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UNSUPERVISED LEARNING: 
CLUSTERING
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How do we understand clustering?

• What does it mean for the data to be 
clustered? 

• What meaning do the clusters have? 
• How do you know the data can be 

clustered?
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Definition

• Clustering analysis – methodologies for 
describing proximity between objects 

• Hierarchical clustering – a set of 
descriptive techniques for grouping 
objects by similarity 

• Discrete clustering – a set of techniques 
for assessing membership of objects in 
one of several closely groups.
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Hierarchical clustering

• Organize objects in 
dendrograms (usually 
binary); 

• Objects that are more 
similar are closer to 
each other on the tree; 

• For any set of objects 
one can find a 
dendrogram! Everything 
clusters! 

• How to tell if the 
clustering is meaningful?
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Hierarchical clustering algorithm

• Start with a dissimilarity matrix 
• Join the 2 most closely related objects 
• Remove the joined objects from the 

matrix 
• Add a new object that represents the 

joint group (complete, average, single) 
• Repeat until no objects remain in the 

matrix
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Linkage types

• Complete linkage: 
distance from the 
furthest objects apart 

• Average linkage: 
average distance 
between objects 

• Single linkage: 
distance from the 
closest objects apart
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Hierarchcal clustering example
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Cophenetic distance

• Distance induced by 
the dendrogram is 
called cophenetic 
distance. 

• This distance may be 
different from the 
original distance used 
to construct the 
dendrogram.
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In R

• hclust performs hierarchical clustering 
• cophenetic computes cophenetic 

distance on the dendrogram
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Discrete clustering

• K-means clustering 
• PAM (partitioning around medoids) 

clustering 
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K-means clustering

• Initialize: Pick K random 
points as cluster centers 

• Iterate: 
– Assign points to closest 

cluster center 
– Update cluster center 

location to the mean of 
the assigned points 

• Stop when no points 
change cluster 
assignment 
(convergence)
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K-means clustering
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K-means clustering
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K-means clustering
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Partitioning around medoids clustering

• Initialize: Select K of 
the points to be the 
centers of the clusters 

• Iterate: 
– Assign points to the 

closest cluster center. 
– For each cluster center: 

• Replace center with point 
that minimizes total 
distance within the cluster 

• Stop when no cluster 
center has changed
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K-medoids
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K-medoids
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In R:

• Libraries: cluster and clusterSim
• pam: partitioning around medoids 

algorithm 
• clusGap: gap statistic
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How to select the number of clusters?

• Use measures of how good the clusters 
describe the structure of the data for 
varying number of clusters. 

• F-statistic: Calinski-Harabasz index 
• Silhouette method 
• Gap statistic: a metric based on within 

group distances defined using 
permutations
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F-statistic

• Let 
– SSW is the sum of squares within the clusters; 
– SSB is the sum of squares among the clusters. 

• F [CH-index]= (SSB/(K-1))/(SSW/(n-K)) 
– Ratio of average between cluster distance and 

average within cluster distance 
• Larger index value indicates better clustering: 
– When distance between clusters is maximized so is 

the F index; 
– When within cluster variability is low the index is 

higher.
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Silhouette

• For each point i let: 
– a(i) is average distance to other objects within the 

same cluster; 
– b(i) distance to the closest object outside the 

cluster. 

• s(i) = [b(i) – a(i)]/max(a(i), b(i)) 
• -1 ≤ s(i) ≤ 1 
• s(i) closer to 1 indicates best clustering; when 

a(i) is vanishingly small and b(i) is much larger 
than a(i).
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Gap Statistic

Computed using “random” clustering.

Larger values of the gap statistic correspond to better clustering.
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Clustering and gradients

Alekseyenko, AV., Perez-Perez, GI., D’Souza, A., Strober, B., Gao, Z., Bihan, M., Li, K., Meth é, B., Blaser, MJ., “Community differentiation of 
the cutaneous microbiota in psoriasis.” Microbiome 2013 Dec 23;1(1):31. doi: 10.1186/2049-2618-1-31  
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SUPERVISED LEARNING: 
CLASSIFICATION
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What are the main elements of predictive 
downstream analysis?

1. Model selection 
Out of many possible models find the ones that are most likely to be accurate 

(and also have other desired properties). 
2. Error estimation 

Estimate how  accurate the final model will be in future applications (i.e., in 
the population where we sampled from).  

Very important Model Selection + Error Estimation method: 
Repeated Nested n-Fold Cross Validation (RNCV)
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Supervised learning:  
a geometrical interpretation
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• Some methods do not run at all (classical 
multiple regression)  

• Some methods give bad results (KNN, 
Decision trees) 

• Very slow analysis 
• Very expensive/cumbersome clinical 

application 
• Tends to “overfit”

High-dimensionality (especially with 
small samples) causes:
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• Over-fitting ( a model to your data)= building a 
model that is good in original data but fails to 
generalize well to fresh data 

• Under-fitting ( a model to your data)= building 
a model that is poor in both original data and  
fresh data

Two (very real and very unpleasant) problems:  
Over-fitting & Under-fitting
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Over/under-fitting are directly related to the complexity 
of the decision surface and how well the training data is 

fit  

Predictor X

Outcome of 
Interest Y

Training Data 

Future Data

This line is 
good!

This line 
overfits!
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Over/under-fitting are directly related to the complexity 
of the decision surface and how well the training data is 

fit  

Predictor X

Outcome of 
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Successful data analysis methods 
balance training data fit with complexity

•  Too complex signature (to fit training 
data well) ➔overfitting (i.e., signature 
does not generalize) 

• Too simplistic signature (to avoid 
overfitting) ➔ underfitting (will 
generalize but the fit to both the training 
and future data will be low and predictive 
performance small).
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What is overfitting? What is its 
relationship with high dimensionality?

1. Overfitting: when we create a model that accurately captures 
characteristics of our discovery dataset but fails to perform 
well in the populations where the discovery data was sampled 
from. 

2. All else being equal, high dimensionality makes overfitting 
easier to occur. 
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Hold-out validation method
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N-Fold Cross-validation
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Repeated N-Fold Cross-validation
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Measures of classification error

• Accuracy: proportion 
of correct 
classifications 
– The number of times 

the classifier gives the 
correct result divided 
by the total number of 
test cases. 

• Area under receiver-
operator characteristic 
curve (AUC).
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Comparison of State of the Art Methods for 
Microbiomic marker + Signature Discovery 1

A comprehensive evaluation of multicategory classification methods for 
microbiomic data 

  
Alexander Statnikov1,2,§, Mikael Henaff1, Varun Narendra1, Kranti Konganti5,  
Zhiguo Li1, Liying Yang2, Zhiheng Pei2,3, Martin J. Blaser2,4, Constantin F. 

Aliferis1,3,6, Alexander V. Alekseyenko1,2,§ 

Problem: It is currently unknown which classifiers perform best among the many available 
alternatives for classification with microbiomic data linking abundances of microbial taxa 
to phenotypic and physiological states, which can inform development of new diagnostic, 
personalized medicine, and forensic modalities 

Results: In this work, we performed a systematic comparison of 18 major classification 
methods, 5 feature selection methods, and 2 accuracy metrics using 8 datasets spanning 
1,802 human samples and various classification tasks: body site and subject classification 
and diagnosis. 

Conclusions: We found that random forests, support vector machines, kernel ridge regression, 
and Bayesian logistic regression with Laplace priors are the most effective machine 
learning techniques for performing accurate classification from these microbiomic data. 
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Comparison of State of the Art Methods for 
Microbiomic marker + Signature Discovery 2

Microbiomic Signatures of Psoriasis: Feasibility and Methodology 
Comparison 

  
Alexander Statnikov1,2,§, Alexander V. Alekseyenko1,2, Zhiguo Li1, Mikael Henaff1, 

Guillermo I. Perez-Perez2,3, Martin J. Blaser2,3,5, Constantin F. Aliferis1,4,6, § 

Problem: We sought to use bacterial community abundance data to develop multivariate 
molecular signatures of psoriasis for differentiation of cutaneous psoriatic lesions, 
clinically unaffected contralateral skin from psoriatic patients, and similar cutaneous loci 
in matched healthy control subjects. Using 16S rRNA high-throughput DNA sequencing, we 
assayed the cutaneous microbiome for 51 such triplet specimen including subjects of both 
genders, different age groups (18-81 years old) and ethnicities, and multiple body sites. 
We then assessed feasibility of multivariate molecular signatures to diagnose psoriasis  

Results: it is possible to develop accurate molecular signatures for diagnosis of psoriasis 
from microbiomic data. The accuracy of molecular signatures depends on both DNA 
sequencing and downstream analysis protocols.  
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Panel A: V3-V5 rRNA locus 
 

 1 2 3 4 

Classification 
task 

Classification accuracy (AUC) Number of selected taxa 
Cross-

validation 
estimate 

Statistical 
significance 

(p-value) 

From cross-
validation 

(mean)  

From the 
entire 

dataset 
PN vs. CC 0.854 <0.001 2.8 2 
PL vs. CC 0.806   0.002 2.5 2 
PL vs. PN 0.754   0.004 2.1 3 
CC vs. PL and PN 0.894 <0.001 3.7 4 

  
 
Panel B: V1-V3 rRNA locus 

 
 1 2 3 4 

Classification 
task 

Classification accuracy (AUC) Number of selected taxa 
Cross-

validation 
estimate 

Statistical 
significance 

(p-value) 

From cross-
validation 

(mean)  

From the 
entire 

dataset 
PN vs. CC 0.405 0.985 2 1 
PL vs. CC 0.751 <0.001 3.8 4 
PL vs. PN 0.576 0.080 3.1 3 
CC vs. PL and PN 0.482 0.618 4.2 3 

  
 1 
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Classification techniques

• Support Vector Machines 
• Random Forests
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Support Vector Machines

45http://en.wikipedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png
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How well Random Forests perform in practice 
against state of the art methods such as SVM?

1. RFs perform well, almost on par with SVMs in terms of 
predictive accuracy.  

2. RFs are slower than SVMs for typical HD molecular datasets. 
3. RFs do not require to set up variable selection, model 

selection and error estimation separately because they 
embed those.  

4. RFs often produce large, complicated, hard to explain 
models. 
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