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Lecture 1: 
Intro/refresher in 
Matrix Algebra 

Bruce Walsh lecture notes 
Summer Institute in Statistical Genetics 

Seattle, 20 – 22 July 2016 
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Matrix/linear algebra 
•  Compact way for treating the algebra of

 systems of linear equations 
•  Most common statistical methods can be

 written in matrix form 
–  y = Xβ + e is the general linear model 

•  OLS solution:  β = (XTX)-1 XT y 

–  Y = X β + Z a + e is the general mixed model 
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Topics 
•  Definitions, dimensionality, addition,

 subtraction 
•  Matrix multiplication 
•  Inverses, solving systems of equations 
•  Quadratic products and covariances 
•  The multivariate normal distribution 
•  Eigenstructure 
•  Basic matrix calculations in R 
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Matrices:  An array of elements 

Vectors:  A matrix with either one row or one column. 

Column vector Row vector 

(3 x 1) (1 x 4) 

 Usually written in bold lowercase, e.g. a, b, c  

Dimensionality of a matrix:  r x c (rows x columns) 
think of Railroad Car 
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Square matrix (3 x 2) 

General Matrices 

Usually written in bold uppercase, e.g. A, C, D  

Dimensionality of a matrix:  r x c (rows x columns) 
  think of Railroad Car 

A matrix is defined by a list of its elements. 
 B has ij-th element Bij -- the element in row i 
and column j 
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Addition and Subtraction of Matrices 

If two matrices have the same dimension (both are r x c),  
then matrix addition and subtraction simply follows by  
adding (or subtracting) on an element by element basis 

Matrix addition:   (A+B)ij = A ij + B ij 

Matrix subtraction:   (A-B)ij = A ij - B ij 

Examples: 
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Partitioned Matrices 

It will often prove useful to divide (or partition) the  
elements of a matrix into a matrix whose elements are 
itself matrices.  

One useful partition is to write the matrix as 
either a row vector of column vectors or 
a column vector of row vectors 
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A row vector whose  
elements are column  
vectors 

A column vector whose  
elements are row vectors 
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Towards Matrix Multiplication:  dot products 

The dot (or inner) product of two vectors (both of 
length n) is defined as follows: 

 Example: 

 a .b = 1*4 + 2*5 + 3*7 + 4*9 = 60 

10 

Matrices are compact ways to write
 systems of equations 
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yields the following system of equations for the βi 

This can be more compactly written in matrix form as  

XTX XTy β"

or, β =  (XTX)-1 XTy  

The least-squares solution for the linear model 

T = transpose, 
discussed in slide 17-9  
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Matrix Multiplication: 

The order in which matrices are multiplied affects 
the matrix product, e.g.  AB = BA  

For the product of two matrices to exist, the matrices 
must conform.  For AB, the number of columns of A must 
equal the number of rows of B.  

The matrix C = AB  has the same number of rows as A 
and the same number of columns as B. 
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 C(rxc) = A(rxk)  B(kxc)  

Inner indices must match 
columns of A = rows of B  

Outer indices given dimensions of 
resulting matrix, with r rows (A) 
and c columns (B) 

Example:  Is the product ABCD defined?  If so, what 
is its dimensionality?  Suppose 

A3x5 B5x9 C9x6 D6x23 

Yes, defined, as inner indices match.  Result is a 3 x 23 
matrix (3 rows, 23 columns) 
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More formally, consider the product L = MN 

Express the matrix M as a column vector of row vectors 
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Example 

ORDER of multiplication matters!  Indeed, consider 
C3x5 D5x5 which gives a 3 x 5 matrix, versus D5x5 C3x5 ,  
which is not defined. 
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Matrix multiplication in R 
R fills in the matrix from 
the list c by filling in as 
columns, here with 2 rows  
(nrow=2)  

Entering A or B displays what was 
entered (always a good thing to check) 

The command  %*% is the R code 
for the multiplication of two matrices 

On your own:  What is the matrix resulting from BA? 
What is A if nrow=1 or nrow=4 is used? 
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The Transpose of a Matrix   
The transpose of a matrix exchanges the  
rows and columns, AT

ij = Aji 

Useful identities 
 (AB)T = BT AT 

 (ABC)T = CT BT AT 

Inner product = aTb = aT
(1 X n) b 

(n X 1) 

Indices match, matrices conform 
Dimension of resulting product is 1 X 1 (i.e. a scalar) 

Note that bTa = (bTa)T = aTb 
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Outer product = abT = a (n X 1) bT 
(1 X n) 

Resulting product is an n x n matrix"
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R code for transposition 
 t(A) = transpose of A 

Enter the column vector a 

Compute inner product aTa 

Compute outer product aaT 
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Solving equations 
•  The identity matrix I 

–  Serves the same role as 1 in scalar algebra, e.g.,
 a*1=1*a =a, with AI=IA= A 

•  The inverse matrix A-1 (IF it exists) 
–  Defined by A A-1 = I, A-1A = I 
–  Serves the same role as scalar division 

•  To solve ax = c, multiply both sides by (1/a) to give:  
•  (1/a)*ax = (1/a)c or (1/a)*a*x = 1*x = x,  
•  Hence x = (1/a)c 
•  To solve Ax = c,  A-1Ax = A-1 c 
•  Or A-1Ax  = Ix = x = A-1 c  
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The Identity Matrix, I 
The identity matrix serves the role of the 
number 1 in matrix multiplication:  AI =A, IA = A 

I is a square diagonal matrix, with all diagonal elements 
being one, all off-diagonal elements zero."

Iij = "
1 for i = j 

0 otherwise"

22 

The Identity Matrix in R 
 diag(k), where k is an integer, return the k x k I matix  
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The Inverse Matrix, A-1 
For a square matrix A, define its Inverse A-1, as 
the matrix satisfying 
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If det(A) is not zero, A-1 exists and A is said to be 
non-singular.  If det(A) = 0, A is singular, and no 
unique inverse exists (generalized inverses do)"

Generalized inverses, and their uses in solving systems 
of equations, are discussed in Appendix 3 of Lynch &  
Walsh 

A- is the typical notation to denote the G-inverse of a 
matrix 

When a G-inverse is used, provided the system is  
consistent, then some of the variables have a family 
of solutions (e.g., x1 =2, but x2 + x3 = 6)  
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Inversion in R 

 det(A) computes determinant of A 

 solve(A) computes A-1 

Using A entered earlier 

Compute A-1 

Showing that A-1 A = I 

Computing determinant of A 
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Homework 
Put the following system of equations in matrix 
form, and solve using R  

3x1 + 4x2 + 4 x3  + 6x4 = -10 
9x1 + 2x2  -   x3   - 6x4 =  20 
  x1 +   x2  +   x3 - 10x4 =  2 
2x1 + 9x2  + 2x3   -  x4 = -10 



Example:  solve the OLS for β = (β1, β2)T  
in y = α + β1z1 + β2z2 + e 
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If ρ12 = 0, these reduce to the two univariate slopes, 

Likewise, if ρ12 = 1, this reduces to a univariate regression, 
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Useful identities "

(AB)-1 = B-1 A-1  

(AT)-1 = (A-1)T 

Also, the determinant of any square matrix A,  
det(A), is simply the product of the eigenvalues λ of A, 
which statisfy 

Ae = λe 
If A is n x n, solutions to λ are an n-degree polynomial. e is
 the eigenvector associated with λ.  If any of the roots to the
 equation are zero, A-1 is not defined. In this case, for some
 linear combination b, we have Ab = 0.   

For a  diagonal matrix D, then det (D), which is also
 denoted by |D|, = product of the diagonal elements 
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Variance-Covariance matrix 

•  A very important square matrix is the
 variance-covariance matrix V associated  with
 a vector x of random variables. 

•  Vij = Cov(xi,xj), so that the i-th diagonal
 element of V is the variance of xi, and off
-diagonal elements are covariances 

•  V is a symmetric, square matrix 
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The trace 
The trace, tr(A) or trace(A), of a square matrix 
A is simply the sum of its diagonal elements 

The importance of the trace is that it equals 

the sum of the eigenvalues of A,  tr(A) = Σ λi 

For a covariance matrix V, tr(V) measures the 
total amount of variation in the variables 

λi / tr(V) is the fraction of the total variation  
in x contained in the linear combination ei

Tx, where 
ei, the i-th principal component of V is also the 
i-th eigenvector of V (Vei = λi ei) 
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Eigenstructure in R 
eigen(A)  returns the eigenvalues and vectors of A 

Trace = 60 

PC 1 accounts for 34.4/60 = 
57% of all the variation 

PC 1 



33 

Quadratic and Bilinear Forms 

Quadratic product: for An x n and xn x 1  

Scalar (1 x 1) 

Bilinear Form  (generalization of quadratic product) 
 for Am x n,  an x 1, bm x1  their bilinear form is  bT

1 x m Am x n an x 1 

Note that bTA a   = aTAT
 b 
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Covariance Matrices for
 Transformed Variables 

What is the variance of the linear combination, 
  c1x1 + c2x2 + … + cnxn ? (note this is a scalar) 

Likewise, the covariance between two linear combinations 
can be expressed as a bilinear form, 
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Example:  Suppose the variances of x1, x2, and x3 are 
10, 20, and 30.  x1 and x2 have a covariance of -5, 
x1 and x3 of 10, while x2 and x3 are uncorrelated.  

What are the variances of the new variables 
y1 = x1-2x2+5x3 and  y2 = 6x2-4x3? 

Var(y1) = Var(c1
Tx) = c1

T Var(x) c1 = 960 

Var(y2) = Var(c2
Tx) = c2

T Var(x) c2 = 1200 

Cov(y1,y2) = Cov(c1
Tx, c2

Tx) = c1
T Var(x) c2 = -910 

Homework:  use R to compute the above values 
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Now suppose we transform one vector of random 
variables into another vector of random variables 

Transform x into  
      (i) yk x 1 = Ak x n xn x 1  

 (ii) zm x 1 = Bm x n xn x 1   

The covariance between the elements of these 
two transformed vectors is an 
k x m covariance matrix = AVBT 

For example, the covariance between yi and yj 
is given by the ij-th element of AVAT 

Likewise, the covariance between yi and zj 
is given by the ij-th element of AVBT 
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Positive-definite matrix 
•  A matrix V is positive-definite if for all vectors

 c containing at least one non-zero member,
 cTVc > 0. 

•  A non-negative definite matrix satisfies cTVc
 > 0. 

•  Any covariance-matrix is (at least) non
-negative definite, as Var(cTx) = cTVc > 0. 

•  Any nonsingular covariance matrix is positive
-definite 
–  Nonsingular means det(V) > 0 

–  Equivalently, all eigenvalues of V are positive, λi > 0.  

38 

The Multivariate Normal
 Distribution (MVN) 

Consider the pdf for n independent normal 
random variables, the ith of which has mean 
µi and variance σ2

i 

This can be expressed more compactly in matrix form 
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Define the covariance matrix V for the vector x of  
the n normal random variable by 

Define the mean vector µ as 

Hence in matrix from the MVN pdf becomes 

Notice this holds for any vector µ and symmetric positive
-definite matrix V, as | V | > 0. 

gives 

40 

The multivariate normal 

•  Just as a univariate normal is defined by
 its mean and spread (variance), a
 multivariate normal is defined by its
 mean vector µ (also called the
 centroid) and variance-covariance
 matrix V (the distribution, or spread, of
 values around the centroid). 



41 

Vector of means µ determines location 

µ"

Spread (geometry) about  µ determined by V 

µ"

x1, x2 equal variances, 
positively correlated 

x1, x2 equal variances, 
uncorrelated 

Eigenstructure (the eigenvectors and their corresponding 
eigenvalues) determines the geometry of V. 
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Vector of means µ determines location 

µ"

Spread (geometry) about  µ determined by V 

x1, x2 equal variances, 
negatively correlated 

µ"

Var(x1) < Var(x2),  
uncorrelated 

Positive tilt = positive correlations 
Negative tilt = negative correlation 
No tilt = uncorrelated 
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Eigenstructure of V 

µ"

e1 λ1 

e2 λ2 

The direction of the largest axis of  
variation is given by the unit-length  
vector e1,  the 1st eigenvector of V. 

The next largest axis orthogonal 
(at 90 degrees from) to  e1,  is 
given by e2, the 2nd eigenvector 
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Principal components  
•  The principal components (or PCs) of a covariance

 matrix define the axes of variation.   
–  PC1 is the direction (linear combination cTx) that explains

 the most variation. 
–  PC2 is the next largest direction (at 90degree  from PC1),

 and so on 

•  PCi = ith eigenvector of V 
•  Fraction of variation accounted for by PCi = λi /

 trace(V) 
•  If V has a few large eigenvalues, most of the variation

 is distributed along a few linear combinations (axis
 of variation) 
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 Properties of the MVN - I 

1) If x is MVN,  any subset of the variables in x is also MVN 

2) If  x is MVN,  any linear combination of the  
elements of x  is also MVN.  If x ~ MVN(µ,V)   

46 

Properties of the MVN - II 

3) Conditional distributions are also MVN.  Partition x 
into two components, x1 (m dimensional column vector) 
and  x2 ( n-m dimensional column vector) 

x1 | x2 is MVN with m-dimensional mean vector 

and m x m covariance matrix 
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Properties of the MVN - III 

4)  If x is MVN, the regression of any subset of  
x  on another subset is linear and homoscedastic  

Where e is MVN with mean vector 0 and 
variance-covariance matrix  

48 

The regression is linear because it is a linear function 
of x2 

The regression is homoscedastic because the variance- 
covariance matrix for e does not depend on the value of  
the x’s 

All these matrices are constant, and hence 
the same for any value of x 
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Example:  Regression of Offspring value on Parental values 

Assume the vector of offspring value and the values of 
both its parents is MVN.  Then from the correlations 
among (outbred) relatives, 
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Regression of Offspring value on Parental values (cont.) 

where e is normal with mean zero and variance 
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Hence, the regression of offspring trait value given 
the trait values of its parents is 

zo = µo  + h2/2(zs- µs) + h2/2(zd- µd) + e 

where the residual e is normal with mean zero and 
Var(e) = σz

2(1-h4/2) 

Similar logic gives the regression of offspring breeding 
value on parental breeding value as 

Ao = µo  + (As- µs)/2 +  (Ad- µd)/2 + e 
     = As/2 +  Ad/2 + e 

where the residual e is normal with mean zero and 
Var(e) = σA

2/2 
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Ordinary least squares 

Hence, we need to discuss vector/matrix derivatives 
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The gradient, the derivative of a vector-valued 
function 
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Some common derivatives 

a)!
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56 

Additional R matrix commands 
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Additional R matrix commands (cont) 

58 

Additional references 

•  Lynch & Walsh Chapter 8 (intro to
 matrices) 

• Online notes (Walsh & Lynch): 
– Appendix 4 (Matrix geometry) 
– Appendix 5 (Matrix derivatives) 
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Lecture 2: 
Linear and Mixed Models  

Bruce Walsh lecture notes 
Summer Institute in Statistical Genetics 

Seattle, 20 – 22 July 2016 
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Quick Review of the Major Points 

The general linear model can be written as 

 y = Xβ + e 
• y = vector of observed response values 

• X = Design matrix:  observations of the  explanatory  
        variables in the assumed linear model 

• β = vector of unknown parameters to estimate 

• e = vector of residuals (deviation from model fit), 
      e = y-X β"
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 y = Xβ + e 
Solution to β depends on the covariance structure 
(= covariance matrix) of the vector e of residuals 

•  OLS:  e ~ MVN(0, σ2 I) 
•  Residuals are homoscedastic and uncorrelated, 
   so that we can write the cov matrix of e as Cov(e) = σ2I 
• the OLS estimate, OLS(β) = b = (XTX)-1 XTy     

Ordinary least squares (OLS) 

•  GLS:  e ~ MVN(0,  V) 
• Residuals are heteroscedastic and/or dependent, 
•  GLS(β) = (XT V-1 X)-1 XT V-1 y  

Generalized least squares (GLS) 
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BLUE 

•  Both the OLS and GLS solutions are also
 called the Best Linear Unbiased Estimator (or
 BLUE for short) 

•  Whether the OLS or GLS form is used
 depends on the assumed covariance
 structure for the residuals 
–  Special case of Var(e) = σe

2 I -- OLS 
–  All others, i.e., Var(e) = R -- GLS 
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Linear Models 
One tries to explain a response (or dependent) variable y  
as a linear function of a number of explanatory (or  
predictor) variables. 

A multiple regression is a typical linear model, 

Here e is the residual, or deviation between the true 
value observed and the value predicted by the linear 
model. 

The (partial) regression coefficients are interpreted 
as follows:  a unit change in xi while holding all 
other variables constant is associated with in a change  
of βi in y  
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Linear Models 

As with a univariate regression (y = a + bx + e), the model 
parameters are typically chosen by least squares, 
wherein they are chosen to minimize the sum  of 
squared residuals, Σ ei

2 

This unweighted sum of squared residuals assumes  
an OLS error structure, so all residuals are equally 
weighted (homoscedastic) and uncorrelated 

If the residuals differ in variances and/or some are 
correlated (GLS conditions), then we need to minimize  
the weighted sum eTV-1e, which removes correlations and 
gives all residuals equal variance. 
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Predictor and Indicator Variables 

 yij = µ + si + eij 

yij = trait value of offspring j from sire i 
µ  =  overall mean.  This term is included to give the si  
terms a mean value of zero, i.e., they are expressed  
as deviations from the mean 

si = The effect for sire i (the mean of its offspring).  Recall 
that variance in the si estimates Cov(half sibs) = VA/4 

eij = The deviation of the jth offspring from the family 
mean of sire i.  The variance of the e’s estimates the 
within-family variance. 

Suppose we measure the offspring of p sires.  One  
linear model would be  
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Predictor and Indicator Variables 
In a regression, the predictor variables are 
typically continuous, although they need not be. 

 yij = µ + si + eij 

Note that the predictor variables here are the si, (the 
value associated with sire i) something that we are trying  
to estimate 

We can write this in linear model form, yij = µ + Σk xiksi + eij , 
 by using indicator variables, 
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Models consisting entirely of indicator variables 
are typically called ANOVA, or analysis of variance 
models 

Models that contain no indicator variables (other than 
for the mean), but rather consist of observed values of 
continuous or discrete values are typically called 
regression models 

Both are special cases of the General Linear Model 
(or GLM)  

 yijk = µ + si + dij + βxijk + eijk 

Example:  Nested half sib/full sib design with an  
age correction β on the trait 

10 

 yijk = µ + si + dij + βxijk + eijk 

ANOVA model 

Regression model 

Example:  Nested half sib/full sib design with an  
age correction β on the trait 

si = effect of sire i 
dij = effect of dam j crossed to sire i 
xijk = age of the kth offspring from i x j cross 
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Linear Models in Matrix Form 
Suppose we have 3 variables in a multiple regression, 
with four (y,x) vectors of observations. 

The design (or incidence) matrix X.  Details of both the
 experimental design and the observed values of the
 predictor variables  all reside solely in X 
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In-class Exercise 
Suppose you measure height and sprint speed for 
five individuals, with heights (x) of 9, 10, 11, 12, 13 
and associated sprint speeds (y) of 60, 138, 131, 170, 221 

1) Write in matrix form (i.e,  the design matrix 
X and vector β of unknowns) the following models 

• y = bx 
• y = a + bx 
• y = bx2 
• y = a + bx + cx2 

2) Using the X and y associated with these models, 
compute the OLS BLUE, b = (XTX)-1XTy for each 
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Rank of the design matrix 
•  With n observations and p unknowns, X is an n x p

 matrix, so that XTX is p x p 
•  Thus, at most X can provide unique estimates for up

 to p < n parameters 
•  The rank of X is the number of independent rows of

 X.  If X is of full rank, then rank = p 
•  A parameter is said to be estimable if we can provide

 a unique estimate of it.  If the rank of X is k < p, then
 exactly k parameters are estimable (some as linear
 combinations, e.g. β1-3β3 = 4) 

•  if det(XTX) = 0, then X is not of full rank 
•  Number of nonzero eigenvalues of XTX gives the

 rank of X. 
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Experimental design and X 
•  The structure of X determines not only which

 parameters are estimable, but also the expected
 sample variances, as Var(b) = var(e)* (XTX)-1 

•  Experimental design determines the structure of X
 before an experiment (of course, missing data almost
 always means the final X is different form the
 proposed X) 

•  Different criteria used for an optimal design.  Let V =
 (XTX)-1 .  The idea is to chose a design for X given the
 constraints of the experiment  that:  
–  A-optimality:  minimizes tr(V) 
–  D-optimality:  minimizes det(V) 
–  E-optimality: minimizes leading eigenvalue of V 
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Ordinary Least Squares (OLS) 
When the covariance structure of the residuals has a 
certain form, we solve for the vector β using OLS 

If the residuals are homoscedastic and uncorrelated, 
σ 2(ei) = σe

2, σ(ei,ej) = 0. Hence, each residual is equally 
weighted,  

Sum of squared 
residuals can 
be written as 

If residuals follow a MVN distribution, OLS = ML solution 
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Ordinary Least Squares (OLS) 

Taking (matrix) derivatives shows this is minimized by 

This is the OLS estimate of the vector β 

The variance-covariance estimate for the sample estimates 
is 

The ij-th element gives the covariance between the 
estimates of βi and βj. 
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Sample Variances/Covariances 
The residual variance can be estimated as 

The estimated residual variance can be substituted into 

To give an approximation for the sampling variance and  
covariances of our estimates. 

Confidence intervals follow since the vector of estimates   
 ~ MVN(β, Vβ) 
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Example:  Regression Through the Origin 
 yi = βxi  + ei  
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Polynomial Regressions 
GLM can easily handle any function of the observed 
predictor variables, provided the parameters to estimate 
are still linear, e.g.  y  = α + β1f(x) + β2g(x) + … + e 

Quadratic regression: 
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Interaction Effects 
Interaction terms (e.g. sex x age) are handled similarly 

With x1 held constant, a unit change in x2 changes y 
by β2 + β3x1 (i.e., the slope in x2 depends on the current 
value of x1 ) 

Likewise, a unit change in x1 changes y by β1 + β3x2 



21 

The GLM lets you build your
 own model! 

•  Suppose you want a quadratic regression
 forced through the origin where the slope of
 the quadratic term can vary over the sexes
 (pollen vs. seed parents) 

•  Yi = β1xi + β2xi
2 + β3sixi

2
 

•  si is an indicator (0/1) variable for the sex (0 =
 male, 1 = female). 
–  Male slope = β2, 
–  Female slope = β2 + β3 
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Generalized Least Squares (GLS) 
Suppose the residuals no longer have the same 
variance (i.e., display heteroscedasticity). Clearly 
we do not wish to minimize the unweighted sum 
of squared residuals, because those residuals with 
smaller variance should receive more weight. 

Likewise in the event the residuals are correlated, 
we also wish to take this into account (i.e., perform 
a suitable transformation to remove the correlations) 
before minimizing the sum of squares. 

Either of the above settings leads to a GLS solution 
in place of an OLS solution. 
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In the GLS setting, the covariance matrix for the 
vector e of residuals is written as  R where  
Rij =   σ(ei,ej) 

The linear model becomes y = Xβ + e, cov(e) = R 

The GLS solution for β is  

The variance-covariance of the estimated model  
parameters is given by 
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Model diagnostics 
•  It’s all about the residuals 
•  Plot the residuals 

–  Quick and easy screen for outliers 
•  Test for normality among estimated residuals 

–  Q-Q plot 
–  Shapiro-Wilk test 
–  If non-normal, try transformations, such as log 
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OLS, GLS summary 
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Fixed vs.  Random Effects 
In linear models we are trying to accomplish two goals: 
estimation the values of model parameters and estimate 
any appropriate variances.   

For example, in the simplest regression model,  
y = α + βx + e, we estimate the values for α and β and  
also the variance of e.  We, of course, can also 
estimate the ei = yi - (α + βxi ) 

Note that α/β are fixed constants  we trying to 
estimate (fixed factors or fixed effects), while the 
ei values are drawn from some probability distribution 
(typically Normal with mean 0, variance σ2

e).  The  
ei  are random effects.  
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“Mixed” models (MM) contain both fixed and random factors 

This distinction between fixed and random effects is 
extremely important in terms of how we analyze a model. 
If a parameter is a fixed constant we wish to estimate, 
it is a fixed effect.  If a parameter is drawn from 
some probability distribution and we are trying to make 
inferences on either the distribution and/or specific  
realizations from this distribution, it is a random effect. 

We generally speak of estimating fixed factors (BLUE) and 
predicting random effects (BLUP -- best linear unbiased 
Predictor) 

 y = Xb + Zu + e,   u  ~MVN(0,R), e ~ MVN(0,σ2
eI) 

Key:  need to specify covariance structures for MM 
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Example:  Sire model 
 yij = µ + si  + eij 

It depends.  If we have (say) 10 sires, if we are ONLY 
interested in the values of these particular 10 sires and  
don’t care to make any other inferences about the  
population from which the sires are drawn, then we can  
treat them as fixed effects.  In the case, the model is  
fully specified  by the covariance structure for the residuals. 
Thus, we need to estimate µ, s1 to s10 and σ2

e, and we 
write the model as  yij = µ + si  + eij, σ2(e) = σ2

e I 

Here µ is a fixed effect, and e is a random effect 

Is the sire effect s   fixed or random ? 
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Random effects models 

•  It is often useful to treat certain effects as
 random, as opposed to fixed 
– Suppose we have k effects.  If we treat these

 as fixed, we spend k degrees of freedom 
–  If we assume each of the k realizations are

 drawn from a normal with mean zero and
 unknown variance, only one degree of
 freedom lost --- that for estimating the
 variance 
• We can then predict the values of the k

 realizations 
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Environmental effects 
•  Consider yield data measured over several years in a

 series of plots. 
•  Standard to treat year-to-year variation at a specific

 site as being random effects 
•  Often the plot effects (mean value over years) are

 also treated as random. 
•  For example, consider plants group in growing

 region i, location k within that region, and year
 (season) k for that location-region effect 
–  E = Ri + Lik + eijk 
–  Typically R can be a fixed effect, while L and e are

 random effects, Lik ~ N(0,σ2
L) and eikj ~ N(0,σ2

e) 
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Random models 
•  With a random model, one is assuming that

 all “levels” of a factor are not observed. 
 Rather, some subset of values are drawn
 from some underlying distribution 
–  For example, year to year variation in rainfall at a

 location.  Each year is a random sample from the
 long-term distribution of rainfall values 

–  Typically, assume a functional form for this
 underlying distribution (e.g., normal with mean 0)
 and then use observations to estimate the
 distribution parameters (here, the variance) 
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Random models (cont) 
•  Key feature: 

–  Only one degree of freedom used (estimate of
 the variance) 

–  Using the fixed effects and the estimated
 underlying distribution parameters, one then
 predicts the actual realizations of the individual
 values (i.e., the year effects)  

–  Assumption:  the covariance structure among the
 individual realizations of the realized effects.  If
 only a variance is assumed, this implies each
 realization is independent.  If realizations are
 assumed to be correlated, this structure must be
 estimated. 
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Random models 
•  Let’s go back to treating yearly effects as

 random 
•  If assume these are uncorrelated, only use

 one degree of freedom, but makes
 assumptions about covariance structure 
–  Standard: Uncorrelated 
–  Option:  some sort of autocorrelation process, say

 with a yearly decay of r (must also be estimated) 
•  Conversely, could all be treated as fixed, but

 would use k degrees of freedom for k years,
 but no assumptions on their relationships
 (covariance structure) 
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 yij = µ + si  + eij 

Conversely, if we are not only interested in these 
10 particular sires but also wish to make some 
inference about the population from which they 
were drawn (such as the additive variance, since 
 σ2

A = 4σ2
s, ), then the si are random effects.  In this 

case we wish to estimate µ and the variances 
σ2

s and σ2
e.  Since 2si also estimates (or predicts) 

the breeding value for sire i, we also wish to 
estimate (predict) these as well.   Under a  
random-effects interpretation, we write the model as 
yij = µ + si  + eij, σ2(e) = σ2

eI, σ2(s) = σ2
AA 

The relationship matrix A of know constants is 
given by the pedigree and is discussed later 
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Identifiability  

•  Recall that a fixed effect is said to be
 estimable if we can obtain a unique estimate
 for it (either because X is of full rank or when
 using a generalized inverse it returns a
 unique estimate) 
–  Lack of estimable arises because the experiment

 design confounds effects 
•  The analogous term for random models is

 identifiability 
–  The variance components have unique estimates 
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Y = Xβ + Zu + e 

The general linear mixed model 

Vector of
 observations
 (phenotypes) 

Vector of fixed effects (to be estimated),  
e.g., year, sex and age effects 

Vector of random
 effects, such as

 individual  
Breeding values 
 (to be estimated) 

Vector of residual errors 
 (random effects) 

Incidence
 matrix for
 fixed effects 

Incidence matrix for random effects 
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Y = Xβ + Zu + e 

The general mixed model 

Vector of
 observations
 (phenotypes) 

Vector of random
 effects 

Incidence
 matrix for
 fixed effects 

Vector of fixed effects   

Incidence matrix for random effects 

Vector of residual errors 

Observe y, X, Z. 

Estimate fixed effects β 

Estimate random effects u, e 
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Means:  E(u) = E(e) = 0,  E(y) = Xβ 

Let R be the covariance matrix for the  
residuals.  We typically assume R = σ2

e*I 

Let G be the covariance matrix for the vector 
 u of random effects 

The covariance matrix for y becomes   
      V = ZGZT + R 

Means & Variances for y = Xβ + Zu + e 

Variances: 

Hence, y ~ MVN (Xβ, V) 

Mean Xβ due to fixed effects 
Variance V due to random effects 
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Chi-square and F distributions 

Let Ui ~ N(0,1), i.e., a unit normal 

The sum U1
2 + U2

2 + … +  Uk
2 is a chi-square random 

variable with k degrees of freedom  

Under appropriate normality assumptions, the 
sums of squares that appear in linear models 
are also chi-square distributed.  In particular,  

The ratio of two chi-squares is an F distribution 

40 

In particular, an F distribution with k numerator 
degrees of freedom, and  n denominator degrees 
of freedom is given by 

F distributions frequently arise in tests 
of linear models, as these usually involve ratios 
of sums of squares. 

The expected value of a chi-square with k degrees 
of freedom is k, hence numerator and denominator  
both have expected value one 
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Sums of Squares in linear models 

The total sums of squares (SST) of a linear model 
can be written as the sum of the error (or residual) 
sum of squares and the model (or regression) sum  
of squares 

SST = SSM + SSE 

r2, the coefficient of determination, is the 
fraction of variation accounted for by the model 

r2 = 
SSM 

SST 
= 1 -  

SSE 

SST 
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Sums of Squares are quadratic products 

We can write this as a quadratic product as 

Where J is a matrix all of whose  elements are 1’s 
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Expected value of sums of
 squares 

•  In ANOVA tables, the E(MS), or expected
 value of the Mean Squares (scaled SS or Sum
 of Squares), often appears 

•  This directly follows from the quadratic
 product.  If E(x) = µ, Var(x) = V, then 
– E(xTAx) = tr(AV) + µTAµ"
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Hypothesis testing 

Provided the residual errors in the model are MVN, then for a model
 with n observations and p estimated parameters,  

Consider the comparison of a full (p parameters) 
and reduced (q < p) models, where SSEr = error SS for 
reduced model, SSEf = error SS for full model   

The difference in the error sum of squares for the full and reduced
 model provided a test for whether the model fit is the same 

This ratio follows an Fp-q,n-p distribution  
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Does our model account for a significant fraction of the
 variation? 

Here the reduced model is just yi = u + ei 

In this case, the error sum of squares for the 
reduced model is just the total sum of squares, 
and the F test ratio becomes 

This ratio follows an Fp-1,n-p distribution 
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Different statistical models 
•  GLM = general linear model 

–  OLS ordinary least squares: e ~ MVN(0,cI) 
–  GLS generalized least squares: e ~ MVN(0,R) 

•  Non-linear models 
–  Parametric growth curves 

•  Mixed models 
–  Both fixed and random effects (beyond the residual) 

•  Mixture models 
–  A weighted mixture of distributions 

•  Generalized linear models 
–  Nonlinear functions, non-normality 
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Mixture models 
•  Under a mixture model, an observation potentially

 comes from one of several different distributions, so
 that the density function is π1φ1 + π2φ2 + π3φ3 
–  The mixture proportions πi sum to one   
–  The φi represent different distribution, e.g.,  normal with mean µi

 and variance σ2  
•  Mixture models come up in QTL mapping -- an

 individual could have QTL genotype QQ, Qq, or qq 
–  See Lynch & Walsh Chapter 13 

•  They also come up in codon models of evolution, were a
 site may be neutral, deleterious, or advantageous, each
 with a different distribution of selection coefficients 
–  See Walsh & Lynch (volume 2A website), Chapters 10,11 
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Generalized linear models 

Typically assume non-normal distribution for 
residuals, e.g., Poisson, binomial, gamma, etc 
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Likelihoods for GLMs 
Under assumption of MVN, x ~ MVN(β ,V), the likelihood  
function becomes 

Variance components (e.g., σ2
A, σ2

e, etc.) are included in V 

REML = restricted maximum likelihood.  Method of 
choice for variance components, as it maximizes 
that part of the likelihood function that is independent 
of the fixed effects, β. 



Overview And Introduction to 
Mixed Models

• References
– Searle, S.R. 1971 Linear Models, WileySea e, S 9 ea ode s, ey
– Schaefer, L.R., Linear Models and Computer 

Strategies in Animal Breeding
– Lynch and Walsh Chapter 8
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Linear vs non-linear
Linear

2nd order Polynomial
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Why Linear: Life is Non-Linear
Taylor Expansion
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Generality
• Any underlying unknown function can be 

approximated by a polynomial equation (linear 
Model)Model)
– Lower order terms are more important than higher 

order
– Model does not have any basis in biological function
– Even highly non-linear systems can be approximated 

by a linear model with only lower order termsy y
– Purely Descriptive
– Allows tests of hypothesis related to treatment effects
– Allows limited prediction (expansion is around a point)

5

Linear Model

• Can be used to approximate highly non-
dditi ti t i l diadditive genetic systems, including 

dominance and epistasis
• Predictive ability is fairly good, even if 

underlying mode of gene action is non-
additiveadditive

• Linear Models Extensively Used in Animal 
Breeding

6



One Random effect Linear Model

Coefficients
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Estimation

Ordinary Least Squares
εXBY +=

Ordinary Least Squares
• Independent variables (X)

– fixed
– measured without error

• Residuals

1. 

– Random
– Independently and Identically Distributed (IID) 

with Mean 0 and variance σ2
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Independently and Identically Distributed 
with Mean 0 and variance σ2
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Ordinary Least Squares Estimator
Find Solutions such that the sum of the residuals squared is minimum
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Least Square Estimators
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Normal Equations
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Example Factor Affecting Fatty Acid
From Gill, J. Design and Analysis of experiments

Fatty Acid Amount over 
Weight (Kg)

Age
Weight (Kg)

10 6 28

20 12 40

17 10 32

12 8 36

11 9 34

15

R Code Example 1
Y = matrix( c(10,

20,
17,
12,
11  ), 5,1)

> B
[,1]

[1,]  2.3333333
[2,]  2.0833333
[3,] -0.2083333
>

X = matrix(c( 1, 6,  28,
1, 12, 40,
1, 10, 32,
1,  8, 36,
1,  9, 34 ),5,3, byrow = TRUE)

LHS =(t(X) %*% X  )
RHS =(t(X) %*% Y)
C = solve(LHS)

>

B = C %*% RHS
B

16



BY GLM
• data one;
• input fatty_acid over_wt age;

d

• Compare results from IML to 
GLM

• cards;
• 10  6  28
• 20 12 40
• 17 10 32
• 12  8 36
• 11  9 34
• ;
• proc glm;proc glm;
• model fatty_acid=over_wt age 

/ solution;
• run;
• quit;

17

Generalized Least Squares (GLS)

• Ordinary Least 
Squares

• Generalized Least 
SquaresSquares

– Independent variables 
• fixed
• measured without error

– Residuals
• Random

Squares
– Independent variables 

• fixed
• measured without error

– Residuals
• Random

• Independently and 
Identically Distributed 
(IID) with Mean 0 and 
variance σ2

V=)(εV

18



GLS
Xb)(yVXb)'(y 1 −− −Minimize 

weighted SS

Weighting by the inverse of the variance

y)V(XX)V(Xb 11 −−−= ''ˆ 1

If 

2
eσIV =

y)(XX)(Xb ''ˆ 1−=

19

Maximum Likelihood (ML) Solution to Same 
Problem

• Maximum Likelihood
– Independent variables 

• Generalized Least 
Squares

• fixed
• measured without error

– Residuals
• Random

– Independent variables 
• fixed
• measured without error

– Residuals
• Random

V=)(εV
V=)(εV

V=)(εV
),( V0N≈ε
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ML
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Variance of b
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•This is not the distribution of b, but rather is the variance of the estimate
•b is considered a fixed effect and as such does not have a distribution

BLUP Best Linear Unbiased 
Prediction-Estimation

• References

• Searle, S.R. 1971 Linear Models, Wiley

• Schaefer, L.R., Linear Models and Computer 
Strategies in Animal Breeding

L h d W l h Ch t 26• Lynch and Walsh Chapter 26
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OLS Independently and Identically Distributed 
Errors with Mean 0 and variance σ2
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Solutions

• GLS
– Fixes problem with changing variances and 

correlations in the data
• What about fixed effects?

– How does one correct for 
• Environmental trend without a control
• Herd effects
• Year effects
• Hatch effects 
• Confounding

26



Confounding of data
• Herd effects 

– Balanced design no problem
– Require sample of every family in every herd
– Old solution was within herd deviations
– What if better herds have better genetics

• Fixed effects must be adjusted for genetic 
differences

• Random effects must be adjusted for fixed 
effects

• Requires simultaneous solutions
27

Mixed Model
Simultaneous Adjustment of Fixed and Random effects

• Separates 
Independent variableIndependent variable 
into those that are 
– Fixed Xb
– Random Zu

X=value of each fixed effect
b=linear regression coefficients
Z=incidence matrix of random 
effect, usually a 1 corresponding to 
each animal
u=estimate of random effects 
(breeding value)

eZuXbY ++=

More importantly model’s the variance structure
28



Fixed and Random Effects

• Fixed Effect
– Inference Space only to those levels– Inference Space only to those levels
– Age, Hatch, Location, Parity, and Sex effects

• Random Effect
– Effect Sampled From a Distribution of Effects
– Inference Space To The Population From Which The 

Random Effect Was Sampled
If l f b ti d (– If a new sample of observations were made (a new 
experiment), and the levels were completely different 
between the two samples, then the factors is usually 
random

29

Random 
Effect

Gametes

Each sample from 
the bull is different, 
no two gametes 
are the same

GoodBadSample

Inference is to the genetic worth of the bull (breeding value)

are the same

30



Variances In Mixed Models
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Estimate the breeding values “u” and fixed effects simultaneouslyEstimate the breeding values “u” and fixed effects simultaneously 

Old concept was to first adjust for the fixed effects, output the 
residuals and estimate the random effects

Resulted in Biased Estimates of Both Fixed and Random Effects
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ML Derivation of Solutions
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Maximize w.r.t b and u

uGu'eRe'uy,
1

2
11

2
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)(
−− −−== eceLf

uGu'eRe' 1
2
11

2
1)ln()ln( −− −−= cL

ZuXbYe −−=

( ) ( )1'( ) ( )ZuXbYRZuXbY −−−−−= −1'
2
1)ln()ln( cL

uGu' 1
2
1 −−
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( ) ( )
( ) ( )[ ] ( ) uGu'ZuXbYRZuXbY

uGu'ZuXbYRZuXbY
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SIMPLIFY FIRST THEN TAKE DERIVATIVES

ZRYXbRYYRY 1'1'1'

( ) 0ln
=

∂ L ( )
( ) 1'1'1'

1'1'1' ++−− −−− XRXbYRXXRY

( ) ( ) ( )
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111
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0=
∂b ( ) 01'1'1' =++ −−− XRZuZuRXXbRX

0222 1'1'1' =++− −−− ZuRXXbRXYRX

YRXZuRXXbRX 1'1'1' −−− =+
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( ) ( ) uGu'ZuXbYRZuXbY 11' −− +−−−−

ZuRYXbRYYRY 1'1'1' −−− −−=

Take Derivative w.r.t u
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Mixed Model Equations
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Alternative derivations are possible that do not require Normal Dist’n Assumptions, 

resulting in these same solutions and are therefore also Best Linear Unbiased 
Predictors (BLUP)
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BLUP Breeding Values
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Example 2

1 2 3(7) (9) (10)
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MME
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R code Example 2
y= matrix( c(7,

9,
10,
6,

A = matrix( c(1, 0, 0, .5, 0,
0, 1, 0, .5,.5,
0, 0, 1, 0, .5,
.5,.5,0, 1,.25,
0 5 5 25 1 ) 5 5)9), 5,1)

SigA=2
SigE=2

lam=SigE/SigA

Z = matrix( c(1, 0, 0, 0, 0,
0, 1, 0, 0, 0,
0, 0, 1, 0, 0,
0, 0, 0, 1, 0,
0, 0, 0, 0, 1 ),5,5)

0,.5,.5,.25, 1  ),5,5)

6

0, 0, 0, 0, 1   ),5,5)

X = matrix( c( 1,
1,
1,
1,
1),5,1)



LHS = rbind( cbind(t(X) %*% X ,  t(X) %*% Z ),
cbind( t(Z) %*% X  , ( t(Z) %*% Z ) + (lam * solve(A)) ))

R code

( ( ) , ( ( ) ) ( ( )) ))

RHS = rbind(t(X) %*% y,
t(Z) %*% y)

C = solve(LHS)

BU = C %*% RHS

BU

[1,]  8.30
[2,] -0.96
[3 ] 0 07 ⎥
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a

[ ]μ̂=b
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BU

yhat=X*BU[1]+BU[2:6]
yhat

[3,]  0.07
[4,]  0.88
[5,] -1.06
[6,]  0.55 ⎥
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Compare predicted value with phenotype

1 2 3(7) (9) (10)

4 5(6) (9)

=Ŷ
[1,] 7.34
[2,] 8.37
[3,] 9.18

8

•Values were regressed partially to the mean u=8.30
•Note that simple average of phenotypic values gives u=8.20
•The fixed effects were adjusted for the random effects and random 
effect were adjusted for fixed effects simultaneously

=Y [3,] 9.18
[4,] 7.23
[5,] 8.85



1 2 3(7) (9) (10)

Assume heritability=.01

4 5(6) (9)
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σ
•What do you expect the breeding values to be?
•In terms of deviation from overall mean?

01.
202
22 ≅=h

e

9

•In terms of deviation from observed phenotype?

Rerun R code
1 2 3

5

(7) (9) (10)

(9)

[1,] 8.20
[2,] -0.02
[3,] 0.00
[4,] 0.02
[5 ] 0 02 ⎥
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[ ]μ̂=b
4 5(6) (9)

=Ŷ
[1,] 8.17
[2,] 8.20
[3,] 8.22
[4 ] 8 17[5,] -0.02

[6,] 0.02

10

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣ 5

4

ˆ
ˆ
a
a

•All values were regressed to the mean u=8.20
•In this case u is the average of the phenotypic values because 
there were no genetic effects to adjust for

[4,] 8.17
[5,] 8.21



1 2 3(7) (9) (10)

Assume heritability=.99

4 5(6) (9)
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99.
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•What do you expect the breeding values to be?
•In terms of deviation from overall mean?
•In terms of deviation from observed phenotype?

Rerun R code
1 2 3(7) (9) (10)
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ˆ
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U

[ ]μ̂=b
[1,] 8.65
[2,] -1.65
[3,] 0.32 
[4 ] 1 33

4 5(6) (9)

[1,] 6.99
[2,] 8.97
[3,] 9.98=Ŷ
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[5,] -2.61 
[6,] 0.35

The phenotypic and genotypic means are the same

[3,] 9.98
[4,] 6.03
[5,] 9.00
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Variance of the Estimates
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22)ˆ( eCV σ=−uu Prediction Error Variance

2
22

2)ˆ( eaV σσ CAu += Prediction Error Variance 
Including Drift Variance

Kennedy and Sorensen Quantitative Genetics13

1.12236 0.29509 0.32030 0.65827 0.39093
0.29509 1.14758 0.29509 0.68854 0.68854
0 32030 0 29509 1 12236 0 39093 0 65827

PEV

0.32030 0.29509 1.12236 0.39093 0.65827
0.65827 0.68854 0.39093  1.2686 0.60026
0.39093 0.68854 0.65827 0.60026  1.2686

2.86014 0.29509 0.32030 1.52716 0.39093

EV

0.29509 2.88536 0.29509  1.5574  1.5574
0.32030 0.29509 2.86014 0.39093 1.52716
1.52716  1.5574 0.39093 3.00643 1.03471
0.39093  1.5574 1.52716 1.03471 3.00643

14



Selection Experiments and Replication
Falconer,D.S. 1953. Selection for Large and Small Size in Mice. Journal Of Genetics 51:470-501

Is there significant 
asymmetrical response to 

l ti ?
EV

selection?

Replicated experiment 
needed to find variation in 
selection response including 
random genetic drift

Alternative: no replication
find EV:

PEV

15

includes variation in response 
due to drift.  
Assumes additive infinitesimal 
model

Up is not significantly different from 0 while down is significantly 
less, thus asymmetry remains even after correcting for genetic drift 

Missing Values (Sex Limited Traits)
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R code Example 3
Y = matrix( c( 7,

10,
6), 3,1)

Si A 2SigA=2
SigE=2
lam=SigE/SigA

Z = matrix( c(1, 0, 0, 0, 0,
0, 0, 1, 0, 0,
0, 0, 0, 1, 0), 3,5, byrow = TRUE)

X = matrix( c( 1,
1,
1), 3,1)

17

A = matrix( c(1, 0, 0, .5, 0,
0, 1, 0, .5,.5,
0, 0, 1, 0, .5,
.5,.5,0, 1,.25,
0,.5,.5,.25, 1  ), 5,5)

LHS = rbind( cbind(t(X) %*% X ,  t(X) %*% Z ),
cbind( t(Z) %*% X  , ( t(Z) %*% Z ) + (lam * solve(A)) ))

RHS = rbind(t(X) %*%Y,
t(Z) %*% Y)

C l (LHS)C = solve(LHS)
BU = C %*% RHS
BU
X1 = matrix( c( 1,

1,
1,
1,
1),5,1)

18

yhat=X1*BU[1]+BU[2:6]
yhat



1 2 3

4 5

(7) M (10)

(6) M
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U

[ 1,] 7.846
[2,] -0.641
[3,] -0.435
[4,] 1.076

[ ]μ̂=b
=Ŷ

[1,] 7.205
[2,] 7.410
[3 ] 8 923
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5
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ˆ
ˆ
a
a
aU[5,] -0.974

[6,] 0.320
[3,] 8.923
[4,] 6.871
[5,] 8.166

Extensions of Model
• Inclusion of Dominance and Epistasis

– Dominance 
• Dominance effects are the result of interaction of alleles within a locus• Dominance effects are the result of interaction of alleles within a locus 
• Dominance relationship matrix needed
• Reflects the probability that individuals have the same pair of alleles in 

common at a locus
– Epistasis

• Epistatic genetic effects are the result of interactions between alleles at 
different loci 

• Epistatic relationship matrix needed 
• Reflects the probability that individuals have the same pair of alleles in 

common at different loci (4 possible pairings of 2 alleles at 2 loci)
U f l i b di b t ll t f l i– Useful in crossbreeding programs but generally not useful in pure 
breeding programs

• An individual does not pass on dominance or epistatic effects (without 
inbreeding or cloning), which are a function of both parents

• Exception is Additive x Additive epistasis is a function of 2 alleles at different 
loci in the same gamete, but dissipates with recombination and/or 
segregation

20



Estimation of Variances Using all Data in a Pedigree

• REML
EM REML iterative process whereby– EM-REML iterative process whereby 

• A value is assumed for additive variance
• Estimates of breeding values found
• Additive variance V(A) is estimated as variance of breeding 

values V(A)=(u’A-1u +stuff)/n
• The new value of V(A) is substituted into the MME
• Estimates of breeding values (u) are foundEstimates of breeding values (u) are found
• The process repeated until convergence

– DF-REML work by trial and error finding a value of 
V(A) that maximize the likelihood

21
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Estimation of Effects and Parameters via Iteration and 
MCMC

Distributions
Estimates
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1. Solutions to MME are found using iterative approach (Gauss-Seidel)g pp ( )
2. With each Iteration a random amount is added to each solution based on 

the expected distribution
3. After processing all equations in the MME, new variances are computed and 

a random amount is added to each solution based on the expected 
distribution

4. After a burn in period, and many 1000 iterations, the average value of each 
parameter, with the empirical standard error is the best estimate of the 
effects and variances 22

WMM1



Slide 22

WMM1 Sa is a prior guess about sig(a)
Va is the degree of belief in that prior

Se is prior guess about sig(e)
Ve is degrees of belief in that prior

q is number of random effects
N is the number of phenotypes
William Muir, 5/20/2009



Appendix 1

Software packages for estimating 
EBVs, Variance Components, 
GWAS and genomic selectionGWAS and genomic selection

23

Software engineering the mixed model for genome-wide association studies on large 
samples

http://bib.oxfordjournals.org/content/10/6/664/T1.expansion.html

24



Software
Ignacy Misztal UGA

• Overview
– http://nce ads uga edu/~ignacy/newprograms htmlhttp://nce.ads.uga.edu/ ignacy/newprograms.html

• General Documents
– http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90.pdf
– http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=remlf90.pdf

• Binaries (UNIX, Windows, Max)
– http://nce.ads.uga.edu/html/projects/programs/

25

R packages
• QTL mapping

– onemap – It is used to generate or rearrange genetic maps
rqtl performs QTL mapping for bi parental populations– rqtl – performs QTL mapping for bi-parental populations

– GAPIT – most common package for Genome-Wide Association 
Mapping

• BLUP (Animal Model)
– pedigree – Generates A matrix from sparse pedigree
– MCMCglmm – Generalized Mixed Models incorporating pedigrees
– pedigreemm - Fit mixed-effects models incorporating pedigrees

• Genomic Selection
– rrBLUP – classic package to perform ridge regression BLUP andrrBLUP classic package to perform ridge regression BLUP and 

GBLUP
– BGLR – whole genome regressions methods of genomic selection
– randomForest – Random Forest Regression (non-parametric GS)
– brnn – Bayesian Regularized Neural Network (non-parametric GS)
– parallel – Allows the use of multiple cores for faster computation

26



Appendix 2

Problems and Solutions

27

Problem 1
A B C D 1

9 13 4 12

E F

G
H

J

2

3

4

11 11

13 9

10

28

Find the best estimate of the genetic worth of each animal. 
Assume a heritability of .5.  

0



proc iml;
start main;

y={9,
13,
4,
12,
11,
11,

A={1 0 0 0 0.5 0 0.25 0 0.125,
0 1 0 0 0.5 0 0.25 0 0.125,
0 0 1 0 0 0.5 0.5 0.25 0.375,
0 0 0 1 0 0.5 0 0.75 0.375,
0.5 0.5 0 0 1 0 0.5 0 0.25,
0 0 0.5 0.5 0 1 0.25 0.75 0.5,
0.25 0.25 0.5 0 0.5 0.25 1 0.125 0.5625,
0 0 0 25 0 75 0 0 75 0 125 1 25 0 6875

Answer Problem 1

13,
9,

10};

X={1,
1,
1,
1,
1,
1,
1,
1,
1};

AINV=INV(A);
lam=1;

Z={1 0 0 0 0 0 0 0 0,
0 1 0 0 0 0 0 0 0,
0 0 1 0 0 0 0 0 0,
0 0 0 1 0 0 0 0 0,
0 0 0 0 1 0 0 0 0,
0 0 0 0 0 1 0 0 0,
0 0 0 0 0 0 1 0 0

0 0 0.25 0.75 0 0.75 0.125 1.25 0.6875,
0.125 0.125 0.375 0.375 0.25 0.5 0.5625 0.6875 1.0625};

10.07
-0.31                                 
1.689                                  
-2.28                                  
0.905                                 
1.145                                 
-0.31                                 
0 564

BU=

Answer

29

1}; 0 0 0 0 0 0 1 0 0,
0 0 0 0 0 0 0 1 0,
0 0 0 0 0 0 0 0 1};

LHS=((X`*X)||(X`*Z))//((Z`*X)||(Z`*Z+AINV#LAM));
RHS=(X`*Y)//(Z`*Y);
C=INV(LHS);
BU=C*RHS;

0.564                                 
-0.19                                 
0.105

Problem 2: Sex Limited Trait 

A B C D 1
9

12

E F

G H

J

2

3

4

11

13

10

30

Estimate breeding values for the males.
Assume a heritability of .5.  

0



proc iml;
start main;

y={9,
12,
11,
13,
10}

A={1 0 0 0 0.5 0 0.25 0 0.125,
0 1 0 0 0.5 0 0.25 0 0.125,
0 0 1 0 0 0.5 0.5 0.25 0.375,
0 0 0 1 0 0.5 0 0.75 0.375,
0.5 0.5 0 0 1 0 0.5 0 0.25,
0 0 0.5 0.5 0 1 0.25 0.75 0.5,
0.25 0.25 0.5 0 0.5 0.25 1 0.125 0.5625,
0 0 0 25 0 75 0 0 75 0 125 1 25 0 6875

Answer Problem 2

10};

X={1,
1,
1,
1,
1};

AINV=INV(A);
lam=1;

Z={1 0 0 0 0 0 0 0 0,
0 0 0 1 0 0 0 0 0,
0 0 0 0 1 0 0 0 0,
0 0 0 0 0 0 1 0 0,
0 0 0 0 0 0 0 0 1};

0 0 0.25 0.75 0 0.75 0.125 1.25 0.6875,
0.125 0.125 0.375 0.375 0.25 0.5 0.5625 0.6875 1.0625};

BU=

Answer
11.03
-0.89
0.247
0.338
0.307

-0.075
0.206
0 587

31

LHS=((X`*X)||(X`*Z))//((Z`*X)||(Z`*Z+AINV#LAM));
RHS=(X`*Y)//(Z`*Y);
C=INV(LHS);
BU=C*RHS;

0.587
0.023

-0.102



Genomic Selection
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Genomic Selection

• Assumes
Dense markers evenly spaced across the genome– Dense markers evenly spaced across the genome

– Assumes markers are in LD with QTL affecting trait(s) 
of interest

– Each marker accounts for an equal proportion of 
genetic variance (infinitesimal model)

– Genetic Effects are Normally Distributed

2



Model
eZuXbY ++=

1,,1, ppnn aMu =

RZGZ'eZuXbY +=++= )()( VV

nnnnEV 11 )'()( Guuu ==

M is the marker matrix
a is a vector of SNP effects
Note Ma is a vector of summed marker effects

3

nnnn ,,11, )()(
LnppnAnn /',,

2
*, MMG σ=

2
eσIR =

Genomic Relationship Matrix (GRM)

Genomic Relationship Matrix

• Assumes
Alike in State (AIS) alleles were at one time a result of– Alike in State (AIS) alleles were at one time a result of 
a single mutation, thus IBD when traced back in 
evolutionary time

4



AIS relationships
TAk=total allelic relationship at kth locus
TAk=2x coefficient of relationship(Malecot. 1948)

X Y

½ A1

½ A2

¼ 

¼

½ A3

½ A4

¼ ¼

X Y

A1A2
A3A4

4
2

2

1

2

1
∑∑
= == i j

ij

k

I
TA

5

Compute (AIS) relationship matrix (G)

2

2

1

2

1
∑∑
= == i j

ijI
TA

*2
*GG Aσ=

4
2=kTA

L

A

TAk=total allelic relationship at kth locus
TAk=2x coefficient of relationship
(Malecot. 1948)

2
*Aσ

Is the additive genetic variance 
associated with the markers for 
the trait

L

TA
G

L

k
k

xy

∑
== 1*

22
* AA σσ <

Note: with low marker density the 
markers may not capture any 
genetic variance

6



1 2 1 2 1 2 1 2 1 2 7 9
1 2 2 1 1 1 2 1 1 2 2 1 2
2 1 2 1 2 2 2 1 2 1 1
3 1 2 1 1 1 2 1 2 1 2
4 2 2 1 1 2 2 1 1 2 1 3 4 5 6
5 2 1 1 2 2 2 1 1 2 1 10 6 9 11
6 2 2 1 1 2 2 1 1 2 1

dividuals (X,Y) Total Relationsip=axy
x=1 2 2 1 1 1 2 1 1 2 2

Pedigree
Individual

LOCUS
A B C D E

y=1 2 2 1 1 1 2 1 1 2 2

sum 4 4 2 4 4
hared alleles 2 2 1 2 2 9 1.8

x=1 2 2 1 1 1 2 1 1 2 2
y=2 1 2 1 2 2 2 1 2 1 1

sum 2 2 2 2 0
hared alleles 1 1 1 1 0 4 0.8

AIS G=GRM IBD PEDIGREE A
1 2 3 4 5 6

1 1.8 0.8 1.2 1.6 1.2 1.6 1 0 0.5 0.5 0.5 0.5
2 0.8 1.4 1 1.2 1.2 1.2 0 1 0.5 0.5 0.5 0.52 0.8 1.4 1 1.2 1.2 1.2 0 1 0.5 0.5 0.5 0.5
3 1.2 1 1.2 1.2 1 1.2 0.5 0.5 1 0.5 0.5 0.5
4 1.6 1.2 1.2 1.8 1.4 1.8 0.5 0.5 0.5 1 0.5 0.5
5 1.2 1.2 1 1.4 1.4 1.4 0.5 0.5 0.5 0.5 1 0.5
6 1.6 1.2 1.2 1.8 1.4 1.8 0.5 0.5 0.5 0.5 0.5 1

Parents assumed not related (False) Parents assumed non inbred (false) Full sibs assumed = relationship (false)

7

G* Computed Directly from M
code

Y 22=2 1
1 2 1 2 1 2 1 2 1 2 12=1 0

1 2 2 1 1 1 2 1 1 2 2 7 11=0 -1
2 1 2 1 2 2 2 1 2 1 1 9
3 1 2 1 1 1 2 1 2 1 2 10

Individual

LOCUS
A B C D E

4 2 2 1 1 2 2 1 1 2 1 6
5 2 1 1 2 2 2 1 1 2 1 9
6 2 2 1 1 2 2 1 1 2 1 11

M N individuals x p markers M' p markers x N individuals
1 1 -1 0 -1 1 1 0 0 1 0 1
2 0 0 1 0 -1 -1 0 -1 -1 0 -1
3 0 -1 0 0 0 0 1 0 1 1 1
4 1 -1 1 -1 0 -1 0 0 -1 -1 -1
5 0 0 1 -1 0 1 -1 0 0 0 0
6 1 -1 1 -1 0

0.8 -0.2 0.2 0.6 0.2 0.6 1.8 0.8 1.2 1.6 1.2 1.6
-0.2 0.4 0 0.2 0.2 0.2 0.8 1.4 1 1.2 1.2 1.2
0 2 0 0 2 0 2 0 0 2 1 2 1 1 2 1 2 1 1 20.2 0 0.2 0.2 0 0.2 1.2 1 1.2 1.2 1 1.2
0.6 0.2 0.2 0.8 0.4 0.8 1.6 1.2 1.2 1.8 1.4 1.8
0.2 0.2 0 0.4 0.4 0.4 1.2 1.2 1 1.4 1.4 1.4
0.6 0.2 0.2 0.8 0.4 0.8 1.6 1.2 1.2 1.8 1.4 1.8

MM'/5 +1 = G*

dimension nxn

8



Mixed Model Equations
L/'MMG =

M (n individuals x p markers)
M(n,p)M’(p,n)
MM’(n,n)
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Simplifications If 2
eσIR = n effects to estimate
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G may not have an inverse
• G may not be positive definite

– The G matrix is an estimate of the true genetic 
variance co-variance matrix

– Genotyping errors and possible inclusion of individuals 
without all parents creates inconsistency

– Solution: Add small constant to diagonal elements 
(ridge) 
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Example
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Note, only ½ the additive genetic variance was captured by the markers 
(missing heritability issue) 11

R code Example 4
NL=5
SigA=5
SigE=20
Lam=SigE/SigA

X = matrix( c( 1,
1,
1,
1

Y = matrix( c( 7,
9,
10,
6,
9,   
11), 6,1)

Z = matrix( c( 1, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0,

1,
1,
1  ), 6,1)

M = matrix( c( 1,-1,0,-1,1,
0,0,1,0,-1,
0,-1,0,0,0,
1,-1,1,-1,0,
0,0,1,-1,0,
1,-1,1,-1,0),6,5,  byrow = TRUE)

12

0, 0, 1, 0, 0, 0,
0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 1),6,6)

) y )

G=(1/NL)*M%*%t(M)

Check G for inverse
GI=solve(G)



R code
r=.00001
I = matrix( c( 1, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0,
0, 0, 0, 1, 0, 0,

ridge=r*I
G1=G+ridge
INVG=solve(G1)

LHS = rbind( cbind(t(X) %*% X                    ,  t(X) %*%Z ),
cbind(t(Z) %*% X                     ,  t(Z)%*%Z +Lam*INVG))

RHS = rbind(t(X)%*%Y

, , , , , ,
0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 1),6,6)

13

RHS  rbind(t(X)% %Y,
t(Z)%*%Y)

C = solve(LHS)

BU = C %*% RHS

BU

[1,] 8.76
[2,] -0.25 
[3,] 0.09
[4,] -0.02 
[5,] -0.16
[6,] -0.05 
[7,] -0.16

gEBV

G may not be positive definite
(2nd solution)

• multiply both sides of the second equationmultiply both sides of the second equation 
by 
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R code Example 4
NL=5
SigA=5
SigE=20

X = matrix( c( 1,
1,
1,
1Y = matrix( c( 7,

9,
10,
6,
9,   
11), 6,1)

Z = matrix( c( 1, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0,
0, 0, 0, 1, 0, 0,

1,
1,
1  ), 6,1)

M = matrix( c( 1,-1,0,-1,1,
0,0,1,0,-1,
0,-1,0,0,0,
1,-1,1,-1,0,
0,0,1,-1,0,
1,-1,1,-1,0),6,5,  byrow = TRUE)
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0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 1),6,6)

) y )

G=(1/NL)*M%*%t(M)

LHS = rbind( cbind(t(X) %*% X                    ,  t(X) %*%Z ),
cbind(SigA*G%*%t(Z) %*% X  , SigA*G%*%t(Z)%*%Z + SigE*Z))

R code

RHS = rbind(t(X)%*%Y,
SigA*G%*%t(Z)%*%Y)

C = solve(LHS)

BU = C %*% RHS

BU [1,]  8.76
[2 ] 0 25

Same solution as before to 5 decimal points

16

[2,] -0.25
[3,]  0.09
[4,] -0.02
[5,] -0.16
[6,] -0.05
[7,] -0.16

gEBV
Current -0.25929249
Previous -0.25929571

Note that r=.00001, use as small an r as 
possible to minimize bias

Bias=.00000322



Equivalent Model 
Estimation of Marker effects
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Equivalent Model 
Estimation of Marker effects
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Assumption depends on method
1) (GBLUP, ssGBLUP) Genetic variance 
associated with each marker is equal
2) (Bayes A) sampled from a t distribution
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Example 5 SNP BLUP
NL=5
SigA=5
Sigg=SigA/NL
SigE=20

X = matrix( c( 1,
1,
1,
1

y = matrix( c( 7,
9,
10,
6,
9,   
11), 6,1)

I = matrix( c( 1, 0, 0, 0, 0,
0, 1, 0, 0, 0,
0, 0, 1, 0, 0,

1,
1,
1  ), 6,1)

M = matrix( c( 1,-1,0,-1,1,
0,0,1,0,-1,
0,-1,0,0,0,
1,-1,1,-1,0,
0,0,1,-1,0,
1,-1,1,-1,0),6,5,  byrow = TRUE)

19

0, 0, 1, 0, 0,
0, 0, 0, 1, 0,
0, 0, 0, 0, 1),5,5)

) y )

LHS = rbind( cbind(t(X) %*% X ,  t(X) %*%M ),
cbind( t(M) %*% X  , t(M)%*%M + (SigE/Sigg)*I))

GWAS

( ( ) , ( ) ( g gg) ))

RHS = rbind(t(X)%*% y,
t(M)%*%y)

C = solve(LHS)

Bg = C %*% RHS

B
[1,]  8.76
[2 ] 0 08

20

Bg [2,] -0.08
[3,]  0.02
[4,]  0.01
[5,]  0.07
[6,] -0.08

Marker effects



gEBV

[1 ] 0 25

g=Bg[2:6]
U=M%*%g
U

[1,] -0.25
[2,]  0.09
[3,] -0.02
[4,] -0.16
[5,] -0.05
[6,] -0.16

Compare to GBLUP

21

Compare to GBLUP

Single Step ssGBLUP
• Merge G matrix into regular A matrix

– Aguilar, I., I. Misztal, D. L. Johnson, A. Legarra, S. Tsuruta et al. 2010 Hot topic: A unified approach to utilize 
phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. Journal Of Dairy 

Science 93: 743-752.

– Corrects for multi-trait selection bias
• Vitezica, Z. G., I. Aguilar, I. Misztal, and A. Legarra, 2011 Bias in genomic 

predictions for populations under selection. Genetics Research 93: 357-366.
– Uses all information

• Phenotypes of animals without genotypes
– J. Anim Sci. 2011. 89:23-28. doi:10.2527/jas.2010-3071

• Software 
– http://nce.ads.uga.edu/~ignacy/genomic-blupf90/
– http://snp.toulouse.inra.fr/~alegarra/

22



ssGBLUP
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GWAS
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Issues 
Genomic Selection and GWAS

• Admixture (Walsh Lectures) 
– Major problem
– False PositivesFalse Positives
– Spurious Correlations 
– Correlation does not mean Causation
– Partial Solution

• Use of Igenstrat to correct for structure
• Use of Structure to correct for structure
• Scaling of G to combine all populations and cross in common relationship matrix

• Pedigree errors
– More costly in terms of accuracy with G than A matrix

• Cost 
– Use dense SNP genotyping all breeders (parents)– Use dense SNP genotyping all breeders (parents)
– Low Density on all candidates

• Reducing the number of markers down to those that are most predictive 
• Going from 60,000 SNP to 384 SNP for genotyping
• GWAS SNP selection

• Selection (See next slide)
– Allele frequencies change
– Older data becomes a liability

25

Effect of Random vs. Directional Selection 
on Accuracy

Starting in HWE Starting in MDE

Continued Random

Random Directional Random Directional

Continued Random

Continued Random

h2=.1 N=256, Ne=32, 100/100 Marker/QTL loci distributed on 100cM.  

(average over 60 replicates, SEM=.02).
26



Correlated Residuals 
Common Environmental Effects

– Environmental effects common within a group  
partial between groupspartial between groups

• Agronomy
– Plots in fields

1

2



Correlated Residuals 
Common Environmental Effects

– Animals
M lti l l ti• Multiple pens, cages, or locations

• Shared maternal effects
– Common litter 

3

Correlated Residuals 
Common Environmental Effects

– Humans
Sh d f il i t• Shared family environment 

– Nutrition
– Nurturing 
– Social economic factors

4



Common Environmental Effects

• In humans, confounds genetic effects with 
i l i f tsocial economic factors

• In plant or animal breeding, reduces response 
to selection
– Common environmental effects are included with 
the phenotypep yp

– Errors in selection decisions

5

Alcoholism

• Is this disease the result of nature or nurture?Is this disease the result of nature or nurture?
– The most accurate predictor of alcoholism is 

• Parents drinking habits
• Ethnicity

– Is drinking behavior learned (Nurture)?
– Is it inherited (Nature)? 

6



How to separate Nature from Nurture

• Nurture imposes a correlated environment
• Nature imposes shared IBD alleles

7

Solution
• Experimental design

– Randomized Complete Block (RCB)
• Block =common environment effect
• all treatments in all blocks
• Best design 

– Not possible with human (no randomization) and most plant and animal 
breeding programs (not practical)

• Breeders in the past
– Performed within and between family selection
– Tried to adjust for herd/Y/S as fixed effects then solved for breeding values
– Problem:  best genetics confounded with herd (adjusting for fixed removed 

some genetic effects)
• Mixed models 

– Empirical Bayesian approach to estimate and adjust for the effect
• First use of mixed models
• recovery of inter‐block information
• Yates, 1939; Cox, 1958

8



Mixed Model Solution

• Needs 
– PhenotypesPhenotypes

• The more confounded the data the more data that is needed 
to get clear results

– Group Ownership
• Households

– Relationships
• Pedigree

O– Or
• Genotypes to create Genomic Relationship Matrix (GRM)

– Variances of Random Effects (Given or estimated from 
the data)

9

Example 1

• 10 calves, 5 male and 5 female, from 3 sires 
d 6 d l d 3 dand 6 dams, were sampled over 3 years and 

weaning weight recorded.  Some dams were 
used more than once.

• Remove the fixed effects of year and sex and 
the random effect of common maternal 
environment.  Then estimate the breeding 
values of all animals for weaning weight.

10



2 14 1 15 3

Pedigree (Relationships)

1985

16 9 4 7 5 8

11 6

101986

1987

1213

Common maternal environment
(Group Ownership)

11

1988

Phenotypes
Schaeffer Table 8.7

Animal Sire Dam Year Sex Wean Wt

7 14 1 86 M 400
4 14 2 86 F 380
8 15 3 86 M 410
5 15 1 87 F 350
9 14 2 87 M 420
6 15 4 87 F 360

10 15 1 88 M 390
11 16 4 88 F 390
12 16 5 88 M 430
13 16 6 88 F 370

12



Model solution 1

Fixed Effects Random Effects

ijkmkjiijkmn eGSYy +++=

'

'

Year Sex
Additive
Genetic Residual

ijkmneijkmn eMe +='

Common
Environment

Other 
environmental 
effects

13

Solution 1
Model Variance‐covariance Structure
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Correlated Residuals
Animals in a common group (pen, herd, or mother) share a common environmental 
effect.  Let ρ be the correlation between residuals due to shared environment.  

A covariance within groups is reflected in a between group variance
Principle for estimating heritability via ANOVA (between and within sire variances)

ρ is the intra‐class environmental correlation
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Variances of Random Effects

20002

2
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The shared environmental effect is small, but real
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An Sire Dam

7 14 1

animals 7, 5, 10 shared mother 1 
Shared Maternal
Environment

Environmental Correlation Matrix (R)

0714.=ρ 50065002 +=eσ
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MME Residual Correlation Structure
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⎥
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⎡ 0000000001000000

All animals have a genetic effect  but only animals with a record contribute to the phenotype

An Sire Dam

7 14 1

14   1     2    15   3  16    7     4    8   5    9     6    10  11  12 13

Note that these animals did not have records and are missing
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R code Example 6Sig_m=500
Sig_e=6500
Sig_g=2000
m=Sig_m/(Sig_m+Sig_e)

Y=matrix(c(400,
380,
410,

A=matrix(c(
1, 0, 0, 0, 0, 0, .5, .5, 0, 0, .5, .25 0, .25 0, .125,
0, 1, 0, 0, 0, 0, .5, 0, 0, .5, 0, 0, .5, 0, .25 0,
0, 0, 1, 0, 0, 0, 0, .5, 0, 0, .5, .25 0, .25 0, .125,

350,
420,
360,
390,
390,
430,
370),10,1);

X=matrix(c(1, 0, 0, 1,
1, 0, 0, 0,
1, 0, 0, 1,

0, 0, 1, 0, 0, 0, 0, .5, 0, 0, .5, .25 0, .25 0, .125,
0, 0, 0, 1, 0, 0, 0, 0, .5, .5, 0, .5, .5, 0, .25 .25,
0, 0, 0, 0, 1, 0, 0, 0, .5, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, .5, .5, .5,
.5, .5, 0, 0, 0, 0, 1, .25 0, .25 .25 .125, .25 .125, .125, 0.0625,
.5, 0, .5, 0, 0, 0, .25 1, 0, 0, .5, .5, 0, .5, 0, .25,
0, 0, 0, .5, .5, 0, 0, 0, 1, .25 0, .25 .25 0, .125, .125,
0, .5, 0, .5, 0, 0, .25 0, .25 1, 0, .25 .5, 0, .5, .125,
.5, 0, .5, 0, 0, 0, .25 .5, 0, 0, 1, .25 0, .25 0, .125,
.25 0, .25 .5, 0, 0, .125, .5, .25 .25 .25 1, .25 .25 .125, .5,
0, .5, 0, .5, 0, 0, .25 0, .25 .5, 0, .25 1, 0, .25 .125,
25 0 25 0 0 5 125 5 0 0 25 25 0 1 25 0 37501, 0, 0, 1,

0, 1, 0, 0,
0, 1, 0, 1,
0, 1, 0, 0,
0, 0, 1, 1,
0, 0, 1, 0,
0, 0, 1, 1,
0, 0, 1, 0),10,4, byrow = TRUE )

.25 0, .25 0, 0, .5, .125, .5, 0, 0, .25 .25 0, 1, .25 0.3750,
0, .25 0, .25 0, .5, .125, 0, .125, .5, 0, .125, .25 .25 1, 0.3125,
.125, 0, .125, .25 0, .5, 0.0625, .25 .125, .125, .125, .5, .125, 0.375, 0.3125, 1.0
),16,16)

Ainv=solve(A) 

21

Z= matrix(c
(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 00,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1),
10,16,byrow=TRUE);

R=matrix(c(1,  0,   0,   m,     0,     0,     m,     0,      0,     0,
0,  1,   0,    0,    m,     0,      0,     0,      0,     0,
0,  0,   1,    0,     0,     0,      0,     0,      0,     0,
m 0 0 1 0 0 m 0 0 0m, 0,   0,    1,     0,     0,     m,     0,      0,     0,
0, m,   0,    0,     1,     0,      0,     0,      0,     0,
0,  0,   0,    0,     0,     1,      0,    m,      0,     0,
m, 0,   0,   m,     0,     0,      1,     0,      0,     0,
0,  0,   0,    0,     0,    m,      0,     1,      0,     0,
0,  0,   0,    0,     0,     0,      0,     0,      1,     0,
0,  0,   0,    0,     0,     0,      0,     0,      0,    1),10,10)
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Sig_EM=Sig_e+Sig_m

R=R*Sig_EM

RINV=solve(R)( )

LHS=rbind(
cbind( t(X)%*%RINV%*%X, t(X) %*%RINV%*%Z) ,
cbind( t(Z)%*%RINV%*%X, t(Z) %*%RINV%*%Z+Ainv*(1/Sig_g)) )

RHS=rbind( 
t(X)%*%RINV%*%Y,
t(Z)%*%RINV%*%Y)t(Z)%*%RINV%*%Y)

C=solve(LHS)
BU=C %*% RHS
BU
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369.87422
363.57807
375.03977
40.764716
1.8135021
‐3.805516

14   1  

Herd
Year

Sex

2.7837732
‐3.560112
0.1342493
2.6341034
‐1.966278
3.4648406
‐1.578682
‐3.883955
3 9162079

 2   15   3  16   7   4   8     5 
9

BV
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3.9162079
‐0.906753
‐6.316917
4.5689512
1.227629
0.1257446

9    6   10  11  12  13



Solution 2: model the data structure

Add another random effect due to shared environment 
( h h d)

ijkmnekjiijkmn eMGSYy ++++=

Year Sex Additive
Genetic

Common Group 
Environment

Random 
error

(mother, cage, herd)

Fixed Effects Random Effects
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MME Correlated Residuals
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Animal Direct Genetic Effect

An Sire Dam

7 14 1

14   1     2    15   3  16    7     4    8   5    9     6    10  11  12 13

Note that sires and dams did not have records and are missing
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An Sire Dam
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R code Example 7Sig_m=500
Sig_e=6500
Sig_g=2000

Y=matrix(c(400,
380,
410,
350,

A=matrix(c(
1, 0, 0, 0, 0, 0, .5, .5, 0, 0, .5, .25 0, .25 0, .125,
0, 1, 0, 0, 0, 0, .5, 0, 0, .5, 0, 0, .5, 0, .25 0,
0, 0, 1, 0, 0, 0, 0, .5, 0, 0, .5, .25 0, .25 0, .125,

420,
360,
390,
390,
430,
370),10,1);

X=matrix(c(1, 0, 0, 1,
1, 0, 0, 0,
1, 0, 0, 1,
0, 1, 0, 0,

0, 0, 1, 0, 0, 0, 0, .5, 0, 0, .5, .25 0, .25 0, .125,
0, 0, 0, 1, 0, 0, 0, 0, .5, .5, 0, .5, .5, 0, .25 .25,
0, 0, 0, 0, 1, 0, 0, 0, .5, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, .5, .5, .5,
.5, .5, 0, 0, 0, 0, 1, .25 0, .25 .25 .125, .25 .125, .125, 0.0625,
.5, 0, .5, 0, 0, 0, .25 1, 0, 0, .5, .5, 0, .5, 0, .25,
0, 0, 0, .5, .5, 0, 0, 0, 1, .25 0, .25 .25 0, .125, .125,
0, .5, 0, .5, 0, 0, .25 0, .25 1, 0, .25 .5, 0, .5, .125,
.5, 0, .5, 0, 0, 0, .25 .5, 0, 0, 1, .25 0, .25 0, .125,
.25 0, .25 .5, 0, 0, .125, .5, .25 .25 .25 1, .25 .25 .125, .5,
0, .5, 0, .5, 0, 0, .25 0, .25 .5, 0, .25 1, 0, .25 .125,
25 0 25 0 0 5 125 5 0 0 25 25 0 1 25 0 37500, 1, 0, 0,

0, 1, 0, 1,
0, 1, 0, 0,
0, 0, 1, 1,
0, 0, 1, 0,
0, 0, 1, 1,
0, 0, 1, 0),10,4, byrow = TRUE )

.25 0, .25 0, 0, .5, .125, .5, 0, 0, .25 .25 0, 1, .25 0.3750,
0, .25 0, .25 0, .5, .125, 0, .125, .5, 0, .125, .25 .25 1, 0.3125,
.125, 0, .125, .25 0, .5, 0.0625, .25 .125, .125, .125, .5, .125, 0.375, 0.3125, 1.0
),16,16) 
Ainv=solve(A)
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Z1= matrix(c
(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Z2=matrix(c
(1 , 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0,

I=matrix(c
(1,  0,  0,  0,  0,  0,
0 1 0 0 0 0

0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1),
10,16,byrow=TRUE)

1, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0,
1, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 1),
10,6,byrow=TRUE)

0,  1,  0,  0,  0,  0,
0,  0,  1,  0,  0,  0,
0,  0,  0,  1,  0,  0,
0,  0,  0,  0,  1,  0,
0,  0,  0,  0,  0,  1),6,6)
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P=matrix(c(Sig_g,   0,
0, Sig_m),2,2,)

K=solve(P)*Sig_e

LHS=rbind(
cbind(t(X)%*%X,      t(X) %*%Z1,                             t(X) %*%Z2)   ,  
cbind(t(Z1) %*%X ,   t(Z1) %*%Z1+Ainv*K[1,1] ,  t(Z1) %*%Z2) ,
cbind(t(Z2) %*%X,   t(Z2) %*%Z1,                          t(Z2) %*%Z2+I*K[2,2]))

RHS=rbind(t(X) %*%Y,
t(Z1) %*%Y,
t(Z2) %*%Y)

C=solve(LHS)C=solve(LHS)
BU=C %*% RHS
BU
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369.87
363.57

1.81
‐3.80 ‐2.365897

1 226796
Year

B Ĝ

14   1  

1  2 

Animal Dam
eM̂

Solutions

375.03
40.76

2.783
‐3.56
0.13
2.63
‐1.96
3.46
‐1.57
‐3.88
3 91

1.226796
0.0671247
0.5146638
0.9262775
‐0.368965

Sex

 2   15   3  16   7   4   8     5 
9

 3  4   5  6

3.91
‐0.90
‐6.31
4.56
1.22
0.12

9    6   10  11  12  13

Note:results are same as 
using correlated residual 
matrix
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How are the results used?

• The model separates Nature from Nurture
– Human experimenters maybe interested in both p y
effects

• Maternal Care: How much of the variation in infant weight at 
4 weeks post delivery, is due to the genes of the child vs. the 
nurture of the mother and perhaps the cause of the nurture 
effects

• Disease Risk:  Alcoholism: risk due to drinking environment 
(nurture) separated from risk due to nature (genes)

Breeders are only interested in making maximal– Breeders are only interested in making maximal 
genetic improvement

• Use the additive genetic effects to select best animals

35

Impact of Fixed vs. Random Effect
• Example:  Correlated residuals due to years
• Data was collected over 3 years, the researcher was concerned 

about a common environmental effect due to years but could not 
decide if years should be a fixed or random effect.  What difference 
does it really make?  
1. Model 1: Include fixed effect for sex and year;  Animal as random  

• Additive genetic (2000)
• Residual (6500).  

2. Model 2: Same as above but now assume the effect of years is 
random
• Between year variance (500)
• Residual (6500)• Residual (6500)  
• What are the best estimates of the  breeding value of each animal? What are 

the year effects?
3. Model 3: Same as Model 2 but increase between year variance to 

(100,000)
• What impact does fixed vs. random year effect have on the results?
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R code Example 8Sig_e=6500
Sig_g=2000

Y=matrix(c(400,
380,
410,
350,
420,

A=matrix(c(
1, 0, 0, 0, 0, 0, .5, .5, 0, 0, .5, .25 0, .25 0, .125,
0, 1, 0, 0, 0, 0, .5, 0, 0, .5, 0, 0, .5, 0, .25 0,
0, 0, 1, 0, 0, 0, 0, .5, 0, 0, .5, .25 0, .25 0, .125,
0, 0, 0, 1, 0, 0, 0, 0, .5, .5, 0, .5, .5, 0, .25 .25,
0 0 0 0 1 0 0 0 5 0 0 0 0 0 0 0360,

390,
390,
430,
370),10,1);

X=matrix(c(1, 0, 0, 1,
1, 0, 0, 0,
1, 0, 0, 1,
0, 1, 0, 0,
0, 1, 0, 1,

0, 0, 0, 0, 1, 0, 0, 0, .5, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, .5, .5, .5,
.5, .5, 0, 0, 0, 0, 1, .25 0, .25 .25 .125, .25 .125, .125, 0.0625,
.5, 0, .5, 0, 0, 0, .25 1, 0, 0, .5, .5, 0, .5, 0, .25,
0, 0, 0, .5, .5, 0, 0, 0, 1, .25 0, .25 .25 0, .125, .125,
0, .5, 0, .5, 0, 0, .25 0, .25 1, 0, .25 .5, 0, .5, .125,
.5, 0, .5, 0, 0, 0, .25 .5, 0, 0, 1, .25 0, .25 0, .125,
.25 0, .25 .5, 0, 0, .125, .5, .25 .25 .25 1, .25 .25 .125, .5,
0, .5, 0, .5, 0, 0, .25 0, .25 .5, 0, .25 1, 0, .25 .125,
.25 0, .25 0, 0, .5, .125, .5, 0, 0, .25 .25 0, 1, .25 0.3750,
0, .25 0, .25 0, .5, .125, 0, .125, .5, 0, .125, .25 .25 1, 0.3125,0, 1, 0, 1,

0, 1, 0, 0,
0, 0, 1, 1,
0, 0, 1, 0,
0, 0, 1, 1,
0, 0, 1, 0),10,4, byrow = TRUE )
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.125, 0, .125, .25 0, .5, 0.0625, .25 .125, .125, .125, .5, .125, 0.375, 0.3125, 1.0
),16,16) 

Ainv=solve(A)

Z1= matrix(c
(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 00,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1),
10,16,byrow=TRUE)

LHS=rbind(cbind(t(X)%*%X,    t( X) %*%Z1) ,
cbind(t(Z1) %*%X, t(Z1) %*%Z1+Ainv*(Sig_e/Sig_g)) )

RHS=rbind(t( X) %*%Y t( Z1) %*%Y)RHS=rbind(t( X) %*%Y,  t( Z1) %*%Y)
C=solve(LHS)
BU=C%*%RHS
BU
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Solutions: Years Fixed
Additive Genetic Effect

1.96
4 39

Fixed effects
year
369.59                                            
363.39                                            
374.79
sex                                           
40.63

‐4.39
3.16
‐3.78
0.20
2.84
‐2.41
3.94
‐1.58
‐4.44
4.35
‐0.72
‐6.93
4.97
1.24
0.28

(y1+y2+y3)/3=u=369.26
Y1‐u=.33
Y2‐u=‐5.86
Y3‐u=5.53
Come back to this
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An Year
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R code Example 9Sig_e=6500
Sig_g=2000
Sig_y=500

Y=matrix(c(400,
380,
410,
350,

Ainv=matrix(c(2.5, .5, 1, 0,  0,  0, -1, -1, 0,   0, -1,  0, 0, 0, 0, 0,
.5,  2.5,  0,   1,   0,  0, -1,  0, 0,  -1,  0,  0, -1, 0, 0, 0,
1 ,   0,    2,   0,   0,  0,  0, -1,  0,   0, -1,  0,  0, 0, 0, 0,
0 , 1, 0 , 3, .5, 0, 0, .5, -1, -1, 0, -1, -1, 0, 0, 0,

420,
360,
390,
390,
430,
370),10,1);

X=matrix(c(1, 1,
1, 0,
1, 1,
1, 0,

0 ,   1,    0 ,  3,   .5,  0,  0, .5, 1,  1,  0, 1, 1, 0, 0, 0,
0 ,   0,    0,  .5, 1.5, 0,  0,  0, -1,   0,  0,  0,  0, 0, 0,  0,
0 ,   0,    0,   0,  0,  2.5,  0, .5,  0, .5,  0, .5,  0, -1,  -1, -1,
-1,  -1,    0,   0,  0,   0,  2,  0,  0,   0,  0,  0,  0, 0, 0,  0,
-1,   0,   -1,  .5,  0,  .5,  0,  3,  0,   0,  0, -1,  0, -1,  0, 0,
0,   0,    0,  -1, -1,   0,  0,  0,  2,   0,  0,  0,  0, 0, 0,  0,
0,  -1,    0,  -1,  0,  .5,  0,  0,  0, 2.5,  0,  0,  0, 0, -1, 0,
-1,   0,   -1,   0,  0,   0,  0,  0,  0,   0,  2,  0,  0, 0, 0,  0,
0 ,   0,    0,  -1,  0,  .5,  0, -1,  0,   0,  0, 2.5, 0, 0, 0, -1,
0 ,  -1,    0,  -1,  0,   0,  0,  0,  0,   0,  0,  0,  2, 0, 0,  0,
0 ,   0,    0,   0,  0,  -1,  0, -1,  0,   0,  0,  0,  0, 2, 0,  0,
0 0 0 0 0 1 0 0 0 1 0 0 0 0 2 01, 0,

1, 1,
1, 0,
1, 1,
1, 0,
1, 1,
1, 0),10,2, byrow = TRUE )

0 ,   0,    0,   0,  0,  -1,  0,  0,  0,   -1,  0,  0,  0, 0, 2,  0,
0 ,   0,    0,   0,  0,  -1,  0,  0,  0,   0,  0, -1,  0, 0, 0,  2),16,16)
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Z1= matrix(c
(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,, , , , , , , , , , , , , , , ,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,
0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1),
10,16,byrow=TRUE)

Z2=matrix(c
( 1,  0,  0,
1,  0,  0,
1,  0,  0,
0 1 0

I=  matrix(c
(1,  0,  0,
0 1 00,  1,  0,

0,  1,  0,
0,  1,  0,
0,  0,  1,
0,  0,  1,
0,  0,  1,
0,  0,  1),10,3,byrow=TRUE)

0,  1,  0,
0,  0,  1),3,3)
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P=matrix(c(Sig_g ,  0,
0,    Sig_y=500),2,2)

K=solve(P)*Sig_e

LHS=rbind(
cbind(t(X)%*%X,      t(X) %*%Z1,                            t(X) %*%Z2)   ,  
cbind(t(Z1) %*%X ,  t(Z1) %*%Z1+Ainv*K[1,1] ,  t(Z1) %*%Z2) ,
cbind(t(Z2) %*%X,   t(Z2) %*%Z1,                          t(Z2) %*%Z2+I*K[2,2]))

RHS=rbind(t(X) %*%Y,
t(Z1) %*%Y,
t(Z2) %*%Y)

C=solve(LHS)
BU=C %*% RHSBU=C %*% RHS
BU
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Solutions 
Years random (var=500)

Additive Genetic Effect

1 40
Fixed effects

369.07 mean
41.94 Sex effect

1.40
‐4.41
2.67
‐4.14
0.13
4.35
‐2.77
3.65
‐1.87

Year Effects

‐0.008
‐0.988
0.996

‐5.06
3.09
‐1.38
‐6.64
6.12
2.09
1.27
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P=matrix(c(Sig_g ,  0,
0,    Sig_y=100000),2,2)

K l (P)*Si

Years random (var=100000)

K=solve(P)*Sig_e

LHS=rbind(
cbind(t(X)%*%X,      t(X) %*%Z1,                            t(X) %*%Z2)   ,  
cbind(t(Z1) %*%X ,  t(Z1) %*%Z1+Ainv*K[1,1] ,  t(Z1) %*%Z2) ,
cbind(t(Z2) %*%X,   t(Z2) %*%Z1,                          t(Z2) %*%Z2+I*K[2,2]))

RHS=rbind(t(X) %*%Y,
t(Z1) %*%Yt(Z1) % %Y,
t(Z2) %*%Y)

C=solve(LHS)
BU=C %*% RHS
BU
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Solutions 

Additive Genetic Effect

Fixed effects

369.25 mean
40.67 Sex effect

1.95
‐4.39
3.15
‐3.79
0.20
2.88
‐2.42
3.94
‐1 58

Additive effects near identical to 
previous example where years 
were fixed

Year Effects ‐1.58
‐4.46
4.31
‐0.74
‐6.93
5.00
1.27
0.30                                           

Note the effect of years 
increased and near identical 
to slide  with years fixed

Year Effects
0.32
‐5.72
5.40
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Model Comparisons

Fixed
Random 
(100,000)

Random 
(500) Animal EBV

Year Effect Fixed

Random 
(100,00

0)
Random 
(500)

Year 
Ignored

1 0.33 0.32 ‐0.008 1 1.96 1.95 1.4 1.27
2 ‐5.86 ‐5.72 ‐0.988 2 ‐4.39 ‐4.39 ‐4.41 ‐4.42
3 5.53 5.4 0.996 3 3.16 3.15 2.67 2.57

4 ‐3.78 ‐3.79 ‐4.14 ‐4.22
5 0.2 0.2 0.13 0.11
6 2.84 2.88 4.35 4.69

2nd rank 7 ‐2.41 ‐2.42 ‐2.77 ‐2.86
animal is different 8 3.94 3.94 3.65 3.57

9 ‐1.58 ‐1.58 ‐1.87 ‐1.95
10 ‐4.44 ‐4.46 ‐5.06 ‐5.19
11 4.35 4.31 3.09 2.83
12 ‐0.72 ‐0.74 ‐1.38 ‐1.52
13 ‐6.93 ‐6.93 ‐6.64 ‐6.58
14 4.97 5 6.12 6.37
15 1.24 1.27 2.09 2.28
16 0.28 0.3 1.27 1.50
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Ranking
EBV 

W/Fixed 

EBV 
W/Random 

Years
Rank Animal Years Animal (500)

1 14 4.97 14 6.12
2 11 4.35 6 4.35
3 8 3.94 8 3.65
4 3 3.16 11 3.09
5 6 2 84 3 2 67
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5 6 2.84 3 2.67

Select top 2: Some different individuals would 
have been chosen



6

8
EBVs with Year Effect Ignored, Random, or Fixed

How much should the EBV be adjusted for year?

‐4

‐2

0

2

4

0 2 4 6 8 10 12 14 16 18

EB
V Random (100,000)

Random (500)

Year Ignored

‐8

‐6

Animal

When Year is fit as a random effect, the data tells us how 
much to adjust
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22

2

b

b

σσ
σρ
+

=

Setting a factor as fixed is equivalent to assuming the 
intra‐class correlation is 1

Or variance of the effect is infinite

eb σσ +

07.
6500500

500
=

+
=ρ

1
6500100000

100000
≅

+
=ρ

First Example

Second Example

Setting a factor at random allows the residual correlation, and amount of 
adjustment for that factor, to be estimated from the data

For a random factor the intra‐class correlation is used as a shrinkage 
factor, how much to adjust for the factor; a correlation of 1, totally 
adjusts for the factor, a correlation of 0, the factor is ignored  Y’=Y‐ρ(T‐u)
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Example 10 Impact of Common Maternal Environment 
of Ranking of Selection Candidates

1 2 31

4 5 6 7 8 9 10 11

12 9 8 5 7 5 6 8

P1 P2

Choose genetically the best individuals for breeding from among the 
offspring
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Genetic Parameters 
Case A 
minor common 
environmental effect

Case B
moderate common 
environmental effect

Case C
Major common 
environmental effect

100

1

10

2

2

2

=

=

=

e

m

G

e

σ

σ

σ

100

100

10

2

2

2

=

=

=

e

m

G

e

σ

σ

σ

environmental effect

100

1000

10

2

2

2

=

=

=

e

m

G

e

σ

σ

σ

Example 10 common maternal environment.R
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Solutions Case A

Animal Family EBV rank
4 1 0 29 14 1 0.29 1
5 1 0.15 2
6 1 0.10 3
7 1 -0.04 4
11 2 -0.05 5
8 2 -0.10 6

10 2 0 15 7
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10 2 -0.15 7
9 2 -0.20 8

Example Impact of Common Maternal Environment of 
Ranking of Selection Candidates

1 2 31

4 5 6 7 8 9 10 11

12 9 8 5 7 5 6 8

P1 P2
100

1

10

2

2

2

=

=

=

e

m

G

e

σ

σ

σ

Individuals  4, 5, 6, 7 highest ranking all from the same mother
Example between family selection
Heritability low and common family effects small  
No Competitive effects 
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Solutions Case B

Animal Family EBV rank
4 1 0 26 14 1 0.26 1
5 1 0.12 2
6 1 0.07 3
11 2 -0.03 4
7 1 -0.07 5
8 2 -0.07 6
10 2 -0 12 7
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10 2 0.12 7
9 2 -0.17 8

Moderate Common (Family) Environmental Effects

1 2 3 102 =Gσ1

4 5 6 7 8 9 10 11

12 9 8 5 7 5 6 8

P1 P2

100

100
2

2

=

=

e

m

G

e

σ

σ

Individuals 4 , 5, 6 and 11 would be chosen, some from both families
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Solutions Case C
Animal Family EBV rank

4 1 0.17 1
11 2 0.07 2
5 1 0.03 3
8 2 0.02 4
6 1 -0.02 5

10 2 -0.03 6
9 2 -0.08 7
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7 1 -0.16 8

Major Common (Family) Environmental Effects

1 2 31

4 5 6 7 8 9 10 11

12 9 8 5 7 5 6 8

P1 P2

100

1000

10

2

2

2

=

=

=

e

m

G

e

σ

σ

σ

•Top individuals are highest ranking within each family
•Major Common environmental effects

Within Family Selection
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Between and within family selection

( ) ( ).2...1 iiji YYbYYbI −+−= ( ) ( ).2...1 iiji

Between family deviation Within family deviation

•b1=0 is within family selection
•b2=0 is between family selection
•If both are >0 then finding optimal weight was difficult

65

If both are >0 then finding optimal weight was difficult
•The mixed model approach solves this problem

Negative Environmental Correlations

• If the intraclass correlation is truly negative, then the only 
way to model the data is with a correlation matrix rather 
h 2 d d ffthan a 2nd random effect

• A negative intraclass correlation implies there is greater 
variation with a group than between groups

• If modeling between and within population variation it is 
possible to get a true negative Fis or Fit if one of the sub‐
populations is the result of out‐crossing.  There will be 
more heterozygotes within a population than expected.

• Unstable competition can also result in greater variability 
within groups (likes compete more than dislikes)
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Genetics of Disease Resistance or 
Susceptibility

• Influenced by Nature and Nurture
• Alcoholism, or other learned behaviors, such 
as smoking

• Assume Nurture is determined by adolescent 
household

67

2 14 1 15 3

Example Households and relationships

16 9 4 7 5 8

11 6

10

1213 Households

68

Indicates alcoholic 



Problem

• Define a mixed model that would separate the 
ff t f N t f th t f N teffects of Nature from that of Nurture

• What variance components need to be 
estimated

• How could these be estimated
• Can you use these results to predict risk of• Can you use these results to predict risk of 
alcoholism if individuals from this population 
produced offspring? How?
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Lecture 7: 
Models with multiple random

 effects:  Repeated Measures and
 Maternal effects  

Bruce Walsh lecture notes 
Summer Institute in Statistical Genetics 

Seattle, 20 – 22 July 2016 

2 

Often there are several
 vectors of random effects 

•  Repeatability models 
– Multiple measures 

• Common family effects 
– Cleaning up residual covariance structure 

• Maternal effects models 
– Maternal effect has a genetic (i.e.,

 breeding value) component 
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Multiple random effects 

y = Xβ + Za + Wu + e 

β is a q x 1 vector of fixed effects 

a is a p x 1 vector of random effects 

u is a m x 1 vector of random effects 

X is n x q,  Z is n x p,  W is n x m 

y is a n x 1 vector of observations 

y, X, Z, W observed. β, a, u, e to be estimated 

4 

Covariance structure 

Defining the covariance structure key in any mixed-model 

y = Xβ + Za + Wu + e 

These covariances matrices are still not sufficient, as we  
have yet to give describe the relationship between e, a,  
and u.  If they are independent: 

Suppose e ~ (0,σe
2 I), u ~ (0,σu

2 I), a ~ (0,σA
2 A),  

as with breeding values 
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y = Xβ + Za + Wu + e 

Note that if we ignored the second vector u of random
 effects, and assumed y = Xβ + Za + e*, then e* = Wu +
 e, with Var(e*) = σe

2 I + σu
2 WWT 

Consequence of ignoring random effects is that these 
are incorporated into the residuals, potentially  
compromising its covariance structure 

Covariance matrix for the vector of observations y 

6 

Mixed-model Equations 
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The repeatability model 

•  Often, multiple measurements (aka “records”) are
 collected on the same individual 

•  Such a record for individual k has three components 
–  Breeding value ak 
–  Common (permanent) environmental value pk 
–  Residual value for ith observation eki 

•  Resulting observation is thus  
–  zki = µ + ak + pk +eki 

•  The repeatability of a trait is r = (σA
2+σp

2)/σz
2 

•  Resulting variance of the residuals is σe
2  = (1-r) σz

2 

8 

Resulting mixed model 
y = Xβ + Za + Zp + e 

In class question:  Why can we obtain separate estimates 
of a and p?  

Notice that we could also write this model as  
 y = Xβ + Z(a + p) + e = y = Xβ + Zv + e, v = a+p 
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10 

The incident matrix Z 
Suppose we have a total of 7 observations/records, with 
3 measures from individual 1, 2 from individual 2, and 
2 from individual 3.  Then: 

Why?  Matrix multiplication.  Consider y21. 

y21 = µ + A2 + p2 + e21 

13 
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Consequences of ignoring p 
•  Suppose we ignored the permanent environment

 effects and assumed the model y = Xβ + Za + e*  
–  Then e* = Zp + e, 
–  Var(e*) = σe

2 I + σp
2 ZZT 

•  Assuming that Var(e*) = σe
2 I gives an incorrect

 model 
•  We could either  

–  use y = Xβ + Za + e* with the correct error
 structure (covariance) for e* = σe

2 I + σp
2 ZZT 

–  Or use y = Xβ + Za +Zp + e, where e = σe
2 I 

12 
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Resulting mixed-model equations 

14 

Common family effects 
•  Sibs in the same family also share a common

 environment 
–  Cov(full sibs) = σA

2/2 + σD
2/4 + σce

2 

•  Hence, if the model assumes yi = µ + ai + ci + ei, with
 a ~ 0, σA

2A, c ~ 0, σcf
2I.   If there are records for

 different sibs from the same family, Var(e) is no
 longer σe

2 I 
•  y = Xβ + Za + Wc + e 
•  Again, if common family effect ignored  (we assume

 y = Xβ + Za + e*) the error structure is e* = σe
2 I +

 σcf
2 WWT 

–  Where σcf
2  = σD

2/4 + σce
2 

–  The common family effect may contain  both environment
 and non-additive genetic components 
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Example:  Measure 7 individuals, first five are
 from family one, last two from family 2 

y = Xβ + Za + Wc + e 

Z = I as every individual has a single record. 
If there are missing and/or repeated records, 
Z does not have this simple structure 
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y = Xβ + Za + Wc + e 

Again,  matrix multiplication gives us the form of the Z and  
W matrices.   Consider y6: 

y6 = µ + A6 + c2 + e6 
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Maternal effects with genetic
 components 

•  The phenotype of an offspring can be influenced by
 its mother beyond her genetic contribution 

•  For example, two offspring with identical genotypes
 will still show potentially significant differences in
 size if they receive different amounts of milk from
 their mothers 

•  Such maternal effects can be quite important 
•  While we have just discussed models with common

 family effects, these are potentially rather different
 that maternal effects models 
–  Common family environmental effects are assumed not to

 be inherited across generations. 

18 

•  Consider milk yield.  The heritability for this
 trait is around 30% and the milk yield of the
 mother has a significant impact on the
 weight of her offspring 

•  Offspring with  high breeding values for milk
 will tend to have daughters with above
-average milk yield, and hence above
-average maternal effects 

•  The value of an offspring can be considered
 to consist of two components 
–  A direct effect (intrinsic breeding value) 
–  A maternal contribution 
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Phenotypic value = direct value + maternal value  

Pz = Pd + Pm 

Observable Latent (unseen) values 

Both of the latent values can be further decomposed into breeding
 plus residual (environmental + non- additive genetic) values  

Pd = µ + Ad + Ed,            Pm = µ + Am + Em,  

The maternal breeding value Am DOES NOT appear  in the
 phenotype of its carrier, but rather in the phenotype of her 
offspring 

The direct breeding value Ad appears in the phenotype of its
 carrier 

20 

Direct vs. maternal breeding values 
•  The direct and maternal contributions are best

 thought of as two separate, but potentially
 correlated, traits. 
–  Hence, we need to consider σ(Ad,Am) in addition to σ 2(Ad)

 and σ 2(Am).  This changes the form of the mixed-model
 equations 

•  The direct BV (Ad) is expressed in the individual
 carrying it 

•  The maternal BV (Am) is only expressed in the
 offspring trait value (and only mom’s Am appears) 
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Covariance structure 

This is often written using the Kronecker (or direct) product:    

Giving 

22 

y = Xβ + Zdad + Zmam + e 

The mixed-model becomes 
Direct effects 
breeding values 

Maternal effects 
breeding values 

The error structure needs a little care, as the 
direct Ed and maternal Em residual values can be 
correlated*.  Initially, we will assume Var(e) ~ σe

2I 

*See Bijma 2006 J. Anim. Sci. 84:800-806 for treatment 
of correlated environmental residuals under this model 
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The resulting mixed-model equations become 

24 

Filling out the maternal effects
 incident matrix Zm  

A little bookkeeping care is needed when filling out Zm, because the Am
 associated with a record (measured  individual) is that of their mother. 

0 
1 

a 
b 

c 

2 

3 

d 

f 

e 

g 

4 

5 

6 

7 

1-7 have 
records 

All sires 
unrelated 
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0 1 

2 

3 

4 

5 

6 

7 

Ad1 + Am0 

Ad2 + Am1 

Ad3 + Am1 

Ad4 + Am2 

Ad5 + Am2 

Ad6 + Am3 

Ad7 + Am3 

The observed values are y1 through y7.  
What we can estimate are Ad1 through Ad7,   
Am0 through Am3 

26 

Note that we estimate Am0 even though we don’t have a 
record (observation) on her. 

Since Zmam must be a 7 x 1 matrix, Zm is 7 x 4 (as am is 4 x 1) 

Records 4 and 5 are associated with Am2 

Record 1 is associated with Am0 

Records 2 and 3 are associated with Am1 

Records 6 and 7 are associated with Am3 
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Records 4 and 5 are associated with Am2 

Record 1 is associated with Am0 

Records 2 and 3 are associated with Am1 

Records 6 and 7 are associated with Am3 

28 

What about Am4 through Am7? 
Although we have records that only directly relate Am0 to Am3, through the use
 of A we can (in theory) also estimate the maternal breeding values for
 individuals 4 through 7.  Note this includes the maternal BVs for the two males
 (5 & 7), as they can pass this onto their daughters. 
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Note that 

All this raises the question about what can, and cannot, be 
estimated from the data (y) and the design (Zm, Zd)? 

First issue:  Is the structure of the design such that we 
can estimate all of the variance components.  This is the 
issue of identifiability  

30 

Estimability vs. Identifiability 



31 

32 
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Second issue, connectivity 
Even if the design is such that we can estimate all the genetic
 variances, whether we can estimate all of the β, ad, and am in the
 model depends on whether a unique inverse exists for the MME 

Unique estimates of all the  β require (XTV-1X)-1 exists 

If (XTV-1X)-1 does not exist, a generalized inverse is used 
which can uniquely estimate k linear combinations of the 
β where k is the rank of XTV-1X 

34 

Likewise, if the MME equation does not have an inverse (and this is not
 due to constraints on β), then a generalized inverse can be used 
to estimate unique estimates of certain linear combinations of the 
ad and am. 

A key role in ensuring that unique estimates of ad and am exist is
 played by the relationship matrix A.  If individuals with records and
 individuals without records are sufficiently well connected (non-zero
 entries in A for their pair-wise relatedness), then we usually can
 estimate values of un-observed individuals (although their precision is
 another issue) 



Indirect Genetic Effects
• Inherited Genetic effect of one animals measured 
another 
– Inherited Social interactionsInherited Social interactions

• Competition
• Mutualism
• Pack behavior

– Theory for evolution of social effects and how to 
estimate effects

1

The Problem: 
Competitive 
Interactions

• Active (Social)
– Dominance
– Peck Order

• Passive (Shared 
Limited Resources)
– Plants or Animals

• Space
• Food Supply

– Movement



Results of Antagonist Social Interactions

• Reduced Gain
• Increased Mortality

– Direct
• Injuries

– Indirect
• Immune response
• Diseases susceptibility

• Reduced Feed Efficiency
– Energy lost in fighting
Increased Fat deposition– Increased Fat deposition

– Disproportionate Feed 
Consumption 

Animal Well Being Animal Well Being 
ConcernsConcerns

Addressing Social Interactions in Animal 
Breeding Programs

l h d• Two Selection Methods
– Direct selection against undesirable behaviors
– Multilevel selection

• Kin 
• Group
• Optimal



Direct Selection

• Feather pecking, Tail biting, Skin lesions, 
Bi k T i i bilitBiomarkers, Tonic immobility (Kjaer and Hocking, 2004; 
Muir and Craig, 1998; Turner et al., 2008)

– Highly Successful (Craig and Muir, 1993; Kjaer et al., 2001)

• Requires Quantification
– Can Be Costly and labor intensive
– Diverts selection intensity
– Possible Undesirable Genetic Correlations   

Framework Social Evolution Context

• Hamilton (1963, 1964a,b)
– Altruism Can Evolve Under Individual Selection
– Introduced “inclusive fitness”
– Kin Selection (br‐c > 0)



Framework Plant and Animal 
Breeding Context 

• Bruce Griffing (1967, 1968a, 1968b, 1969, 1976a, 1976b, 1977)
– Introduced Associative Effects 

• Heritable Environmental Effects

– Generalized Multilevel Selection Theory
• Focuses on merit relative to levels of organization
• Extension of between and within family deviations for non‐
interacting genotypes developed by Lush (1947)

• More Extensively Developed by Bijma et al. 2007a

D1
A

Phenotype as impacted by 
Direct and Associative 
effects (Heritable 

Environmental Effects)

ε

A1
A1

A2

A2

A3

ε

ε

D3D2

A3

Y2=μ+D2+A1+A3+ε
Y3=μ+D3+A1+A2+ε

ε



Multilevel Selection
r r = relationship r

Group (k)
1 2 m

n
n

Phenotypic Deviations=within family deviation+ between family deviation

n n=family size

( ) ( )...... kklkkl YYYYYY −+−=−

Same as Lush’ derivation except animals are now grouped by family

Grouping introduces covariance (genetic and environmental)

Multilevel Selection
r r = relationship r

lk )(γ

τ

Group

1 2
n=family size

τ

lk )(γ lk )(γ

kτ

lkkkl BBI )(21 γτ +=

kτSelect on Index

Multi‐level selection models specify fitness as a function of the 
mean trait value of the group and the individual deviation thereof:



Multilevel Selection
 lkkkl BBI )(21 γτ +=

Type of Type of 
SelectionSelection

BB11 BB22 Expected Expected 
ResponseResponse

Select on Index

SelectionSelection ResponseResponse
Kin 11 11
GroupGroup 11 00
WithinWithin 00 11
OptimalOptimal

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 21

)cov( τGB
( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 22

cov
σ

γGB ( ) ( ) ( )[ ]γτ GBGBu c
i covcov 21 +=Δ

( ) ( )[ ]γGu c
i cov=Δ

( ) ( )[ ]τGu c
i cov=Δ

( ) ( ) ( )[ ]γτ GGu c
i covcov +=Δ

⎟
⎠

⎜
⎝

2
τσ

⎟
⎠

⎜
⎝ γσ

( ) ( ) ( )[ ]222 11211)cov( ADAD nn
n

rnG σσστ −+−+⎥⎦
⎤

⎢⎣
⎡ −+

=

( ) ( ) ( ) ( )( ) ( )[ ]222 12111cov ADAD nnnn
n

rG σσσγ −−−−+−⎥⎦
⎤

⎢⎣
⎡ −

=

εμμβ +++ ZZXY

Estimation of Parameters
Mixed Model Equations

εμμβ +++= aadd ZZXY
Muir and Schinckel (2002) 

εμμβ +++= aadd ZZXY
Include correlated residual in R matrix

eccaadd ++++= μμμβ ZZZXY

Random effect for shared group

12



Variances

2

A⊗⎥
⎦

⎤
⎢
⎣

⎡
= 2

2

aad

adDG
σσ
σσ

2
dσ
2
aσ

adσ

Additive Direct Effects

Additive Associate Effects=Indirect Genetic Effect (IGE)

Additive Covariance Between Direct and 
Indirect Effectsad

2
Eσ Environmental

2
cσ

2
eσ

Between Group

Within Group
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MME with correlated residuals
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MME with random effect for shared 
environmental effect
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1 2 3Parents

Example 13

1

4 5 6 7 8 9 10

12 9 8 5 7 5 6 8

11

Parents

Individuals

Phenotype

Pen 1 1 2 2 2 1 1 2

16



Sir Da Anim Pen Y
2 1 4 1 12

⎥
⎤

⎢
⎡ 01100010000

1110987654321

Animal

Associative Genetic Matrix

2 1 5 1 9
2 1 6 2 8
2 1 7 2 5
2 3 8 2 7
2 3 9 1 5

2 3 10 1 6 ⎥
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00100011000

Who was in the same pen as animal 4
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Genetic 
Parameters
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Y=matrix(c(
12,
9,
8,
5,
7

X=matrix(c(
1,
1,
1,
1,
1

A=matrix(c
(1, 0, 0, .5, .5, .5, .5, 0, 0, 0,  0,
0, 1, 0, .5, .5, .5, .5,    .5, .5, .5,  .5,
0, 0, 1, 0, 0, 0,     0, .5,   .5,    .5, .5,
.5, .5, 0, 1, .5, .5, .5, .25, .25, .25, .25,
.5, .5, 0, .5, 1, .5, .5, .25, .25, .25, .25,
5 5 0 5 5 1 5 25 25 25 25

R code Example 13

7,
5,
6,
8),8,1)

1,
1,
1,
1),8,1)

.5, .5, 0, .5, .5, 1, .5, .25, .25, .25, .25,

.5, .5, 0, .5, .5, .5, 1, .25, .25, .25, .25,
0, .5, .5, .25, .25, .25, .25,  1, .5, .5, .5,
0, .5, .5, .25, .25, .25, .25, .5, 1, .5, .5,
0, .5, .5, .25, .25, .25, .25, .5, .5, 1, .5,
0, .5, .5, .25, .25, .25, .25, .5, .5, .5, 1),11,11)

ZD=matrix(c(
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

ZA=matrix(c(
0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0,
0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0,

ZC=matrix(c(
1, 0,
1, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

,8,11,byrow=TRUE)

, , , , , , , , , , ,
0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1,
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1,
0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0,
0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0)

,8,11,byrow=TRUE)

0, 1,
0, 1,
0, 1,
1, 0,
1, 0,
0, 1)
,8,2,byrow=TRUE)

19

Sig_d=30
Sig_a=10
Sig_ad=-4
Sig_e=60
Sig_c=6
N=8
P=matrix(c(Sig_d, Sig_ad,

Si d Si ) 2 2)Sig_ad, Sig_a),2,2)
K=solve(P)*Sig_e
AINV=solve(A)
I2=matrix(c(1,0,

0,1),2,2)
K33=Sig_e/Sig_c
LHS= rbind(
cbind(t(X)%*%X,  t(X)%*%ZD,                               t(X)%*%ZA,                           t(X)%*%ZC),
cbind(t(ZD)%*%X t(ZD)%*%ZD+AINV*K[1 1] t(ZD)%*%ZA+AINV*K[1 2] t(ZD)%*%ZC)cbind(t(ZD)% %X, t(ZD)% %ZD+AINV K[1,1],t(ZD)% %ZA+AINV K[1,2], t(ZD)% %ZC),
cbind(t(ZA)%*%X, t(ZA)%*%ZD+AINV*K[2,1], t(ZA)%*%ZA+AINV*K[2,2], t(ZA)%*%ZC),
cbind(t(ZC)%*%X, t(ZC)%*%ZD,                            t(ZC)%*%ZA,           t(ZC)%*%ZC+I2*K33))

20



RHS=matrix(rbind(
t(X) %*% Y, 
t(ZD) %*% Y,  
t(ZA) %*% Y, 
t(ZC) %*% Y))

C=solve(LHS)
BU=C %*% RHS

[1,]  7.500000e+00
[2,]  5.151515e‐01
[3,] ‐6.085976e‐15
[4,] ‐5.151515e‐01
[5,]  1.027597e+00
[6,]  4.204545e‐01
[7,]  3.522727e‐01
[8,] ‐2.548701e‐01

BU=C %*% RHS
RMSE=(t(Y) %*% Y‐t(BU)%*% RHS)*(1/(N‐2))
BU 

[9,] ‐2.180736e‐01
[10,] ‐7.570346e‐01
[11,] ‐5.546537e‐01
[12,] ‐1.569264e‐02
[13,] ‐2.121212e‐01
[14,]  5.988626e‐15
[15,]  2.121212e‐01
[16,] ‐3.598485e‐01
[17,] ‐1.098485e‐01
[18 ] 2 083333e 01[18,] ‐2.083333e‐01
[19,]  4.166667e‐02
[20,]  2.651515e‐02
[21,]  3.750000e‐01
[22,]  2.916667e‐01
[23,] ‐5.681818e‐02
[24,]  9.090909e‐02
[25,] ‐9.090909e‐02

21

Estimates

Individual
Direct Genetic 

(ud)
Indirect Genetic 

(ua) Cage Effect

5.7ˆ =u

( d) ( a) g
1 0.515152 ‐0.21212 0.090909
2 ‐2.40E‐15 3.37E‐15 ‐0.09091
3 ‐0.51515 0.212121
4 1.027597 ‐0.35985
5 0.420455 ‐0.10985
6 0.352273 ‐0.20833 Note animal with best 

di t ff t h t7 ‐0.25487 0.041667
8 ‐0.21807 0.026515
9 ‐0.75704 0.375

10 ‐0.55465 0.291667
11 ‐0.01569 ‐0.05682

direct effect has worst 
associative effect

22



Index Selection

ad bbI μμ ˆˆ 21 +=

The total breeding value (TBV) is the sum 
of the direct and all IGE effects

ad nTBV μμ ˆ)1(ˆ −+=

23

How Important Are Associative Effects In 
Breeding Programs?

• Total Breeding Value (TBV) (Bijma 
et al 2007a)

( )
ii SDi AnATBV 1−+=

et al. 2007a)
• V(TBV) associative effects are 

scaled by (n‐1)2
• Phenotypic Variance associative 

effects are scaled by (n‐1)
• “Heritability” can be >1

( ) ( ) 222 1)1(2
ssdd AAAA nnTBVV σσσ −+−+=

( ) ( ) 222 1 εσσσ +−+=
sd AA nYV

( )
( ) 222

222
2 1)1(2)( σσσ −+−+

== ssdd AAAA nnTBVVT ( ) 222 1)( εσσσ +−+
sd AA nYV

)(TVBViTR =
accuracy



Accuracy (T vs. h) Body Weight: Quail
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direct
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Accuracy (T vs. h) ADG: Swine
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TBV (Chen et al, 2008)
direct
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direct
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Accuracy (T vs. h) Survival Days: Layers

1

1.2

0 4
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1

TBV  (Muir, 1985)
direct
TBV  (Ellen et al, 2008)
direct
TBV (Bijma et al 2007b)
direct
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Accuracy (T vs. h) ADG: Beef Cattle
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Selection Experiments

Model Organisms
Poultry
Swine

Layers: Group vs. Individual Selection (Muir, 
1996)

Dekalb XL
1981

Group Selected
KGB

Dekalb XL
1981

Control

Dekalb XL
1996

Commercial
Individual Selected



Group Selection

• Selected Index
– Total Days Survival and Rate of Lay
– Full Record (12 months of production)
–Groups 12 Bird Half Sib Family One Colony 
Cage (56 sq in/bird)
S d Bi d f h B 24/384 C l– Saved Birds from the Best 24/384 Colony 
Cages

– Repeated for 6 generations

Control (Dekalb 1981)
Randomly Selected From Single Bird Cages



Percent Mortality
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Control Bird (DXL) After 12 Months 
of Production

6 Alive

KGB Bird After 12 Months

12 Alive



7th Generation (Craig and Muir, 1996)

• 3 Lines Were Compared
– Group Selected (KGB)
– Control (Dekalb, 1981)
– Individual Selection (Dekalb, 1996)

• Housed
Single– Single

– 12-bird Cages 

Cumulative Mortality
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Comparison of Kin, Individual, and TBV Selection 
MUIR, W. M., 2005 Incorporation of competitive effects in forest tree or 

animal breeding programs. Genetics 170: 1247‐1259

• Experimental Model
Quail– Quail

– Trait: 6 Week Weight (wt)
• Methods tested:

– Individual selection unrelated
groups: (AM‐BLUP)

– Multi‐level in related groups: (Kin‐
BLUP)

– TBV Index direct and indirect (non‐
kin groups, CE‐BLUP)

• Selected for 25 Hatches

Estimates of Genetic Parameters 
Based on Random Matings First 2 

Generations
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Genetic Trends
115

y = 0.797x + 91.003

y = 0.513x + 90.987

95

100

105

110

W
ei

gh
t (

g) AM_BLUP

KIN_BLUP

CE_BLUP

y = -0.074x + 91.874

85

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Hatch

Conclusion: Selection on TBV

– Effective but did not achieve theoretic gainsEffective but did not achieve theoretic gains
• Errors in parameter estimation
• Variances and covariance's change with selection

– Implementation
• Management

– Easy to fill pens with same aged pigs (random)Easy to fill pens with same aged pigs (random)



Multi‐level selection 
individual selection in family groups

– Most Effective
A hi d th ti i– Achieved theoretic gains

• Robust to errors in parameter estimation 
• No concerns for covariance's changing with selection

– Implementation
• Programming : none (same model)
• Management

– Difficult 
– Filling of cages with same age and number of pigs  

Competitive
Effects in Tree Breeding ProgramsEffects in Tree Breeding Programs
Competition by Distance
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Trees Compete For Limited Resources

Sun Lightg
Space

Nutrients
(N, P, K)

Water
45

Circle of Influence
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Mixed Model Equations

εβ +++= aD aD ZZXY

Incidence
Matrix
Fixed 
Effects

Incidence
Matrix
Direct  
Effects

Incidence
Matrix
Associative  
Effects

Random
Error

Growth

Fixed Effects
Mean
Location
Age

Direct 
Effects

Associative 
Genetics
Effects
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Associative Effects Incidence Matrix
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MME Competition
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Note that R, the residual 
covariance matrix, is a spatial 
correlation matrix and maybe 
defined  similar to Za or by plot
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Application of Concepts to Disease

Disease Tolerance
Disease 

b lDisease Tolerance Susceptibility
Disease Transmissibility

IGE Indirect Genetic Effect
d l ff

Viral Shedding
Behavior (learned, IEE)
Behavior (Inherited, IGEG)

51

How well does the individual tolerate a disease
May carry but does not show symptoms (Typhoid Mary)
Symptomatic?

IEE Indirect Environmental Effect

Immune system (G,E)
Innate Immunity (G)
Condition (G,E)

Condition (G,E)
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QTL & Association mapping 
•  We would like to know both the genomic

 locations (map positions) and effects (either
 genotypic means or variances) for genes
 underlying quantitative trait variation 

•  QTL mapping 
–  Using linkage information on a set of known

 relatives 
•  Association mapping 

–  Using very fine scale LD to map genes in a set of
 random individuals from a population 
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Outline 
•  Basics of QTL mapping   

–  Line crosses 
•  typically fixed effects models 

–  Outbred populations 
•  Random effects family models 
•  General pedigree methods 

•  High parameter models 
–  Shrinkage approaches for detecting epistasis 

•  Association mapping 
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Inbred Line Cross QTL mapping 
•  Most powerful design 

–  Cross two fully inbred lines, look at marker-trait
 segregation in the F2 (or other, such as Fn)
 generations 

–  P1: MMQQ, P2:mmqq 
–  All F1 same genotype/phase: MQ/mq 
–  Hence, in the F1, all parents have the same

 genotype 
–  At most only two alleles, each with freq 1/2 
–  Idea:  Does the mean trait value of (say) MM

 individuals differ from (say) mm 
•  Different marker genotypes have different mean trait

 values 
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Expected Marker Means 
The expected trait mean for marker genotype Mj 
is just 

For example, if QQ = 2a, Qq = a(1+k), qq = 0, then in  
the F2 of an MMQQ/mmqq cross, 

• If the trait mean is significantly different for the 
genotypes at a marker locus, it is linked to a QTL 

• A small MM-mm difference could be (i) a tightly-linked 
  QTL of small effect or (ii) loose linkage to a large QTL   
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Linear Models for QTL Detection 
The use of differences in the mean trait value 
for different marker genotypes to detect a QTL  
and estimate its effects is a use of linear models. 

One-way ANOVA. 
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Detection:  a  QTL is linked to the marker if at least  
one of the bi is significantly different from zero 

Estimation: (QTL effect and position):  This requires 
relating the bi to the QTL effects and map position  
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Detecting epistasis 
One major advantage of linear models is their 
flexibility.  To test for epistasis between two QTLs, 
use  ANOVA with an interaction term 
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Detecting epistasis 

• At least one of the ai significantly different from 0 
 ---- QTL linked to first marker set 

• At least one of the  bk significantly different from 0 
 ---- QTL linked to second marker set 

• At least one of the  dik significantly different from 0 
 ---- interactions between QTL in sets 1 and two 

Problem:  Huge number of potential interaction terms 
(order m2, where m = number of markers) 
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Model selection 
•  With (say) 300 markers, we have (potentially) 300

 single-marker terms and 300*299/2 = 44,850
 epistatic terms  
–  Hence, a model with up to p= 45,150 possible parameters 
–  2p possible submodels = 1013,600 ouch! 

•  The issue of Model selection becomes very
 important. 

•  How do we find the best model? 
–  Stepwise regression approaches 

•  Forward selection (add terms one at a time) 
•  Backwards selection (delete terms one at a time) 

–  Try all models, assess best fit 
–  Mixed-model approaches (Stochastic Search

 Variable Selection, or SSVS)   
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Model Selection 

Model Selection: Use some criteria to chose  among a  
number of candidate models.  Weight goodness-of-fit  
(L, value of the likelihood at the MLEs) vs.  number of  
estimated parameters (k) 

AIC = Akaike’s information criterion  
AIC = 2k - 2 Ln(L) 

BIC = Bayesian information criterion (Schwarz criterion) 
   BIC = k*ln(n)/n - 2 Ln(L)/n 
BIC penalizes free parameters more strongly than AIC 

Other measures.  For these (and AIVC, BIC) smaller 
score indicates better model fit 
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Model averaging 
Model averaging:  Generate a composite model by weighting 
(averaging) the various models, using AIC, BIC, or other 

Idea:  Perhaps no “best” model, but several models 
all extremely close.  Better to report this “distribution” 
rather than the best one 

One approach is to average the coefficients on the 
“best-fitting” models using some scheme to return 
a composite model 
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Supersaturated Models 

A problem with many QTL approaches is that there 
are far more parameters (p) to estimate than  
there are independent samples (n). Case in point:   
epistasis 

Such supersaturated models arise commonly in 
Genomics. How do we deal with them? 

One approach is to have all parameters included, but some  
are shrunk back (regressed) towards zero by assigning them  
a very small posterior variance 
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Shrinkage estimators 
Shrinkage estimates:   Rather than adding interaction   
terms one at a time, a shrinkage method starts with all 
interactions included, and then shrinks most back to zero.  

Under a Bayesian analysis, any effect is random.  One can 
assume the effect for (say) interaction ij  is drawn from  
a normal with mean zero and variance σ2

ij 

Further, the interaction-specific variances are themselves  
random variables drawn from a hyperparameter distribution,  
such as an inverse chi-square.   

One then estimates the hyperparameters and  uses these  
to predict the variances, with effects with  small variances  
shrinking back to zero, and effects with large variances  
remaining in the model.    
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What is a “QTL” 
•  A detected “QTL” in a mapping experiment

 is a region of a chromosome detected by
 linkage. 

•  Usually large (typically 10-40 cM) 
•  When further examined, most “large” QTLs

 turn out to be a linked collection of locations
 with increasingly smaller effects 

•  The more one localizes, the more subregions
 that are found, and the smaller the effect in
 each subregion 

•  This is called fractionation 
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Limitations of QTL mapping 
•  Poor resolution (~20 cM or greater in most designs

 with sample sizes in low to mid 100’s) 
–  Detected “QTLs” are thus large chromosomal regions 

•  Fine mapping requires either 
–  Further crosses (recombinations) involving regions of

 interest (i.e., RILs, NILs) 
–  Enormous sample sizes   

•  If marker-QTL distance is 0.5cM, require sample sizes
 in excess of 3400  to have a 95% chance of 10 (or
 more) recombination events in sample 

• 10 recombination events allows one to separate
 effects that differ by ~ 0.6 SD 



17 

•  “Major” QTLs typically fractionate  
–  QTLs of large effect (accounting for  > 10% of the

 variance) are routinely discovered. 
–  However, a large QTL peak in an initial experiment

 generally becomes a series of smaller and smaller
 peaks upon subsequent fine-mapping. 

•  The Beavis effect: 
–  When power for detection is low, marker-trait

 associations declared to be statistically significant
 significantly overestimate  their true effects. 

–  This effect can be very large (order of magnitude)
 when power is low. 

Limitations of QTL mapping (cont) 
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Outbred populations 
•  When we move from the simple framework of an

 inbred line cross QTL design to a set of parents from
 an outbred population, complications arise as the
 parents don’t all have the same genotypes 
–  Differences in linkage phase 
–  Many uninformative as to linkage (varies over

 makers) 
–  Possibility of multiple alleles 

•  Result: express marker effects in terms of the
 variance in trait value it explains, rather than in terms
 of mean marker effects 
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General Pedigree Methods 
Random effects (hence, variance component) method 
for detecting QTLs in general pedigrees 

The model is rerun for each marker 
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The covariance between individuals i and j is thus 

Fraction of chromosomal
 region shared IBD 

between individuals i and j. 

Resemblance
 between
 relatives

 correction 

Variance
 explained by
 the region of

 interest 

Variance
 explained by

 the
 background
 polygenes 
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Assume z is MVN, giving the covariance matrix as 

A significant σA
2 indicates a linked QTL. 
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Association & LD mapping 

Mapping major genes (LD mapping) vs. trying to 
Map QTLs (Association mapping) 

Idea:  Collect random sample of individuals, contrast 
trait means over marker genotypes 

If a dense enough marker map, likely population level 
linkage disequilibrium (LD) between closely-linked  
genes 
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Fine-mapping genes 

Suppose an allele causing an effect on the trait 
arose as a single mutation in a closed population 

New mutation arises on  
red chromosome 

Initially, the new mutation is 
largely associated with the 
red haplotype 

Hence, markers that define the red haplotype are 
likely to be associated (i.e. in LD) with the mutant allele 

24 

Background:  Association mapping 
•  If one has a very large number of SNPs, then new

 mutations (such as those that influence a trait) will be in LD
 with very close SNPs for hundreds to thousands of
 generations, generating a marker-trait association. 
–  Association mapping looks over all sets of SNPs for trait

-SNP associations.  GWAS = genome-wide association
 studies. 

–  This is also the basis for genomic selection 
•  Main point from extensive human association studies 

–  Almost all QTLs have very small effects 
–  Marker-trait associations do not fully recapture all of the

 additive variance in the trait (due to incomplete LD) 
–  This has been called the “missing heritability problem”

 by human geneticists, but not really a problem at all
 (more shortly). 
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Association mapping 
•  Marker-trait associations within a population of unrelated

 individuals 
•  Very high marker density (~ 100s of markers/cM) required 

–  Marker density no less than the average track length of
 linkage disequilibrium (LD) 

•  Relies on very slow breakdown of initial LD generated by a
 new mutation near a marker to generate marker-trait
 associations 
–  LD decays very quickly unless very tight linkage 
–  Hence, resolution on the scale of LD in the population(s) being

 studied ( 1 ~ 40 kB) 

•  Widely used since mid 1990’s.  Mainstay of human
 genetics, strong inroads in breeding, evolutionary genetics 

•  Power a function of the genetic variance of a QTL, not its
 mean effects 

Manhattan plots 
•  The results for a Genome-wide Association study (or

 GWAS) are typically displayed using a Manhattan
 plot. 
–  At each SNP, -ln(p), the negative log of the p

 value for a significant marker-trait association is
 plotted. Values above a threshold indicate
 significant effects 

–  Threshold set by Bonferroni-style multiple
 comparisons correction 

–  With n markers, an overall false-positive rate of p
 requires each marker be tested using p/n. 

–  With n = 106 SNPs,  p must exceed 0.01/106 or
 10-8 to have a control of 1% of a false-positive   
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Gm+ Total % with diabetes 

Present 293 8% 

Absent 4,627 29% 

When population being sampled actually consists of  several distinct
 subpopulations we have lumped together, marker alleles may provide
 information as to which group an individual belongs.  If there are other
 risk factors in a group, this can create a false association btw marker
 and trait 

Example.  The Gm marker was thought (for biological reasons) to be
 an excellent candidate gene for  diabetes in the high-risk population
 of Pima Indians in the American Southwest.  Initially a very strong
 association was observed: 

Population Stratification 
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Gm+ Total % with diabetes 

Present 293 8% 

Absent 4,627 29% 

Problem:  freq(Gm+) in Caucasians (lower-risk diabetes 
Population) is 67%, Gm+ rare in full-blooded Pima 

Gm+ Total % with diabetes 

Present 17 59% 

Absent 1,764 60% 

The association was re-examined in a population of Pima 
that were 7/8th (or more) full heritage: 
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Linkage vs. Association 
The distinction between linkage and association 
is subtle, yet critical     

Marker allele M is associated with the trait if 

Cov(M,y) = 0   

While such associations can arise via linkage, they 
can also arise via population structure. 

Thus, association DOES NOT imply linkage, and
 linkage is not sufficient for association 



Accounting for population structure 

•  Three classes of approaches proposed 
–  1) Attempts to correct for common pop structure

 signal (regression/PC methods)  
–  2) Attempts to first assign individuals into

 subpopulations and then perform association
 mapping in each set (Structure) 

–  3) Mixed models that use all of the marker
 information (Tassle, EMMA, many others) 

•  These can also account for cryptic relatedness in the
 data set, which also causes false-positives. 
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Regression Approaches 

One approach to control for structure is 
simply to include a number of markers, outside 
of the SNP of interest, chosen because they 
are expected to vary over any subpopulations 

How might you choose these in a sample?  Try 
those markers (read STRs) that show the largest 
departure from Hardy-Weinberg, as this is expected 
in markers that vary the most over subpopulations. 
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Variations on this theme (eigenstrat) --- use all of the  
marker information to extract a set of significant 
PCs, which are then included in the model as cofactors 
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Structured Association Mapping 

Pritchard and Rosenberg (1999) proposed 
Structured Association Mapping, wherein 
one assumes k subpopulations (each in Hardy- 
Weinberg). 

Given a large number of markers, one then attempts 
to assign individuals to groups using an MCMC  
Bayesian classifier  

Once individuals assigned to groups, association mapping 
without any correction can occur in each group. 



Mixed-model approaches 

• Mixed models use marker data to  
– Account for population structure 
– Account for cryptic relatedness 

•  Three general approaches: 
– Treat a single SNP as fixed 

• TASSLE, EMMA 

– Treat a single SNP as random 
• General pedigree method 

– Fit all of the SNPs at once as random 
• GBLUP 35 
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 Structure plus Kinship Methods 
Association mapping in plants offer occurs by first taking  
a large  collection of lines, some closely related, others  
more distantly related.  Thus, in addition to this collection  
being a series of subpopulations (derivatives from a  
number of founding lines), there can also be additional  
structure within each subpopulation (groups of more  
closely related lines within any particular  lineage).  

Y = Xβ + Sa + Qv + Zu + e 

Fixed effects in blue, random effects in red 

This is a mixed-model approach. The program TASSEL 
runs this model.  
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 Q-K method 

Y = Xβ + Sa + Qv + Zu + e 

 β = vector of fixed effects 

 a = SNP effects  (fits SNPs one at a time) 

 v = vector of subpopulation effects (STRUCTURE) 
Qij = Prob(individual i in group j).  Determined 
from STRUCTURE output 

u = shared polygenic effects due to kinship.   
Cov(u) = var(A)*A, where the relationship matrix 
A estimated from marker data matrix K, also called a 
GRM – a genomic relationship matrix 

Which markers to include in K? 

•  Best approach is to leave out the marker
 being tested (and any in LD with it) when
 construction the genomic relationship matrix 
–  LOCO approach – leave out one chromosome

 (which the tested marker is linked to) 

•  Best approach seems to be to use most of
 the markers 

•  Other mixed-model approaches along these
 lines  

38 
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Treat Single SNP as random:  General Pedigree  method 

A significant σA
2 indicates a linked QTL. 

GBLUP 
•  The Q-K method tests SNPs one at a time,

 treating them as fixed effects 
•  The general pedigree method (slides 24-26)

 also tests one marker at a time, treating
 them as random effects 

•  Genomic selection can be though of as
 estimating all of the SNP effects at once and
 hence can also be used for GWAS 
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BLUP, GBLUP, and GWAS 

•  Pedigree information gives EXPECTED value 
of shared sites (i.e., ½ for full-sibs) 
–  A matrix in BLUP 
–  The actual realization of the fraction of shared 

genes for a particular pair of relatives can be 
rather different, due to sampling variance in 
segregation of alleles 

–  GRM (or K or marker matrix M)  
–  Hence “identical” relatives can differ significantly 

in faction of shared regions 
–  Dense marker information can account for this 
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The general setting 

•  Suppose we have n measured individuals (the n x 1
 vector y of trait values)  

•  The n x n relationship matrix A gives the relatedness
 among the sampled individuals, where the elements
 of A are obtained from the pedigree of measured
 individuals 

•  We may also have p (>> n) SNPs per individual,
 where the n x p marker information matrix M
 contains the marker data, where Mij = score  for SNP
 j (i.e., 0 for 00, 1 for 10, 2 for 11) in individual i.  



Covariance structure of random effects 

•  A critical element specifying the mixed model is the
 covariance structure (matrix) of the vector u of
 random effects 

•  Standard form is that Cov(u) = variance component *
 matrix of known constants 
–  This is the case for pedigree data, where u is typically the

 vector of breeding values, and the pedigree defines a
 relationship matrix A, with Cov(u) = Var(A) * A, the additive
 variance times the relationship matrix 

–  With marker data,  the covariance of random effects are
 functions of the marker information matrix M.   

•  If u is the vector of p marker effects, then Cov(u) =
 Var(m) * MTM, the marker variance times the covariance
 structure of the markers. 

Y = Xβ + Zu + e 

Pedigree-based BV estimation:  (BLUP)   
unx1 = vector of BVs, Cov(u) = Var(A) Anxn 

Marker-based BV estimation:  (GBLUP) 
unx1 = vector of BVs, Cov(u)  = Var(m) MTM (n x n) 

GWAS:  upx1 = vector of marker effects, 
Cov(u)  = Var(m) MMT  (p x p) 

Genomic selection: predicted vector of breeding values  
from marker effects, GBVnx1 = Mnxpupx1.  
Note that Cov(GBV)  = Var(m) MTM (n x n)  

Lots of variations of these general ideas by adding 
additional assumptions on covariance structure. 



GWAS Model diagnostics 
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The “Genomic Control” parameter λ$

Devlin and Roeder (1999).  Basic idea is that association tests (marker
 presence/absence vs. trait presence/absence) is typically done with a
 standard 2 x 2 χ2 test. 

When population structure is present, the test statistic now follows
 a scaled χ2, so that if S is the test statistic, then S/λ ~ χ2

1  (so S ~
 λχ2

1) .  Hence, population structure should inflate all of the 
tests (on average) by a common amount λ. 

A robust estimator for λ is offered from the medium 
(50% value) of the test statistics, so that for m tests 

Hence, if we have suitably corrected for population structure, the 
estimated inflation factor λ among tests should be ~ 1. 



Genomic control λ as a diagnostic tool 

•  Presence of population structure will inflate the λ
 parameter 

•  A value above 1 is considered evidence of additional
 structure in the data 
–  Could be population structure, cryptic relatedness, or both 
–  A lambda value less that 1.05 is generally considered benign 

•  One issue is that if the true polygenic model holds (lots of
 sites of small effect), then a significant fraction will have
 inflated p values, and hence an inflated λ value. 

•  Hence, often one computes the λ following attempts to
 remove population structure.  If the resulting value is
 below 1.05, suggestion that structure has been largely
 removed. 
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P – P plots 

•  Another powerful diagnostic tool is the p-p plot. 
•  If all tests are drawn from the null, then the

 distribution of p values should be uniform. 
–  There should be a slight excess of tests with very

 low p indicating true positives 
•  This gives a straight line of a log-log plot of

 observed (seen) and expected (uniform) p values
 with a slight rise near small values 
–  If the fraction of true positives is high (i.e., many

 sites influence the trait), this also bends the p-p
 plot 

48 
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A few tests 
are significant Great excess of 

Significant tests 

Price et al. 2010 Nat Rev Gene 11: 459 

50 

Great excess of 
Significant tests 

As with using λ, one should construct p-p following  
some approach to correct for structure & relatedness 
to see if they look unusual.  
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Association mapping (power) 
Q/q is the polymorphic site contributing to trait 
variation, M/m alleles (at a SNP) used as a marker 

Let p be the frequency of M, and assume that 
Q only resides on the M background (complete 
disequilibrium) 

Haloptype Frequency effect 

QM rp a 

qM (1-r)p 0 

qm 1-p 0 
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Haloptype Frequency effect 

QM rp a 

qM (1-r)p 0 

qm 1-p 0 

Genetic variation associated with Q = 2(rp)(1-rp)a2  

~ 2rpa2  when Q rare. Hence, little power if Q rare 

Genetic variation associated with marker M is 
2p(1-p)(ar)2 ~ 2pa2r2  

Effect of m = 0 

Effect of M = ar  

Ratio of marker/true effect variance is ~ r 

Hence, if Q rare within the A class, even less power, as M only 
captures a fraction of the associated QTL. 
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Common variants 
•  Association mapping is only powerful for common

 variants   
–  freq(Q) moderate 
–  freq (r) of Q within M haplotypes modest to large 

•  Large effect alleles (a large) can leave small signals. 
•  The fraction of the actual variance accounted for by

 the markers is no greater than ~ ave(r), the average
 frequency of Q within a haplotype class 

•  Hence, don’t expect to capture all of Var(A) with
 markers, esp. when QTL alleles are rare but markers
 are common (e.g. common SNPs, p > 0.05) 

•  Low power to detect G x G, G x E interactions 
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“How wonderful that we have met with a paradox.  Now we
 have some hope of making progress”   -- Neils Bohr 

Infamous figure from Nature on the angst of human geneticists
 over the finding that all of their discovered SNPs still accounted for
 only a fraction of relative-based heritability estimates of human
 disease.  
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The “missing heritability” pseudo paradox 
•  A number of GWAS workers noted that the sum of their

 significant marker variances was much less (typically
 10%) than the additive variance estimated from
 biometrical methods 

•  The “missing heritability” problem was birthed from this
 observation. 

•  Not a paradox at all 
–  Low power means small effect (i.e. variance) sites are unlikely to

 be called as significant, esp. given the high stringency
 associated with control of false positives over tens of thousands
 of tests 

–  Further, even if all markers are detected, only a fraction ~ r (the
 frequency of the causative site within a marker haplotype class)
 of the underlying variance is accounted for. 
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Lecture 9: 
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G x E 
•  Introduction to G x E 

–  Basics of G x E 
–  Some suggested rules 
–  Treating G x E as a correlated-trait problem 

•  Estimation of G x E terms 
–  Finlay-Wilkinson regressions 

•  SVD-based methods 
–  The singular value decomposition (SVD) 
–  AMMI models 

•  Factorial regressions 
•  Mixed-Model approaches 

–  BLUP 
–  Structured covariance models 
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Genotypes vs. individuals 

•  Much of the G x E theory is developed for plant 
breeders who are using pure (= fully inbred) lines, so 
that every individual has the same genotype 

•  The same basic approaches can be used by taking 
family members as the replicates for outbred 
species.  Here the “genotype” over the family 
members is some composite value (the mean 
breeding value of the family).  
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Yield in Environment 2 

Yield in Environment 1 

Genotype 1 

Genotype 2 

G11 

G12 

G21 

G22 

E1 

E2 

E2 E1 G1  G2 

Ei = mean value in environment i 

Overall means 
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G11 G12 G21 G22 

E2 E1 G1  G2 

Gij = mean of genotype i in environment j 

Under base model of Quantitative Genetics, 
Gij = µ + Gi + Ej 

When G x E present, there is an interaction between 
a particular genotype and a particular environment so that 
Gij is no longer additive, Gij = µ + Gi + Ei + GEij 
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G11 G12 G21 G22 

E2 E1 G1  G2 

µ 

Components measured as deviations  
from the mean µ!

GEij = gij - gi - ej  

e2 e1 

g1 

g11 
g12 

g2 

g22 
g21 
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Which genotype is the best? 
G11 G12 G21 G22 

E2 E1 G1  G2 

Depends:  If the genotypes are grown in both environments, 
G2 has a higher mean 

If the genotypes are only grown in environment 1,  G2 has a  
higher mean 

If the genotypes are only grown in environment 2,  G1 has a  
higher mean 
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G x E:  Both a problem and an 
opportunity 

•  A line with little G x E has stability across 
environments. 

•  However, a line with high G x E may outperform all 
others in specific environments. 

•   G x E implies the opportunity to fine-tune specific 
lines to specific environments 

•  High σ2(GE) implies high G x E in at least some lines 
in the sample. 
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Ideal:  high mean performance, low G x E 

Low G x E = widely adaptive lines/genotypes 

High G x E = locally adaptive lines/genotypes 
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Major vs. minor environments 
•  An identical genotype will display slightly different traits 

values even over apparently identical environments due 
to micro-environmental variation and developmental 
noise 

•  However, macro-environments (such as different locations 
or different years <such as a wet vs. a dry year>) can show 
substantial variation, and genotypes (pure lines) may 
differentially perform over such macro-environments (G x 
E). 

•  Problem:  The mean environment of a location may be 
somewhat predictable (e.g., corn in the tropics vs. 
temperate North American), but year-to-year variation at 
the same location is essentially unpredictable. 

•  Decompose G x E into components 
–  G x Elocations + G x Eyears + G x Eyears x locations 

–  Ideal:  strong G x E over locations, high stability over years. 
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Key:  differences in scale and lack of perfect correlation 
over environments both generate G x E 
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Falconer: G x E  
•  The modern treatment of G x E starts with 

Falconer (1952) 
–  Measures of the same trait in different 

environments are correlated traits 
–  Hence, if measured in k environments, it’s a k-

dimensional trait 
–  Thus results from direct and correlated responses 

apply to selection on G x E  
•  If selection in environment i, expected 

change in environment j is 
–   CRj =  ii hi hj rA σP (j) 
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Hammond’s Conjecture 
•  Hammond (1947) suggested that selection 

be undertaken in a more favorable 
environment to maximize progress in a less 
favorable one. 

•  Idea:  perhaps more genetic variation, and 
hence greater discrimination, between 
genotypes. 

•  Downside:  don’t know if Var(G) greater in 
“better” environments. Even if it is, between-
environment correlation can be small. 

14 
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Jinks-Connolly rule 
•  Stability of the genotypic value over environments is 

a measure of G x E sensitivity. 
–  High stability = low sensitivity  

•  Antagonistic G x E selection 
–  Up-selecting in the bad environment 

•  Synergistic G x E selection 
–  Up-selecting in the good environment 

•  Jinks-Connolly rule: 
–  Antagonistic selection improves stability 

(decreases environmental sensitivity), while 
synergistic selection decreases stability 
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Antagonistic Synergistic 

Slope = measure of sensitivity.  Reducing the slope increases stability 
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Replication over environments can reduce effect of 
G x E in selection response 

If members of the same genotype/line are replicated over ne 
random environments, response to selection based on line 
(or family) means is 
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Estimating the GE term 
•  While GE can be estimated directly from the mean in a cell (i.e., 

Gi in Ej) we can usually get more information (and a better 
estimate) by considering the entire design and exploiting 
structure in the GE terms 

•  This approach also allows us to potentially predict the GE terms 
in specific environments 

•  Basic idea:  replace GEij by αiγj or more generally by Σk αkiγkj  
These are called biadditive or bilinear models.  This (at first 
sight) seems more complicated.  Why do this? 

•  With nG genotypes and nE environments, we have  
–  nG nE GE terms (assuming no missing values) 
–  nG + nE   αi and γj unique terms 
–  k(nG + nE) unique terms in Σk αkiγkj . 

•  Suppose 50 genotypes in 10 environments 
–  500 GEij terms, 60 unique αi and γJ terms, and (for k=3), 180 unique 

αki and γki terms. 
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Finlay-Wilkinson Regression 
Also called a joint regression or regression on an  
environmental index. 

Let µ + Gi be the mean of the ith genotype over all 
environments, and µ + Ej be the average yield of 
all genotypes in environment j 

The FW regression estimates GEij by the regression GEij = βiEj+ δij.  
 The  regression coefficient is obtained for each genotype from the
 slope of the regression of the Gij over the Ej.  δij is the residual (lack
 of fit).     If σ2(GE)  >> σ2(δ) , then the regression accounted for most
 of the variation in GE. 
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Slope a stability measure 

If βi = -1, strong G x E, with genotype i having 
identical performance over all environments (good and
 bad). 

If βi = 0, no G x E. 

If βi > 0, G x E, magnifying the effect of the environment. 
 Over-performs in good environments, under-performs in
 bad environments. 
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Application 
•  Yield in lines of wheat over different environments 

was examined by Calderini and Slafer (1999). The 
lines examined were  from different eras of breeding 
(for four different countries) 

•  Newer lines had larger values, but also had higher 
slopes (large βi values), indicating less stability over 
mean environmental conditions than see in older 
lines  
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Regression slope for each genotype is βi 
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SVD approaches 
•  In Finlay-Wilkinson, the GEij term was estimated by 
βiEj, where Ej was observed.  We could also have 
used γjGi, where γj is the regression of genotype 
values over the j-th environment.  Again Gi is 
observable. 

•  Singular-value decomposition (SVD) approaches 
consider a more general approach, approximating 
GEij by Σk αkiγkj where the αki and γkj are determined 
by the first k terms in the SVD of the matrix of GE 
terms. 

•  The SVD is a way to obtain the best approximation 
of a full matrix by some matrix of lower dimension. 
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A data set for soybeans grown in New York (Gauch 1992) gives the 
GE matrix as 

Where GEij = value for 
Genotype i in envir. j 
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For example, the rank-1 SVD approximation for GE32 is 
g31λ1e12 = 746.10*(-0.66)*0.64 = -315   

The rank-2 SVD approximation is  g31λ1e12 +   g32λ2e22 = 
 746.10*(-0.66)*0.64 + 131.36* 0.12*(-0.51) = -323 

Actual value is -324 

Generally, the rank-2 SVD approximation for GEij is 
gi1λ1e1j +   gi2λ2e2j 
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AMMI models 
Additive main effects, multiplicative interaction (AMMI) 
models use the first m terms in the SVD of GE: 

Giving 

AMMI is actually a family of models, with AMMIm  
denoting AMMI with the first m SVD terms. 
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AMMI models 

Fit main effects 

Fit principal components 
to the interaction term 
(SVD is a generalization 
of PC methods) 
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Factorial Regressions 
•  While AMMI models attempt to extract information 

about how G x E interactions are related across sets of 
genotypes and environments, factorial regressions  
incorporate direct  measures of environmental factors in 
an attempt to account for the observed pattern of G x 
E. 

•  The power of this approach is that if we can determine 
which genotypes are more (or less) sensitive to which 
environmental features, the breeder may be able to 
more finely tailor a line to a particular environment 
without necessarily requiring trials in the target 
environment. 
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Suppose we have a series of m measured values from 
the environments of interest (such as average rainfall, 
maximum temperature, etc.)   Let xkj denote the value  
of the k-th environmental variable in environment j 

Factorial regressions model the GE term as 
the sensitivity ζki of environmental value k to genotype i, 
(this is a regression slope to be  estimated from the data)  

Note that the Finlay-Wilkinson regression is a special 
case where m = 1 and xj is the mean trait value (over 
all genotypes) in that environment. 
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Mixed model analysis of G x E 
• Thus far, our discussion of estimating GE has be set 

in terms of fixed effects. 
• Mixed models are a powerful alternative, as they 

easily handle missing data (i.e., not all combinations 
of G and E explored). 

• As with all mixed models, key is the assumed 
covariance structure 
–  Structured covariance models 

• Compound symmetry 
• Finlay-Wilkinson 
• Factor-analytic models (closely related to 

AMMI) 
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Basic GxE Mixed model 
•  Typically, we assume either G or E is fixed, 

and the other random (making GE random) 
•  Taking E as fixed, basic model becomes 
•   z = Xβ + Z1g + Z2ge + e 

–  The vector β of fixed effects includes estimates of the Ej.  
The vector g contains estimates of the Gi values, while the 
vector ge contains estimates of all the GEij. 

–  Typically we assume e ~ 0, σe
2 I, and independent 

of g and ge. 
–  Models significantly differ on the variance/

covariance structure of g and ge. 
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Example 
We have two genotypes and three environments. Let zijk denote the 
 k-th replicate of genotype i in environment j.  Suppose we 
have single replicates of genotype 1 in all three environments, two
 replicates of genotype 2 in environment 1, and one in environment 3 
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Compound Symmetry assumption 

•  To proceed further on the analysis of the 
mixed model, we need covariance 
assumptions on g and ge.  

•  The compound symmetry assumption is 
–   σ2(Gi) = σG

2 , σ2(GEij) = σ2
GE 

–  Plus no covariances across effects 
–  Under these assumptions, the covariance of any 

genotype across any two (different) environments 
is the same. 

–  Likewise, the genetic variance within any 
environment is constant across environments 

–  Net result, the genetic covariance is the same 
between any two environments  
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Expected genetic variance within a given environment 

Genetic correlation across environments is constant 

Genetic covariance of the same genotype across environments 

For our example, the resulting covariance matrix becomes 

Under the compound symmetry assumption, the genetic variance 
and covariances become as follows: 
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Mixed-model allows for missing values. 

Under fixed-effect model, estimate of µij = zij. 

BLUP estimates under mixed-model (E fixed, G random) 
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BLUP shrinks (regresses) the BLUE estimate 
back towards zero 
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Modification of the residual 
covariance 
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Extending genetic covariances 

•  Shukla’s model: starts with the compound symmetry 
model, but allows for different G x E variances over 
genotypes, 
–  GEij ~ N(0, σ2

GiE) 
–  Gi ~ N(0, σG

2) 
–  Cov(ge) = Diagonal (σ2

G1E , …, σ2
GnE) 

–  The covariance of a genotype across environments is still 
σG

2 

•  Structured covariance models allow more 
complicated (and more general) covariance matrices 
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Covariances based on Finlay-Wilkinson 

We treat Gi and βi as fixed effects, δij and eijk as 
random (fixed genetic effects, random environmental  
effects) 
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Factor-analytic covariance structures allow one to consider more
 general covariance structures informed by the data, rather than
 assumed by the investigator.  
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AMMI-based structured covariance models 
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Summary:  Structured Covariance models 
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Lecture 10: 

Infinite-dimensional/Function-valued 
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Random Regressions 

Bruce Walsh lecture notes 
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Longitudinal traits 
•  Many classic quantitative traits are longitudinal -- 

measured at multiple time points --- milk yield, body 
size, etc. 

•  We have already examined the repeated-measures 
design wherein an identical trait (assumed to be 
unchanging) is measured multiple times. 

•  For most longitudinal traits, we expect the trait to 
change over time, such as a growth curve. 

•  These are function-valued traits, also called infinite-
dimensional traits.  

•  One critical feature of such traits is that their additive 
variances change with t, and trait values from 
different time points have different correlations. 



3 Sci Agric.  66:  85-89 
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Norms of reaction 
•  The other type of function-valued trait is one indexed by some 

continuous environmental variable (as opposed to time), such 
as adult body weight as a function of temperature or grain yield 
as a function of total rainfall. 

•  The measurement of such traits generally requires replication of 
individuals over environments (versus the sequential evaluation 
of a single individual with longitudinal traits).  As with G x E, this 
can be done 
–  Using clones/pure lines 
–  Using family members 

•  Such curves are common in ecology & evolution and are called 
norms of reaction, and are measures of G x E 
–  Norms of reaction measure phenotypic plasticity --- variation 

that can be expressed from a fixed genotype, which is often 
an important adaptation in changing environments. 
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How to model such traits? 
•  One obvious approach is to treat the trait measured at discrete 

time points as a series of correlated traits.   
–  Makes sense to do this for something like parity (litter 

number), as individuals are all measured at the same event, 
i.e., parity one, parity two, etc. 

–  However, with a trait like a growth or some performance 
curve, we often expect to have different time measurements 
for different individuals. 

•  We could either lump these into groups (reducing 
precision) or treat each different time/tuning variable 
value as a different trait (much missing data). 

–  Better solution: estimate the trait covariance function, where 
C(t1,t2) = Cov[z(t1),z(t2)] or Cov[A(t1),A(t2)]  
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Covariance function approach 

•  Kirkpatrick popularized the use of covariance functions (largely 
in evolutionary biology) in the mid-late 1980’s.  

•  He noted that traits measured with respect to some continuous 
indexing variable (such as time or temperature) have effectively 
infinite dimensions, as one could (in theory) always consider 
finer and finer time scales. 
–  Thus, rather than treat them as a (potentially) every-

expanding set of discrete correlated traits, better to simply 
consider the covariance C(t1,t2) between any two time  
points within the range of the sampled data.  Note that 
C(t1,t1) is the trait variance at time t1. 

–  C(t1,t2) is the covariance function, the logical extension of 
the covariance matrix C(i,j) used for correlated traits, using 
continuous, rather than integer, indexes. 
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Covariance functions (cont) 
•  As with any quantitative trait, the covariance between the 

values at two time points can be decomposed into an additive-
genetic (breeding value) covariance function and a residual (or 
environmental) covariance function, 
–  Cz(t1,t2) = CA(t1,t2) + CE(t1,t2)  

•  The issue in the estimation of the additive covariance function is 
how one proceeds from an additive-covariance matrix estimate 
G from discrete time points to a continuous function covering 
all possible values with the span of time sampled to estimate G. 
–  Basic (initial) idea:  Use curve-fitting based on low-degree 

polynomials to use G to fit a covariance function 
–  This is typically done by using Legendre polynomials as the 

basis function.  
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Riska et al. (1984) data on breeding values for log(body weight) 

2 3 4 
The basic idea was illustrated 
by Kirkpatrick with a data set 
on mouse body weight measured 
at ages 2, 3, and 4 weeks.  Riska 
et al. estimated the G matrix as 

Plotting these values on 
a lattice at these discrete 
time points gives 

Ideally, would like some sort of  
smooth curve for this data.  
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Towards the covariance function 
•  Suppose we assume the breeding value at time t (for 

2 < t < 4 weeks) is in the form of a quadratic, so that 
individual’s i breeding value is given by 
–   Ai(t)  = aio + ai1 t + ai2 t2.  
–  Here the aij (for 0 < j < 2) are regression 

coefficients unique to individual i, and are 
unchanging over time. 

•  A different individual (j) also has a quadratic 
regression, but with different coefficients 
–  Aj(t)  = ajo + aj1 t + aj2 t2. 

–   the aij are referred to as random regression coefficients, as 
they are random (drawn from some distribution) OVER 
individuals, but constant over time WITHIN an individual. 
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Towards the covariance function (cont) 

We can think of these random regression coefficients 
as being drawn from a distribution: 

Ideally, we would like to use our estimate of G to make 
inferences on the elements in CG.  

We can write the additive value in time t for individual  
i as ai

T*t, where = ai
T = (ai0, ai1, ai2) and tT = (1, t, t2) 
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Towards the covariance function 
The regression Ai(t)  = aio + ai1t + ai2t2 = ai

Tt 
yields the covariance function, as the value 
of the vector t for different times are  
constants, giving   

Cov[Ai(t1), Ai(t2) ] = Cov[ai
Tt1, ai

Tt2]  
                                  = t1

T Cov(ai,,ai) t2 

                                  = t1
T CG t2 

This is a bilinear form (the generalization of a  
quadratic form). 
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More generally,  fitting an m-th degree polynomial for A gives 
the product of two m-degree polynomials for the covariance function 

Expanding gives 

14 
Estimated additive-genetic covariance function 

Kirkpatrick estimated to covariance function 
for the Riska data by assuming an individual’s breeding  
value over time can be modeled by 2nd degree 
polynomial.  The resulting covariance function 
gives the following surface: 
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Details 
•  Before building on these basic ideas to estimate the 

covariance function, some background on Legendre 
polynominals is required, as these are used as the basis 
functions (building blocks) for curve-fitting instead of the 
set (1, t, t2, …tk) 
–  Specifically, we could approximate a function f(t) by 

the k-th degree polynomial f(t) = Σk aiti.  
–  Instead, we approximate it by a weighted sum of the 

functions φ0(t), φ1(t), …, φk(t), where φj(t) is a 
polynomial of degree j (the Legendre polynomial of 
order j,  for 0 < j < k),  using f(t) = Σk bi φi(t). 
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Legendre Polynomials 

For -1 < t < 1,  the first five scaled Legendre polynomials are given by 

φ0(t) = 0.7071 
φ1(t) =  1.2247 t 
φ2(t) = -0.7906 + 2.3717 t2 
φ3(t) = -2.8062 t + 4.6771  t3 

φ4(t) = 0.7955 - 7.9550 t2 + 9.2808 t4 
φ5(t) = 4.2973 t - 20.5205 t3 + 18.4685  t5 

For curve-fitting, orthogonal polynomials are often used, where φk(t) 
denotes a k-th degree polynomial.  The set of these  building 
blocks φo(t), φ1(t), … φk(t) .. are defined to be orthogonal in the sense 
that the integral of  φi(t) φj(t) = 0 when i and j are not equal.  We also 
assume they are scaled to have unit length, with the integral φi

2(t) = 1. 

For example, the curve y = a + b t can be written as  
y = a/(0.7071) φ0(t) + b/(1.2247) φ1(t) for -1 < t < 1. 
More generally, any k-th degree polynomial can be written as 
Σκ ai φi(t)  
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1 t t2 t3 t4 t5 

In matrix form, 

j-th row of M are the coefficients for the jth Legendre polynomial 

φ0(t) = 0.7071 
φ1(t) =  1.2247 t 
φ2(t) = -0.7906 + 2.3717 t2 
φ3(t) = -2.8062 t + 4.6771 t3 

φ4(t) = 0.7955 - 7.9550 t2 + 9.2808 t4 
φ5(t) = 4.2973 t - 20.5205 t3 + 18.4685 t5 

Row 4 = 
coefficients  

for φ4. 

18 

How do we write the following 5th order polynomial in terms of 
Legendre polynomials? 

Note that y = aTx, where 

Giving x = M-1φ.  Since y = aTx = aTM-1φ,  weights on Legendre 
polynomials are  given by  aTM-1 
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Weights are given by  aTM-1 

R returns 

Giving y = 26.51006*φ0(x) -32.1633 *φ1(x)  + 24.06409 *φ2(x)  
 -21.01970 *φ3(x) + 5.387467 *φ4(x) -5.956087 *φ5(x)  

More generally, any k-degree polynomial y = aTxk can be expressed as a  
weighted series of the first k+1 Legendre polynomials φ0, .., φk, where the  
weights are  aTM-1. M is (k+1) x (k+1), with the jth row being the  
coefficients on x for the j-th order Legendre polynomial. 
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The Covariance function in terms of 
Legendre polynomials 

•  Express the trait breeding value for individual i at time tj by an 
m-th order polynomial,   
–   Ai(tj) = Σk

m aik φk(tj), where ai ~ 0, CG 
–  Define the vectors 

•   φm(t) = (φ0(t), φ1(t), …, φm(t) )T, which we often write as 
just φm  or φ  for brevity 

•   ai = ( ai0, ai1, …., aim )T. 
•  Hence Ai(tj) = φm(t)Tai = ai

Tφm(t). 
•  Cov[Ai(t1), Ai(t2) ] = Cov[ai

T φm(t1), ai
T φm(t2)]  

•   Cov[Ai(t1), Ai(t2) ] = φm(t1)T CG φm(t2) 
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Covariance function (cont) 
•  Cov[Ai(t1), Ai(t2)] = φm(t1)T CG φm(t2) 
•  Recall for tm = (1, t, t2, …, tm)T that 

–   φm(t) = Mtm,  where M is the (m+1) x (m+1) matrix 
of coefficients for the first (m+1) Legendre 
polynomials 

•  Substituting in φ(t) = Mt  yields  
–  Cov[Ai(t1), Ai(t2) ] =  t1

T MTCGM t2, or 

–  Cov[Ai(t1), Ai(t2) ] = t1
T H t2, with H = MTCGM 

•  This allows us to express the covariance function in 
terms t1 and t2 directly 
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From G to CG 
•  The key component to the covariance function is the 

covariance matrix CG for the additive genetic random 
regression coefficients.  How do we obtain this? 

•  We start with what Kirkpatrick called the “full 
estimate”  
–  Given an estimated G matrix of the trait measured 

at m time points, we can describe trait breeding 
value as an m-1 degree polynomial 

–  This is done as a weighted combination of the first 
m Legendre polynomials, φ0, φ1, … φm-1. 

–  Gij = Cov[A (ti), A (tj) ] = φm(ti) CG φm(tj)T 
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The full estimate does an element-by-element matching of G  

to functions of φm(ti) (which are known constants) and CG. 

24 

Note that Φ is a matrix of constants --- the Legendre 
polynomials evaluated at the sample time points.  Note 
that time points are scaled to be within (-1, 1), so 
ordering time on the original scale as T1 < … <Tm, scaled 
values are given by ti = 2(Ti - T1)/(Tm - T1) -1 

-1 
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Example:  Riska’s data 

4 weeks, t = 1 

2 weeks, t = -1 
3 weeks, t = 0 
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-1 
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The resulting covariance function becomes 

This bilinear form expresses the covariance function 
in terms of the Legendre polynomials.  Usually we 
would like to express this as a polynomial in t1 & t2: 

One could do this by first substituting in the polynomial form 
for φi(t), expanding and collecting terms.  However, much 
easier to do this in matrix form.  Recall the coefficient 
matrix M from earlier in the notes, where φ = Mt. Writing the 
covariance function as  φ1

T GC φ2 =  (Mt1)T GC(Mt2) = t1
T MTGC M t2  = 

t1
T H t2, where  H = MTCGM. 
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Expanding this out gives 
Cov(A1,A2) = 808 + 71.2(t1 + t2) + 36.4 t1 t2  

         - 40.7(t1
2 t2 + t1t2

2) -215.0(t1
2 + t2

2)  
                      + 81.6t1

2t2
2 

The covariance function becomes t1
T H t2, with H = MTCGM 

Since the first three Legendre polynomials are used, M is 3 x 3 

H = MTCGM gives  

More generally, the coefficient on t1
i-1 t2

j-1 in the covariance 
expansion is given by Hij. -- the (i,j)-th element of H. 
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The Eigenstructure of CG 
•  The variance-covariance matrix CG of the random 

regression coefficients is extremely information on the 
nature of variation for the function-valued trait. 

•  The function-valued analogue of the eigenvector is the 
eigenfunction, which also has an associated eigenvalue.  
Akin to the eigvenvector associated with the largest 
eigenvalue accounting for the largest single direction of 
variation, the eigenfunction associated with the largest 
eigenvalue is the functional curve associated with the 
most variation. 

•  The eigenvalues of CG are the same as those for the 
covariance function, while the associated eigenvectors 
of CG give the weights on the orthogonal polynomials 
that recover the eigenfunctions of the covariance 
function. 
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Back to Riska’s data 

First eigenvector 

-1 
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Linear  

Log  

CG has a dominant
 eigenvalue --- most of the
 variation in 
the breeding value for growth
 is along one curve 
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Associated eigenfunctions for CG for the Riska dataset 



33 

Eigenfunctions of CG 
•  If ei denotes the eigenvector associated with 

the ith eigenvalue λi of CG, then for the 
covariance function 
–   λi is the ith eigenvalue 
–  associated eigenfunction is φm(t)T ei 

–  = ei1φ0(t) + ei2φ1(t) + … + eimφm-1(t)    
–  Since φ = Mt, we have   (Mt)T ei =  tT (MT ei) , 

giving the weights on (1, t, t2, .. ,tm-1) as  MT ei   
–  For Riska’s data, the leading eigenfunction is 
–   ψ1(t) = 0.7693 - 0.0617 t - 0.1971 t2 
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Eigenfunctions: ψi(t) = tT (MTei) 

ψ2(t) = 0.256 + 1.121*t - 0.937*t2 

ψ3(t) = -0.684 + 0.490*t +2.170*t2 



35 Meyer’s data on Cattle Weight 
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Over-fitting GC? 

Meyer’s data showing how increasing the degree of polynomial used 
results in over-fitting.  In her words: “surfaces become ‘wiggly’ “ 
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Reduced estimation of CG 
•  While the full estimate (rank CG = rank of observed G) is 

(relatively) straightforward, this likely results in an overfit of the 
data, as the covariance function is forced to exactly fit the 
observed values for all t1, t2, some of which are sampling noise 
–  Results in a less smooth covariance function than one based 

on using a reduced dimension. 
–  Kirkpatrick originally suggested a least-squares approach, 

while Meyer & Hill suggested a REML-based approach 
–  Key breakthrough, first noticed by Goddard, and fully 

developed by Meyer, is the connection between covariance 
functions and random regressions. 

–  This should not be surprising given that we started with 
random regressions to motivate covariance functions. 

–  The key is that standard BLUP approaches (for multivariate 
traits) can be used for random regressions. 
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Mixed-Models (BLUPs) for Longitudinal traits 

•  Simplest setting is the repeatability model, the trait breeding 
and residual (permanent environmental) values are assumed 
constant over time.  The jth observation on i is 
–  yij = u + ai + pei + eij 
–  a ~ 0, Var(A)A 

•  At the other extreme is the multiple-trait approach, where each 
sampled time point is considered as a separate, but correlated, 
trait.  Here yij is the jth “trait” (sampled time point) for individual 
i. 
–  yij = u + aij + eij 
–  a ~ 0,  G X A 

•  In the middle are random-regressions, where for the jth 
observation (time tj) on individual i is  
–  yij = u + Σk

n aikφk(tj) + Σk
m peikφk(tj) + eij 

–  ai ~  0,  CG   and     pi ~  0,  CE 
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The repeatability model 
•  The repeatability model assumes that the trait is unchanging 

between observations, but multiple observations (records) are 
taken over time to smooth out sampling noise (e) 

•  Such a record for individual k has three components 
–  Breeding value ak 
–  Common (permanent) environmental value pk 
–  Residual value for ith observation eki 

•  Resulting observation is thus  
–  zki = µ + ak + pk +eki 

•  The repeatability of a trait is r = (σA
2+σp

2)/σz
2 

•  Resulting variance of the residuals is σe
2  = (1-r) σz

2 
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y = Xβ + Za + Zp + e 

Mixed-model equations 

Mixed-model   
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The multiple-trait model 
•  With a clearly discrete number of stages (say k), a 

longitudinal trait could be modeled as k correlated 
traits, so that individual i has values yi1, yi2, .., yik. 

•  In this case, there is no need for permanent 
environmental effects, as these now appear in 
correlations among the residuals, the within-
individual environmental correlations (which are 
estimated by REML). 

•  This can be put into standard Mixed Model 
equations by simply “stacking” the vectors for each 
trait to create one vector for each random effect. 
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For trait j (1 < j < k), the mixed model becomes 

We can write this as y = Xβ + Za + e, where  

Again, the BLUP for the vector of all EBVs is given by 

With V the covariance structure for this model  
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Covariance structure for EBVS 

The genetic variance-covariance matrix G accounts 
for the genetic covariances among traits.  G has k  
variances and k(k-1)/2 covariances, which must be 
estimated (REML) from the data. 
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Covariance structure for residuals 

Here the matrix E accounts for within-individual correlations in the
 environmental (or residual) values. 
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Random regressions 
•  Random regression models are basically a hybrid 

between repeated records models and multiple-trait 
models.  
–  The basic structure of the model is that the trait at time t is 

the sum of potentially time-dependent fixed effects µ(t), a 
time-dependent breeding value a(t), a time-dependent 
permanent environmental effect p(t), and a residual error e.  
These last three are random effects 

–  y(t) = µ(t) + a(t) + p (t) + e 
–   a(t) and p (t) are both approximated by random regressions, 

of order n and m, respectively (usually n = m)  
–  ai(tj) = Σk

n aikφk(tj)  and pi(tj) = Σk
m bikφk(tj) 

–  The vectors ai and bi for individual i are handled in a multiple-trait 
framework, with covariance matrices CG and CE for the within-
individual vectors of additive and permanent environmental 
effects.  
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To build up the random regression model, consider the qi observations 
from different times for individual i  

Here are fitting m-degree polynomials (m < qi) for both the breeding value
 and permanent environmental value regressions.  We also assume that any
 fixed-effects are not time dependent. Both of these assumptions are easily
 relaxed.   
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Model & covariance structure for vector yi of 
observations from individual i 

Covariance structure 
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The design matrix for the regression coefficients 
on the breeding values is very information 

Zi1 is a qi x (m+1) matrix of fixed constants that depend on the   
values of order zero through m Legendre polynomials, where  
the jth row represents these evaluated at time tij.   
A KEY FEATURE is that this set of times could be different 
for each individual, yet the mixed model does all the bookkeeping 
to fully account for this.   
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As with the multiple trait model, stacking the individual vectors 
allows us to put this model in standard form.  Note that while the 
vectors stacked for the multiple trait model represented the 
vectors for each trait separately, here the stacked vectors are 
the observations for each individual. 

Z1, Z2 Block diagonal 
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Full Model & covariance structure   

Covariance structure 

More generally, we can replace σe
2 I by R. 
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Mixed-model equations (slightly more 
generalized covariance structure) 

where 
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Model-fitting issues 

•  A central issue is what degree m of 
polynomials to use.  

•  Standard likelihood tests can be used 
(compare m = k with m = k + 1). 

•  Meyer suggests that tests should be 
comparing k with k + 2, as often going from 
odd to even does not improve fit, but going 
from even to even (k+2) does, and vice-versa. 
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Response to selection 

•  Standard BLUP selection can be used, based 
on some criteria for an optimal functional 
value (curve) in the offspring. 

•  The expected response in the offspring is 
simply obtained by substituting the average 
of the parental breeding values into the 
polynomial regression for the breeding value 
to generate an expected offspring curve.   
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