-
muted) and a new value of F obtained (called, say, F&).
This random shuffling and re-calculation of F& is then
repeated for all possible re-orderings of the rows rela-
tive to the labels. This gives the entire distribution of
the pseudo F-statistic under a true null hypothesis for
our particular data. Comparing the value of F obtained
with the original ordering of the rows to the distribution
created for a true null by permuting the labels, a P-value
is calculated as

(No. of F & ≥ F)
P ! (4)

(Total no. of F &)

Note that we consider the original observed value of F
to be a member of the distribution of F& under per-
mutation (i.e. it is one of the possible orderings of the
labels on the rows). The usual scientific convention of
an a priori significance level of ' ! 0.05 is generally
used for interpreting the significance of the result, as
in other statistical tests. It is also possible to view the
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SSA – between	group	sums	of	squares
SSW – within	group	sums	of	squares
SST	– total	sum	of	squares

SST =	SSW	+	SSA

8

Key:	Mean	within	group	squared	
distance	is	equal	to	sum	of	squared	
distances	to	the	centroid.	
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Calculating	F-statistic	from	arbitrary	distance	
matrices

Table 1c). Note that this additive partitioning using a
geometric approach yields one value for each of SSW,
SSA and SST as sums of squared Euclidean distances.
This geometric approach gives sums of squares equiv-
alent to the sum of the univariate sums of squares
(added across all variables) described in the previous
paragraph. This differs from the traditional MANOVA

approach, where partitioning is done for an entire
matrix of sums of squares and cross-products (e.g.
Mardia et al. 1979; Table 1d).

The key to the non-parametric method described
here is that the sum of squared distances between points
and their centroid is equal to (and can be calculated
directly from) the sum of squared interpoint distances
divided by the number of points. This important
relationship is illustrated in Fig. 2 for points in two
dimensions. The relationship between distances to
centroids and interpoint distances for the Euclidean
measure has been known for a long time (e.g. 
Kendall & Stuart 1963; Gower 1966; Caliński &
Harabasz 1974; Seber 1984; Pillar & Orlóci 1996;
Legendre & Legendre 1998; see also equation B.1 in
Appendix B of Legendre & Anderson 1999). What is
important is the implication this has for analyses 
based on non-Euclidean distances. Namely, an 
additive partitioning of sums of squares can be obtained
for any distance measure directly from the distance
matrix, without calculating the central locations of
groups.

Why is this important? In the case of an analysis
based on Euclidean distances, the average for each vari-
able across the observations within a group constitutes
the measure of central location for the group in
Euclidean space, called a centroid. For many distance
measures, however, the calculation of a central location
may be problematic. For example, in the case of the
semimetric Bray–Curtis measure, a simple average
across replicates does not correspond to the ‘central
location’ in multivariate Bray–Curtis space. An
appropriate measure of central location on the basis 
of Bray–Curtis distances cannot be calculated 
easily directly from the data. This is why additive
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Fig. 2. The sum of squared distances from individual
points to their centroid is equal to the sum of squared inter-
point distances divided by the number of points.

Fig. 3. Schematic diagram
for the calculation of (a) a dis-
tance matrix from a raw data
matrix and (b) a non-para-
metric MANOVA statistic for a
one-way design (two groups)
directly from the distance
matrix. SST, sum of squared
distances in the half matrix
(!) divided by N (total 
number of observations); SSW,
sum of squared distances
within groups ( ) divided by
n (number of observations 
per group). SSA ! SST – SSW

and F = [SSA/(a – 1)]/[SSW/
(N – a)], where a ! the num-
ber of groups.
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partitioning (in terms of ‘average’ differences among
groups) has not been previously achieved using
Bray–Curtis (or other semimetric) distances. However,
the relationship shown in Fig. 2 can be applied to
achieve the partitioning directly from interpoint
distances.

Thus, consider a matrix of distances between every
pair of observations (Fig. 3a). If we let N ! an, the total
number of observations (points), and let dij be the dis-
tance between observation i ! 1,…, N and observation
j ! 1,…, N, the total sum of squares is

1
SST ! "

N–1

i ! l
"
N

j ! i #1
d2

ij (1)
N

That is, add up the squares of all of the distances in
the subdiagonal (or upper-diagonal) half of the distance
matrix (not including the diagonal) and divide by N
(Fig. 3b). In a similar fashion, the within-group or
residual sum of squares is

1
SSW ! "

N–1

i ! l
"
N

j ! i #1
d2

ij $ij (2)
n

where $ij takes the value 1 if observation i and obser-
vation j are in the same group, otherwise it takes the
value of zero. That is, add up the squares of all of the
distances between observations that occur in the same
group and divide by n, the number of observations per
group (Fig. 3b). Then SSA ! SST – SSW and a pseudo
F-ratio to test the multivariate hypothesis is

SSA /(a – 1)
F ! (3)

SSW /(N – a)

If the points from different groups have different cen-
tral locations (centroids in the case of Euclidean dis-
tances) in multivariate space, then the among-group
distances will be relatively large compared to the within-
group distances, and the resulting pseudo F-ratio will
be relatively large.

One can calculate the sums of squares in equations
(1) and (2) and the statistic in equation (3) from a 
distance matrix obtained using any distance measure.
The statistic in equation (3) corresponds exactly to 
the statistic in equation (4) of McArdle and Anderson
(in press), who have shown more generally how 
partitioning for any linear model can be done directly
from the distance matrix, regardless of the distance
measure used. Another important aspect of the stat-
istic described above is that, in the case of a Euclidean
distance matrix calculated from only one variable,
equation (3) gives the same value as the traditional
parametric univariate F-statistic.

This is proposed as a new non-parametric MANOVA

statistic that is intuitively appealing, due to its analogy
with univariate ANOVA, and that is extremely relevant
for ecological applications. The results (in terms of
sums of squares, mean squares and pseudo F-ratios)
obtained for individual terms in a multivariate analysis

can be interpreted in the same way as they usually are
for univariate ANOVA. The difference is that the hypoth-
esis being tested for any particular term is a multivariate
hypothesis.

OBTAINING A P-VALUE USING
PERMUTATIONS

The multivariate version of the F-statistic described
here is not distributed like Fisher’s F-ratio under the
null hypothesis. This is so because (i) we do not expect
the individual variables to be normally distributed, and
(ii) we do not expect that the Euclidean distance will
necessarily be used for the analysis. Even if each of the
variables were normally distributed and the Euclidean
distance used, the mean squares calculated for the mul-
tivariate data would not each consist of sums of inde-
pendent %2 variables, because, although individual
observations are expected to be independent, individ-
ual species variables are not independent of one
another. Thus, traditional tabled P-values cannot be
used. A distribution of the statistic under the null
hypothesis can be created, however, using permutations
of the observations (e.g. Edgington 1995; Manly
1997). The only situation in which one could use the
traditional tabled probabilities would be if one had a
single variable that could reasonably be assumed to be
normally distributed and one used Euclidean distances
for the analysis.

Suppose the null hypothesis is true and the groups
are not really different (in terms of their composition
and/or their relative abundances of species, as measured
by the Bray–Curtis distances). If this were the case,
then the multivariate observations (rows) would be
exchangeable among the different groups. Thus, the
labels on the rows that identify them as belonging to a
particular group could be randomly shuffled (per-
muted) and a new value of F obtained (called, say, F&).
This random shuffling and re-calculation of F& is then
repeated for all possible re-orderings of the rows rela-
tive to the labels. This gives the entire distribution of
the pseudo F-statistic under a true null hypothesis for
our particular data. Comparing the value of F obtained
with the original ordering of the rows to the distribution
created for a true null by permuting the labels, a P-value
is calculated as

(No. of F & ≥ F)
P ! (4)

(Total no. of F &)

Note that we consider the original observed value of F
to be a member of the distribution of F& under per-
mutation (i.e. it is one of the possible orderings of the
labels on the rows). The usual scientific convention of
an a priori significance level of ' ! 0.05 is generally
used for interpreting the significance of the result, as
in other statistical tests. It is also possible to view the
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Obtaining	p-values
• The	F-statistic	does	not	follow	Fisher’s	 F-ratio	under	
null,	 therefore	we	need	to	evaluate	it’s	 distribution	
under	null.
• Null	hypothesis:	 there	is	no	difference	between	
groups;	therefore,	we	can	compute	null	distribution	
empirically	by	shuffling	 the	group	labels.	
• For	each	reshuffling	 of	labels	compute	F	statistic,	the	
p-value	is	then
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partitioning (in terms of ‘average’ differences among
groups) has not been previously achieved using
Bray–Curtis (or other semimetric) distances. However,
the relationship shown in Fig. 2 can be applied to
achieve the partitioning directly from interpoint
distances.

Thus, consider a matrix of distances between every
pair of observations (Fig. 3a). If we let N ! an, the total
number of observations (points), and let dij be the dis-
tance between observation i ! 1,…, N and observation
j ! 1,…, N, the total sum of squares is

1
SST ! "

N–1

i ! l
"
N

j ! i #1
d2

ij (1)
N

That is, add up the squares of all of the distances in
the subdiagonal (or upper-diagonal) half of the distance
matrix (not including the diagonal) and divide by N
(Fig. 3b). In a similar fashion, the within-group or
residual sum of squares is

1
SSW ! "

N–1

i ! l
"
N

j ! i #1
d2

ij $ij (2)
n

where $ij takes the value 1 if observation i and obser-
vation j are in the same group, otherwise it takes the
value of zero. That is, add up the squares of all of the
distances between observations that occur in the same
group and divide by n, the number of observations per
group (Fig. 3b). Then SSA ! SST – SSW and a pseudo
F-ratio to test the multivariate hypothesis is

SSA /(a – 1)
F ! (3)

SSW /(N – a)

If the points from different groups have different cen-
tral locations (centroids in the case of Euclidean dis-
tances) in multivariate space, then the among-group
distances will be relatively large compared to the within-
group distances, and the resulting pseudo F-ratio will
be relatively large.

One can calculate the sums of squares in equations
(1) and (2) and the statistic in equation (3) from a 
distance matrix obtained using any distance measure.
The statistic in equation (3) corresponds exactly to 
the statistic in equation (4) of McArdle and Anderson
(in press), who have shown more generally how 
partitioning for any linear model can be done directly
from the distance matrix, regardless of the distance
measure used. Another important aspect of the stat-
istic described above is that, in the case of a Euclidean
distance matrix calculated from only one variable,
equation (3) gives the same value as the traditional
parametric univariate F-statistic.

This is proposed as a new non-parametric MANOVA

statistic that is intuitively appealing, due to its analogy
with univariate ANOVA, and that is extremely relevant
for ecological applications. The results (in terms of
sums of squares, mean squares and pseudo F-ratios)
obtained for individual terms in a multivariate analysis

can be interpreted in the same way as they usually are
for univariate ANOVA. The difference is that the hypoth-
esis being tested for any particular term is a multivariate
hypothesis.

OBTAINING A P-VALUE USING
PERMUTATIONS

The multivariate version of the F-statistic described
here is not distributed like Fisher’s F-ratio under the
null hypothesis. This is so because (i) we do not expect
the individual variables to be normally distributed, and
(ii) we do not expect that the Euclidean distance will
necessarily be used for the analysis. Even if each of the
variables were normally distributed and the Euclidean
distance used, the mean squares calculated for the mul-
tivariate data would not each consist of sums of inde-
pendent %2 variables, because, although individual
observations are expected to be independent, individ-
ual species variables are not independent of one
another. Thus, traditional tabled P-values cannot be
used. A distribution of the statistic under the null
hypothesis can be created, however, using permutations
of the observations (e.g. Edgington 1995; Manly
1997). The only situation in which one could use the
traditional tabled probabilities would be if one had a
single variable that could reasonably be assumed to be
normally distributed and one used Euclidean distances
for the analysis.

Suppose the null hypothesis is true and the groups
are not really different (in terms of their composition
and/or their relative abundances of species, as measured
by the Bray–Curtis distances). If this were the case,
then the multivariate observations (rows) would be
exchangeable among the different groups. Thus, the
labels on the rows that identify them as belonging to a
particular group could be randomly shuffled (per-
muted) and a new value of F obtained (called, say, F&).
This random shuffling and re-calculation of F& is then
repeated for all possible re-orderings of the rows rela-
tive to the labels. This gives the entire distribution of
the pseudo F-statistic under a true null hypothesis for
our particular data. Comparing the value of F obtained
with the original ordering of the rows to the distribution
created for a true null by permuting the labels, a P-value
is calculated as

(No. of F & ≥ F)
P ! (4)

(Total no. of F &)

Note that we consider the original observed value of F
to be a member of the distribution of F& under per-
mutation (i.e. it is one of the possible orderings of the
labels on the rows). The usual scientific convention of
an a priori significance level of ' ! 0.05 is generally
used for interpreting the significance of the result, as
in other statistical tests. It is also possible to view the
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Post-hoc	tests	for	multi-level	factors

• When	a	factor	has	more	than	2	levels,	it	is	not	immediately	clear	
which	pair	of	groups	are	different	from	each	other.
• To	figure	this	out	a	post-hoc	pairwise tests	need	to	be	carried	out.
• Pairwise	p-values	are	calculated	with	additional	permutations.
• Multiple	comparison	 correction	may	be	necessary.

11

More	sophisticated	designs

• Two-way	MANOVA
• Straightforward	extension	with	all	interactions	considered.

• Stratification/block	design
• When	an	effect	is	to	be	determined	within	the	levels	of	another	factor
• E.g.	Location	of	sampling	vs.	treatment

12



7/6/16

7

More	sophisticated	regression	scenarios

• Based	on	Zapala &	Schork,	 PNAS	2006.
• Suppose	 we	have	M	predictor	variables
• We	treat	the	multivariate	(𝑁×𝑃)	data	(microbiome	abundance,	gene	
expression,	 etc.)	as	the	response	 variable	𝒀
• The	basic	multivariate	regression	model	is	𝒀 = 𝑿𝜷+ 𝜀,
• where	𝜷 is	the	coefficient	matrix,	and	𝜀 is	an	error	term.
• Define	the	hat	matrix	as	usual	𝑯 = 𝑿+𝑿 ,𝟏𝑿′.

13

Regression	scenario	(continued)

• 𝑮 = −1
2
𝑰 − 𝟏

𝒏
𝟏𝟏+ 𝑫(𝟐) 𝑰 − 𝟏

𝒏
𝟏𝟏+ ;

• Then	F = ;<(𝑯𝑮𝑯)/(>,1)
;< 𝑰,𝑯 𝑮 𝑰,𝑯 /(?,>)

.

• This	is	how	PERMANOVA	is	implemented	 in	R/vegan	package,	
function	 adonis().

14
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Assumptions	of	PERMANOVA

• PERMANOVA	is	defined	 for	
balanced	sample	sizes,	but	can	
be	rewritten	for	𝑛A ≠ 𝑛C .
• Homoscedasticity	 is	an	
underlying	 assumption.
• Do	violations	 of	these	
assumptions	 lead	to	undesired	
behaviors?

• Simulation	 to	test	these	
asumptions:
• Let	X	be	1,000	dimensional	
uncorrelated	standard	normal
• Let	Y	be	1,000	dimensional	
uncorrelated	multivariate	normal	
with	each	component	
• mean	=	1/sqrt(1000)*e
• S.D.	=	0.8

• Simulate	data	with	𝑛A, 𝑛C ∈
5,10,15,20

• Compute	Euclidean	distances,	
PERMANOVA	p-values

15

Empirical	robustness	of	PERMANOVA	to	
heteroscedasticity	and	unbalanced	 sample	sizes
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Robustness	of	PERMANOVA

• When	both	homoscedasticity	 and	balanced	sample	sizes	are	violated	
adverse	statistical	behavior	can	be	observed.
• If	X	is	the	more	dispersed	 sample	then
• 𝑛A < 𝑛C leads	to	type	I	error	inflation,
• 𝑛A > 𝑛C leads	to	loss	of	power,
• where	𝑛A is	the	number	of	observations	 in	the	more	dispersed	sample.

17

Idea:	Univariate	approach	 to	
heteroscedasticity	issues
• Consider	 the	square	of	Welch	 t-statistic	𝑇M2 =

A̅,CO P

QRP SR⁄ UQVP SVW .

• If	we	can	write	𝑇M2 in	terms	of	pairwise	distances,	we	can	generalize	it	
to	multivariate	data.
• We	can	use	permutation	testing	to	assess	 the	significance.

18
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Key	equations	for	𝑇M2 derivation

• 𝑠A2 =
1

SR SR,1
∑ 𝑥[ − 𝑥\

2SR
[]\ = 1

SR SR,1
∑ 𝑑[\2
SR
[]\ ,

• Where∑ 	S
[]\ denotes	 double	summation	∑ ∑ 	S

\`[U1
S
[`1 .

• Let	𝒁 = (𝑧1,… , 𝑧SRUSV) = (𝑥1,…, 𝑥SR, 𝑦1,… , 𝑦SV),

• �̅� − 𝑦O 2 =
SRUSV
SRSV

e 1
SRUSV

∑ 𝑧[ − 𝑧\
2

[]\ − 1
SR
∑ 𝑥[ − 𝑥\

2
[]\ −

1
SV
∑ 𝑦[ − 𝑦\

2
[]\ f.

19

Pseudo-F	vs	𝑇M2

𝐹 =

1
𝑛A + 𝑛C

∑ 𝑑[\2
SR USV
[]\
[,\`1

− 1
𝑛A
∑ 𝑑[\2
SR
[]\
[,\`1

− 1
𝑛C
∑ 𝑑[\2
SRUSV

[]\
[,\`SRU1

1
𝑛A
∑ 𝑑[\2
SR
[]\
[,\`1

+ 1
𝑛C
∑ 𝑑[\2
SRUSV

[]\
[,\`SR U1

/(𝑛A − 𝑛C − 2)

𝑇M2 =
𝑛A + 𝑛C
𝑛A𝑛C

×

1
𝑛A + 𝑛C

∑ 𝑑[\2
SR USV
[]\
[,\`1

− 1
𝑛A
∑ 𝑑[\2
SR
[]\
[,\`1

− 1
𝑛C
∑ 𝑑[\2
SR USV

[]\
[,\`SRU1

1
𝑛A2(𝑛A − 1)

∑ 𝑑[\2
SR
[]\
[,\`1

+ 1
𝑛C2(𝑛C − 1)

∑ 𝑑[\2
SR USV

[]\
[,\`SRU1

How	do	these	compare	 when	𝑛A = 𝑛C or	 1
SR(SR,1)

∑ 𝑑[\2[]\ − 1
SV(SV,1)

∑ 𝑑[\2[]\ ?
20
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Empirical	
performance	of	𝑇M2 vs	
PERMANOVAEffect: 0 Effect: 4 Effect: 5

● ● ●

●

● ●

● ●

●

● ● ●

● ● ●● ● ●● ● ●● ● ●

● ● ●

●

● ●

●

●

●

●
●

●

● ●
●● ● ●● ● ●● ● ●

● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●

● ● ●

●

● ●

● ●

●

● ● ●
●

● ●

●

● ●

●

●
●

●

● ●

● ● ●

●

●

●

● ●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ● ●

●

● ●

● ●

●

● ● ●● ● ●

●

● ●

●

● ●

●

● ●

● ● ●

●

●

●

● ● ●● ● ●

●

●

●

●

● ●

●

● ●

●

● ●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●
●

●

●
●

●

● ●

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Frac.S.D.: 0.2
Frac.S.D.: 0.8

Frac.S.D.: 1

5 10 15 20 5 10 15 20 5 10 15 20

Observations in most dispersed sample

Fr
ac

tio
n 

of
 re

je
ct

ed
 n

ul
l h

yp
ot

he
se

s

Balanced sample size
● No

Yes

Statistical
test

●

●

PERMANOVA
Tw2

Observations
in least dispersed
sample

●

●

●

●

5
10
15
20

Empirical type I error and power (α = 0.05)

Homoscedastic

Type	I	
error

21

Typical	experimental	scenarios	at	𝑛 ≈ 10 or	𝑛 ≈ 50
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Performance	in	a	real	dataset
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Table 2. Comparison of PERMANOVA and T 2
W

on mouse gut microbiome dataset.

Cecal microbiome Fecal microbiome
P-values P-values

Comparison N obs. H !2 d PERMANOVA T 2
W

N obs. H !2 d PERMANOVA T 2
W

C. vs. All Abx. 10 vs. 40 1.4 0.22 1.21 0.040 0.0001 10 vs. 36 1.4 0.29 1.34 0.015 0.0014

C. vs. Penicillin 10 vs. 10 0.85 0.12 1.90 0.00001 0.00002 10 vs. 9 1.1 0.07 1.94 0.015 0.015

C. vs. Vancomycin 10 vs. 10 1.8 0.08 2.26 0.00009 0.0001 10 vs. 9 1.6 0.21 2.70 0.00001 0.00002

C. vs. Tetracycline 10 vs. 10 1.2 0.12 2.05 0.00005 0.00005 10 vs. 10 1.0 0.07 1.89 0.007 0.006

C. vs. Van. + Tetr. 10 vs. 10 1.1 0.10 1.97 0.002 0.002 10 vs. 8 1.4 0.11 2.24 0.001 0.002

Table 3. Comparison of PERMANOVA and T 2
W

on human skin microbiome dataset.

P-values
Comparison N obs. H !2 d PERMANOVA T 2

W

Control vs. Lesion 49 vs. 51 1.07 0.014 0.77 0.0003 0.0002
Control vs. Unaffected 49 vs. 51 1.04 -0.0006 0.60 0.5 0.5
Lesion vs. Unaffected 51 vs. 51 0.97 0.004 0.62 0.07 0.07

(fecal vs. cecal). The antibiotic vs. control groups are separated along PC2.
Note that for cecal samples the comparison of the controls against each of
the antibiotic treatment groups individually are significant and similar for
both tests. This is expected because the design is balanced in these tests.

4.2.2 Skin microbiome in psoriasis dataset

The skin microbiome dataset consists of observations of skin microbial
abundances from control subjects and from psoriasis subjects, who
contribute two samples from a lesion site and from symmetrical unaffected
site. PERMANOVA and T

2
W

tests produce similar significance values and
inferences (Table 3), which is owed to the fact that the multivariate spread
is similar in all conditions, and sample sizes are larger and closer to being
balanced.

5 Discussion

By derivation T

2
W

inherits the characteristics of the univariate unequal
variance Welch t-test. That test is recommended as a replacement for
pooled variance t-test in all circumstances. Testing for unequal variances
by methods, such as PERMDISP, is not recommended before a choice
of the primary test is made. The main disadvantage of the Welch’s t-
test compared to ANOVA is potential loss of robustness when violations
of normality are present (Levy, 1978). This issue, however, rests on the
limiting distributions of the tests. In our case, the inference is obtained by
permutation testing, which alleviates this concern. Thus T 2

W

should also
become a first line replacement for PERMANOVA in simple two-sample
case.

Two-sample scenario is a common experimental design, but a
general solution for k-level factors is still desirable. The behavior of
PERMANOVA under heteroscedastic conditions with k-level factors
have not been examined, but is suspected to suffer from similar
shortcomings as in the two sample case. When heteroscedasticity is
suspected, several remedial strategies can be implemented. First, a
variance stabilizing transformation can be applied to the data to remove
heteroscedasticity (McMurdie and Holmes, 2014). If transformation of
the data is not desirable for any reason, other strategies could include
developing specialized sub-sampling and permutation-based strategies.
For example, the data could be re-sampled m times at balanced
sample sizes and an average PERMANOVA statistic computed F

A

=
1
m

P
i

F

(i)
A

. This statistic could then be compared to the null distribution

generated by permuting the sample labels r-times and computing the
re-sampled F

A

(1), . . . , F
A

(r), where F

A

(j) = 1
m

P
i

F

(i)
A

(j). The
significance can be determined by using regular permutation testing
approach to compare the number of times the obtained statistic is more
extreme than those observed under the null, i.e. p(r) =

P
r

j

1(F
A

>

F

A

(j)). This method ensures that the groups are balanced in each
comparison, but may still lead to loss of power due to decreased effective
sample size in each sub-sampled comparison. This approach is reported
here as a suggestion that needs further development and evaluation before
in can be implemented in practice. The final strategy for analysis of data
with arbitrary number of levels could involve the application of T

2
w

to
only relevant pairwise comparisons with appropriate multiple comparison
controls in place.
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PERMANOVA-S:	accommodates	multiple	
distances
• Based	on	Tang	et	al.	Bioinformatics 2016.
• Suppose	 we	want	to	consider	 K	distances	simultaneously,	 𝑫1,… ,𝑫i.
• We	would	like	to	know	the	significance	of	the	entire	ensemble	
• Determine	which	individual	 distance	performs	best	

24
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PERMANOVA-S:	Ensembling algorithm

1. For	each	𝑫j,	compute	the	observed	pseudo-F	 statistic	𝐹j;
2. Obtain	B	permutations	and	compute	𝐹j

(1),…, 𝐹j
k ;

3. Compute	p-value	for	each	k,	𝑝j,	and	𝑝m[S = min	(𝑝1,… , 𝑝i);
4. For	each	k,	compute	the	permutation	p-value	as	𝑝j

(q) = (B −
rank(Fv

q )/𝐵;
5. For	each	permutation	b,	 obtain	minimal	permutation	p-value	

𝑝m[S
(q) = min	(𝑝1

q ,… , 𝑝j
q ).

6. The	final	(unified)	 p-value	is	the	proportion	 of	𝑝m[S
(1) , …, 𝑝m[S

q smaller	
than	𝑝m[S.	

25

Summary

• PERMANOVA	is	useful	 for	omnibus	 hypothesis	 testing;
• PERMANOVA	has	undesirable	 behavior	with	unbalanced	
heteroscedastic	data;
• 𝑇M2 corrects	that	behavior	in	two	sample	case;
• PERMANOVA	testing	can	be	done	with	ensembling multiple	 distances.
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