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Lecture 6: Generalized
multivariate analysis of variance

Measuring association of the ‘entire’
microbiome with other variables

* Distance matrices capture some
aspects of the data (e.g. microbiome
composition, relative abundance,
phylogenetic relationships).

* Euclidean distance (square-root of

sums of square differences between
components of the centered data)
captures the covariances of the
variables.

* Can these characteristics be used to
draw association of the entire
microbiome with other variables of
interest (e.g. treatment group, locus
of sampling, etc.)?
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Measuring association of the ‘entire’
microbiome with other variables

* Distance matrices capture some aspects of the data (e.g. microbiome
composition, relative abundance, phylogenetic relationships).

* Euclidean distance (square-root of sums of square differences
between components of the centered data) captures the covariances
of the variables.

 Can these characteristics be used to draw association of the entire
microbiome with other variables of interest (e.g. treatment group,
locus of sampling, etc.)?

A general strategy for multivariate analysis

* Apply a normalization to the data (e.g. relative abundance);

* Calculate a distance metric between the observations (e.g. Unifrac,
Jensen-Shannon, Chi-Square);

* Perform ordination and/or clustering analysis to visualize
relationships between observations;

* Test for differences between predefined groups (e.g. treatment
levels, phenotypes)
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ANOVA

* Idea: SStotal = SSerror + SStreatments

* Ftest:F = [Sstreatments/(I - 1)]/[Sserror/(nT -1)]
* F = (variance between)/(variance within treatments)

* | — number of treatments
* n; —total number of cases
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ANOVA example
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Within group means
Y. = (6+8+4+5+3+4)/6=5
. Y,=...= 9
. Y;=..=10
Overall mean Y =8

Between group sum of squares
° Sstreatments = nl(Yl'Y)2+n2(Y2'Y)2+n3(Y3'Y)2: 84
e (k-1)=3-1=2
Within group sum of squares
* SSerror= 68
« (nT—-k)=18-3=15
F=(84/2)/(68/15)=42/4.5=9.3
Fcritical (2,15)=3.68

Conclusion: The group effects are statistically
significantly different.

Next: perform post-hoc pairwise tests to detect the
pairs that are different
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Euclidean MANOVA

* A direct extension of the univariate ANOVA to multiple variables.

* SS =3(Y,— Y)'(Y, - Y)

* SS =3 d?, where d is the Euclidean distance from the center.

Geometric representation of MANOVA

(Anderson, 2001)
1

Variable 2

Variable 1

Fig.1. A geometric representation of MANOvVA for two
groups in two dimensions where the groups differ in location.
The within-group sum of squares is the sum of squared dis-
tances from individual replicates to their group centroid. The
among-group sum of squares is the sum of squared distances
from group centroids to the overall centroid. (——) Distances
from points to group centroids; (- ) distances from group
centroids to overall centroid; (+), overall centroid; ((]), group
centroid; (@), individual observation.

o SS4/(a—-1)
~ SSw/(N—-a)

SSa —between group sums of squares
SSw— within group sums of squares
SSr— total sum of squares

SS57=SSw+ 554

Key: Mean within group squared
distance is equal to sum of squared
distances to the centroid.
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Calculating F-statistic from arbitrary distance
matrices

F M @ Variables (species) Observations
~ SSw/(N-a)

(symmetric)

RAW DATA

S
MATRIX

Calculate distances
between each pair DISTANCE

of observations MATRIX

Observations
Observations

Fig.3. Schematic diagram
for the calculation of (a) a dis-
tance matrix from a raw data
matrix and (b) a non-para-
metric MANOVA statistic for a
one-way design (two groups)
directly from the distance
matrix. SS7, sum of squared
distances in the half matrix
(W) divided by N (total
number of observations); SSy,
sum of squared distances
within groups ([2) divided by
n (number of observations
per group). SSi=SSr—SSw
and F=[SS4/(a—1))/[SSw/
(N-a)], where a = the num-
ber of groups.

Group 1 Group 2

Group I{ Z \
Group 2 ~|:

K2

Observations

Observations

)

Obtaining p-values

* The F-statistic does not follow Fisher’s F-ratio under
null, therefore we need to evaluate it’s distribution
under null.

* Null hypothesis: there is no difference between
groups; therefore, we can compute null distribution
empirically by shuffling the group labels.

* For each reshuffling of labels compute F statistic, the
p-value is then

(No. of F"=F)
- (Total no. of F™)
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Post-hoc tests for multi-level factors

* When a factor has more than 2 levels, it is not immediately clear
which pair of groups are different from each other.

* To figure this out a post-hoc pairwise tests need to be carried out.
* Pairwise p-values are calculated with additional permutations.
* Multiple comparison correction may be necessary.

11

More sophisticated designs

* Two-way MANOVA

* Straightforward extension with all interactions considered.

* Stratification/block design
¢ When an effectis to be determined within the levels of another factor

* E.g. Location of sampling vs. treatment
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More sophisticated regression scenarios

* Based on Zapala & Schork, PNAS 2006.
» Suppose we have M predictor variables

* We treat the multivariate (N XP) data (microbiome abundance, gene
expression, etc.) as the response variable ¥

* The basic multivariate regression model is Y = X + ¢,
» where B is the coefficient matrix, and € is an error term.

* Define the hat matrix as usual H = (X' X)~1X".

Regression scenario (continued)

1 1 1
° — _ - _* ’ (2) _ X ry.
G=-1(1-211)D® (1-111');
. _ tr(HGH)/(M—1)
Then F = tr [I-H)GU-H)]/(N-M)"
* This is how PERMANOVA is implemented in R/vegan package,
function adonis().
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Assumptions of PERMANOVA

* PERMANOVA is defined for

balanced
be rewrit

Si
sample sizes, but can
tenfor n, #n,,.

* Homoscedasticity is an
underlying assumption.

* Do violati

ons of these

assumptions lead to undesired
behaviors?

mulation to test these

asumptions:

* Let X be 1,000 dimensional
uncorrelated standard normal
* Let Y be 1,000 dimensional
uncorrelated multivariate normal
with each component
* mean = 1/sqrt(1000)*e
+ S5.D.=0.8
* Simulate data withn,, n, €
{5,10,15,20}
* Compute Euclidean distances,
PERMANOVA p-values

Empirical robustness of PERMANQOVA to
heteroscedasticity and unbalanced sample sizes

Empirical type | error and power (o = 0.05)

N
o
S

0.00

Effect: 0

Effect: 2 Effect: 4

Effect: 5

-5
® 10
................ PYRT:

Balanced sample size
* No

A Yes
Observations

in least dispersed
sample

Fraction of rejected null hypotheses

T T T T T T T T T T
5 10 15 205 10 15 205 10 15 205 1

A Observations in most dispersed sample

Typel
error

T T T
o 15 20 @20
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Robustness of PERMANQOVA

* When both homoscedasticity and balanced sample sizes are violated
adverse statistical behavior can be observed.

* If Xis the more dispersed sample then
*n, <mn, leads to type | error inflation,

* Ny >N, leads to loss of power,
* where n, is the number of observations inthe more dispersed sample.

17

|dea: Univariate approach to
heteroscedasticity issues
(x—y)?
s3/ny+s3/ny”
* If we can write Tj% in terms of pairwise distances, we can generalizeit
to multivariate data.
* We can use permutation testing to assess the significance.

* Consider the square of Welch t-statistic T}j, =
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Key equations for va, derivation

° 2 —_ —_ nx 2
Sx T (n D z<1(xl x]) e —1)Zl<1 dij,
. WhereZKl denotes double summation X7 121 Sl -

sletZ = (z4,...,2 nx+ny) = (X1, s X V1) ...,yny)
o (% _ S\2 — nx+ny 1 _
(x y) - nyeny [nx+ny l<]( ) Zl<](xl x])
Zl<] (yl y]) ]

19

Pseudo-F vs Tj5
1 1

1 ny+ny, o Ny 2 Ny +ny, 2
nxTnyZ i<j djj _n_x2i<j dij_n_z i<j df
i,j=1 i,j=1 L,j=n,+1
1 2 1 nx+ny 2
(EZ i<j d +_yz i<j dij /(nx—ny—Z)

i,j=1 ij=n,+1

F =

n, + n, 'l_<J Uoon, 'l.<_] tj n, = _l<1
i,j=1 L,j=1 i,j=n,+1
2 1 ny +n,, 2

— <j
ny(ny —1) ij=ne+1

1 an +n,y 42 L an 42 L an +n,y diz-

5 _ n, + le
Ty = X
NNy,

1

n)%(nx_l) ij=1

1
Yicjdf ————=2X; d}?

How do these compare whenn, =n, or
ny(ny—1)

1
nx(nx—1)
20

10
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Typel
error

N

Empirical type | error and power (a = 0.05)

Empirical
performance of Ty vs

Effect: 0 Effect:

= Qo

-4

Fraction of rejected null hypotheses
=9 < < <

Effect: 5

PERMANOVA

20rasoey

Balanced sample size
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Statistical

- PERMANOVA

—o— Tw2
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° 10
® 15
@ 20
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Performance in a real dataset

Table 2. Comparison of PERMANOVA and T2, on mouse gut microbiome dataset.

Cecal microbiome

Fecal microbiome

P-values P-values
Comparison N obs. H w? d PERMANOVA T3, N obs. #  w?® d PERMANOVA T3,
C. vs. All Abx. 10vs.40 1.4 022 1.21 0.040 0.0001 10vs.36 14 029 134 0.015 0.0014
C. vs. Penicillin 10vs. 10 0.85 0.12 1.90 0.00001 0.00002 10vs.9 1.1 0.07 1.94 0.015 0.015
C. vs. Vancomycin 10vs. 10 1.8 0.08 2.26 0.00009 0.0001 10vs.9 1.6 0.21 2.70 0.00001 0.00002
C. vs. Tetracycline 10vs. 10 1.2 0.12 2.05 0.00005 0.00005 10vs.10 1.0 0.07 1.89 0.007 0.006
C.vs. Van. + Tetr. 10vs. 10 1.1  0.10 1.97 0.002 0.002 10vs.8 1.4 0.11 224 0.001 0.002

PERMANOVA-S: accommodates multiple

distances

* Based on Tang et al. Bioinformatics 2016.

* Suppose we want to consider K distances simultaneously, D, ..., D.

* We would like to know the significance of the entire ensemble

* Determine which individual distance performs best

24
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PERMANOVA-S: Ensembling algorithm

H w e

For each D, compute the observed pseudo-F statistic Fj;
Obtain B permutations and compute Fk(l), - Fk(B);

Compute p-value for each k, py, and pp,;,, = min(py, ..., D );
For each k, compute the permutation p-value as P;Eb) =(B -
rank(Fl((b)) /B;

For each permutation b, obtain minimal permutation p-value
b . (b (b)

Poin = Min(p; ", ..., 0, )

The final (unified) p-value is the proportion of p

than pin-

(1) ()

ine = P smaller

Summary

* PERMANOVA is useful for omnibus hypothesis testing;
* PERMANOVA has undesirable behavior with unbalanced

heteroscedastic data;

* T;% corrects that behavior in two sample case;
* PERMANOVA testing can be done with ensembling multiple distances.
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