Lecture 6: Generalized multivariate analysis of variance

Measuring association of the 'entire' microbiome with other variables

- Distance matrices capture some aspects of the data (e.g. microbiome composition, relative abundance, phylogenetic relationships).
- Euclidean distance (square-root of sums of square differences between components of the centered data) captures the covariances of the variables.
- Can these characteristics be used to draw association of the entire microbiome with other variables of interest (e.g. treatment group, locus of sampling, etc.)?

Measuring association of the 'entire' microbiome with other variables

- Distance matrices capture some aspects of the data (e.g. microbiome composition, relative abundance, phylogenetic relationships).
- Euclidean distance (square-root of sums of square differences between components of the centered data) captures the covariances of the variables.
- Can these characteristics be used to draw association of the entire microbiome with other variables of interest (e.g. treatment group, locus of sampling, etc.)?

A general strategy for multivariate analysis

- Apply a normalization to the data (e.g. relative abundance);
- Calculate a distance metric between the observations (e.g. Unifrac, Jensen-Shannon, Chi-Square);
- Perform ordination and/or clustering analysis to visualize relationships between observations;
- Test for differences between predefined groups (e.g. treatment levels, phenotypes)

5

ANOVA

- Idea: $SS_{total} = SS_{error} + SS_{treatments}$
- F test: F = [SS_{treatments}/(I 1)]/[SS_{error}/(n_T I)]
- F = (variance between)/(variance within treatments)
- I number of treatments
- $n_T total$ number of cases

Euclidean MANOVA

- A direct extension of the univariate ANOVA to multiple variables.
- SS = $\Sigma(\mathbf{Y}_i \mathbf{Y})^{\mathsf{T}}(\mathbf{Y}_i \mathbf{Y})$
- SS = Σ d², where d is the Euclidean distance from the center.

Post-hoc tests for multi-level factors

- When a factor has more than 2 levels, it is not immediately clear which pair of groups are different from each other.
- To figure this out a post-hoc **pairwise** tests need to be carried out.
- Pairwise p-values are calculated with additional permutations.
- Multiple comparison correction may be necessary.

More sophisticated designs

- Two-way MANOVA
 - Straightforward extension with all interactions considered.
- Stratification/block design
 - When an effect is to be determined within the levels of another factor
 - E.g. Location of sampling vs. treatment

11

- PERMANOVA is defined for balanced sample sizes, but can be rewritten for $n_x \neq n_y$.
- Homoscedasticity is an underlying assumption.
- Do violations of these assumptions lead to undesired behaviors?
- Simulation to test these asumptions:
 - Let X be 1,000 dimensional uncorrelated standard normal
 - Let Y be 1,000 dimensional uncorrelated multivariate normal with each component
 - mean = 1/sqrt(1000)*e
 - S.D. = 0.8
 - Simulate data with n_x , $n_y \in \{5,10,15,20\}$
 - Compute Euclidean distances, PERMANOVA p-values

$$Pseudo-F vs T_{W}^{2}$$

$$= \frac{1}{n_{x} + n_{y}} \sum_{\substack{i,j=1 \\ i,j=1}}^{n_{x} + n_{y}} \sum_{\substack{i,j=1 \\ i,j=1}}^{n_{x} + n_{y}} \sum_{\substack{i,j=1 \\ i,j=1}}^{n_{x} + n_{y}} \sum_{\substack{i,j=1 \\ i,j=1 \\ i,j=n_{x} + n_{y}}}^{n_{x} + n_{y}} \sum_{\substack{i,j=1 \\ i,j=n_{x} + n_{y}}}^{n_{x} + n_{y}} \sum_{\substack{i,j=1 \\ i,j=n_{x} + n_{y}}}^{n_{x} + n_{y}} \sum_{\substack{i,j=1 \\ i,j=1 \\ i,j=n_{x} + n_{y} \sum_{\substack{i,j=n_{x} + n_{y} \\ i,j=n_{x} + n_{y} \\ i,j=1 \\ i,j=1 \\ i,j=1 \\ i,j=1 \\ i,j=1 \\ i,j=1 \\ i,j=n_{x} + n_{y} \sum_{\substack{i,j=n_{x} + n_{y} \\ i,j=n_{x} + n_{y} \\ i,j=1 \\ i,j=1 \\ i,j=1 \\ i,j=1 \\ i,j=1 \\ i,j=1 \\ i,j=n_{x} + n_{y} \sum_{\substack{i,j=n_{x} + n_{y} \\ i,j=n_{x} + n_{y} \\ i,j=1 \\ i,j=1 \\ i,j=1 \\ i,j=1 \\ i,j=1 \\ i,j=n_{x} + n_{y} \\ i,j=n_{x} + n_{y} \\ i,j=n_{x} + n_{y} \sum_{\substack{i,j=1 \\ i,j=1 \\ i,j=1 \\ i,j=1 \\ i,j=1 \\ i,j=1 \\ i,j=n_{x} + n_{y} \\ i,j=n_{x} + n_{y} \\ i,j=n_{x} + n_{y} \\ i,j=1 \\ i,j=1 \\ i,j=1 \\ i,j=1 \\ i,j=n_{x} + n_{y} \\ i,j=n_{x} + n_{$$

Table 2. Comparison	of PERMA	NOV	A and 2	T_W^2 or	n mouse gut micro	biome data	aset.					
		robiome		Fecal microbiome								
Comparison	P-values						P-values					s
	N obs.	\mathcal{H}	ω^2	d	PERMANOVA	T_W^2	N obs.	\mathcal{H}	ω^2	d	PERMANOVA	T_W^2
C. vs. All Abx.	10 vs. 40	1.4	0.22	1.21	0.040	0.0001	10 vs. 36	1.4	0.29	1.34	0.015	0.0014
C. vs. Penicillin	10 vs. 10	0.85	0.12	1.90	0.00001	0.00002	10 vs. 9	1.1	0.07	1.94	0.015	0.015
C. vs. Vancomycin	10 vs. 10	1.8	0.08	2.26	0.00009	0.0001	10 vs. 9	1.6	0.21	2.70	0.00001	0.00002
C. vs. Tetracycline	10 vs. 10	1.2	0.12	2.05	0.00005	0.00005	10 vs. 10	1.0	0.07	1.89	0.007	0.006
C. vs. Van. + Tetr.	10 vs. 10	1.1	0.10	1.97	0.002	0.002	10 vs. 8	1.4	0.11	2.24	0.001	0.002

PERMANOVA-S: accommodates multiple distances

- Based on Tang et al. Bioinformatics 2016.
- Suppose we want to consider K distances simultaneously, D_1, \dots, D_K .
- We would like to know the significance of the entire ensemble
- Determine which individual distance performs best

Summary

- PERMANOVA is useful for omnibus hypothesis testing;
- PERMANOVA has undesirable behavior with unbalanced heteroscedastic data;
- T_W^2 corrects that behavior in two sample case;
- PERMANOVA testing can be done with ensembling multiple distances.

26