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6. Application: Correlated residuals (Muir)
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10:30 12:00 9. Application: QTL/association mapping (Walsh)
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1:30 3:00 pm 10. Application: G x E (Walsh)
Additional reading: WL Chapters 43, 44

3:00 3:30 pm Break

3:30 5:00 pm 11. Random Regressions (Walsh)



Lecture 1:
Intro/refresher in
Matrix Algebra

Bruce Walsh lecture notes
Summer Institute in Statistical Genetics
Seattle, 20 — 22 July 2016

Matrix/linear algebra

e Compact way for treating the algebra of
systems of linear equations

e Most common statistical methods can be
written in matrix form

— y=Xp + e is the general linear model
e OLS solution: g = (XTX)'XTy
- Y=XB +Za+ eis the general mixed model



Topics

Definitions, dimensionality, addition,
subtraction

Matrix multiplication

Inverses, solving systems of equations
Quadratic products and covariances
The multivariate normal distribution
Eigenstructure

Basic matrix calculations in R

Matrices: An array of elements

Vectors: A matrix with either one row or one column.

Usually written in bold lowercase, e.g. a, b, ¢

12
a= (13| b=(2 0 5 21)
47

Column vector Row vector

(3x1) (1x4)

Dimensionality of a matrix: r x ¢ (rows x columns)
think of Railroad Car



General Matrices

Usually written in bold uppercase, e.g. A, C, D

3 1 2 0 1
C=1(2 5 4 D=1|3 4
1 1 2 2 9
(3 x 3)
Square matrix (3x2)

Dimensionality of a matrix: r x ¢ (rows x columns)
think of Railroad Car

A matrix is defined by a list of its elements.
B has ij-th element B; -- the element in row i
and column |

Addition and Subtraction of Matrices

If two matrices have the same dimension (both are r x ¢,
then matrix addition and subtraction simply follows by
adding (or subtracting) on an element by element basis

Matrix addition: (A+B)ij =A;+B;

Matrix subtraction: (A-B), =A,-B;

Examples: s 0 { 2
A:(l 2) and B:(2 1)

4 2 _ 2 -2
C—A+B—(3 3) and D_A—B_(_l 1)



Partitioned Matrices

It will often prove useful to divide (or partition) the
elements of a matrix into a matrix whose elements are
itself matrices.

3 1 2 3 12 a b
C=12 5 4| = —( )
112 - 5 4 d B
1 1 2

a=(3), b=(1 2), d—(f). B—(‘l’ 2‘)

One useful partition is to write the matrix as
either a row vector of column vectors or
a column vector of row vectors

3 01 2 ry
c=[2 5 1]=(r A column vector whose
1 1 2 rs elements are row vectors
r=(3 1 2)
ra=(2 5 4)
rp=(1 1 2)
: 9
3 1 “ A row vector whose
C= 2 5 4 = (CJ Co 'Ca )
L 1 92 elements are column
vectors



Towards Matrix Multiplication: dot products

The dot (or inner) product of two vectors (both of
length n) is defined as follows:

a'b= ia,bz
i=1

Example:

1
2
;| and b=(4 5 7 9)
4

a'b=1*4+2*5+ 3*7 + 4*9 = 60

Matrices are compact ways to write
systems of equations

Sry+ 6y +4253 =06
7.‘1‘1 — 3.’1’2 + -'—).‘1‘3 = —0

—1y — o + 623 = 12



The least-squares solution for the linear model

y=p+pP1z1+  Pnzn
yields the following system of equations for the §;
o(y,z1) = 510%(z1) + Boo(21,25) + -+ Buo(z1, 2n)
o(y,z9)= B10(21,20) + Bo0?(25) + -+ Bno(22, 2n)

U(y, zn): B]U(th zn) +.620(221 Z.") = *sr 'rlaz(zn)
This can be more compactly written in matrix form as

0%(z1) o(21,22) ... o(z1,2n) B, o(y, z1)

a(zl,z;g) 0'2(22) . U(ZQ,Z”) 32 - U(y: 32)

o(zl', Zn) a(zz', Zn) .. o2 ('z,l) _3,,, cr(y; Zn)
X™X B XTy

T = transpose,
discussed in slide 17-9

or, ﬁ — (XTX)-1 XTy 11

Matrix Multiplication:

The order in which matrices are multiplied affects
the matrix product, e.g. AB =/BA

For the product of two matrices to exist, the matrices
must conform. For AB, the number of columns of A must
equal the number of rows of B.

The matrix C = AB has the same number of rows as A
and the same number of columns as B.

Cirxe) = Aprxk) Biixe)
ij-th element of C is given by

Elements in the
Jth column of B

k
Cij = Z Ay By; Elements in the ith
=1 . 12

row of matrix A



Outer indices given dimensions of
resulting matrix, with r rows (

and ¢ columns (B / \
(rxc)

C rxk kxc

\/

Inner indices must match
columns of A = rows of B

Example: Is the product ABCD defined? If so, what
is its dimensionality? Suppose

A3x5 BSx9 C9x6 D6x23

Yes, defined, as inner indices match. Resultisa 3 x 23
matrix (3 rows, 23 columns) 13

More formally, consider the product L = MN

Express the matrix M as a column vector of row vectors

m;
ms

=1 . where my=(Miy My -~ M)
\mn,/

Likewise express N as a row vector of

column vectors ‘23?
AV23
N=(n, n, -+ mng) where n; =
The ij-th element of L is the inner product |\
iNey

of M's row i with N's column j
mj;'n; mmng; 'nz °"°° IMj“Ip

[_ ™20 mzrnz o omaomp

mr-nl mr-n2 .- mr-nb



Example

AB- (@ b e f\ [(ae+bg af+0bh
~\c d/\g h) \ce+dg cf+dh
Likewise

_ (ae+cf eb+df
BA_(ga-{—ch gd+dh)

ORDER of multiplication matters! Indeed, consider
Cs,5 Ds,s Which gives a 3 x 5 matrix, versus De,s C; s,
which is not defined.

Matrix multiplication in R

> A<-motrix(c(l,2,3,4),nron=2) R ﬂ”S In the r.ngtrlx. from
> B<-matrix(c(4,5,6,7),nron=2) the list ¢ by fl”lng INn as

> A .

1] [.2] columns, here with 2 rows
[1,] 1 3 (nrow=2)
2] 2 4
> B

(.11 [.2] Entering A or B displays what was
[1,] 4 &6 .
23] s 7 entered (always a good thing to check)
> A %% B

[11 [,2] .
[1,] 19 27 The command %*% is the R code

L for the multiplication of two matrices

On your own: What is the matrix resulting from BA?
What is A if nrow=1 or nrow=4 is used?



The Transpose of a Matrix

The transpose of a matrix exchanges the
rows and columns, AT, = A,

Useful identities b
(AB)T = BT AT “ i
(ABC)T=CTBTAT  °7 | )

Inner product = ab =a’; y b, x1

3

Indices match, matrices conform
Dimension of resulting product is 1 X 1 (i.e. a scalar)

17

b N
©oa,) ( ) —aTh - Xﬂlb: NOte that bTa = (bTa)T = aTb

b

Outer product = ab™ = a  x ,b" (1 x 1y

~.

Resulting product is an n x n matrix

a9

. (bl b‘2 bn )
a,

aby abs ... ayb,
asby  asbs ... ash,

(lnbl aan s (Inbbn



R code for transposition

> t(A)
[,1] [,2] t(A) = transpose of A
hj 1 2
2, 3 4
> a<-matrix(c(1,2,3),nron=3)  Enter the column vector a
> Qa
L1
(1,1 1
2,1 2
3. 3 _
> t(a) ®*% a Compute inner product a'a
L.1]
[1,] 14
> a %*% t(a) Compute outer product aa’
(.11 .21 3]
Ll 1 2 3

2 4 6
[(3,] 3 6 9

Solving equations

e The identity matrix |

— Serves the same role as 1 in scalar algebra, e.g.,

a*1=1*a =a, with Al=IA= A
® The inverse matrix A1 (IF it exists)
— Definedby AAT =1, ATA = |
— Serves the same role as scalar division

* To solve ax = ¢, multiply both sides by (1/a) to give:
e (1/a)*ax = (1/a)c or (1/a)*a*x = 1*x = x,

® Hence x = (1/a)c

e Tosolve Ax=c, A'Ax=A"c

e OrA'Ax =Ix=x=A"c

20



The Identity Matrix, |

The identity matrix serves the role of the
number 1 in matrix multiplication: Al =A, [A = A

| is a square diagonal matrix, with all diagonal elements
being one, all off-diagonal elements zero.

1 fori=]j

O otherwise

(i1

o O
oo
= OO

21

The Identity Matrix in R

diag(k), where k is an integer, return the k x k | matix

> I<-diag(4)
> 1

(.11 0,21 0,31 [L4]

[1,] 1 0 0 0
[2,] [0} 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1
> 12 <-diag(2)
> 12

(11 2]
[1,] 1 0

g o 1

22



The Inverse Matrix, A

For a square matrix A, define its Inverse A, as
the matrix satisfying

ATA =AAT =1

For A = (g 2) Al:‘(®1 ) —dc _ab)
/

If this quantity (the determinant)
is zero, the inverse does not exist.

23

If det(A) is not zero, A" exists and A is said to be
non-singular. If det(A) = 0, A is singular, and no
unique inverse exists (generalized inverses do)

Generalized inverses, and their uses in solving systems
of equations, are discussed in Appendix 3 of Lynch &
Walsh

A is the typical notation to denote the G-inverse of a
matrix

When a G-inverse is used, provided the system is
consistent, then some of the variables have a family
of solutions (e.g., X, =2, but x, + x5 = 6)

24



Inversion in R

solve(A) computes A

det(A) computes determinant of A

> A Using A entered earlier
L1 [2]

[1,] 1 3

[2,] 2 4

> solve(A) ComPUte A’
(.1 [2]

(1,7 -2 1.5

[2,] 1-0.5

> solve(A) ¥*% A
[,1] [,2] Showing that AT A = |

1,] 1 -8.881784e-16
2,] 0 1.000000e+00

det(A : :
E]efg ) Computing determinant of A

Homework

Put the following system of equations in matrix
form, and solve using R

3Xq + 4x, + 4 x5 + 6x, =-10
Xy + 2%y - X5 -6x4= 20
X;+ X, + X3-10x, = 2
2x1 + 9%, + 2x3 - %, =-10



Example: solve the OLS for B = (B, B,)T
ny=o+pz; + Pz, +e

ﬁ: V'IC . (G(y,z1)> v ( o?(2,) o(zhzz))
o(y, z2) o(z1,20) 0*(z3)
It is more compact to use o(z1,22) = p12 0(21)0(22)

1 0Xz) —olz, )
vV!=
o?(z1)0%(22) (1 — pto) o*(z)

—0o(2y, 2)

(.31) B 1 ( 0?(2) _0(21,22)) (U(yazl))
B 02(z1)02(2z2) (1 — pf2) —o(z1,22) 02(21) o(y,22)

b = 1-—1p'{-2 [c;(f(’ :11)) ~ P12 0(0;13;:(222)]
e o[22 -, Sl

If p;, = O, these reduce to the two univariate slopes,

— O'(y, Zl) an _ a(y,zg)
= 0%(z1) d P 02(25)

Likewise, if p;, = 1, this reduces to a univariate regression,

28



Useful identities
(AT)" = (AT
(AB)' = B A

For a diagonal matrix D, then det (D), which is also
denoted by IDI, = product of the diagonal elements

Also, the determinant of any square matrix A,
det(A), is simply the product of the eigenvalues A of A,

which statisfy
Ae = \e

If Alis n x n, solutions to A are an n-degree polynomial. e is
the eigenvector associated with A. If any of the roots to the
equation are zero, A" is not defined. In this case, for some

linear combination b, we have Ab = 0.
29

Variance-Covariance matrix

e A very important square matrix is the
variance-covariance matrix V associated with
a vector x of random variables.

* V; = Cov(x;x), so that the i-th diagonal
element of V is the variance of x,, and off
-diagonal elements are covariances

* Vis a symmetric, square matrix

30



The trace

The trace, tr(A) or trace(A), of a square matrix
A is simply the sum of its diagonal elements

The importance of the trace is that it equals
the sum of the eigenvalues of A, tr(A) = X A,

For a covariance matrix V, tr(V) measures the
total amount of variation in the variables

A / tr(V) is the fraction of the total variation
in x contained in the linear combination e,'x, where

e, the i-th principal component of V is also the
i-th eigenvector of V (Ve, = A, e)

31

Eigenstructure in R

eigen(A) returns the eigenvalues and vectors of A

> V<-matrix(c(10,-5,10,-5,20,0,10,0,30),nron=3)

>V

1 L2l
[1,] 1 -5
[2,] -5 20
[3,] 10 (9]
> eigen(V)
$values

L.3]
10
0
30

[1] 34.410103 21.117310 4.472587

$vectors
54

L. 2] L.3]

,1| ©.3996151
[2,]]-0.1386580
1| 0.9061356

0.2117936 ©.8918807
-0.9477830 ©.2871955
-0.2384340 -0.3493816

PC 1

Trace = 60

PC 1 accounts for 34.4/60 =
57% of all the variation

32



Quadratic and Bilinear Forms

Quadratic product: for A, ,, and X, , 4

T mn
T
X Ax = Zzaijfb‘z‘xj Scalar (1 x 1)
i=1 j=1

Bilinear Form (generalization of quadratic product)
for A« @nx1: P« their bilinear formis b™, A, .. a

mxn9nx1
bTAa = f: iA,;jbiaj

=1 j=1
Note that bTAa =a'ATb

Txm

33

Covariance Matrices for
Transformed Variables

What is the variance of the linear combination,
CiXq + CX, + ... + ¢, X ? (note this is a scalar)

n n n
o? (ch) = g2 (Zcixl-) =0 Zcixi ,Z(:j T;
i=1 i=1 J=1
n n n T
=3 Y o(azieia) =3 Y o (wi))

i=1 j=1 =1 j=1
—c'Ve
Likewise, the covariance between two linear combinations
can be expressed as a bilinear form,

o(a’x,b’x) =a’Vb .



Example: Suppose the variances of x4, x,, and x; are
10, 20, and 30. x, and x, have a covariance of -5,
X, and x5 of 10, while x, and x5 are uncorrelated.

What are the variances of the new variables

10 =5 10 1 0
V= -5 20 0 . C) = —2 5 Co = 6
10 0 30 5 —4

Var(y,) = Var(c,™x) = ¢, Var(x) ¢, = 960
Var(y,) = Var(c,'x) = ¢, Var(x) ¢, = 1200
Covl(y,,y,) = Cov(c,™x, c,'x) = ¢, Var(x) c, = -910

Homework: use R to compute the above values
35

Now suppose we transform one vector of random
variables into another vector of random variables

Transform x into

(I) Yk x 1 =Akxnxnx1
(”) me1 = Bmxnxnx1

The covariance between the elements of these
two transformed vectors is an
k x m covariance matrix = AVBT

For example, the covariance between y; and y,
is given by the ij-th element of AVAT

Likewise, the covariance between y; and z,

is given by the ij-th element of AVBT %



Positive-definite matrix

* A matrix V is positive-definite if for all vectors

c containing at least one non-zero member,

c'Vec > 0.

e A non-negative definite matrix satisfies c'Vc
> 0.

® Any covariance-matrix is (at least) non
-negative definite, as Var(c'x) = ¢'Vc > 0.

* Any nonsingular covariance matrix is positive
-definite
— Nonsingular means det(V) > 0

— Equivalently, all eigenvalues of V are positive, A, > 0.

The Multivariate Normal
Distribution (MVN)

Consider the pdf for n independent normal
random variables, the ith of which has mean
w. and variance 0%,

p(x) = ﬁ(%)'l/?a{l exp (_ (z; — !)11)2)

i=1
n -1 n ( )2
—n/ Ti — i
= (2m) /2 (Hai) exp (— E 20{; )
i=1 i t

This can be expressed more compactly in matrix form

37

38



Define the covariance matrix V for the vector x of
the n normal random variable by

o2 0 = 0

n
0 o2 - 0 .
. . ' . 1=1
Cee e 2
0 On M
. H2 .
Deflne the mean vector w as B = . gives

HUn

n

S TV (k- )

Hence in matrix from the MVN pdf becomes

P 1 -
p(x) = (2m) M2 IV exp | = (x = )T VT (x — )

Notice this holds for any vector u and symmetric positive

-definite matrix V, as |V | > 0. 3

The multivariate normal

e Just as a univariate normal is defined by
its mean and spread (variance), a
multivariate normal is defined by its
mean vector u (also called the
centroid) and variance-covariance
matrix V (the distribution, or spread, of
values around the centroid).

40



Vector of means p determines location

Spread (geometry) about p determined by V

X4, X, equal variances,

X+, X, equal variances
1 %2 €9 ' uncorrelated

positively correlated

Eigenstructure (the eigenvectors and their corresponding
eigenvalues) determines the geometry of V.

41

Vector of means p determines location

Spread (geometry) about p determined by V

1 | —
X4, X, equal variances, Var(x,) < Var(x,),
negatively correlated uncorrelated

Positive tilt = positive correlations
Negative tilt = negative correlation

No tilt = uncorrelated
42



Eigenstructure of V

The direction of the largest axis of
variation is given by the unit-length

vector €, the 1st eigenvector of V.

A, €1 :
The next largest axis orthogonal

_ (at 90 degrees from) to €4, is
e .. given by e,, the 2nd eigenvector

43

Principal components

The principal components (or PCs) of a covariance
matrix define the axes of variation.

— PC1 is the direction (linear combination c'x) that explains
the most variation.

— PC2 is the next largest direction (at 90degree from PC1),
and so on

PCi = ith eigenvector of V

Fraction of variation accounted for by PCi = A, /
trace(V)

If V has a few large eigenvalues, most of the variation
is distributed along a few linear combinations (axis
of variation)

44



Properties of the MVN - |

1) If x is MVN, any subset of the variables in x is also MVN

2) If xis MVN, any linear combination of the
elements of x is also MVN. If x ~ MVN(u,V)

for y=x+a, y is MVN,,(n + a, V)

T
for y=alx= Zaiazz‘, y is N(aTu,aTVa)
k=1

for y= Ax, y is MVN,, (Au,ATVA)

45

Properties of the MVN - |

3) Conditional distributions are also MVN. Partition x
into two components, x; (m dimensional column vector)
and x, ( n-m dimensional column vector)

Vx,x, Vx,x,
x=<§1> n= (Z:) and V=(
.
’ VX1X2 Vx2xz
Xy I x5 is MVN with m-dimensional mean vector
— —1
”’Xl]X’g — l‘l’]_ + VX1X2VXQX2 (x2 o l-‘l'z)

and m x m covariance matrix

_ _ —1 T
Vxllxz - VX1X1 Vx1x2VX2X2 VX1X2



Properties of the MVN - I

4) If x is MVN, the regression of any subset of
x on another subset is linear and homoscedastic

X1 = Hx,|x, T €
= QU+ Vxixe )zglxg (x2 - Nz) +e

Where e is MVN with mean vector 0 and
variance-covariance matrix ~ Vx,|x,

47

11+ Vxaxa Vaox, (X2 — #g) + e

The regression is linear because it is a linear function
of x,

The regression is homoscedastic because the variance-
covariance matrix for e does not depend on the value of

the x's

_ _ —1 T
VX1|X2 - VX1X1 VXIXZVX2X2 Vx1x2

All these matrices are constant, and hence

the same for any value of x 48



Example: Regression of Offspring value on Parental values

Assume the vector of offspring value and the values of
both its parents is MVN. Then from the correlations
among (outbred) relatives,

2o Lo 1 h2%/2 h?%/2
z | ~MMVN | | pus |,0%2| h2/2 1 0
2d Hd h2/2 0 1

Let x1=(2,), xz2= (z)

2d

. hio? of 1 0
Vxl,xl=0'§a Vxix: = 20(1 1), VXz,X2=O‘f<0 1

= M, + Vxixa lexz(xz o uz) +e

49

Regression of Offspring value on Parental values (cont.)

= pq+ VX1X2V)221X2 (X2 o ”2) t+e

) h202 (1 0
Vx,x: = 0%, Vx;x, = 22(1 1), VXz,X2=Uf<O 1

Hence, _ h?a? 21 0 (2 ps
%o = Hot — (1 1)o, 0 1)\ za— pa +e

h? h?
= Ho+ 5 (2 = p1s) + 5 (2a — pa) +€
where e is normal with mean zero and variance

_ -1 T
Vx1]x2 = VX1X1 - VX1X2 X2X2 VX1X2

h202 1 0\ h%02 /1
2_ 2 _ z -2 z
02 =02 5 (1 1)o; (0 1) 5 (1)

h4
=021 —-——
az( 2) 50



Hence, the regression of offspring trait value given
the trait values of its parents is

z, = U, +h?/2(z-n) +h?/2(z-uy) + e

o

where the residual e is normal with mean zero and
Var(e) = 0,%(1-h%/2)

Similar logic gives the regression of offspring breeding
value on parental breeding value as

A, =u, +(A-u)/2+ (Ag-uy/2 +e
=A/2+ AJ/2 +e

where the residual e is normal with mean zero and
Var(e) = 0,%/2

Ordinary least squares

For the general linear model

v=X3+e

The predicted values given 3 and the resulting residuals are given by

v=X3 e=y-Xp3

51

Ordinary least squares (OLS) finds the value @ the minimizes the sum

of squared residuals

E ',;.Z = GTG

(v — X3) r (v — X3)

or

The solution is given by setting the derivative of this function with re-

spect to 3 equal to zero and solving,

Hence, we need to discuss vector/matrix derivatives

52



The gradient, the derivative of a vector-valued

function
af
(5
af
d D 1o
Vxlf]= 5L = | 07
af
\ ( ;’L‘n )

Compute the gradient for

flx) = Z:f —xTx
i=1

Since d f/0 x; = 2r;, the gradient vector is just Vx| f(x) | = 2x.

Some common derivatives

Vx [aTx] = Vx [xTa] =a
Vx|[Ax] = AT

Turning to quadratic forms, if A is synunetric, then

Taking A =1,

53



n

Y d=ele=(y-XB) (y-xB)

=1

=yly - 8"X"y - y"' X3+ 8TX"X3
=yly-28"X"y + g'X"X3

where the last step follows since the matrix product B'XTy yields a scaley and hence it
equals its transpose,

FXTy = (8"X7y)" = y"Xp

To find the vector 3 that minimizes e’ e, taking the derivative with respect to 3 and using
Equations Ab.1a/c gives

Dele
03

= —2XTy + XX

Setting this equal to zero gives X' X3 = Xy giving

8- (xTx)_ley

Additional R matrix commands

Operator or
Function

A*B
A%*% B
A %o% B

crossprod(A,B)
crossprod(A)

t(A)
diag(x)
diag(A)
diag(k)
solve(A, b)
solve(A)
ginv(A)

y<-eigen(A)

y<-svd(A)

Description

Element-wise multiplication
Matrix multiplication

Outer product. AB'

A'B and A'A respectively.

Transpose

Creates diagonal matrix with elements of x in the principal diagonal

Returns a vector containing the elements of the principal diagonal

If k is a scalar, this creates a k x k identity matrix. Go figure.

Returns vector x in the equation b = Ax (i.e., ATb)
Inverse of A where A is a square matrix.
Moore-Penrose Generalized Inverse of A.

ginv(A) requires loading the MASS package.

ySval are the eigenvalues of A

ySvec are the eigenvectors of A

Single value decomposition of A.

y$d = vector containing the singular values of A

ySu = matrix with columns contain the left singular vectors of A
ySv = matrix with columns contain the right singular vectors of A
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Additional R matrix commands (cont)

R <- chol(A)

y <- qr(A)

cbind(A,B,...)
rbind(A,B,...)
rowMeans(A)
rowSums(A)
colMeans(A)
colSums(A)

Choleski factorization of A. Returns the upper triangular factor, such that R'R =
A.

QR decomposition of A.

ySqr has an upper triangle that contains the decomposition and a lower
triangle that contains information on the Q decomposition.

ySrank is the rank of A.

ySqraux a vector which contains additional information on Q.

ySpivot contains information on the pivoting strategy used.

Combine matrices(vectors) horizontally. Returns a matrix.
Combine matrices(vectors) vertically. Returns a matrix.
Returns vector of row means.

Returns vector of row sums.

Returns vector of column means.

Returns vector of coumn means.

57

Additional references

® Lynch & Walsh Chapter 8 (intro to
matrices)

e Online notes (Walsh & Lynch):
— Appendix 4 (Matrix geometry)

— Appendix 5 (Matrix derivatives)
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Lecture 2:
Linear and Mixed Models

Bruce Walsh lecture notes
Summer Institute in Statistical Genetics
Seattle, 20 — 22 July 2016

Quick Review of the Major Points

The general linear model can be written as

y=Xp +e
* y = vector of observed response values

e X = Design matrix: observations of the explanatory
variables in the assumed linear model

* B = vector of unknown parameters to estimate

e e = vector of residuals (deviation from model fit),
e=y-Xp



y=Xp t+e

Solution to B depends on the covariance structure
(= covariance matrix) of the vector e of residuals

Ordinary least squares (OLS)

e OLS: e ~ MVN(O, o21)
e Residuals are homoscedastic and uncorrelated,

so that we can write the cov matrix of e as Cov(e) = o2l
e the OLS estimate, OLS(B) = b = (X"™X)' XTy

Generalized least squares (GLS)

e GLS: e ~ MVN(Q, V)
* Residuals are heteroscedastic and/or dependent,
e GLS(B) = XTVTX)" XTV-1y

BLUE

e Both the OLS and GLS solutions are also
called the Best Linear Unbiased Estimator (or
BLUE for short)

e \Whether the OLS or GLS form is used

depends on the assumed covariance
structure for the residuals

— Special case of Var(e) = 6,21 -- OLS
— All others, i.e., Var(e) = R -- GLS



Linear Models

One tries to explain a response (or dependent) variable y
as a linear function of a number of explanatory (or
predictor) variables.

A multiple regression is a typical linear model,

y=p+ 0121+ Bozy+ -+ PrZs +e

Here e is the residual, or deviation between the true
value observed and the value predicted by the linear
model.

The (partial) regression coefficients are interpreted
as follows: a unit change in x; while holding all
other variables constant is associated with in a change

of B, iny

Linear Models

As with a univariate regression (y = a + bx + e), the model
parameters are typically chosen by least squares,

wherein they are chosen to minimize the sum of

squared residuals, X ;2

This unweighted sum of squared residuals assumes
an OLS error structure, so all residuals are equally
weighted (homoscedastic) and uncorrelated

If the residuals differ in variances and/or some are
correlated (GLS conditions), then we need to minimize
the weighted sum e™V-'e, which removes correlations and
gives all residuals equal variance.



Predictor and Indicator Variables
Suppose we measure the offspring of p sires. One
linear model would be

yi=u+s +e;
yjj = trait value of offspring j from sire i

w = overall mean. This term is included to give the s,
terms a mean value of zero, i.e., they are expressed
as deviations from the mean

s. = The effect for sire i (the mean of its offspring). Recall
that variance in the s, estimates Cov(half sibs) = V,/4

e = The deviation of the jth offspring from the family
mean of sire i. The variance of the es estimates the
within-family variance.

Predictor and Indicator Variables
In a regression, the predictor variables are
typically continuous, although they need not be.

yj=uts +e;

Note that the predictor variables here are the s, (the
value associated with sire i) something that we are trying
to estimate

We can write this in linear model form, y; = u + %, x;s; + e;,
by using indicator variables

1 ifsire k=1
Tik — .
0 otherwise 8



Models consisting entirely of indicator variables
are typically called ANOVA, or analysis of variance
models

Models that contain no indicator variables (other than
for the mean), but rather consist of observed values of
continuous or discrete values are typically called
regression models

Both are special cases of the General Linear Model
(or GLM)

Vi = W+ s+ dj + By + ey

Example: Nested half sib/full sib design with an
age correction  on the trait

Example: Nested half sib/full sib design with an
age correction  on the trait

ANOVA model

/\

Vi = W+ s+ dy + B + ey

I

Regression model

s, = effect of sire i
d; = effect of dam j crossed to sire |
X = age of the kth offspring from i x j cross



Linear Models in Matrix Form

Suppose we have 3 variables in a multiple regression,
with four (y,x) vectors of observations.

Yi = 1+ B1%i1 + Boio + P3xi3 + €;
Inmatrix form, y=XpB+e

Y1 7 1 211 Zp T3 €1
| Y2 e X — 1 =z To T3 e — €2
y= =15 1 -
Ys 2 31 T32 T33 €3
2
Y4 Bs 1 z41 T4 a3 €4

The design (or incidence) matrix X. Details of both the
experimental design and the observed values of the
predictor variables all reside solely in X

In-class Exercise

Suppose you measure height and sprint speed for
five individuals, with heights (x) of 9, 10, 11, 12, 13
and associated sprint speeds (y) of 60, 138, 131, 170, 221

1) Write in matrix form (i.e, the design matrix
X and vector B of unknowns) the following models

®y = bx
*y=a+ bx
oy =bx?

*y=a+bx+ cx?

2) Using the X and y associated with these models,
compute the OLS BLUE, b = (X"™X)"XTy for each 12



Rank of the design matrix

With n observations and p unknowns, Xis an n x p
matrix, so that X"™X'is p x p

Thus, at most X can provide unique estimates for up
to p < n parameters

The rank of X is the number of independent rows of
X. If Xis of full rank, then rank = p

A parameter is said to be estimable if we can provide
a unique estimate of it. If the rank of X'is k < p, then
exactly k parameters are estimable (some as linear
combinations, e.g. $,-3p3 = 4)
if det(X™X) = 0, then X is not of full rank

Number of nonzero eigenvalues of X™X gives the
rank of X.

Experimental design and X

e The structure of X determines not only which
parameters are estimable, but also the expected
sample variances, as Var(b) = var(e)* (XTX)"!

e Experimental design determines the structure of X
before an experiment (of course, missing data almost
always means the final X is different form the
proposed X)

 Different criteria used for an optimal design. LetV =
(X™X)'. The idea is to chose a design for X given the
constraints of the experiment that:
— A-optimality: minimizes tr(V)
— D-optimality: minimizes det(V)
— E-optimality: minimizes leading eigenvalue of V



Ordinary Least Squares (OLS)

When the covariance structure of the residuals has a
certain form, we solve for the vector § using OLS

If residuals follow a MVN distribution, OLS = ML solution

If the residuals are homoscedastic and uncorrelated,
o%(e) = 0.2, o(e;e) = 0. Hence, each residual is equally
weighted,

Sum of squared AT~
residuals can Z =e e=(y—XB)"(y —XB)

be written as

Predicted value of the y's

15

Ordinary Least Squares (OLS)
D el =e"e=(y—Xp) (y—Xp)
1=1
Taking (matrix) derivatives shows this is minimized by
T — T
p=XX)"X"y
This is the OLS estimate of the vector 8

The variance-covariance estimate for the sample estimates
is .
Vg = (X"X)"

The ij-th element gives the covariance between the
estimates of ; and ;. 16



Sample Variances/Covariances

The residual variance can be estimated as

—

o3

1 ~
~ n—rank(X) ;ez

The estimated residual variance can be substituted into
_ T -1 2
Vg = (XTX) 102

To give an approximation for the sampling variance and
covariances of our estimates.

Confidence intervals follow since the vector of estimates
~ MVN(B, V)

Example: Regression Through the Origin

yi=Bx + ¢
()
e x (2] 0] =)

n n
X'X=) a X'y=} mu
i—1 i=1

(B = — ZJ(yi-:—ﬁﬁari)2
n—1 ; 1
0l = — Z(gﬁ - Bzi)?




Polynomial Regressions

GLM can easily handle any function of the observed
predictor variables, provided the parameters to estimate
are still linear, e.g. y = a + B,f(x) + B,gx) + ~ + e

Quadratic regression:

yi = a+ B T + B + €

o 1 =, x?
p 1 zo L%
ﬂ - ‘dl x f—
1 Tn Iy 19

Interaction Effects

Interaction terms (e.g. sex x age) are handled similarly

Yi=a+01Zi+ BT+ B3 TiaTiz +€

o I 2y 22 21Ty
1 =z T Io1T

8- B, X—|" ?1 ?2 21. 22
(32 N : :

ﬁS 1 Tny Tnz TniTn2

With x, held constant, a unit change in x, changes y

by B, + B3X (i.e., the slope in x, depends on the current
value of x;)

Likewise, a unit change in x, changes y by 3, + pBsx,

20



The GLM lets you build your
own model!

e Suppose you want a quadratic regression
forced through the origin where the slope of
the quadratic term can vary over the sexes
(pollen vs. seed parents)

o Y= Byx; + Pox? + Basix

® s is an indicator (0/1) variable for the sex (0 =
male, 1 = female).
— Male slope = 8,
— Female slope =, + f3;

21

Generalized Least Squares (GLS)

Suppose the residuals no longer have the same
variance (i.e., display heteroscedasticity). Clearly
we do not wish to minimize the unweighted sum
of squared residuals, because those residuals with
smaller variance should receive more weight.

Likewise in the event the residuals are correlated,
we also wish to take this into account (i.e., perform
a suitable transformation to remove the correlations)
before minimizing the sum of squares.

Either of the above settings leads to a GLS solution

in place of an OLS solution.
22



In the GLS setting, the covariance matrix for the
vector e of residuals is written as R where

Rij = o(ei,ej)

The linear model becomesy = X + e, cov(e) = R

The GLS solution for f is
-1
b=(X"RX) X'Rly

The variance-covariance of the estimated model
parameters is given by

- -1
Vp =(X"R7IX) o2

23

Model diagnostics

e |t's all about the residuals
e Plot the residuals
— Quick and easy screen for outliers
e Test for normality among estimated residuals
- Q-Q plot
— Shapiro-Wilk test
— If non-normal, try transformations, such as log

24



OLS, GLS summary

OLS GLS

Assumed distribution

of residuals e~ (0.0%1) e~ (0.V)
Least-squares

estimator of 3 3- (_XTX) lXTy 3 (XTV*X) lXTV”y
Var(3) (XTX) g2 (XTV1X)-!
Predicted}yalues,

y = X3 X(XTX) 1 xTy X(XTv1x) 1 xXTvly
Var(¥) X(XTX) 1 X" 52 X(X'vix)1x?

25

Fixed vs. Random Effects

In linear models we are trying to accomplish two goals:
estimation the values of model parameters and estimate
any appropriate variances.

For example, in the simplest regression model,

y = a + Bx + e, we estimate the values for a and § and
also the variance of e. We, of course, can also
estimate the e, = y. - (o + px,)

Note that a/p are fixed constants we trying to
estimate (fixed factors or fixed effects), while the

e, values are drawn from some probability distribution
(typically Normal with mean O, variance 02,). The

e, are random effects.

26



This distinction between fixed and random effects is
extremely important in terms of how we analyze a model.
If a parameter is a fixed constant we wish to estimate,

it is a fixed effect. If a parameter is drawn from

some probability distribution and we are trying to make
inferences on either the distribution and/or specific
realizations from this distribution, it is a random effect.

We generally speak of estimating fixed factors (BLUE) and
predicting random effects (BLUP -- best linear unbiased
Predictor)

“Mixed"” models (MM) contain both fixed and random factors

y=Xb+Zu+e, u ~MVN(Q,R), e ~ MVN(O,52,I)

Key: need to specify covariance structures for MM
27

Example: Sire model
yj=uts +eg
Here u is a fixed effect, and e is a random effect

Is the sire effect s fixed or random ?

It depends. If we have (say) 10 sires, if we are ONLY
interested in the values of these particular 10 sires and
don’t care to make any other inferences about the
population from which the sires are drawn, then we can
treat them as fixed effects. In the case, the model is

fully specified by the covariance structure for the residuals.
Thus, we need to estimate u, s, to s, and 02, and we

write the model as y; = u +s; + ¢;, 0%(e) = 0%, |

28



Random effects models

¢ |t is often useful to treat certain effects as
random, as opposed to fixed

— Suppose we have k effects. If we treat these
as fixed, we spend k degrees of freedom

— If we assume each of the k realizations are
drawn from a normal with mean zero and
unknown variance, only one degree of
freedom lost --- that for estimating the
variance
* We can then predict the values of the k

realizations

29

Environmental effects

Consider yield data measured over several years in a
series of plots.

Standard to treat year-to-year variation at a specific
site as being random effects

Often the plot effects (mean value over years) are
also treated as random.

For example, consider plants group in growing

region i, location k within that region, and year

(season) k for that location-region effect

- E=R+ L + ey

— Typically R can be a fixed effect, while L and e are
random effects, L, ~ N(0,02) and ¢, ~ N(0,02,)

30



Random models

e \With a random model, one is assuming that
all “levels” of a factor are not observed.
Rather, some subset of values are drawn
from some underlying distribution

— For example, year to year variation in rainfall at a
location. Each year is a random sample from the
long-term distribution of rainfall values

— Typically, assume a functional form for this
underlying distribution (e.g., normal with mean 0)
and then use observations to estimate the
distribution parameters (here, the variance)

31

Random models (cont)

e Key feature:

— Only one degree of freedom used (estimate of
the variance)

— Using the fixed effects and the estimated
underlying distribution parameters, one then
predicts the actual realizations of the individual
values (i.e., the year effects)

— Assumption: the covariance structure among the
individual realizations of the realized effects. If
only a variance is assumed, this implies each
realization is independent. If realizations are
assumed to be correlated, this structure must be
estimated.

32



Random models

e Let's go back to treating yearly effects as
random

e |f assume these are uncorrelated, only use
one degree of freedom, but makes
assumptions about covariance structure
— Standard: Uncorrelated

— Option: some sort of autocorrelation process, say
with a yearly decay of r (must also be estimated)

e Conversely, could all be treated as fixed, but
would use k degrees of freedom for k years,
but no assumptions on their relationships

(covariance structure) 33

yj=uts +eg

Conversely, if we are not only interested in these
10 particular sires but also wish to make some
inference about the population from which they
were drawn (such as the additive variance, since
0%, = 402, ), then the s; are random effects. In this
case we wish to estimate u and the variances
0?, and 0?,. Since 2s; also estimates (or predicts)
the breeding value for sire i, we also wish to
estimate (predict) these as well. Under a
random-effects interpretation, we write the model as
yi =W+ s + ey 0%e) = 0%, 0%s) = 0%A

The relationship matrix A of know constants is

given by the pedigree and is discussed later

34



Identifiability

* Recall that a fixed effect is said to be
estimable if we can obtain a unique estimate
for it (either because X is of full rank or when

using a generalized inverse it returns a
unique estimate)

— Lack of estimable arises because the experiment
design confounds effects

e The analogous term for random models is
identifiability

— The variance components have unique estimates

35

The general linear mixed model

Vector of fixed effects (to be estimated),
e.g., year, sex and age effects

Vector of
observations Incidence matrix for random effects
(phenotypes)
Y — XB + ZU + e Vector of residual errors
(random effects)
Incidence Vector of random
matrix for

effects, such as
individual
Breeding values
(to be estimated)

fixed effects

36



The general mixed model

Vector of fixed effects

Vector of
observations Incidence matrix for random effects
(phenotypes)
Y — XB + ZU + e Vector of residual errors
Incidgnce Vector of random
matrix for offects

fixed effects

Observey, X, Z.
Estimate fixed effects B

Estimate random effects u, e 37

Means & Variances fory = Xp + Zu + e
Means: E(u) = E(e) =0, E(y) = Xp

Variances:

Let R be the covariance matrix for the
residuals. We typically assume R = ¢2_*|

Let G be the covariance matrix for the vector
u of random effects

The covariance matrix for y becomes
V=2GZ"+R

Hence, y ~ MVN (Xf3, V)

Mean X due to fixed effects

Variance V due to random effects .



Chi-square and F distributions

Let U, ~ N(O,1), i.e., a unit normal

The sum U;2 + U2+ + U2 is a chi-square random
variable with k degrees of freedom

Under appropriate normality assumptions, the
sums of squares that appear in linear models
are also chi-square distributed. In particular,

n

—\2 -
Z(wi_") ~ X1

i=1
The ratio of two chi-squares is an F distribution

39

In particular, an F distribution with k numerator
degrees of freedom, and n denominator degrees
of freedom is given by

2
2 kn
Xn/T
The expected value of a chi-square with k degrees

of freedom is k, hence numerator and denominator
both have expected value one

F distributions frequently arise in tests
of linear models, as these usually involve ratios

of sums of squares.

40



Sums of Squares in linear models

The total sums of squares (SST) of a linear model
can be written as the sum of the error (or residual)

sum of squares and the model (or regression) sum
of squares

SST = SSM + SSE

b T~
Y wi—9? D .@-9* Y. (vi—v)’

r2, the coefficient of determination, is the
fraction of variation accounted for by the model

SS, S5, 4

Sums of Squares are quadratic products

Tl n n n 2
SSr=) (yi—9)° =) vy’ = Zy?—% (Zyi)
=1 =1 i=1

i=1

We can write this as a quadratic product as
YO T 1 T T 1
SSr=y'y—-—-yJy=y (I-=J])y
n n
Where J is a matrix all of whose elements are 1's
n n
SSe =) (yi—) =) &
=1 =1
-1
SSp = y7 (I - X (X7x) xT> v

, -1
SSur = SSr — Sk = y7 (x (x7x) X7 - lJ) y

n 42



Expected value of sums of
squares

* In ANOVA tables, the E(MS), or expected
value of the Mean Squares (scaled SS or Sum
of Squares), often appears

e This directly follows from the quadratic
product. If E(x) = u, Var(x) =V, then
— E(xTAX) = tr(AV) + uTAu

43

Hypothesis testing

Provided the residual errors in the model are MVN, then for a model
with n observations and p estimated parameters,

SSL‘ 2
U? ~ Xn—p

Consider the comparison of a full (p parameters)
and reduced (q < p) models, where SSE, = error SS for
reduced model, SSE; = error SS for full model

(SSE‘.. - SS@) / (SSEf ) B (n — p) (SSE,_ - 1)

p—q n—p/) \p—q/) \SSg
The difference in the error sum of squares for the full and reduced
model provided a test for whether the model fit is the same

This ratio follows an F_, ., distribution
' 44



Does our model account for a significant fraction of the
variation?

Here the reduced model is justy, = u + e

In this case, the error sum of squares for the
reduced model is just the total sum of squares,
and the F test ratio becomes

(28) (8 ) - (32 ()
p—1 SSg, S \p-—1 1 — 72

distribution

This ratio follows an F_;

45

Different statistical models

GLM = general linear model
— OLS ordinary least squares: e ~ MVN(O,cl)
— GLS generalized least squares: e ~ MVN(O,R)

Non-linear models

— Parametric growth curves

Mixed models

— Both fixed and random effects (beyond the residual)
Mixture models

— A weighted mixture of distributions

Generalized linear models

— Nonlinear functions, non-normality

46



Mixture models

* Under a mixture model, an observation potentially

comes from one of several different distributions, so

that the density function is mt,¢, + 7, + 7305
— The mixture proportions &; sum to one

— The ¢, represent different distribution, e.g., normal with mean y;

and variance o2
* Mixture models come up in QTL mapping -- an

individual could have QTL genotype QQ, Qq, or qq

— See Lynch & Walsh Chapter 13

* They also come up in codon models of evolution, were a
site may be neutral, deleterious, or advantageous, each

with a different distribution of selection coefficients

— See Walsh & Lynch (volume 2A website), Chapters 10,11

Generalized linear models

The Generalized Linear Model (note the ized ending) takes this a step further
by assuming for some monotonic function g, that

Elyil=g <;t + Z%Im) (2)

k=1
In particular, taking the inverse g~ ! of the function g returns a linear model, with

9 (Elu]) =pn +Z Brxik (3)
k=1

The function f with the property that expresses the expected value of the
response variable as a linear function of the predictor variables, i.e.,

n

f(Ely])=p+ Z BrTik
k=1
is called the link function of the particular generalized linear model.

Typically assume non-normal distribution for
residuals, e.g., Poisson, binomial, gamma, etc

47
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Likelihoods for GLMs

Under assumption of MVN, x ~ MVN( ,V), the likelihood
function becomes

LBV | %) = @n) "2 |[VI2 exp [_Tlﬁx —B) VT x - m]

Variance components (e.g., 0%, 02, etc.) are included in V

REML = restricted maximum likelihood. Method of
choice for variance components, as it maximizes

that part of the likelihood function that is independent
of the fixed effects, p.

49



Overview And Introduction to
Mixed Models

* References
— Searle, S.R. 1971 Linear Models, Wiley

— Schaefer, L.R., Linear Models and Computer
Strategies in Animal Breeding

— Lynch and Walsh Chapter 8

Linear vs non-linear

Linear
2d order Polynomial

Y; =b, +b X;; +b2X12i +b, X +b4xfi +b5(xliX2i)"+gl
Non-linear

Y, =be g

log-linear

In(Y, )= In(b,) —b X, +In(s,)




Why Linear: Life is Non-Linear

Taylor Expansion

Y = £(X)
Vst L @A) F@(cay | f@)ea)
1 2! n!

Y= X Y =oX Y =¢

x> x x

Ata=0 T

Lower Order Terms Are more Important than

higher
Works for other values of ‘a’ but not as exact, example a=.1
2 3 4
Y = e—x Yrlox+ X X
— 21 3 4
X=.1 Y =1
Y =e~! =.904837 Y~1-x=1-1=.9

2 2
Yelox+ X 21140t~ 905
2l ol

2 3 2 3
Yaloxe X X q a0t Y 904833
2 3 ]




Generality

« Any underlying unknown function can be
approximated by a polynomial equation (linear
Model)

— Lower order terms are more important than higher
order

— Model does not have any basis in biological function

— Even highly non-linear systems can be approximated
by a linear model with only lower order terms

— Purely Descriptive
— Allows tests of hypothesis related to treatment effects
— Allows limited prediction (expansion is around a point)

5

Linear Model

« Can be used to approximate highly non-
additive genetic systems, including
dominance and epistasis

 Predictive ability is fairly good, even if
underlying mode of gene action is non-
additive

 Linear Models Extensively Used in Animal
Breeding




One Random effect Linear Model

Coefficients

Y, =by X, +b X +B, X7 +b, X, +b, X5, + e,

Dependent
Variable

(Trait) Independent

Variables Random Error

Matrix Notation
Y1 :boX01+b1X11+b2x121+b3X31+b4X51+‘91
Y, =byXg, +0, Xy, +b,2X122 +by X5 +b4sz T &

Y, =b, X, +b Xy, +tilezn +b, Xy, +b4an +é,

2 L
Yy Xoo Xy X Xy X b, &
Y.2 _ X.02 X'12 X .212 X‘22 X ‘222 b, |+ 8 2
: : : 2 : 2 b, :
Yn XOn xln X 1n X2n X 2n b &,
A

~
Y=XB+¢




Estimation
Y=XB+¢

Ordinary Least Squares

* Independent variables (X)
— fixed
— measured without error

* Residuals
— Random

— Independently and Identically Distributed (1ID)
with Mean 0 and variance 62

Independently and Identically Distributed
with Mean 0 and variance G2

V(¢) = E[s—E()] T aror dstiotion o
. sampled is the same
ol 0
0. > 0 0
V(e) = | /
| 0 ol |
V(e)=1co?!

No Environmental Correlations

When would these assumptions be violated? 10




Ordinary Least Squares Estimator

Find Solutions such that the sum of the residuals squared is minimum

£ :YJ-—E(Y]-) .
k Zn:giz 23'32[51 & & 6:2
E(Y,) = b, )
i=0 "

i €' = 2‘9 _Z( j_gbjxijjz

=1
i=0 J

Least Square Estimators
n n m 2

sa=3er =3[, - 3o,
j=1 i=0

=L

Find all bi such that sum of residuals squared is minimum

923y -3, x,

Set=0 for each i and solve system




Normal Equations

_ngi D Xoey o ZXOijj__bo_ _ZXOJyJ_
Doy DX D XX | by _ D %Y,

DTS FTI LR
X'XB=X'Y
B=(X'X)"'(X"Y)
V(B)=c?(X'X)"

Prediction
Y = XB B=(X'X)"(X'Y)
V(Y) =V (XB) V(B)=c(X'X)"

V(Y) =XV (B)X'
V(Y)=X(X'X)"' X6




Example Factor Affecting Fatty Acid
From Gill, J. Design and Analysis of experiments

Fatty Acid| Amount over Age
Weight (KQg)
10 6 28
20 12 40
17 10 32
12 8 36
11 9 34

R Code Example 1

Y = matrix( ¢(10, >B
20, [1]
17, [1,] 2.3333333
12, [2,] 2.0833333
11 ),5,1) [3,]1-0.2083333
>
X = matrix(c( 1, 6, 28,
1, 12, 40,
1, 10, 32,
1, 8, 36,

1, 9, 34),5,3, byrow = TRUE)
LHS =(t(X) %*% X )
RHS =(t(X) %*% Y)
C = solve(LHS)
B =C %*% RHS
B




BY GLM

» dataone;

» input fatty_acid over_wt age;
* cards;

+ 10 6 28

+ 201240

« 171032

+ 12 836

+ 11 934

e proc glm;

* model fatty_acid=over_wt age
/ solution;

* run;

* quit;

» Compare results from IML to

GLM

Generalized Least Squares (GLS)

* Ordinary Least
Squares

— Independent variables
* fixed
* measured without error
— Residuals
* Random

* Independently and
Identically Distributed
(IID) with Mean 0 and
variance g2

* Generalized Least
Squares

— Independent variables
* fixed
* measured without error
— Residuals
* Random

V(e)=V




GLS

Minimize vwlio
weighted SS (y = Xb)'V"(y — Xb)

Weighting by the inverse of the variance

- “1y\ -1 -1

b=X'V'X)"(X'Vy)
If

V=1Ic!
b =(X'X)*(X'y)

Maximum Likelihood (ML) Solution to Same

Problem
* Generalized Least e Maximum Likelihood
Squares — Independent variables
— Independent variables « fixed
* fixed » measured without error
* measured without error — Residuals
— Residuals + Random
* Random
V(e)=V
V(e)=V

e~ N(0,V)

20




ML

| — 1 ~3(y-Xb) V! (y—Xb)
_ N 1 €
(27)2|V|2
Maximize w.r.t b 8(In L) =0
b

InL=In(C)-1(y—Xb) V' (y - Xb)

21

a(In L . L
(ar:) ). ~5(y=Xb) V' (-X)~3(~-X) V' (y - Xb)
a(g:)L) = (y-Xb)V'X
(y—Xb)V'X=0
. Ny Same as GLS
(y _(Xb) )V X=0 Just because one
(y-b'X')WV'X=0 approach has an
b'X'VX = y' VX assumption does not

mean this assumption is
(y'V_lXXX'V‘IX)_l necessary in general

(X VX (x'vy)

l’;l
b

22




Variance of b

V(b)=(x'v'XJ
Noteif V = 1(782

V(b)=c(X'X)"

*This is not the distribution of b, but rather is the variance of the estimate
*b is considered a fixed effect and as such does not have a distribution

23

BLUP Best Linear Unbiased
Prediction-Estimation

References
Searle, S.R. 1971 Linear Models, Wiley

Schaefer, L.R., Linear Models and Computer
Strategies in Animal Breeding

Lynch and Walsh Chapter 26

24




OLS Independently and Identically Distributed
Errors with Mean 0 and variance o2

The residual distribution
rom which each
observation is sampled is

V(e)= E[g— E(g)]2

2
o, 0
For Some Traits Mean and
O 0'2 O O Variance Correlated
Vi(e) = .
. Individuals Reared in Same
2 Pen, plot, or Cage Cause
i O (o) these to be nonzero
2
V(e)=1o;
Residuals independent
25
Solutions
« GLS

— Fixes problem with changing variances and
correlations in the data

« What about fixed effects?
— How does one correct for
» Environmental trend without a control
» Herd effects
* Year effects
» Hatch effects
+ Confounding 2




Confounding of data

Herd effects

— Balanced design no problem

— Require sample of every family in every herd
— Old solution was within herd deviations

— What if better herds have better genetics

Fixed effects must be adjusted for genetic
differences

Random effects must be adjusted for fixed
effects

Requires simultaneous solutions

27

Mixed Model

Simultaneous Adjustment of Fixed and Random effects
Separates
Independent variable
. X=value of each fixed effect
into those that are b=linear regression coefficients

: Z=incidence matrix of random

— Fixed Xb effect, usually a 1 corresponding to
each animal

— Random Zu u=estimate of random effects

(breeding value)

Y=Xb+Zu+e

More importantly model’s the variance structure
28




Fixed and Random Effects

* Fixed Effect
— Inference Space only to those levels
— Age, Hatch, Location, Parity, and Sex effects

« Random Effect
— Effect Sampled From a Distribution of Effects

— Inference Space To The Population From Which The
Random Effect Was Sampled

— If a new sample of observations were made (a new
experiment), and the levels were completely different
between the two samples, then the factors is usually
random

29

Random
Effect

Gametes
Q@ Each sample from
/\ the bull is different,
f \ no two gametes
/ ! are the same
y b

\/ \

Bad éOOd

Sample

Inference is to the genetic worth of the bull (breeding value) 30




Variances In Mixed Models

Y=Xb+Zu+e V)=0
V(u)=E(uu')=G

V(e)=E(ee')=R
V(Y)=V(Xb+Zu+e) =ZGZ'+R

Estimate the breeding values “u” and fixed effects simultaneously

Old concept was to first adjust for the fixed effects, output the
residuals and estimate the random effects

Resulted in Biased Estimates of Both Fixed and Random Effects

31

ML Derivation of Solutions
Joint density of y and u f (y,u) = g(y/u)h(u)

g(y/u)=g(e)

_1eN ()t N 1 ~LuV@tu
gle)=—+—e Y h(w)=—ij—e"
(27r)2 o, (2”)2 Oy
f _ 1 —%e'R Te 1 —%u'Gflu
(y’ u) - 1y e 1N e
(2”)2 Oe (2”)2 Oy

32




_leR7 e —%u'G_lu

f(y,uy)=L=ce > " e
Maximize w.rtb and u
In(L)=In(c)—ie'R7'e—1u'G'u
e=Y—-Xb—-Zu
In(L) = In(c) - 1(Y -Xb—Zu) R (Y - Xb—Zu)
—1u'G™u

33

SIMPLIFY FIRST THEN TAKE DERIVATIVES
(Y-Xb-Zu)R™*(Y-Xb-Zu)+u'G'u
= [Y' —(Xb) —(Zu)']R'l(Y —Xb—Zu)+u'G'u
=YR'Y-YR'Xb-YR 'Zu

—(Xb)R*Y 4(Xb)R*Xb+(Xb)R'Zu

—(Zu) R'Y4(Zu) R Xb+(Zy) R Zu +u'G 'u

v ~
o(inL) iy —IYR‘l —X'R‘ +(Xb)B‘1X+
b XR'Xb+XR'Zu+(Zu)R'X =0

—2XR'Y+2XR ' Xb+2XR*'Zu=0
XR!Xb+XR'Zu=XR'Y

34




Take Derivative w.r.t u
(Y-Xb-Zu)R™*(Y—-Xb-Zu)+u'G'u

=YR'Y-YR'Xb-YR 'Zu
—(Xb)R*Y +(Xb)R*Xb +(Xb)R*Zu
~(Zu)R'Y +(Zu) R'Xb +(Zu)R'Zu +u'G'u

o(inL) ~YR'Z+(Xb)R7'Z~(Z)R™Y +(Z)R™'Xb
ou 0 4 (Z)R'Zu+(Zu)R'Z+2G u=0

—2YR'Z+2ZR*Xb+2ZR'Zu+2Gu=0

ZRXb+ZR'Zu+G u=ZR'Y

35

Mixed Model Equations
XR*Xb+XR*Zu=XR'Y
ZR ' Xb+ZR'Zu+Glu=ZR'Y

XR'X XR7'Z |b| |[XRY
{Z'Rlx ZR'Z+ Gl}u - {Z'RlY}
Simplifications If R=1c’
XX XZ b| |XY
{Z'X ZZ7+ ale}M - {Z'Y}
Alternative derivations are possible that do not require Normal Dist'n Assumptions,

resulting in these same solutions and are therefore also Best Linear Unbiaseg
Predictors (BLUP)




BLUP Breeding Values

XX X7Z b| |XY
ZX 7Z7Z+0G*'|u] |ZY
With Diploid Organisms and G= AG: G'= —ZA_l
Assuming Additivity Oa
XX X7Z bl [XY

Z'X Z'Z+-§A—1 ul |Z'y

Only Estimate of Ratio is Needed Only inverse is needed
Example 2
" 1 ) . (10) 3
6) 4 9 5
7] [1] (1 0 0 0 Ofa] [e]
9 1 01 0 0 Ofa, e,
10 |=|1][u]+|0 0 1 0 Ofa,|+|e,
6 1 0 001 0fa e,
9] (1 0 000 1ja| |6&,




77 Example 2
9
y=|10] @ * © 2] (10)3 b=[u]
9 6) 4 9 5
1] 1 0 0 0 0] EX e, ]
1 01000 a, e,
X=|1 Z=/0 01 00 u=|a, e=|e,
1 00010 a, e,
1 0000 1 a | e |
Find u
M 1 © 2] (10) 3 1.0 0 % 0]
N/ NS Con b
o s A={0 0 1 0 %
© 4 © 1401 4
0 7 3 ¢+ 1
Assume heritability=.5
2 —
% =2 501 0 -1 0
o, =2
¢ , 1 3 1 -1
h?=—2_=5 7'71% A" 1 5 _
" ZZ+%A'=|0 1 5 0 -1
] -1 -1 0 3 0
O-e
— =1 0 -1 -1 0 3
o, L i




~
s

N
s

N S,

|
- O v v =

[EE

w N=

N[~

MME

X7Z
7.7+ g— Al

1

0 -1 0
11 -1
5 0 -1
0 3 0
-1 0 3

u] [41]
a, 7
a'2

a, |10
a, 6
a5 | | 9]

y= matrix( c(7,

9,
10,
6,
9),5,1)
SigA=2
SigE=2
lam=SigE/SigA

R code Example 2

A =matrix(c(1, 0,0, .5, 0,

Z =matrix(c(1, 0,0, 0,0,

0
0
0
0
X =matrix( c(1,
1,
1
1
1

0,1,0, 5,5,
0,0,1,0, .5,
5,5,0,1,.25,
0,5,5,.25,1 ),5,5)




R code

LHS = rbind( chind(t(X) %*% X , t(X) %*% Z ),
chind( (Z) %*% X , (1(Z) %*% Z ) + (lam * solve(A)) ))

RHS = rbind(t(X) %+*% y, A
t(2) %% y) b= [ ,U]
C = solve(LHS) o
a
BU = C %*% RHS [1] 8.30 3
[2,]-0.96 2
BU [3] 0.07 —| 4
[4.] 0.88 U=l3a
yhat=x*BU[1]+BU[2:6]  [5.]-1.06 a,
yhat [6,] 0.55 ~
|35 |

Compare predicted value with phenotype

@ 1 © 2] (10) 3
6 4 ©® 5

[1]7.34
~ [2,] 8.37
Y = [3]918
[4]7.23
[5,] 8.85

*Values were regressed partially to the mean u=8.30

*Note that simple average of phenotypic values gives u=8.20
*The fixed effects were adjusted for the random effects and random
effect were adjusted for fixed effects simultaneously




Assume heritability=.01

M 1 © |2 (10) 3

NV

6 a @ 5

ol =2
*What do you expect the breeding values to be?
2
o, = 200 «In terms of deviation from overall mean?
«In terms of deviation from observed phenotype?
o2~
202
9
Rerun R code
@ 1 © 2] (10) 3
6 4 © 5
b=[a]
[1,] 8-20 éi
[2,] -0.02
A [1,] 8.17
2.1 00 Bl BElo
Es’} -0.02 U=13 Y= EH e
[6:] 0.02 a, [5.] 8.21
|8 |

«All values were regressed to the mean u=8.20

«In this case u is the average of the phenotypic values because

there were no genetic effects to adjust for

10




Assume heritability=.99

7 1 © |2 (10) 3

N/ N\

(6) 9

*What do you expect the breeding values to be?
«In terms of deviation from overall mean?
«In terms of deviation from observed phenotype?

11

Rerun R code

@ 1 © |2 (10) 3

6 4 ©® 5

b=|u|rs -
[1,] 8.65 [,u ] 4
[2,] -1.65 3 [1
[3]0.32 K - E
[4,]1.33 U=|a, Y= [4
[5,] -2.61 3, [5
[6,] 0.35 i

|85

N w u ow o
[ ]

6.99
8.97
9.98
6.03
9.00

The phenotypic and genotypic means are the same

12




Variance of the Estimates

C11 C12 XX XZ

' ' 062 -1
Cy Cp| |ZX ZZ+%A

V (b) = C,07

V (ﬁ - U) - C22 Gez Prediction Error Variance

Prediction Error Variance

V (ﬁ) = AGaz + CZZGGZ Including Drift Variance

Kennedy and Sorensen Quantitative Genetits

PEV

: 039093 0.65827
0.65827 0.68854 0.39093 1.2686 0:60026

0.29509 2.88536 0:29509 1.5574 1.5574
0.32030 0.295

14




Selection Experiments and Replication

Falconer,D.S. 1953. Selection for Large and Small Size in Mice. Journal Of Genetics 51:470-501

%
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&
P
)

=)

b-week weighe |
L
f=]
-~ 0
P}
*k\\'\%:?z
S
L] .

) S —
M bred F1
© lines

L

-
o1 2

Il
&

IS

Generations

Is there significant
asymmetrical response to
selection?

Replicated experiment
needed to find variation in
selection response including
random genetic drift

Alternative: no replication

find EV:

includes variation in response
due to drift.

Assumes additive infinitesimal
model

Up is not significantly different from 0 while down is significantly

less, thus asymmetry remains even after correcting for genetic drift 15
Missing Values (Sex Limited Traits)
Generation
1 @ 1 M (10) 3
\ / 1.0 0 1 0]
010 4% 1
2 6 M 5 2 2
. ) © 4 g A=/0 01 0 }
€ 1109 1 1
_ b= 2 2 4
Y= 10 e= e3 _[’I:l] _0 % % % 1_
6 _e4 31
_ a,
A h2=5
1 00 0O U=|a, ssume
“H Teoid |
L _a5_ 16




R code Example 3

Y = matrix( c(7,

10,
6), 3,1)

SigA=2

Sige=2

lam=SigE/SigA

Z = matrix( c(1, 0, 0, 0, O,
0,0,1,0,0,
0,0,0, 1, 0), 3,5, byrow = TRUE)

X = matrix( c(1,
1,
1), 3,1)

A =matrix(c(1, 0,0, .5, 0,
0,1,0,.5,5,
0,0,1,0, .5,
.5,.5,0, 1,.25,
0,5,5,25,1 ),5,5)

LHS = rbind( cbind(t(X) %*% X , t(X) %*% Z),
cbind( t(Z) %*% X , (t(Z) %*% Z) + (lam * solve(A)) ))

RHS = rbind(t(X) %*%Y,
t(Z) %*% Y)

C = solve(LHS)
BU = C %*% RHS

BU

X1 = matrix( c( 1,
1,
1,
1,
1),5,1)

yhat=X1*BU[1]+BU[2:6]
yhat




@) (20) 3

NN

[1,]7.846 (&, ] Y=
[2,]-0.641 R
[3,] -0.435 a, (1,] 7.205
A 2,1 7.410
[4,]1.076 v=|la [2.]
[5,]-0.974 3 [3.] 8.923
[6,] 0.320 a [4,] 6.871
' 4
[5.] 8.166
[ %5 ]

19

Extensions of Model

* Inclusion of Dominance and Epistasis
— Dominance
« Dominance effects are the result of interaction of alleles within a locus
« Dominance relationship matrix needed

« Reflects the probability that individuals have the same pair of alleles in
common at a locus

— Epistasis
« Epistatic genetic effects are the result of interactions between alleles at
different loci
« Epistatic relationship matrix needed
« Reflects the probability that individuals have the same pair of alleles in
common at different loci (4 possible pairings of 2 alleles at 2 loci)
— Useful in crossbreeding programs but generally not useful in pure
breeding programs
« An individual does not pass on dominance or epistatic effects (without
inbreeding or cloning), which are a function of both parents
« Exception is Additive x Additive epistasis is a function of 2 alleles at different

loci in the same gamete, but dissipates with recombination and/or
segregation

20




Estimation of Variances Using all Data in a Pedigree

* REML

— EM-REML iterative process whereby
» Avalue is assumed for additive variance
» Estimates of breeding values found

 Additive variance V(A) is estimated as variance of breeding
values V(A)=(u'A-lu +stuff)/n

» The new value of V(A) is substituted into the MME
 Estimates of breeding values (u) are found
» The process repeated until convergence
— DF-REML work by trial and error finding a value of
V(A) that maximize the likelihood

21
MM1
Estimation of Effects and Parameters via lteration and
MCMC coi
Distributions stimates
~ 2 J2 _ vA -1 2 ~
b |b,,a,0%,02,y~N| b~ S2=(a'A™a+v,S2)/0,
LHS, .
V,=Q+V,
2
2 2 ~ O, ~ R
ai |b,aiv,0'a,0'£,y~ N(ai, LHS“J Sj — (8'£+VSS§)/V8
ol |b,a,0%,y ~ 0,52 %7 V.=N+v,
Gflb,a,crﬁ,yﬂ?géj;gf e=Y-XB-Za

1. Solutions to MME are found using iterative approach (Gauss-Seidel)
2. With each lteration a random amount is added to each solution based on
the expected distribution
3. After processing all equations in the MME, new variances are computed and
a random amount is added to each solution based on the expected
distribution
4. After a burn in period, and many 1000 iterations, the average value of each
parameter, with the empirical standard error is the best estimate of the
effects and variances 22




Slide 22

WMM1 Sais a prior guess about sig(a)
Va is the degree of belief in that prior

Se is prior guess about sig(e)
Ve is degrees of belief in that prior

g is number of random effects

N is the number of phenotypes
William Muir, 5/20/2009



Appendix 1

Software packages for estimating
EBVs, Variance Components,
GWAS and genomic selection

23

Software engineering the mixed model for genome-wide association studies on large

samples
http://bib.oxfordjournals.org/content/10/6/664/T1.expansion.html

Build  Build Number
Flexible Automatic Sample Population Kinship Kinship of
modeling GWAS  size structure from from Random

pedigree marker Effects

Program Web address (http) Availability

TASSEL WWw. maizegenetics.net Free No Yes S Yes Yes Yes 1
SAS WIWW.525.Com Licensed Yes Yes 5 Yes Yes Yes =1
MP . Www_jmp.com'software/genomics Licensed Yes Yes NA Yes NA Yes =1
Genomics

ASREML  www.vsni.co.uk/software/asreml Licensed Yes Yes NA Yes Yes No =1
MTDFREML aipl arsusda gov/curtvtmtdfreml html  Free Yes No L Yes Yes No =1
DMU www.dmu.agrsd.dk Free Yes No L Yes Yes No =1
QxPak E;:lads.uga.edu TISIACY HEWPIOSEIS Yes Yes L Yes Yes No =1
WOMBAT  agbu.une edu an/~kmeyer/wombat Free Yes NA L Yes Yes No =1
EMMA(R) mouse.cs.uda edu/emma Free No Yes M No No Yes 1

24




Software
Ignacy Misztal UGA

e Qverview
— http:/Ince.ads.uga.edu/~ignacy/newprograms.htmi

 General Documents

— http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90.pdf
— http://nce.ads.uga.edu/wiki/lib/exel/fetch.php?media=remI|f90.pdf

» Binaries (UNIX, Windows, Max)

— http:/Ince.ads.uga.edu/html/projects/programs/

25

R packages

*  QTL mapping
— onemap — Itis used to generate or rearrange genetic maps
— rqtl — performs QTL mapping for bi-parental populations
— GAPIT — most common package for Genome-Wide Association
Mapping
* BLUP (Animal Model)
— pedigree — Generates A matrix from sparse pedigree
— MCMCglmm — Generalized Mixed Models incorporating pedigrees
— pedigreemm - Fit mixed-effects models incorporating pedigrees
* Genomic Selection

— rrBLUP - classic package to perform ridge regression BLUP and
GBLUP

— BGLR - whole genome regressions methods of genomic selection
— randomForest — Random Forest Regression (non-parametric GS)
— brnn — Bayesian Regularized Neural Network (non-parametric GS)
— parallel — Allows the use of multiple cores for faster computation

26




Appendix 2

Problems and Solutions

27

Problem 1

Find the best estimate of the genetic worth of each animal.
Assume a heritability of .5.

28




Answer Problem 1

proc iml;
start main;
A={1 0 0 0 0.5 0 0.25 0 0.125,
y={9 0 1 0 0 0.5 0 0.25 0 0.125,
13 0 0 1 o 0 0.5 0.5 0.25 0.375,
4 ’ 0 0 0 1 0 0.5 0 0.75 0.375,
12 0.5 05 0 o 1 0 05 0 0.25,
11, 0 0 05 05 0 1 0.25 0.75 0.5,
ll, 0.25 0.25 0.5 0 0.5 0.251 0.125 0.5625,
13' 0 0 0.25 0.75 0 0.75 0.125 1.25 0.6875,
9' 0.125 0.125 0.375 0.375 0.25 0.5 0.5625 0.6875 1.0625};
10}
AINV=INV(A) ;
x={1, lam=1; Answer
1, 10.07
1, z={1 00000000, 0.1
1, 010000000, 1689
1, 001000000, -é28
1, 000100000, 0505
1, 000010000, BU=  1.145
1, o0ooo0o001000, _631
1}; 000000100, 0564
0o000O0O0OO010O0, _619
000000O0O0 13}; 0.105
LHS=((X*X) | 1 (X *2))77 ((Z>*X) | | (Z™*Z+AINVHLAM))
RHS=(X"*Y)//(Z"*Y);
C=INV(LHS);
BU=C*RHS;
29
1
A 8]
E 11 2
3
4

J 10

Estimate breeding values for the males.
Assume a heritability of .5.

30




proc iml;
start main;

y={9,
12,
11,
13,
10}

Answer Problem 2

A={1 0 0 0 0.5 0 0.25 0 0.125,
0 1 0 0 0.5 0 0.25 0 0.125,
0 0 1 0 0 0.5 0.5 0.25 0.375,
0 0 0 1 0 0.5 0 0.75 0.375,
0.5 0.5 0 0 1 0 0.5 0 0.25,
0 0 0.5 0.5 O 1 0.25 0.75 0.5,
0.25 0.25 0.5 O 0.5 0.251 0.125 0.5625,
0 0 0.25 0.75 0 0.75 0.125 1.25 0.6875,
0.125 0.125 0.375 0.375 0.25 0.5 0.5625 0.6875 1.0625};
AINV=INV(A); Answer
lam=1; 11.03
-0.89
z=<{1 00000000, 0.247
ooo0o100000, 0.338
o0oo0o0010000, 0.307
000000100, BU= -0.075
0000O0O0OO 1}; 0.206
0.587
LHS=((XT*X) | 1 (X™*2)) /7 ((Z"*X) | | (Z~*Z+AINVHLAM)) ; 0.023
RHS=(X"*Y)//(Z"*Y); -0.102
C=INV(LHS);
BU=C*RHS;
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Genomic Selection
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Genomic Selection

* Assumes
— Dense markers evenly spaced across the genome

— Assumes markers are in LD with QTL affecting trait(s)
of interest

— Each marker accounts for an equal proportion of
genetic variance (infinitesimal model)

— Genetic Effects are Normally Distributed




Model

Y=Xb+Zu+e
V(Y)=V(Xb+Zu+e) =ZGZ'+R

M is the marker matrix

u 1 = M a 1 a is a vector of SNP effects
n, np—p, Note Ma is a vector of summed marker effects

V(u) = E(un,lul,n )= Gn,n
Gn N = O-,i*Mn pM o '"/'L  Genomic Relationship Matrix (GRM)

R=1Ic’

Genomic Relationship Matrix

 Assumes

— Alike in State (AIS) alleles were at one time a result of
a single mutation, thus IBD when traced back in
evolutionary time




AlS relationships

TA,=total allelic relationship at k" locus
TA,=2x coefficient of relationship(Malecot. 1948)

X Y
YA, < > Vehg
Ya Ya
%A, %A,
Ya
2 2

NY
i=1 j=1
TA =2—

Compute (AlS) relationship matrix (G)

2 2
I *
TA =2 21; G=0.G

4
2
GA*
TA=total allelic relationship at k" locus - ] .
TA=2x coefficient of relationship Is the additive genetic variance
(Malecot. 1948) associated with the markers for
the trait
L 2 2
Z TA, Opx <Oy
G * k=1 Note: with low marker density the
Xy - markers may not capture any

|_ genetic variance




Locus
C

o

E Pedigree

Individual 1 2 1 2 1 2 1 2 1 2 7 9
1 2 2 1 1 1 2 1 1 2 2 1
2 1 2 1 2 2 2 1 2 1 1
3 1 2 1 1 1 2 1 2 1 2
4 2 2 1 1 2 2 1 1 2 1 3 4 5
5 2 1 1 2 2 2 1 1 2 1 10 6 9
6 2 2 1 1 2 2 1 1 2 1

dividuals (XY) Total [elationsip=axy
x=1 2 >< 2 1 1 1 2 1 >< 1 2 2
y=1 2 2 l 1 11 11 2 l 1 1 l 2 21
sum 4 4 2 4 4
hared alleles 2 2 1 2 2 9 1.8
x=1 2 2 1 1 1 2 1 >< 1 2 2
ool 1<) ey LK 1
sum 2 2 2 2 0
hared alleles 1 1 1 1 0 4 0.8
IBD  PEDIGREE A
1 1 0 0.5 0.5
2 / o "1 ok
3 g 0.5 1 0/5
4 /gg 05 0.5
5 5 0.5 0.5 .5
6 Q.5 0.5 0.5 5
Parents assumed not related (False) Parents assumed non inbred (false) Full sibs assumed = relationship (false)
7
G* Con |puted Directly from M
LOCUS code
A B Cc D E Y 22=2 1
Individual 1 2 1 2 1 2 1 2 1 2 12=1
1 2 2 1 1 1 2 1 1 2 2 7 11=0 -1
2 1 2 1 2 2 2 1 2 1 1 9
3 1 2 1 1 1 2 1 2 1 2 10
4 2 2 1 1 2 2 1 1 2 1 6
5 2 1 1 2 2 2 1 1 2 1 9
6 2 2 1 1 2 2 1 1 2 1 1"
M N individuals x p markers M p markers x N individuals
1 1 -1 0 -1 1 1 0 0 1 0 1
2 0 0 1 0 -1 -1 0 -1 -1 0 -1
3 0 -1 0 0 0 0 1 0 1 1 1
4 1 -1 1 -1 0 -1 0 0 -1 -1 -1
5 0 0 1 -1 0 1 -1 0 0 0 0
6 1 -1 1 -1 0
0.8 -0.2 0.2 0.6 0.2 0.6 1.8 0.8 1.2 1.6 1.2 1.6
-0.2 0.4 0 0.2 0.2 0.2 0.8 1.4 1 1.2 1.2 1.2
0.2 0 0.2 0.2 0 0.2 1.2 1 1.2 1.2 1 1.2
0.6 0.2 0.2 0.8 0.4 0.8 1.6 1.2 1.2 1.8 1.4 1.8
0.2 0.2 0 0.4 0.4 0.4 1.2 1.2 1 1.4 1.4 1.4
0.6 0.2 0.2 0.8 0.4 0.8 1.6 1.2 1.2 1.8 1.4 1.8
MM'/5 "1 = G*

dimension nxn




Mixed Model Equations

M (n individuals x p markers)

G=MM'/L M(n,p)M’(p,n)

MM’(n,n)
XR™X XR'Z b| [XR'Y
ZR'X ZR'Z+1G"|u| |ZRY
Simplifications If R =107 n effects to estimate
XX XZ Ip] [XY
ZX Z7Z+—=G7|y| |zY

O p

G may not have an inverse

« G may not be positive definite

— The G matrix is an estimate of the true genetic
variance co-variance matrix

— Genotyping errors and possible inclusion of individuals
without all parents creates inconsistency

— Solution: Add small constant to diagonal elements
(ridge)

1

X'X | G}gz b] [XY
ZX Z7Z+—(G+0)" |ul| |72y

2
O px

A=cl 0




Example

1 10 0 0 0 0] U]
1
1 010000 u,
10 1
Yy = X=1b=[y0] , (00100 0p
000100 u,
1 000010 Us
) 000001 [u]
1 -1 0 -1 1] _ _
8 -2 2 6 2 6
c 010 -1 -2 4 0 2 2 2
0 -10 0 O -
M = MLl 20 2202 o =10
1 -11 -1 0 6 2 2 8 4 8 ol =
0 0 1 -1 O 2 2 0 4 4 4 c2=20
1 -11 -1 0 |6 2 2 8 4 8]
Note, only Y2 the additive genetic variance was captured by the markers
(missing heritability issue)
R code Example 4
NL=5 X = matrix( c( 1,
SigA=5 1,
SigE=20 1
Lam=SigE/SigA 1 ’
Y = matrix( ¢( 7, 1,
9, 1),61)
10,
6, M = matrix( ¢( 1,-1,0,-1,1,
9, 0,0,1,0,-1,
1).6.1) 0,-1,0,0,0,
) 1,-1,1,-1,0
Z = matrix( ¢( 1,0,0,0,0,0, PO
0,0,1,-1,0,
81 (131 (1)1 8j 8: gi 1,-1,1,-1,0),6,5, byrow = TRUE)
0,0,0,1,0,0,
0,0,0,0,1,0, G=(1/NL)*M%*%t(M)
0,0,0,0,0,1),6,6)

Check G for inverse
Gl=solve(G)




r=.00001
I = matrix( ¢( 1,0,0,0,0,0, ridge=r*|
0,1,0,0,0,0, G1=G+ridge
0,0,1,0,0,0, INVG=solve(G1)
0,0,0,1,0,0,
0,0,0,0,1,0,
0,0,0,0,0,1),6,6)
LHS = rbind( cbind(t(X) %*% X , 1(X) %*%Z),
cbind(t(Z) %*% X , H(Z2)%*%Z +Lam*INVG))
RHS = rbind(t(X)%*%Y,
t(Z)%*%Y) [1]8.76
[2,1-0.25
C = solve(LHS [3,]0.09
(LHS) [4,]-0.02 gEBV
BU = C %*% RHS [5]-0.16
[6,]-0.05
BU [7,]-0.16 13

G may not be positive definite
(2nd solution)

* multiply both sides of the second equation
by Gos.

XX X4 Iv] Xy
ZX ZZ+—<G' 4| |7y
GA*

X'X X7 m XY
u

0. GZLX 0.LGLZ+c oA GZL'Y




R code Example 4

NL=5 X = matrix( c( 1,
SigA=5 1,
SigE=20 1

Y = matrix( ¢( 7, 1,

9, 1,

10, 1)6,1)
6,

9, M = matrix( ¢( 1,-1,0,-1,1,
11),6,1) 0,0,1,0,-1,

Z = matrix( c( 1,0,0,0,0,0, ?_:II ?'?1’00
0,1,0,0,0,0, v
0,0,1,0,0,0, 0,0,1,-1,0,
0,0,0,1,0,0, 1,-1,1,-1,0),6,5, byrow = TRUE)
0,0,0,0,1,0,
0,0,0,0,0,1)66)  G=(1/NL)*M%*%t(M)

15
LHS = rbind( cbind(t(X) %*% X , t(X) %*%Z ),
cbind(SigA*G%*%t(Z) %*% X , SigA*G%*%t(Z)%*%Z + SigE*Z))
RHS = rbind(t(X)%*%Y,
SigA*G%*%t(Z)%*%Y)
C = solve(LHS)
BU = C %*% RHS
BU [1,] 8.76 Same solution as before to 5 decimal points
E‘} -ggg Previous -0.25929571
[4'] _0202 Current -0.25929249
[5]-0.16 9EBV Bias=.00000322
[6,]-0.05 _
[7.]-0.16 Note that r=.00001, use as small an r as

possible to minimize bias




Equivalent Model

Estimation of Marker effects
Y,,=Xb+M, j‘a  +e

V(Y)=V(Xb+M'a+e)
V(Y)=MV(a)M+R

V(a)=E(a a )= agzl

P.p

R =152

e

Equivalent Model
Estimation of Marker effects

X' n Xy X' My, B, _ X'y Yy
M'p,N Xy MM, +:_E§I 8ot M'p,N Yy

Assumption depends onxyfthod
1) (GBLUP, ssGBLUP) Genetic variance 2_[5;]
associated with each marker is equal 7L
2) (Bayes A) sampled from a t distribution

3) (Bayes B and Bayes C 1) from a mixture of
distributions (null and t)

0, =GEBV, =Mg=> M4,
j




Example 5 SNP BLUP

NL=5
SigA=5
Sigg=SigA/NL
SigE=20
y = matrix( c( 7,
9,
10,
6,
9,
11), 6,1)
| =matrix(c(  1,0,0,0,0,

X = matrix( ¢(

R L QI G G

). 6,1)

M = matrix( ¢( 1,-1,0,-1,1,

0,0,1,0,-1,
0,-1,0,0,0,
1,-1,1,-1,0,
0,0,1,-1,0,

1,-1,1,-1,0),6,5, byrow = TRUE)

GWAS

LHS = rbind( cbind(t(X) %*% X , t(X) %*%M ),
cbind( t(M) %*% X , t(M)%*%M + (SigE/Sigg)*1))

RHS = rbind(t(X)%*% v,
t(M)%*%y)

C = solve(LHS)

Bg = C %*% RHS
[1,] 8.76
Bg [2,]-0.08
[3,] 0.02
[4,] 0.01
[5,] 0.07
(6, -0.08

Marker effects

20




gEBV

[1,]-0.25
[2,] 0.09
9=Bg[2:6] [3,]-0.02
U=M%"%g [4,]-0.16
U [5,]-0.05
[6,]-0.16

Compare to GBLUP

21

Single Step ssGBLUP

* Merge G matrix into regular A matrix

— Aguilar, I, I. Misztal, D. L. Johnson, A. Legarra, S. Tsuruta et al. 2010 Hot topic: A unified approach to utilize
phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. Journal Of Dairy

Science 93: 743-752.

— Corrects for multi-trait selection bias
» Vitezica, Z. G., |. Aguilar, |. Misztal, and A. Legarra, 2011 Bias in genomic

predictions for populations under selection. Genetics Research 93: 357-366.

— Uses all information

* Phenotypes of animals without genotypes
— J. Anim Sci. 2011. 89:23-28. doi:10.2527/jas.2010-3071

» Software

— http://nce.ads.uga.edu/~ignacy/genomic-blupf90/
— http://snp.toulouse.inra.fr/~alegarra/

22




ssGBLUP

GBLUP only animals genotyped included in analysis

XR*X XR'Z b XRY

‘o -1 "o -1 -1 | 7'p-l
ZR X ZR Z+G |u ZRY
ssGBLUP all animals with phenotypes included

XR?'X XR'Z [b] [XR'Y

ZR'X ZR7'Z+H'|u| |[ZRY

0 0
0 G’l-A;;_

HI:Al{

23

9=2(zz)'u GWAS

GBLUP SNP effects using only genotyped individuals

X'l,N XN,l Xl,N'MN,p B1,1 _ X'l,N YN,l
M Xy M'p,NMN,p+Z_§I |:gp,1:|_|:M'p,N YN,1j|
ssGBLUP SNP effects using all information

XRX XR'Z b XR'Y
ZR*X ZRZ+H'|u ZRY
g=%DZ'H"u

Wang,H, I. Misztal, I. Aguilar, A. Legarra, and W. M. Muir Genome-wide association mapping including
phenotypes from relatives without genotypes. 2012. Genetics Research 94:73-83 24




Issues
Genomic Selection and GWAS

Admixture (Walsh Lectures)
— Major problem
— False Positives
— Spurious Correlations
— Correlation does not mean Causation
— Partial Solution
« Use of Igenstrat to correct for structure

« Use of Structure to correct for structure
« Scaling of G to combine all populations and cross in common relationship matrix

Pedigree errors
— More costly in terms of accuracy with G than A matrix
Cost
— Use dense SNP genotyping all breeders (parents)
— Low Density on all candidates
* Reducing the number of markers down to those that are most predictive
* Going from 60,000 SNP to 384 SNP for genotyping
*  GWAS SNP selection
Selection (See next slide)
— Allele frequencies change
— Older data becomes a liability

25

ACCURACY

Effect of Random vs. Directional Selection

on Accuracy

Starting in HWE Starting in MDE
n .
Continued Random d
0o
ED
3“
\ S
0o . .
Random Directional 1 Random Directional
T 0.0 T
2 3 4 5 1] 7 8 9 n I 2 3 4 8 B 1 B 9 n
GENERATIONS GENERAT IONS

Selection Method ee®cmy  EEFItonion

Selection Method e=seem

T Randon

h?=.1 N=256, Ne=32, 100/100 Marker/QTL loci distributed on 100cM.

(average over 60 replicates, SEM=.02).

26




Correlated Residuals
Common Environmental Effects

— Environmental effects common within a group
partial between groups

* Agronomy
— Plots in fields




Correlated Residuals
Common Environmental Effects

— Animals

* Multiple pens, cages, or locations

e Shared maternal effects

— Common litter

Correlated Residuals
Common Environmental Effects

— Humans

e Shared family environment
— Nutrition
— Nurturing
— Social economic factors




Common Environmental Effects

* In humans, confounds genetic effects with
social economic factors
* |In plant or animal breeding, reduces response

to selection
— Common environmental effects are included with
the phenotype
— Errors in selection decisions

Alcoholism

* Is this disease the result of nature or nurture?
— The most accurate predictor of alcoholism is
* Parents drinking habits sl dEnm e
* Ethnicity r@ﬁgﬂ ;

— |Is drinking behavior Iearned“'(ﬂNurture)?
— Is it inherited (Nature)?




How to separate Nature from Nurture

e Nurture imposes a correlated environment
e Nature imposes shared IBD alleles

Solution

e Experimental design
— Randomized Complete Block (RCB)
¢ Block =common environment effect
¢ all treatments in all blocks
¢ Best design
— Not possible with human (no randomization) and most plant and animal
breeding programs (not practical)
e Breeders in the past
— Performed within and between family selection
— Tried to adjust for herd/Y/S as fixed effects then solved for breeding values
— Problem: best genetics confounded with herd (adjusting for fixed removed
some genetic effects)
¢ Mixed models
— Empirical Bayesian approach to estimate and adjust for the effect
¢ First use of mixed models
¢ recovery of inter-block information
* Yates, 1939; Cox, 1958




Mixed Model Solution

* Needs

— Phenotypes
* The more confounded the data the more data that is needed
to get clear results
— Group Ownership
¢ Households
— Relationships
* Pedigree
— Or
¢ Genotypes to create Genomic Relationship Matrix (GRM)
— Variances of Random Effects (Given or estimated from
the data)

Example 1

* 10 calves, 5 male and 5 female, from 3 sires
and 6 dams, were sampled over 3 years and
weaning weight recorded. Some dams were
used more than once.

* Remove the fixed effects of year and sex and
the random effect of common maternal
environment. Then estimate the breeding
values of all animals for weaning weight.

10




1985

1986

1987

1988

Common maternal environment
(Group Ownership)

Pedigree (Relationships)

15

11

Phenotypes
Schaeffer Table 8.7
Animal Sire Dam Year Sex Wean Wt

7 14 1 86 M 400
4 14 2 86 F 380
8 15 3 86 M 410
5 15 1 87 F 350
9 14 2 87 M 420
6 15 4 87 F 360
10 15 1 88 M 390
11 16 4 88 F 390
12 16 5 88 M 430
13 16 6 88 F 370




Model solution 1

Fixed Effects Random Effects

fﬁ/_kﬁ

Additive
Genetic Residual

I

Yikmn = Yi +5; +G, +€’

Year Sex

ijkm
! —
ijkmn —

e M, +e

ijkmn

Common Other
Environment environmental
effects

Solution 1
Model Variance-covariance Structure

\/(3 :,Aoé 0
e’ 0 Ro’

2 _ 2 2
O, =0, +t0,




R

Correlated Residuals

Animals in a common group (pen, herd, or mother) share a common environmental
effect. Let p be the correlation between residuals due to shared environment.

A covariance within groups is reflected in a between group variance
Principle for estimating heritability via ANOVA (between and within sire variances)

p is the intra-class environmental correlation

(of +0o?

2
Ob
P=" +o2
Oy O,
P 0 0 0 ol+o? o} o 0 0
p - 0 0 O ol ol+ao? ol 0 0
1 0 0 0 ol ol ol+ol 0 0
0 1 p p 0 0 0 ol +o! ol
0 p 1 p 0 0 0 ol ocl+o
0 p p 1 0 0 0 ol oy

15

Variances of Random Effects

G=Ad

o2 = 2000

o2 =500

o’ =6500

p=— 0 _ 714
500+ 6500

The shared environmental effect is small, but real




Environmental Correlation Matrix (R)

Shared Maternal

Environment

animals 7, 5, 10 shared mother 1

l p=0714 F ~6500+500
An | Sire | Dam 7 4 8 5 9 6 10 11 12 13
7 14 1 1 0 0 p 0O p 0 0 O]
4 |14 | 2 010000000
8 15 3 0O 01 0 0 0O O O0OO0ODO
5 15 1 p 001 00 p 00O
9 14 2 R O p 001 O0O0O0O0OO o2
6 | 15 | 4 0 000O0T1UO0poO0O0fF°
0] 15| 1 p 00 p 001000
11| 16| 4 00000 SpO0 100
12 | 16 5 0O 000 00O O0OOTZ1I0O0
13 | 16 6 |0 000 0 0 O0 0 O0 1]

0T

T

€T U

17

MME Residual Correlation Structure

y=Xb+Zu+e

XR™*X XR™'Z b XRY
ZR'X ZR'Z+G'|u ZRY




All animals have a genetic effect but only animals with a record contribute to the phenotype

m O OO0 OO0 oo oo
N O 0o 0o o0 oo oo do
= O OO0 oo o -« O o
S O O O OO d O P o
[eTs]
< © O 0o o do o ¢ o
wv
f o O o o o oo oo
= n O O +H O o oo o o
T o OO\H OO O O O ¢© O
©
“ = O O 0o o @ o
—
(]
2 ~ 4 O O\l ©O © 0o o @ o
@ © o o o O 0o 0o o @ o
©
€ /7n O O O O O 0O o o o
o
< Y o oo O o o © o
o N~ O O o O O o @ O
g v o oo o o o ¢ o
'c
o A © o o o © © © o
2
(<]
s
bt N
©
= €
[J] | AN MM |[A|N | |[HANT | O [ ©
8
° (m)
2
Pl |w|w|<|w]|w @ |o©
.n\|u111111111._1
S|t |lo|w|lo|o|Z|d|9(9
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sex

Year

868788 m

400 |
380

10 0 1]

1000
1 001
0100

0101

0100

0011

0010

0011

0010

20




21

,.5,.250,.250, .125,
.5,0,0,.5,0,.250,

5
o,
5

.5,.250,.250, .125,
.5,0,.5,.5,0,.25.25,
,0,0,0,1,.250,.25.250, .125, .125,
.5,0,0,.250,.251,0,.25.5,0, .5, .125,

9,.5000,.25.50,0,1,.250,.250, .125,
.250,.25.5,0,0,.125, .5,.25.25 .25 1, .25 .25 .125, .5,

.5

solve(A)
TRUE)

.125, 0, .125, .25 0, .5, 0.0625, .25 .125, .125, .125, .5, .125, 0.375, 0.3125, 1.0

0,.250,.250, .5,.125, 0,.125, .5, 0, .125, .25 .25 1, 0.3125,
),16,16)

0,.50.5,00,.250,.25.5,0,.251,0, .25.125,
.250,.250,0, .5,.125, .5,0,0,.25.250, 1, .25 0.3750,

A=matrix(c(

.5
Ainv:

R code Example 6

, 0),10,4, byrow

500
6500
2000

Sig_m/(Sig_m+Sig_e)

matrix(c(400,

Sig_m

Sig_e

Sig_g
X

m
Y

sododcsossSa
oSS Ao
S SdoSSSHo o
oo Hd5S o
oo oHSsS o
sooSdoSSS o
good5d5SSS o
sodSdSoSSS o
sdoSSSsSSo
SO0 dSSSSS o
oSS sSSo
gSoSSSSSSo
Yoo SSSSSS o

ry,,,,,,,,,
Egooocoococosoo 3
Edoocodoococococoo

NSooooocoooo

[m

o]
o
-
1

©
=

o

SosdssSsaa

FSSgdodos S
SSSSS PGS 50
CgSSHoSSSoSa
£SSHdSSESSS
SoHdddSSsso
SHddS oSS o
JSSESSESSS
g

matrix(c

R=

22




Sig_EM=Sig_e+Sig_m

R=R*Sig_EM

RINV=solve(R)

LHS=rbind(

chind( t(X)%*%RINV%*%X, t(X) %*%RINV%*%Z) ,

chbind( t(Z)%*%RINV%*%X, t(Z) %*%RINV%*%Z+Ainv*(1/Sig_Qg)) )
RHS=rbind(

t(X)%*%RINV%*%Y,

t(2)%*%RINV%*%Y)

C=solve(LHS)

BU=C %*% RHS
BU

23

369.87422
363.57807
375.03977
40.764716
1.8135021
-3.805516
2.7837732
-3.560112
0.1342493
2.6341034
-1.966278
3.4648406
-1.578682
-3.883955
3.9162079
-0.906753
-6.316917
4.5689512
1.227629
0.1257446

Herd
Year

'~

Sex

)

BV

ETCTITIOT 9 6 S 8V L I9TE ST TT VI

\

24




Solution 2: model the data structure

Add another random effect due to shared environment
(mother, cage, herd)
Yigann = Yi +3; +G,< + M, + €
[ AN

Additive Common Group  Random

Year Sex . .
Genetic  Environment error
— Y = _/
Fixed Effects Random Effects

MME Correlated Residuals

y:XbﬁzlG +Z,m+e

Genetic effect  Shared Group Environmental effect

)

(Ac2 0 0
Vimi=l 0 Ioﬁe 0
e 0 0 |lo!




sex

Year

868788 m

[400]]
380

100 1]
1 000
1 001
0100
0101

0100
0011

0010

0011

0010

27

Animal Direct Genetic Effect

[e2]
-
(o'}

15316 7 4 8 5 9 6 1011

4

/
1 2

0000O0O0O1O0O0OO0DQ0

0000O0O0OO0OT1IO

14

100000O00O0
0001000O0OO0CO0
0000O0O0O1O0O0DO0OO0OQO

0 00OO0OO0OOOOOO10O0O0O

0 00O0O0OO0OO0OO0OOOOO1O0O0O

0000O0O0CO0

0 00O0O0OOOOOOOO1O00O

0000000606060 000606>10
000O0O0O0OOOOOOOOOO0O1

Note that sires and dams did not have records and are missing

3

1
4

6

Sire | Dam

14
14
15
15
14
15
15
1

16

An

10
11
12
13
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Common Maternal Environmental effect

Animal 1 was the mother of animals 7, 5, 10

An | Sire | Dam _i 2 34 56— Shared groups (Mothers)
74—+ 100000
4 14 > 010000
8 | 15 | 3 001000 10000 O
5 1511 1 00000 010000
9 | 14| 2 Z010000 |:0°1°°°
2= 000100
6 | 15 | 4 000100 000010
10 —15—1—+% 100000 000001
1 | 16 4 000100
12 | 16 5 000010
13 | 16 | 6 00000 1]
MME

X'X X'Z, X'Z, ? X'y

Z X lel+A—1k11 Z,Z, E; =|Zy

Z,X Z,Z, Z,Z,+1k,, | M, Zy

-1

{kn Ky } _ 0(23 0 2
- 2 O,
K Ky 0 Onm,

k, k,| [2000 07" 325 0
= 6500 =
Ky, Ky, 0 500 0 13

30




matrix(c(

A

R code Example 7

500
6500
2000

matrix(c(400,

Sig_m
Sig_e
Sig_g

Y
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P=matrix(c(Sig_g, 0,
0, Sig_m),2,2,)

K=solve(P)*Sig_e

LHS=rbind(

chind(t(X)%*%X,  t(X) %*%Z1, t(X) %*%Zz2) ,
chind(t(Z1) %*%X , t(Z1) %*%Z1+Ainv*K[1,1], t(Z1) %*%Z2),
chind(t(Z2) %*%X, t(Z2) %*%z1, t(22) %*%Z2+1*K[2,2]))

RHS=rbind(t(X) %*%Y,
t(Z21) %*%yY,
t(22) %*%Y)
C=solve(LHS)

BU=C %*% RHS

BU
33
Solutions
G . M,

B Animal Dam
369.87 181 & 2.365897 5
363.57 Year -3.80 - '1 526796 N
375.03 2783 ™ 00671247 o
4076+ sex 336 & 05146638 .,

013w 0.9262775 p
263 & 0.368965 i
196~ e
3.46 »
-1.57 o
-3.88 «
3.91 © Note:results are same as
-0.90 o using correlated residual
-6.31 S matrix
456 B
1.22 5
0.12 n

w
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How are the results used?

* The model separates Nature from Nurture

— Human experimenters maybe interested in both
effects

¢ Maternal Care: How much of the variation in infant weight at
4 weeks post delivery, is due to the genes of the child vs. the
nurture of the mother and perhaps the cause of the nurture
effects

¢ Disease Risk: Alcoholism: risk due to drinking environment
(nurture) separated from risk due to nature (genes)

— Breeders are only interested in making maximal
genetic improvement
¢ Use the additive genetic effects to select best animals

35

Impact of Fixed vs. Random Effect

e Example: Correlated residuals due to years

* Data was collected over 3 years, the researcher was concerned
about a common environmental effect due to years but could not
decide if years should be a fixed or random effect. What difference
does it really make?

1. Model 1: Include fixed effect for sex and year; Animal as random
¢ Additive genetic (2000)
¢ Residual (6500).

2.  Model 2: Same as above but now assume the effect of years is
random
¢ Between year variance (500)
¢ Residual (6500)

¢ What are the best estimates of the breeding value of each animal? What are
the year effects?

3.  Model 3: Same as Model 2 but increase between year variance to
(100,000)

¢ What impact does fixed vs. random year effect have on the results?




Years Fixed

y=Xb+Z,G+e
T

Fixed effects Additive Genetic effects

G| [Ac? 0
V —

D N
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Year

O O O O O © O - Bk k-

O O OO P P P OO o

sex
868788 m

P P P PO O OO O O

b Herd
B=|? Year
b

b, | ¥ Sex

O OFr OFr O Fr O
<
Il

[400]

380
410
350
420
360
390
390
430
370
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Sig_e-s500 R code Example 8

Sig_g=2000

A=matrix(c(

Y=matrix(c(400, 1,0,0,0,0,0, .5,.5,0,0,.5,.250,.250, .125,

2?8‘ 910000,.5,0,0,.50,0,.50,.250,

350' 0,0,10,00,0,.50,0,.5,.250,.250, .125,

420' 9,001000,0,.5,.50,.5.5,0,.25.25,

360' 9,000,1,000,.50,00,0,0,0,0,

390' 9,00001000,00,0,0,.5,.5,.5,

390' .5,.5,0,0,0,0,1,.250, .25.25.125, .25 .125, .125, 0.0625,
430' .5,0,.5,0,00,.251,0,0, .5, .5,0, .5,0, .25,

370),10,1); 900,.5.500,0,1,.250,.25.250, .125, .125,

0,.50.5,00,.250,.251,0,.25.5,0,.5,.125,
.5,0,.5,0,0,0,.25.5,0,0,1,.250,.250, .125,

X=matrIX(C11'00v00aol .250,.25.5,0,0,.125, .5,.25 .25 .25 1, .25 .25 .125, .5,
Tooi 0,.5,0,.50,0,.250,.25.5,0,.251,0, .25 .125,
0100 .250,.250,0,.5,.125, 5,0, 0, .25 .25 0, 1, .25 0.3750,
0olo1 0,.250,.250, .5, .125, 0, .125, .5, 0, .125, .25 .25 1, 0.3125,
5100 .125, 0,.125, .25 0, .5, 0.0625, .25 .125, .125, .125, .5, .125, 0.375, 0.3125, 1.0
0,0,1,1, 116,16)

8: 8: i 2: Ainv=solve(A)

0,0, 1, 0),10,4, byrow = TRUE )
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Z1= matrix(c
0, 0,0,00,0,1,00000000,0,
0,0¢062900001000000,00,
0,0¢062900000100000,00,
0,0¢062900000010000,0,0,
0,0¢06290¢0000001000,00,
0,0¢06290¢0000000100,0,0,
0,0¢06240¢0000000010,00,
0,0¢06290¢0000000001,0,0,
0,0¢062900000000000,1,0,
0,00000000000000,1),
10,16,byrow=TRUE)

LHS=rbind(cbind(t(X)%*%X, t(X) %*%Z1),
cbind(t(Z1) %*%X, t(Z1) %*%Z1+Ainv*(Sig_e/Sig_g)) )

RHS=rbind(t( X) %*%Y, t(Z1) %*%Y)
C=solve(LHS)

BU=C%*%RHS

BU

40




Solutions: Years Fixed

Additive Genetic Effect

1.96

-4.39

Fixed effects 3.16

year -3.78
369.59 0.20
363.39 2.84
374.79 -2.41

sex 3.94
40.63 -1.58
-4.44

(y1+y2+y3)/3=u=369.26 4.35
Y1-u=.33 -0.72
Y2-u=-5.86 -6.93
Y3-u=5.53 497
Come back to this 1.24
0.28

41

Years Random

y:Xb+ZlG+ZZ'%'+e
!

Genetic effect Year effect

(Ac2 0 0
VIT|=| 0 l6Z 0
e 0 0 |lo?

)

42




overall

400

380
410
350

420
360
390
390
430
370

Mean
Sex effect

&

B

Animal Additive Genetic Effect

Same as before

2 15316 7 4 8 5 9 6 1011 1213
0000O0O0O1O0O0OO0OO0OO0OOOO0ODPO
0 000O0O0OO0O10O0O0OO0OO0OO0OO0ODO
0 000O0O0OO0OO10O0O0OO0OO0OO0CDDO

1

14

000OO0O0O0OOOO1O0O0O0OO0OO0CDO

0 000OO0O0OO0OOOO1O0O0OO0OO0CDDO

0 000O0OO0OOOOOOO1O0O0OO0CDO

0 00O0O0OO0OO0OO0OOOOO1O0O0O

0 00O0O0OOOOOOOO1O00O

000OO0OO0O0OOODOOOOOOT1IO

000O0O0O0OOOOOOOOOO0O1

z,=

3

2
4
1
4
5
6

Sire | Dam

14
14
15
15
14
15
15
16
16
16

An

10
11
12
13
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Year

86

86

86

87

87

87

88

88

88

88

Common Year Effect

Year(T)

o O
o~ O
O O
I ——

o O O O P kB O O
P P, P PO O O O O
Il
1

X'X

Z,X

|:kll
k21

X'Z, X'Z,
ZX Z.Z,+A%, Z.Z,
Z,Z, Z,Z,+1k,,

1
K, _ 0_(25 0 o e2
Ky 0 O'T2

2000 0 |° 325 0
6500 =
0 500 0 13

MME

Xy
= Zy
Z,y

-1 ) oo




R code Example 9

=6500
Sig_g=2000
Sig_y=500

Sig_e:

—
l
<)
=)
—
;

—
'

=matrix(

Ainv

matrix(c (400,
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; S
T S s =
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Z1= matrix(c

oo ssSa
SO IIHI
S SssHT S
Rk k= =k=]
S8 HddII I
SSSSHdos3SaS
k=R R=R=R=k=]
SsoHdooodoocoo
=Rk =)
N N-N-R-R-R-R-R-RM
0000000000
0000000000
0000000000
IeR=k=ReR=EK=KeN=N-No}
0000000000
SIS I

iN]
)
o
=
1]

yrow

o
©
=
=}
—

matrix(c

22

\I

"0
< )
)
£° 0
m0;10
R
4 d

,10,3,byrow=TRUE)

~ —

L = = = = — i N g e
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P=matrix(c(Sig_g, O,
0, Sig_y=500),2,2)
K=solve(P)*Sig_e

LHS=rbind(
cbind(t(X)%*%X, t(X) %*%Z1, t(X) %*%Z2) ,
cbind(t(Z1) %*%X , t(Z1) %*%Z1+Ainv*K[1,1], t(Z1) %*%Z2),
cbind(t(Z2) %*%X, t(Z2) %*%Z1, (22) %*%Z2+1*K[2,2]))
RHS=rbind(t(X) %*%Y,

t(21) %*%yY,

t(22) %*%Y)

C=solve(LHS)
BU=C %*% RHS

BU
49
Solutions
Years random (var=500)
Additive Genetic Effect
1.40
Fixed effects -4.41
2.67
369.07 mean -4.14
41.94 Sex effect 0.13
4.35
-2.77
3.65
-1.87
Year Effects -5.06
3.09
-0.008 -1.38
-0.988 -6.64
0.996 6.12
2.09

1.27

50




Years random (var=100000)

P=matrix(c(Sig_g, O,
0, Sig_y=100000),2,2)
K=solve(P)*Sig_e

LHS=rbind(

chind(t(X)%*%X,  t(X) %*%Z1, t(X) %*%Z2) ,
chind(t(Z1) %*%X , t(Z1) %*%Z1+Ainv*K[1,1], t(Z1) %*%Z2),
chind(t(Z2) %*%X, t(Z2) %*%z1, t(22) %*%Z2+1*K[2,2]))

RHS=rbind(t(X) %*%Y,
t(Z1) %*%Y,
t(22) %*%Y)
C=solve(LHS)

BU=C %*% RHS

BU
51
Solutions
Additive Genetic Effect
1.95
-4.39 . . .
Fixed effects 315 Additive effects near identical to
_3' 79 previous example where years
369.25 mean 0.20 were fixed
40.67 Sex effect 2.88
-2.42
3.94
Year Effects -1.58
0.32 -4.46
-5.72 4.31
5.40 -0.74
Note the effect of years -6.93
increased and near identical i(2)(7)

to slide with years fixed
0.30




Model Comparisons

Random Random

Fixed (100,000) (500) Animal EBV
Random

(100,00 Random  Year
Year Effect Fixed 0) (500) Ignored
1 0.33 0.32 -0.008 1 1.96 1.95 1.4 1.27

2 -5.86 -5.72 -0.988 2 439 -439 -4.41 -442

3 5.53 5.4 0.996 3 3.16 3.15 2.67 2.57

4 -3.78 -3.79 -4.14 -4.22

5 0.2 0.2 0.13 0.11

6 2.84 4.35 4.69

2nd rank
animal is different

-2.42 -2.77 -2.86
3.94 365 3.57
-1.58 -1.87 -1.95
-4.46 -5.06 -5.19
431 3.09 283
12 -0.72 -0.74 -1.38 -1.52
13 -693 -693 -6.64 -6.58
14 497 5 6.12 6.37
15 124 127 209 228
16 028 0.3 1.27 1.5053

Ranking

EBV
EBV W/Random
W/Fixed Years
Rank Animal Years Animal (500)
1 14 4.97 14 6.12
2 11 4.35 6 4.35
3 8 3.94 8 3.65
4 3 316 Ikl 3.09
5 6 — 2.84 3 2.67

Select top 2: Some different individuals would
have been chosen




How much should the EBV be adjusted for year?

EBVs with Year Effect Ignored, Random, or Fixed

X

=-Random (100,000)
10 12 14 16 ~#8 Random (500)

Year Ignored

Animal

When Year is fit as a random effect, the data tells us how
much to adjust

55

Setting a factor as fixed is equivalent to assuming the
intra-class correlation is 1

o2 Or variance of the effect is infinite
_ b
P="73 2
o, +0o,
500
p=——"-=.07 First Example
500 + 6500

100000
# = 100000 + 6500

1N

1 Second Example

Setting a factor at random allows the residual correlation, and amount of
adjustment for that factor, to be estimated from the data

For a random factor the intra-class correlation is used as a shrinkage
factor, how much to adjust for the factor; a correlation of 1, totally
adjusts for the factor, a correlation of 0, the factor is ignored Y’=Y-p(T-u)
56




Example 10 Impact of Common Maternal Environment
of Ranking of Selection Candidates

Choose genetically the best individuals for breeding from among the
offspring

57

Genetic Parameters

Case A Case B Case C
minor common moderate common Major common
environmental effect environmental effect environmental effect
2 2 2
o =10 o =10 ol =10
2 2
o, =1 o, =100 o’ =1000
e mE me
2 2 2
o2 =100 o2 =100 o2 =100

Example 10 common maternal environment.R




Solutions Case A

Animal Family — EBV rank |
4 1 0.29 1
5 1 0.15 2
6 1 0.10 3
7 1 -0.04 4
11 2 -0.05 5
8 2 -0.10 6
10 2 -0.15 7
9 2 -0.20 8

59

Example Impact of Common Maternal Environment of
Ranking of Selection Candidates

o =10
O'rie =1
o =100

P1 P2

Individuals 4, 5, 6, 7 highest ranking all from the same mother
Example between family selection

Heritability low and common family effects small

No Competitive effects

60




Solutions Case B

Animal Family  EBV rank |
4 1 0.26 1
5 1 0.12 2
6 1 0.07 3
11 2 -0.03 4
7 1 -0.07 5
8 2 -0.07 6
10 2 -0.12 7
9 2 -0.17 8

61

Moderate Common (Family) Environmental Effects

Individuals 4, 5, 6 and 11 would be chosen, some from both families




Solutions Case C

Animal Family EBV rank |
4 1 0.17 1
11 2 0.07 2
5 1 0.03 3
8 2 0.02 4
6 1 -0.02 5
10 2 -0.03 6
9 2 -0.08 7
7 1 -0.16 8

Major Common (Family) Environmental Effects

o =10
o, =1000
o? =100

P1

*Top individuals are highest ranking within each family
*Major Common environmental effects

Within Family Selection




Between and within family selection

| = bl(Yi. _Y.. )"‘ bz (Yij _Yi.)
Between family deviation Within family deviation

*b1=0 is within family selection

*b2=0 is between family selection

eIf both are >0 then finding optimal weight was difficult
*The mixed model approach solves this problem

Negative Environmental Correlations

If the intraclass correlation is truly negative, then the only
way to model the data is with a correlation matrix rather
than a 2"d random effect

A negative intraclass correlation implies there is greater
variation with a group than between groups

If modeling between and within population variation it is
possible to get a true negative Fis or Fit if one of the sub-
populations is the result of out-crossing. There will be
more heterozygotes within a population than expected.

Unstable competition can also result in greater variability
within groups (likes compete more than dislikes)




Genetics of Disease Resistance or
Susceptibility
* Influenced by Nature and Nurture
e Alcoholism, or other learned behaviors, such
as smoking

e Assume Nurture is determined by adolescent
household

67

Example Households and relationships

* Indicates alcoholic




Problem

Define a mixed model that would separate the
effects of Nature from that of Nurture

What variance components need to be
estimated

How could these be estimated

Can you use these results to predict risk of
alcoholism if individuals from this population
produced offspring? How?




Lecture /:
Models with multiple random
effects: Repeated Measures and
Maternal effects

Bruce Walsh lecture notes

Summer Institute in Statistical Genetics
Seattle, 20 — 22 July 2016

Often there are several
vectors of random effects

* Repeatability models
— Multiple measures
e Common family effects
— Cleaning up residual covariance structure

e Maternal effects models

— Maternal effect has a genetic (i.e.,
breeding value) component



Multiple random effects

y=Xp+Za+Wu+e

y is a n x 1 vector of observations

B is a g x 1 vector of fixed effects

ais a p x 1 vector of random effects

uisamx 1 vector of random effects

Xisnxqg, Zisnxp, Wisnxm

y, X, Z, W observed. B, a, u, e to be estimated

Covariance structure
y=XB+Za+Wu+e

Defining the covariance structure key in any mixed-model

Suppose e ~ (0,6.21), u ~ (0,62 1), a ~ (0,042 A),
as with breeding values

These covariances matrices are still not sufficient, as we
have yet to give describe the relationship between e, a,
and u. If they are independent:

a 0 o2-A 0 0
ul|~|{0], 0 o2 -1 0
e 0 0 0 o1



a 0 o2-A 0 0
y=XB+Za+Wu+e u ~ 0]. 0 CTIZII 0
e 0 0 0 o1
Covariance matrix for the vector of observations y
Var(y) = V=ZAZ 0% + WW'52 + 152
Note that if we ignored the second vector u of random
effects, and assumed y = Xp + Za + e*, then e* = Wu +
e, with Var(e*) = 6.2 | + 5,2 WWT
Consequence of ignoring random effects is that these
are incorporated into the residuals, potentially
compromising its covariance structure
5
Mixed-model Equations
X'X X'z X'wW 3 X"y
Z'X  ZTZ+ AT Z'W al=| Z"
wi'x w'z WIW + A I G wly

where

m N
Q
m N

A = 0. and A\, =

2
T4 a

J |

3



The repeatability model

Often, multiple measurements (aka “records”) are
collected on the same individual

Such a record for individual k has three components
— Breeding value a,

— Common (permanent) environmental value p,

— Residual value for ith observation e,

Resulting observation is thus

—Zg T Wt AT P tey

The repeatability of a traitis r = (0A2+op2)/ 2

OZ
Resulting variance of the residuals is 6.2 = (1-r) 0,2

Resulting mixed model

y=Xp+Za+Zp+e

0 oA 0 0
~{o].{ o oI O
0 0 0 o1

Notice that we could also write this model as
y=Xp+Zla+p)+te=y=Xp+2v+e v=atp

© T P

In class question: Why can we obtain separate estimates
of aand p?



The careful reader might notice that the two vectors of random effects, the breeding values
a and permanent environment effects p, enter the model as Za and Zp, respectively. Why
then do we simply not combine these, e.g., Zu where u = a + p? The reason we cannot do
this (and ind eed the reason we can estimate @ and p separately!) is that a and p have different
covaimice striuctures, .r'rz4 A versus 03 I. Thus, we assume that permanent environment effects
are uncorrel ated across ind ividual s and are homosced astic. On the other hand, breeding val ues
generate covariances in relatives. Again, the critical importance of the covariance matrix to a
mixed model analysis is apparent.

The incident matrix Z

Suppose we have a total of 7 observations/records, with
3 measures from individual 1, 2 from individual 2, and
2 from individual 3. Then:

(3/11 \ / 1 0 0
Y12 1 0 0
Y13 1 00 A P
Yy=1uya |, Z=|0 1 0], a=|A|. p=|p2
Y22 0 1 0 Az P3
Y31 0 0 1
Y32 / \0 0 1)

Why? Matrix multiplication. Consider y,,.

Yor = Ut Ay +p,y + ey
10



Consequences of ignoring p

* Suppose we ignored the permanent environment
effects and assumed the model y = Xp + Za + e*
— Thene*=Zp +e,
- Var(e*) =02 | + 0p2 777

e Assuming that Var(e*) = 6. | gives an incorrect
model

e We could either

— use y = Xp + Za + e* with the correct error
structure (covariance) for e* = 6,2 | + sz 777

— Orusey=XB +Za +Zp + e, where e = ¢ 2 |

"1

The repeatability model was used by Estany et al. (1989) to examined the selection response
for litter size in rabbits. Their model assumed two groups of fixed effects, d; the year-season
(environmental) effect which had 22 levels in this experiment and the reprod uctive state /;
of the doe (] has three levels: /1 for primiparious does, /2 for lactating does, and /3 for non-
primiparious and non-lactating does). Since only two of these [, factors are estimable, [,
was assigned a value zero. Their model had three random effects, a;, and p;, for the additive
genetic and permanent environmental effect of the kth doe, and the residual ¢, giving the
overall model as
Yeieti = )0+ i + de + ag + pr + Corei

where iJ;1.¢; denotes thelitter size for the fthlitter of doek in reprod uctivestate i in season-year
t.

In matrix form, the mixed-model becomes

y=XB+Zat+Zp+e

|

where aand p aren x 1 vectors corresponding to the 1 does, Var(a) = (T'jz4 A, Var(p)
rr;': I,and Var(e) =« f I X and Z are incid ent matrices, and the vector of fixed effects is



Resulting mixed-model equations

XTX X7Z X7 3 XTy

ZTX  ZTZ 4 A A AN/ al|l=|2z"

Z'X YA/ 272+ 20/ \ D Z'y
where 2 - o L,
Aa = ﬁ.% =2 and A, = n—; =

13

Common family effects

Sibs in the same family also share a common
environment

— Cov(full sibs) = 6,%/2 + 0p?/4 + 6.2

Hence, if the model assumesy, = u + a, + ¢, + e,, with
a~0,0,%A,c~0,04. Ifthere are records for
different sibs from the same family, Var(e) is no
longer 6,21

y=Xp+Za+Wc+e

Again, if common family effect ignored (we assume
y = XB + Za + e*) the error structure is e* = 6,2 | +
chz

— Where o =0p?/4 + 0.2

— The common family effect may contain both environment
and non-additive genetic components

14



Example: Measure 7 individuals, first five are
from family one, last two from family 2

/yu\

Y2
Y3
Y=1 v
Ys

Y
\ vz /

y=Xp+Za+Wc+e

O O = e e

1

1/

Z = | as every individual has a single record.
If there are missing and/or repeated records,

Z does not have this simple structure

Y1
( Y2 \

Y3
Y=1 41
Ys

Ys
\ 7 /

y=Xp+Za+Wc+e

[ B s B S N e

1

1/

15

Again, matrix multiplication gives us the form of the Z and
W matrices. Consider y;:

16



Maternal effects with genetic
components

The phenotype of an offspring can be influenced by
its mother beyond her genetic contribution

For example, two offspring with identical genotypes
will still show potentially significant differences in
size if they receive different amounts of milk from
their mothers

Such maternal effects can be quite important

While we have just discussed models with common
family effects, these are potentially rather different
that maternal effects models

— Common family environmental effects are assumed not to
be inherited across generations.

17

e Consider milk yield. The heritability for this
trait is around 30% and the milk yield of the
mother has a significant impact on the
weight of her offspring

e Offspring with high breeding values for milk
will tend to have daughters with above
-average milk yield, and hence above
-average maternal effects

* The value of an offspring can be considered
to consist of two components
— A direct effect (intrinsic breeding value)
— A maternal contribution

18



Phenotypic value = direct value + maternal value

I:)z= Pd * Pm
7 \~

Observable Latent (unseen) values

Both of the latent values can be further decomposed into breeding
plus residual (environmental + non- additive genetic) values

P,=u+A,+E, P,=u+A,+E,

The direct breeding value A, appears in the phenotype of its
carrier

The maternal breeding value A, DOES NOT appear in the
phenotype of its carrier, but rather in the phenotype of her

offspring o

Direct vs. maternal breeding values

e The direct and maternal contributions are best
thought of as two separate, but potentially
correlated, traits.

— Hence, we need to consider o(A4,A,,) in addition to o ?(Ay)
and 0 %(A,,). This changes the form of the mixed-model

equations
* The direct BV (A,) is expressed in the individual
carrying it
* The maternal BV (A,) is only expressed in the
offspring trait value (and only mom’s A, appears)

20



Covariance structure

ag 0 0?(Ag) A o(Ag. Ay A
a, 0 | U(Adf Am) A 0-2(‘4772) A
This is often written using the Kronecker (or direct) product:
(l-uB . (l-lnB
AxB= : S :
a'mlB e mn B
Giving
a, 0 0%(Aq)  o(As A,,)
~ G2 A G = |
Ay 0 O-(Ads Arn) Uz(Am)

The mixed-model becomes

Direct effects
breeding values

y=Xp+Zja,+7Z.a, +e

/1

Maternal effects
breeding values

The error structure needs a little care, as the
direct E4 and maternal E,, residual values can be
correlated*. Initially, we will assume Var(e) ~ 6,2l

*See Bijma 2006 J. Anim. Sci. 84:800-806 for treatment

of correlated environmental residuals under this model -



The resulting mixed-model equations become

XX X"Z, X"Z, B X"y
Z, X" ZTZ i+ MATY ZTZ, 4 AT | | ey | = | 20y
ZmXT Z;Irvzzd + /\ZA_l Z;Irvzzm + /\IZA_l Am Zzlny

where the weights \; are related to elements in the inverse of G, viz.,

] —1
/\1 /\2 2~ —1 2 G—Z(fld) 0'(44(1- *4771)
<’\2 A3 > =0G =0 U(Afl* A,) az(Am)
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Filling out the maternal effects
incident matrix Z_.

A little bookkeeping care is needed when filling out Z,,, because the A,
associated with a record (measured individual) is that of their mother.

d 4 1-7 have
@/ records
b
a I/ © \® All sires

unrelated
— O f

g 7 24




4 Ay + A,

O,

Ag + A

o O
@ Adé + Am}
Agr + Ao @

Ags + A 7

Ags + A

Ay + A

m3

The observed values are y, through y;.
What we can estimate are A, through A,
Ao through A, ;

25
Y1 Ag 1
/ Yo \ / A 192 \
g2 “--‘- &"lm.o
Y3 Ad s A, )
y= Y > aq = -4(1_.1 ; Z([ =1 am = A .
Us Ay £Am,2
Yys AAd. 5 y
*47)1.3

Ys Ade
\Z/T / \ Ad,7 )
Note that we estimate A, even though we don’t have a
record (observation) on her.

Since Z_a,, must be a 7 x 1 matrix, Z,is 7 x 4 (as a,, is 4 x 1)

Record 1 is associated with Ao
Records 2 and 3 are associated with A,

Records 4 and 5 are associated with A,

Records 6 and 7 are associated with A, ; 26



Record 1 is associated with A,
Records 2 and 3 are associated with A_,

Records 4 and 5 are associated with A,

Records 6 and 7 are associated with A_;

1 0 0 0 1 0 0 0 /4\
01 0 0 01 0 0 o A
01 0 0 01 0 0 1 A

Zn=10 01 0]. as Z,a,=]0 0 1 0 41 = | A.-
00 10 00 1 0]\’ ™ Am,2
00 0 1 00 0 1 Am,3 Am.3
0 0 0 1/ \0 0 0 1 \-4,,1,3)

27

What about A_, through A_,?

Although we have records that only directly relate A, to A, 5, through the use
of A we can (in theory) also estimate the maternal breeding values for
individuals 4 through 7. Note this includes the maternal BVs for the two males
(5 & 7), as they can pass this onto their daughters.

1 000000 0 /j\
00100 00O0O0 41
01000000 o
Z:=10 0 1 0 0 0 0 0 al, = 4‘
001 000O00 4‘
\00010000) 46
00010000 \4/

28



Note that

1 00 000O0O (j\ [ Amo\
001000000} ™ A
0100000 0ff"m A1
Z:ias=10 0 100 0 0 0 4* = | Ao
00010000 0ff"™ Ao
000100 00[f™ Am,3
00010000/ ,™) \4;)

All this raises the question about what can, and cannot, be
estimated from the data (y) and the design (Z,, Z)?

First issue: Is the structure of the design such that we
can estimate all of the variance components. This is the
issue of identifiability

29

Estimability vs. Identifiability

Details: Identifiability of Variance Components

Due to potential confounding of effects, any particular design might not allow for all vari-
ables of interest tobe uniquely estimated. For the vector 3 of fixed effects, this is the concept
of estimability (LW Chapter 26). For z ~ (X3.V), the vector of fixed effects is estimable
(all have unique values) if (XTV~1X)-1 exists. Otherwise, some of the fixed effects are
confounded and cannot be separated by the design (X) being used. With (co)variance com-
ponents (often called dispersal parameters), a similar concept, identifiability, also exists.
If variance components are not identifiable in the design, then BLUPs for their associated
vectors of random effects do not exist.

30



Conditions foridentifiabili ty of REML estimates of (co)variance com ponents are given by Rothenberg (197 1),
Jiang (1996), and Cantetand Cappa (2008). Before presenting these, wefirstreview a few details about REML.
Recall (LW Chapter 27) that REML estimates are those that maximize that part of the likelihood function
thatis independentof the fixed effects (thisis often stated as being the translationinvariant part). Let V be
the covanance matnx of z which is a function ofits variance com ponents. As detailed in LW Chapter 27,
Harville (1977) shows that (if it exists) the transformation provided by the matnx

P=v ! vIXX"'VIX)"'X"v! (1a)
plays acritical role in REML estimates. Thatthis matnx can remove fixed effects can be seen by noting that
Pz~ V™' (z-X3) (1b)

yields a vector that is the data vector adjusted by the (estimated) fixed effects. Now consider covanance
structures of the form

A% =ZV,’H‘; (2a)
i=1

where V; 1s a matnx ofknown constants and the #; are unlknown variances and covanances to be estimated.

31

The equations to maximize the likelihood over the restricted space (the REML estimates) are given by
LW Equations 27.18 and 27.19, and are solved iteratively. These equations involve the trace (sum of the
diagonal elements) of matnx products involving P and the V;. Recall (LW Appendix 4) that for a vector @
of n unknowns, the Fisherinformation matnx F (the matnx of second partial denivatives of the likelihood
with respect to the parameters) can be used to provide large-sam ple standard errors. The resulting » x »
information matnx for REML estimates of the unknown #; in Equation 2ais

F,'J' =t1ace[PV;PVj] (21)]

Much in the same fashion that the existence of (X7 V~'X)~! informs us that all fixed effects are estimable
in a given design, all variance com ponents #; are identifiable if all of the eigenvalues of F are positive, that
is, that F'is positive-definite (Rothenberg 1971, Jiang 1996). For the matemal effects mixed model, Equation
2a becomes

V =V, o2(Ag) + Vao(Ap A) + Vao?(A) + Vyo? (3a)

where B B
V) = Z,AZY. V, = (z,,Az’

m

+z,,,Az’,','). Vi = Z,AZl. V=1 (3b)

Substituting Equations la and 3b into Equation 2b fills out the F matnix (which is only 4 x 4 in this case
given the four unknown variance com ponents). For any particular design, the eigenvalues of this matnx
can be com puted to determine if the variance com ponents are all identifiable.

32



Second issue, connectivity

Even if the design is such that we can estimate all the genetic
variances, whether we can estimate all of the B, ay, and a,, in the
model depends on whether a unique inverse exists for the MME

xXTx X'z, x'z, & X'y
ZsX" ZiZa+MATY ZJZ,+ AT || ag | = | Zly
Zn X' ZZg+ oA 217, + AT/ \a, Zly

Unique estimates of all the B require (XTV-"X)" exists

If XTV-1X)-" does not exist, a generalized inverse is used
which can uniquely estimate k linear combinations of the
B where k is the rank of XTV-1X

33

Likewise, if the MME equation does not have an inverse (and this is not
due to constraints on ), then a generalized inverse can be used

to estimate unique estimates of certain linear combinations of the

aq and a,.

x'x X'Z, x"z, 3 Xy
Z(IXT Z;IIVZ(I + /\J-‘A_l Z;I;Zm + /\QA_I ad = Ztllﬂy
2. X" Z1Z4+ A" ZDZ.+ AT \a, Z,y

A key role in ensuring that unique estimates of a4 and a, exist is
played by the relationship matrix A. If individuals with records and
individuals without records are sufficiently well connected (non-zero
entries in A for their pair-wise relatedness), then we usually can
estimate values of un-observed individuals (although their precision is

another issue)
34



Indirect Genetic Effects

* Inherited Genetic effect of one animals measured
another
— Inherited Social interactions
e Competition
e Mutualism
¢ Pack behavior
— Theory for evolution of social effects and how to
estimate effects

=\
5

The Problem:
Competitive
Interactions

e Active (Social)
— Dominance
— Peck Order

e Passive (Shared
Limited Resources)
— Plants or Animals

* Space
¢ Food Supply
— Movement




Results of Antagonist Social Interactions

¢ Reduced Gain

* Increased Mortality
— Direct
* Injuries
— Indirect

* Immune response
* Diseases susceptibility

* Reduced Feed Efficiency
— Energy lost in fighting
— Increased Fat deposition - —
— Disproportionate Feed Animal Well Being
Consumption Concerns

Addressing Social Interactions in Animal
Breeding Programs

e Two Selection Methods
— Direct selection against undesirable behaviors
— Multilevel selection
* Kin
* Group
* Optimal




Direct Selection

* Feather pecking, Tail biting, Skin lesions,

Biomarkers, Tonic immobility (kjaer and Hocking, 2004;
Muir and Craig, 1998; Turner et al., 2008)

— Highly Successful (craig and Muir, 1993; Kjaer et al., 2001)
e Requires Quantification

— Can Be Costly and labor intensive

— Diverts selection intensity

— Possible Undesirable Genetic Correlations

Framework Social Evolution Context

e Hamilton (1963, 1964a,b)
— Altruism Can Evolve Under Individual Selection
— Introduced “inclusive fitness”
— Kin Selection (br-c > 0)




Framework Plant and Animal
Breeding Context

* Bruce Griffing (1967, 1968a, 1968b, 1969, 1976, 1976b, 1977)
— Introduced Associative Effects

¢ Heritable Environmental Effects
— Generalized Multilevel Selection Theory
¢ Focuses on merit relative to levels of organization

¢ Extension of between and within family deviations for non-
interacting genotypes developed by Lush (1947)

* More Extensively Developed by Bijma et al. 2007a

Phenotype as impacted by

Direct and Associative
effects (Heritable

Environmental Effects)

SprDoHA A e

Yo=utDotA A te




Multilevel Selection

r r = relationship

n=family size

Group

Phenotypic Deviations=within family deviation+ between family deviation

Y-V = (Y_k _Y_..)"' (Ykl _Y_k)

Same as Lush’ derivation except animals are now grouped by family

Grouping introduces covariance (genetic and environmental)

Multilevel Selection
? r r = relationship f T"
n=family size
1 2
Select on Index

Iy = Biz + B,y

Multi-level selection models specify fitness as a function of the
mean trait value of the group and the individual deviation thereof:




Multilevel Selection

Type of B, B, Expected
Selection Response

Kin 1 1
Group 1 0 Au = (L)cov(G7)|
Within 0 1
Optlmal Au = (1)[B, cov(G7)+ B, cov(Gy )]

cov(Gy)= (1; r)

Jin-952 +0-2k0-2o0s - (n-27 3]

Estimation of Parameters
Mixed Model Equations

Y=XfB+Z,u L, p,te

Muir and Schinckel (2002)

Y=X[+Z,u L, u +s

Include correlated residual in R matrix

Y=Xf+Zu+L 1 1 +e

Random effect for shared group

12




Variances

G:{“é Gﬁ;}®A

O-ad O-a

2
Gd Additive Direct Effects
Ga Additive Associate Effects=Indirect Genetic Effect (IGE)
O Additive Covariance Between Direct and

ad Indirect Effects

2

2 7 O Between Group
O Environmental

E P

O, Within Group

13

MME with correlated residuals

X'RX X'R7Z, X'R7Z, A1 [XR*X
ZRIX' Z,RZ 4 kAT ZRIZ, +kAT | g |=| X'RTZ,
ZRIX' ZIR'Z,+K,AY ZIRZ, +kAY | 4| | X'RZ,

1 pp - 0 00

-1
2
p 1 p 000 k, k, oy Oy
p p 1 - 000 = 2
R=(o?+02): & 1 i k, ki Oas Oa
0 1 pp
000 - p1op p= intra-class environmental correlation
L 0 pop 1]
2
o 2
_ c
P= 2 Note if p < 0, then then GC <O




MME with random effect for shared
environmental effect

X'X X'Z, X'Z, X'Z, b X'y
ZoX ZpZo+A'ky, ZoZ,+A'k,  ZpZ, |p,| |Zpy

ZX Z\Zy+A'k, Z\Z,+A'k, Z.Z, |p'| |Zy
X Z.Z, 7.2, ZZ +Xky | p | |Z,y

k, k ot o, "
K= "' ?%|=0? " o ky=02107
k, ks Ow O,
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Example 13

Parents

Individuals

Phenotype 12 9 8 5 7 5 6 8

Pen 1 1 2 2 2 1 1 2




Associative Genetic Matrix

Animal
4 5 6 7 8 9 10 11

0 0001O0O0O0OT11T11IO0

n
U

fa)
V)

n
\V)

10000110
000O0OO0OO0OI1IT1O0O01
0000O0O1O01O0O01
000O0O0OI1IT1O0O0O0T1

n 4|

U U v

1000010
1 000100

00000111000

L

|
L

n
1%

Z, =

4—71 |12

Da | Anim |Pen |Y

1

Sir
2

Who was in the same pen as animal 4

17

Genetic
Parameters




R code Example 13

A=matrix(c
Y=matrix(c( ~ X=matrix(c( (1, 00, 5 .5 .5 .5 0 0 0, O
12, 1, 0,1, 0, .5 .5 .5 .5 .5 .5 .5 .5
9, 1, 0,01, 0, 0, 0, 0, .5 .5 .5 .5
8, 1, 5,.5, 0, 1, .5 .5 .5, .25,.25, .25, .25,
5, 1 5, .5, 0, .5 1, .5, .5,.25,.25, .25, .25,
7, 1, 5, .5, 0, .5 .5 1, .5, .25,.25, .25, .25,
5, 1, 5, .5, 0, .5 .5 .5 1,.25,.25, .25, .25,
6, 1, 0, .5, .5, .25,.25,.25,.25, 1, .5, .5, .5,
8),8,1) 1).81) 0, .5, .5, .25,.25,.25,.25, .5, 1, .5, .5,
0, .5, .5, .25,.25,.25,.25, .5, .5, 1, .5,
0, .5, .5, .25,.25,.25,.25, .5, .5, .5, 1),11,11)
ZD=matrix(c( ZA=matrix(c( ZC=matrix(c(
0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,1,1,0, 10,
00,0,0,10,0,0,0,0,0, 0,0,0,1,0,0,0,0,1,1,0, 10,
0,0,0,0,0,1,0,0,0,0,0, 0,0,0,0,0,0,1,1,0,0,1, 0,1,
0,0,0,0,0,0,1,0,0,0,0, 0,0,0,0,0,1,0,1,0,0,1, 0,1,
0,0,0,0,0,0,0,1,0,0,0, 0,0,0,0,0,1,1,0,0,0,1, 0,1,
%,0,0,0,0,0,0,0,1,0,0, 0,0,0,1,1,0,0,0,0,1,0, 10,
0,0,0,0,0,0,0,0,0,1,0, 0,0,0,1,1,0,0,0,1,0,0, 10,
0,0,0,0,0,0,0,0,0,0,1) 0,0,0,0,0,1,1,1,0,0,0) 0,1)
,8,11,byrow=TRUE) ,8,11,byrow=TRUE) ,8,2,byrow=TRUE)
19
Sig_d=30
Sig_a=10
Sig_ad=-4
Sig_e=60
Sig_c=6
N=8
P=matrix(c(Sig_d, Sig_ad,
Sig_ad, Sig_a),2,2)
K=solve(P)*Sig_e
AINV=solve(A)
I2=matrix(c(1,0,
0,1),2,2)
K33=Sig_e/Sig_c
LHS= rbind(
cbind(t(X)%*%X, t(X)%*%2ZD, t(X)%*%ZA, t(X)%*%ZC),

chind(t(ZD)%*%X, t(ZD)%*%zZD+AINV*K[1,1],t(ZD)%*%ZA+AINV*K[1,2], t(ZD)%*%ZC),
chind(t(ZA)%*%X, t(ZA)%*%ZD+AINV*K[2,1], t(ZA)%*%ZA+AINV*K[2,2], t(ZA)%*%ZC),
chind(t(ZC)%*%X, t(ZC)%*%zD, t(ZC)%*%ZA, 1(2C)%*%ZC+12*K33))

20




RHS=matrix(rbind(
t(X) %*% Y,

t(ZD) %*% Y,
t(ZA) %*% Y,

t(ZC) %*% Y))

C=solve(LHS)
BU=C %*% RHS

RMSE=(t(Y) %*% Y-t(BU)%*% RHS)*(1/(N-2))

BU

[1,] 7.500000e+00
[2,] 5.151515e-01
[3,] -6.085976e-15
[4,] -5.151515e-01
[5,] 1.027597e+00
[6,] 4.204545¢-01
[7,] 3.522727e-01
[8,] -2.548701e-01
[9,] -2.180736e-01
[10,] -7.570346e-01
[11,] -5.546537e-01
[12,] -1.569264¢-02
[13,] -2.121212e-01
[14,] 5.988626e-15
[15,] 2.121212e-01
[16,] -3.598485¢-01
[17,] -1.098485¢-01
[18,] -2.083333¢-01
[19,] 4.166667e-02
[20,] 2.651515e-02
[21,] 3.750000e-01
[22,] 2.916667e-01
[23,] -5.681818e-02
[24,] 9.090909¢-02
[25,] -9.090909¢-02

21

u=75
Direct Genetic
Individual (ug)

1 0.515152
2 -2.40E-15
3 -0.51515
4 1.027597%
5 0.420455
6 0.352273
7 -0.25487
8 -0.21807
9 -0.75704
10 -0.55465
1 -0.01569

Estimates

Indirect Genetic
(uy)
-0.21212
3.37E-15
0.212121

-0.35985

-0.20833
0.041667
0.026515

0.375
0.291667
-0.05682

Cage Effect
0.090909

-0.09091

Note animal with best
direct effect has worst
ssociative effect

22




Index Selection

| =D u, +b,u,

The total breeding value (TBV) is the sum
of the direct and all IGE effects

TBV = /i, + (N1,

23

How Important Are Associative Effects In
Breeding Programs?

Total Breeding Value (TBV) (Bij = =
il alue (TBV) (Bijma TBV, = Ay +(n 1)ASi

V(TBV) associative effects are
scaled by (n-1)?

Phenotypic Variance associative
effects are scaled by (n-1)

“Heritability” can be >1

V(TBV )=0} +2(n—1)o +(N-1)f 0%

(Y)= ofd +(n—1)0',i +o?

» _V(BV) _ oi +2(N—1)oy A +(n—1)20'§5

V(YY) or +(n—1)oi +o?

R=iTV(TVB)

accuracy




Accuracy (T vs. h) Body Weight: Quail

OTBV (Muir, 2005)
W direct

Accuracy (T vs. h) ADG: Swine

B TBV (Chen et al, 2009)

B direct

B TBV (Chen et al, 2008)

B direct

B TBV (Bergsma et al, 2008)
W direct

O TBV (Arango, et al, 2005)

B Direct




1.2

Accuracy (T vs. h) Survival Days: Layers

0.81

0.6

0.4

0.21

OTBV (Muir, 1985)
B direct
O TBV (Ellen et al, 2008)

B direct
B TBV (Bijma et al 2007b)
B direct

Accuracy (T vs. h) ADG: Beef Cattle

16

14

12 1

0.8

0.6

0.4 1

0.2 4

OTBV (Van Vleck et al, 2007)
W Direct




Selection Experiments

Model Organisms
Poultry

Swine

Layers: Group vs. Individual Selection (Muir,

Dekalb XL
1981

Dekalb XL

Dekalb XL
1981
Control

1996
Commercial
Individual Selecte

Group Selected
KGB




Group Selection

e Selected Index
— Total Days Survival and Rate of Lay
— Full Record (12 months of production)

— Groups 12 Bird Half Sib Family One Colony
Cage (56 sq in/bird)

—Saved Birds from the Best 24/384 Colony
Cages

— Repeated for 6 generations

Control (Dekalb 1981)
Randomly Selected From Single Bird Cages




Percent Mortality

80 -
70 -
*67.9 Initial Realized h? =110%
00 -
50 1
=240
0 15.2
0 L
10 - ¢
0 T T T
1 2 3 4 5
Generations
Eggs per Hen Housed
250 - -
230 - 225
210 - "
190 - +195
<170 -
)
=150 1
=
~ 130 1 Initial Realized h? =108%
110 1
90 - 491
70 -
50 . . i
1 2 3 4 5

Generation




Control Bird (DXL) After 12 Months
of Production

6 Alive

KGB Bird After 12 Months

12 Alive




7th Generation (Craig and Muir, 1996)

o 3 Lines Were Compared

— Group Selected (KGB)

— Control (Dekalb, 1981)

— Individual Selection (Dekalb, 1996)
* Housed

— Single

— 12-bird Cages

Cumulative Mortality

450

400 et

350 ||~ DXL (1981 US Bird) e

200 - A /ﬁ/
150 /// x/

100 = —
50 il /”’/M/ i

O-II||||||||||||||||||||||||||||||||||||||
Ry QX D DD YR RSP D
AGE (WEEKS)




Comparison of Kin, Individual, and TBV Selection

MUIR, W. M., 2005 Incorporation of competitive effects in forest tree or
animal breeding programs. Genetics 170: 1247-1259

* Experimental Model

— Quail

— Trait: 6 Week Weight (wt)
e Methods tested:

— Individual selection unrelated
groups: (AM-BLUP)

— Multi-level in related groups: (Kin-
BLUP)

— TBV Index direct and indirect (non-
kin groups, CE-BLUP)

e Selected for 25 Hatches

Estimates of Genetic Parameters
Based on Random Matings First 2
Generations

O'é O np 33.7 =55
O b O'i -55 2.8
ol =1245

G =




Genetic Trends

Weight (g)

115 4

110 A

105 -

100 A

95 A

90 1

85

y =0.797x + 91.003

—e— AM_BLUP
KIN_BLUP
CE_BLUP

y = 0.513x + 90.987

+ +——e

y =-0.074x + 91.874

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Hatch

Conclusion: Selection on TBV

— Effective but did not achieve theoretic gains
* Errors in parameter estimation
* Variances and covariance's change with selection
— Implementation
* Management

— Easy to fill pens with same aged pigs (random)




Multi-level selection
individual selection in family groups

— Most Effective

— Achieved theoretic gains
* Robust to errors in parameter estimation
* No concerns for covariance's changing with selection

— Implementation
* Programming : none (same model)

* Management
— Difficult
— Filling of cages with same age and number of pigs

Competitive
Effects in Tree Breeding Programs
Competition by Distance

44




Trees Compete For Limited Resources

Nutrients

(N; PI K) \ .L =

Water

Point Impact=

46




Interacting Genotype Model

Y,=u+D,+ %XAE )+ (d—EXA,f‘ )+g

Mixed Model Equations

Y=Xp+Z,D+Z,a+¢

1 | 1
‘ ]
Incidence Incidence |nCid¢.3nce
Matrix Matrix Matﬂ).( . —
Fixed Direct Associative :
rror
Effects Effects Effects
Fixed Effects Direct Associative
Mean Effects Genetics
Location Effects
Age

48




Associative Effects Incidence Matrix

1 1

0 % =

|1 1

L= 07 0 d;
1 1

o 0

49

MME Competition

XR'X  XRZ XRz, 5] [XR™
ZR'X ZR'Z,+kA' ZR'Z+A | 14 =] XRZ,
ZRX ZR'Z+kA' ZRZ+kA 1| [ XRZ,

kK, _ Gdz Oag N
k, K O ad O-j

4 1
Note that R, the residual 1 d22 d32
covariance matrix, is a spatial R 201 1 1
correlation matrix and maybe - Ge d_z d_z
defined similar to Za or by plot 12 1 4
Py
—d3 d4 - 50




Application of Concepts to Disease

. Disease
Disease Tolerance Susceptibility
Disease Transmissibility : 2
i g Viral Shedding
Behavior (learned, IEE)
Behavior (Inherited, IGEG)
IGE Indirect Genetic Effect
IEE Indirect Environmental Effect
How well does the individual tolerate a disease Immune system (G,E)
May carry but does not show symptoms (Typhoid Mary) Innate Immunity (G)
Symptomatic? Condition (G,E)

Condition (G,E)

51




Lecture 8

QTL and Association Mapping
with Mixed Models

Bruce Walsh lecture notes

Summer Institute in Statistical Genetics
Seattle, 20 — 22 July 2016

QTL & Association mapping

¢ We would like to know both the genomic
locations (map positions) and effects (either
genotypic means or variances) for genes
underlying quantitative trait variation

e QTL mapping

— Using linkage information on a set of known
relatives

* Association mapping

— Using very fine scale LD to map genes in a set of
random individuals from a population



Outline
* Basics of QTL mapping

— Line crosses
* typically fixed effects models

— Outbred populations
e Random effects family models
* General pedigree methods
e High parameter models

— Shrinkage approaches for detecting epistasis
* Association mapping

Inbred Line Cross QTL mapping

* Most powerful design

— Cross two fully inbred lines, look at marker-trait
segregation in the F, (or other, such as F,)
generations

- P1: MMQQ, P2:mmqq

— All F, same genotype/phase: MQ/mq

— Hence, in the F1, all parents have the same
genotype

— At most only two alleles, each with freq 1/2

— ldea: Does the mean trait value of (say) MM
individuals differ from (say) mm

* Different marker genotypes have different mean trait
values



Expected Marker Means

The expected trait mean for marker genotype M,
Is just .
pnt; = ) 1@, Pr(Qr | M)
k=1

For example, if QQ = 2a, Qq = a(1+k), ggq = 0, then in
the F2 of an MMQQ/mmqq cross,

(/l?"”z‘” — Hmm )/2 = (‘1(1 — 2()

e |f the trait mean is significantly different for the
genotypes at a marker locus, it is linked to a QTL

e A small MM-mm difference could be (i) a tightly-linked

QTL of small effect or (ii) loose linkage to a large QTL

Linear Models for QTL Detection

The use of differences in the mean trait value
for different marker genotypes to detect a QTL
and estimate its effects is a use of linear models.

One-way ANOVA.

Value of trait in kth
individual of marker

genotype type i

\
Zik = b+ 7{); + €ik

Effect of marker
genotype i on trait
value



Zik = W+ b + €

Detection: a QTL is linked to the marker if at least
one of the b, is significantly different from zero

Estimation: (QTL effect and position): This requires
relating the b, to the QTL effects and map position

Detecting epistasis

One major advantage of linear models is their
flexibility. To test for epistasis between two QTLs,
use ANOVA with an interaction term

z2=u—+a + b +dir +e€
l/

Effect from marker genotype
at first marker set (can be > 1 loci)

Effect from marker genotype
at second marker set

Interaction between marker genotypes i in 1st
marker set and k in 2nd marker set



Detecting epistasis

z=pu+a + bk +dir + e

* At least one of the a, significantly different from O
---- QTL linked to first marker set

e At least one of the b, significantly different from 0O
---- QTL linked to second marker set

¢ At least one of the d, significantly different from O
---- interactions between QTL in sets 1 and two

Problem: Huge number of potential interaction terms

(order m2, where m = number of markers) .

Model selection

* With (say) 300 markers, we have (potentially) 300
single-marker terms and 300*299/2 = 44,850
epistatic terms

— Hence, a model with up to p= 45,150 possible parameters
— 2P possible submodels = 101369 ouch!

e The issue of Model selection becomes very
important.

e How do we find the best model?
— Stepwise regression approaches

¢ Forward selection (add terms one at a time)
e Backwards selection (delete terms one at a time)

— Try all models, assess best fit

— Mixed-model approaches (Stochastic Search
Variable Selection, or SSVS)



Model Selection

Model Selection: Use some criteria to chose among a
number of candidate models. Weight goodness-of-fit
(L, value of the likelihood at the MLEs) vs. number of
estimated parameters (k)

AIC = Akaike'’s information criterion
AIC = 2k - 2 Ln(L)

BIC = Bayesian information criterion (Schwarz criterion)
BIC = k*In(n)/n - 2 Ln(L)/n
BIC penalizes free parameters more strongly than AIC

Other measures. For these (and AIVC, BIC) smaller
score indicates better model fit y

Model averaging

Model averaging: Generate a composite model by weighting
(averaging) the various models, using AIC, BIC, or other

|dea: Perhaps no “best” model, but several models
all extremely close. Better to report this “distribution”
rather than the best one

One approach is to average the coefficients on the
"best-fitting” models using some scheme to return
a composite model



Supersaturated Models

A problem with many QTL approaches is that there
are far more parameters (p) to estimate than

there are independent samples (n). Case in point:
epistasis

Such supersaturated models arise commonly in
Genomics. How do we deal with them?

One approach is to have all parameters included, but some
are shrunk back (regressed) towards zero by assigning them
a very small posterior variance

Shrinkage estimators

Shrinkage estimates: Rather than adding interaction
terms one at a time, a shrinkage method starts with all
interactions included, and then shrinks most back to zero.

Under a Bayesian analysis, any effect is random. One can
assume the effect for (say) interaction ij is drawn from
a normal with mean zero and variance 0%

Further, the interaction-specific variances are themselves
random variables drawn from a hyperparameter distribution,
such as an inverse chi-square.

One then estimates the hyperparameters and uses these
to predict the variances, with effects with small variances
shrinking back to zero, and effects with large variances
remaining in the model. 14



Whatisa "QTL"

e A detected “QTL" in a mapping experiment
is a region of a chromosome detected by
linkage.

Usually large (typically 10-40 cM)

When further examined, most “large” QTLs
turn out to be a linked collection of locations
with increasingly smaller effects

® The more one localizes, the more subregions
that are found, and the smaller the effect in
each subregion

This is called fractionation

Limitations of QTL mapping

e Poor resolution (~20 cM or greater in most designs
with sample sizes in low to mid 100’s)
— Detected "QTLs" are thus large chromosomal regions

* Fine mapping requires either

— Further crosses (recombinations) involving regions of
interest (i.e., RILs, NILs)
— Enormous sample sizes

e If marker-QTL distance is 0.5cM, require sample sizes
in excess of 3400 to have a 95% chance of 10 (or
more) recombination events in sample

* 10 recombination events allows one to separate
effects that differ by ~ 0.6 SD



Limitations of QTL mapping (cont)

« “Major” QTLs typically fractionate

— QTLs of large effect (accounting for > 10% of the
variance) are routinely discovered.

— However, a large QTL peak in an initial experiment
generally becomes a series of smaller and smaller
peaks upon subsequent fine-mapping.

e The Beavis effect:

— When power for detection is low, marker-trait
associations declared to be statistically significant
significantly overestimate their true effects.

— This effect can be very large (order of magnitude)
when power is low.

Outbred populations

* When we move from the simple framework of an
inbred line cross QTL design to a set of parents from
an outbred population, complications arise as the
parents don't all have the same genotypes

— Differences in linkage phase

— Many uninformative as to linkage (varies over
makers)

— Possibility of multiple alleles

* Result: express marker effects in terms of the
variance in trait value it explains, rather than in terms
of mean marker effects



General Pedigree Methods

Random effects (hence, variance component) method
for detecting QTLs in general pedigrees

Genetic effect of
chromosomal region
of interest

Trait value for ‘/ /
individual i > 2i = p+ Ai +A; + €

\

Genetic value of other
(background) QTLs

The model is rerun for each marker

Zi = p+ A; + 1: + €4

The covariance between individuals i and j is thus

Variance Resemblance
explained by between
the region of re|at|v§s

interest correction

\ /

0(2i,2) = Rij 05 + 20y 0

/

AN

Fraction of chromosomal

region shared IBD Vari.ance
between individuals i and j. eXP'i';ed by
e
background

polygenes 20



Assume z is MVN, giving the covariance matrix as

V=Roj+Ac% +10?
Here
[ fori= f1 fori=j
R‘U N { Ri_j for 7 #‘] . ‘AU N { 2@,‘_,‘ for 7 ?éj
Estimated from marker Estimated from
data the pedigree

The resulting likelihood function is

) 0 o9 o 1 1 _
U(z| p,0%,0%,02%) = ———m————— exp —3(2—;1Y)TV Yz —p)

Jenrvl L2
A significant 0, indicates a linked QTL.

21

Association & LD mapping
Mapping major genes (LD mapping) vs. trying to
Map QTLs (Association mapping)

ldea: Collect random sample of individuals, contrast
trait means over marker genotypes

If a dense enough marker map, likely population level
linkage disequilibrium (LD) between closely-linked
genes

22



Fine-mapping genes

Suppose an allele causing an effect on the trait
arose as a single mutation in a closed population

New mutation arises on
red chromosome

Initially, the new mutation is
largely associated with the
red haplotype

Hence, markers that define the red haplotype are
likely to be associated (i.e. in LD) with the mutant allele

23

Background: Association mapping

e |f one has a very large number of SNPs, then new
mutations (such as those that influence a trait) will be in LD
with very close SNPs for hundreds to thousands of
generations, generating a marker-trait association.

— Association mapping looks over all sets of SNPs for trait
-SNP associations. GWAS = genome-wide association
studies.

— This is also the basis for genomic selection
* Main point from extensive human association studies
— Almost all QTLs have very small effects

— Marker-trait associations do not fully recapture all of the
additive variance in the trait (due to incomplete LD)

— This has been called the “missing heritability problem”
by human geneticists, but not really a problem at all
(more shortly). 24




Association mapping

Marker-trait associations within a population of unrelated

individuals

Very high marker density (~ 100s of markers/cM) required

— Marker density no less than the average track length of
linkage disequilibrium (LD)

Relies on very slow breakdown of initial LD generated by a

new mutation near a marker to generate marker-trait

associations

— LD decays very quickly unless very tight linkage

- Hence, resolution on the scale of LD in the population(s) being
studied (1 ~ 40 kB)

Widely used since mid 1990’s. Mainstay of human
genetics, strong inroads in breeding, evolutionary genetics

Power a function of the genetic variance of a QTL, not its

mean effects )

Manhattan plots

® The results for a Genome-wide Association study (or

GWAS) are typically displayed using a Manhattan

plot.

— At each SNP, -In(p), the negative log of the p
value for a significant marker-trait association is
plotted. Values above a threshold indicate
significant effects

— Threshold set by Bonferroni-style multiple
comparisons correction

— With n markers, an overall false-positive rate of p
requires each marker be tested using p/n.

— With n = 10° SNPs, p must exceed 0.01/10° or
108 to have a control of 1% of a false-positive

26
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Population Stratification

When population being sampled actually consists of several distinct
subpopulations we have lumped together, marker alleles may provide
information as to which group an individual belongs. If there are other
risk factors in a group, this can create a false association btw marker
and trait

Example. The Gm marker was thought (for biological reasons) to be
an excellent candidate gene for diabetes in the high-risk population
of Pima Indians in the American Southwest. Initially a very strong
association was observed:

Gm* Total % with diabetes

Present 293 8%

Absent 4,627 29% 28




Gm* Total % with diabetes
Present 293 8%
Absent 4,627 29%

Problem: freq(Gm*) in Caucasians (lower-risk diabetes
Population) is 67%, Gm* rare in full-blooded Pima

The association was re-examined in a population of Pima

that were 7/8th (or more) full heritage:

Gm* Total % with diabetes
Present 17 59%
Absent 1,764 60%

Linkage vs. Association

The distinction between linkage and association

is subtle, yet critical

Marker allele M is associated with the trait if

Cov(M,y) ¥ 0

While such associations can arise via linkage, they

can also arise via population structure.

Thus, association DOES NOT imply linkage, and

linkage is not sufficient for association

29
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Accounting for population structure

* Three classes of approaches proposed

— 1) Attempts to correct for common pop structure
signal (regression/PC methods)

— 2) Attempts to first assign individuals into
subpopulations and then perform association
mapping in each set (Structure)

— 3) Mixed models that use all of the marker
information (Tassle, EMMA, many others)

* These can also account for cryptic relatedness in the
data set, which also causes false-positives.

Regression Approaches

One approach to control for structure is

simply to include a number of markers, outside
of the SNP of interest, chosen because they
are expected to vary over any subpopulations

How might you choose these in a sample? Try
those markers (read STRs) that show the largest
departure from Hardy-Weinberg, as this is expected
in markers that vary the most over subpopulations.

31
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Indicator (O / 1) Variable
for SNP genotype k. Typically
k=3,i.e. AA, Aaaa

m

n
y=p+d O Mi+Y 7ibj+e
Significant p indicates m unlinked markers that

marker-trait association vary across subpopulations.
b; = marker genotype indicator

SNP marker variable

under consideration

Variations on this theme (eigenstrat) --- use all of the
marker information to extract a set of significant

PCs, which are then included in the model as cofactors
33

Structured Association Mapping

Pritchard and Rosenberg (1999) proposed
Structured Association Mapping, wherein
one assumes k subpopulations (each in Hardy-

Weinberg).

Given a large number of markers, one then attempts
to assign individuals to groups using an MCMC
Bayesian classifier

Once individuals assigned to groups, association mapping
without any correction can occur in each group.

34



Mixed-model approaches

* Mixed models use marker data to
— Account for population structure
— Account for cryptic relatedness

* Three general approaches:

— Treat a single SNP as fixed
e TASSLE, EMMA

— Treat a single SNP as random
* General pedigree method

— Fit all of the SNPs at once as random
e GBLUP

35

Structure plus Kinship Methods

Association mapping in plants offer occurs by first taking
a large collection of lines, some closely related, others
more distantly related. Thus, in addition to this collection
being a series of subpopulations (derivatives from a
number of founding lines), there can also be additional
structure within each subpopulation (groups of more
closely related lines within any particular lineage).

Y=XB+Sa+Qv+Zu+e
Fixed effects in blue, random effects in red

This is a mixed-model approach. The program TASSEL
runs this model. 36



Q-K method

Y=Xp+Sa+Qv+Zu+e

[} = vector of fixed effects

a = SNP effects (fits SNPs one at a time)

v = vector of subpopulation effects (STRUCTURE)
Q; = Prob(individual i in group j). Determined
from STRUCTURE output

u = shared polygenic effects due to kinship.
Cov(u) = var(A)*A, where the relationship matrix
A estimated from marker data matrix K, also called a

GRM - a genomic relationship matrix
37

Which markers to include in K?

* Best approach is to leave out the marker
being tested (and any in LD with it) when
construction the genomic relationship matrix
— LOCO approach — leave out one chromosome

(which the tested marker is linked to)

* Best approach seems to be to use most of

the markers

e Other mixed-model approaches along these
lines

38



Treat Single SNP as random: General Pedigree method

V=Roi+Ac% +102
Here

R~~—{1 for i = j A“—{l fori=j
YT Ry fori£j T YT |20y fori#j

Estimated from marker Estimated from
data the pedigree

The resulting likelihood function is

5 5 o 1 1 : _ :
0(z| p,0%4,0%,0?%) = ————— exp —_—(z—p)TV Lz —p)

/@) V] 2
A significant 0, indicates a linked QTL.

39

GBLUP

e The O-K method tests SNPs one at a time,
treating them as fixed effects

* The general pedigree method (slides 24-26)
also tests one marker at a time, treating
them as random effects

e Genomic selection can be though of as
estimating all of the SNP effects at once and
hence can also be used for GWAS

40



BLUP, GBLUP, and GWAS

e Pedigree information gives EXPECTED value
of shared sites (i.e., V2 for full-sibs)
— A matrix in BLUP

— The actual realization of the fraction of shared
genes for a particular pair of relatives can be
rather different, due to sampling variance in
segregation of alleles

— GRM (or K or marker matrix M)

— Hence “identical” relatives can differ significantly
in faction of shared regions

— Dense marker information can account for this
41

The general setting

* Suppose we have n measured individuals (the n x 1
vector y of trait values)

* The n x n relationship matrix A gives the relatedness
among the sampled individuals, where the elements
of A are obtained from the pedigree of measured
individuals

e We may also have p (>> n) SNPs per individual,
where the n x p marker information matrix M
contains the marker data, where M; = score for SNP
j (i.e., 0 for 00, 1 for 10, 2 for 11) in individual i.



Covariance structure of random effects

A critical element specifying the mixed model is the
covariance structure (matrix) of the vector u of
random effects

e Standard form is that Cov(u) = variance component *
matrix of known constants

— This is the case for pedigree data, where u is typically the
vector of breeding values, and the pedigree defines a
relationship matrix A, with Cov(u) = Var(A) * A, the additive
variance times the relationship matrix

— With marker data, the covariance of random effects are
functions of the marker information matrix M.

e If uis the vector of p marker effects, then Cov(u) =
Var(m) * MTM, the marker variance times the covariance
structure of the markers.

Y=XB+Zu+e

Pedigree-based BV estimation: (BLUP)
U, = vector of BVs, Cov(u) = Var(A) A,

Marker-based BV estimation: (GBLUP)
U, = vector of BVs, Cov(u) = Var(m) M™ (n x n)

nx

GWAS: ug, = vector of marker effects,
Cov(u) = Var(m) MMT (p x p)

Genomic selection: predicted vector of breeding values

from marker effects, GBV ..y = MU,
Note that Cov(GBV) = Var(m) M™ (n x n)

Lots of variations of these general ideas by adding
additional assumptions on covariance structure.



GWAS Model diagnostics

45

The "Genomic Control” parameter A

Devlin and Roeder (1999). Basic idea is that association tests (marker
presence/absence vs. trait presence/absence) is typically done with a
standard 2 x 2 x? test.

When population structure is present, the test statistic now follows
a scaled y?, so that if S is the test statistic, then S/A ~ x?, (so S ~
Ax?;) . Hence, population structure should inflate all of the
tests (on average) by a common amount A.

Hence, if we have suitably corrected for population structure, the
estimated inflation factor A among tests should be ~ 1.

A robust estimator for A is offered from the medium
(50% value) of the test statistics, so that for m tests

medium (51, Sm)
0.456

\ =

46



Genomic control A as a diagnostic tool

Presence of population structure will inflate the A
parameter

A value above 1 is considered evidence of additional
structure in the data

— Could be population structure, cryptic relatedness, or both

— A lambda value less that 1.05 is generally considered benign
One issue is that if the true polygenic model holds (lots of
sites of small effect), then a significant fraction will have
inflated p values, and hence an inflated A value.

Hence, often one computes the A following attempts to
remove population structure. If the resulting value is
below 1.05, suggestion that structure has been largely
removed.

47

P — P plots

e Another powerful diagnostic tool is the p-p plot.
e [f all tests are drawn from the null, then the
distribution of p values should be uniform.

— There should be a slight excess of tests with very
low p indicating true positives

e This gives a straight line of a log-log plot of
observed (seen) and expected (uniform) p values
with a slight rise near small values

— If the fraction of true positives is high (i.e., many
sites influence the trait), this also bends the p-p
plot

48
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Observed (-logP)
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Price et al. 2010 Nat Rev Gene 11: 459
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o
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T T
2 <

Expected (-logP)

As with using A, one should construct p-p following
some approach to correct for structure & relatedness

to see if they look unusual.

o
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Association mapping (power)

Q/q is the polymorphic site contributing to trait
variation, M/m alleles (at a SNP) used as a marker

Let p be the frequency of M, and assume that
Q only resides on the M background (complete
disequilibrium)

Haloptype Frequency | effect

QM ro a

qM (1-nNp

gm 1-p 0

51
Haloptype Frequency | effect

aOM - S Effectof m =0
gM (1-Np Effect of M = ar
gm 1-p 0

Genetic variation associated with Q = 2(rp)(1-rp)a?
~ 2rpa? when Q rare. Hence, little power if Q rare

Genetic variation associated with marker M is

2p(1-p)(ar)?

Ratio of marker/true effect variance is ~ r

~ 2pa’r?

Hence, if Q rare within the A class, even less power, as M only

captures a fraction of the associated QTL.

52



Common variants

Association mapping is only powerful for common
variants

- freq(Q) moderate

- freq (r) of Q within M haplotypes modest to large

Large effect alleles (a large) can leave small signals.

The fraction of the actual variance accounted for by
the markers is no greater than ~ ave(r), the average
frequency of Q within a haplotype class

Hence, don’t expect to capture all of Var(A) with
markers, esp. when QTL alleles are rare but markers
are common (e.g. common SNPs, p > 0.05)

* Low power to detect G x G, G x E interactions

53

“How wonderful that we have met with a paradox. Now we
have some hope of making progress” -- Neils Bohr

The case of the missing heritability | |

Infamous figure from Nature on the angst of human geneticists
over the finding that all of their discovered SNPs still accounted for
only a fraction of relative-based heritability estimates of human
disease. >4



The “missing heritability” pseudo paradox

e A number of GWAS workers noted that the sum of their
significant marker variances was much less (typically
10%) than the additive variance estimated from
biometrical methods

* The “missing heritability” problem was birthed from this
observation.

* Not a paradox at all

— Low power means small effect (i.e. variance) sites are unlikely to
be called as significant, esp. given the high stringency
associated with control of false positives over tens of thousands
of tests

— Further, even if all markers are detected, only a fraction ~ r (the

frequency of the causative site within a marker haplotype class)
of the underlying variance is accounted for.
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Lecture 9:
G x E: Genotype-environment
Interaction

Bruce Walsh lecture notes
Summer Institute in Statistical Genetics
Seattle, 20 — 22 July 2016

GxE

Introduction to G x E

— Basicsof GX E

— Some suggested rules

— Treating G x E as a correlated-trait problem
Estimation of G x E terms

— Finlay-Wilkinson regressions
SVD-based methods

— The singular value decomposition (SVD)
- AMMI models

Factorial regressions

Mixed-Model approaches

- BLUP

— Structured covariance models



Genotypes vs. individuals

* Much of the G x E theory is developed for plant
breeders who are using pure (= fully inbred) lines, so
that every individual has the same genotype

® The same basic approaches can be used by taking
family members as the replicates for outbred
species. Here the "genotype” over the family
members is some composite value (the mean
breeding value of the family).

Yield in Environment 1 T Genotype 2

TWTT Genotype 1
t 7t

E1 Gz1
Yield in Environment 2 TwTT
t b

GZZ EZ

E. = mean value in environment i

Overall means




G,

)

Ga; Gy,

= mean of genotype i in environment |

Under base model of Quantitative Genetics,

Gij=M+Gi+Ej

When G x E present, there is an interaction between
a particular genotype and a particular environment so that

G, is no longer additive, G; = u + G, +

E. + GEij

GE;=gi-g-¢

Components measured as deviations

from the mean u




Which genotype is the best?

Ga; Gy,

\ A/

Depends: If the genotypes are grown in both environments,
G, has a higher mean

If the genotypes are only grown in environment 1, G, has a
higher mean

If the genotypes are only grown in environment 2, G, has a
higher mean

G x E: Both a problem and an
opportunity

A line with little G x E has stability across
environments.

* However, a line with high G x E may outperform all
others in specific environments.

* G x E implies the opportunity to fine-tune specific
lines to specific environments

e High 0% GE) implies high G x E in at least some lines
in the sample.



Mean Performance

High Low
High  Potential for Potential for
locally-adapted lines locally-adapted lines
Amountof G xE
Low  Ideal. Potential for Undersirable

widely adaptive lines

Ideal: high mean performance, low G x E

Low G x E = widely adaptive lines/genotypes

High G x E = locally adaptive lines/genotypes

Major vs. minor environments

e An identical genotype will display slightly different traits
values even over apparently identical environments due
to micro-environmental variation and developmental
noise

* However, macro-environments (such as different locations
or different years <such as a wet vs. a dry year>) can show
substantial variation, and genotypes (pure lines) may
differentially perform over such macro-environments (G x
E).

® Problem: The mean environment of a location may be
somewhat predictable (e.g., corn in the tropics vs.
temperate North American), but year-to-year variation at
the same location is essentially unpredictable.

* Decompose G x E into components
- G xEations T O X Ejeas T GXE

years years x locations

— Ideal: strong G x E over locations, high stability over years. 10



Components of 72 .: Variance Heterogeneity and Lack of Correlations

It is useful to remind the reader that there are two different sources for G x E — differences
in the genetic variances across environments (genetic heterogeneity, often referred to as
scale effects) and lack of perfect correlation among breeding values across environments
(LW Chapter 22). For two environments, Robertson (1959) showed that the G x E interaction
variance can be partitioned into theses two sources,

\2
2 (T4, —0a,) , » (92 1)
Oexp=—"""5 " + T4, Oa,(1 —ry4) (38.1a)

here 0% is the additi § i i i and r 4 is the additi i rrelati
where 77, 1s the additive variance in environmenti and r 4 1s the additive genetic correlation
across environments. Cockerham (1963) and Itoh and Yamada (1990) extended Robertson’s
decomposition to n, environments,

1 ne ) 9 ne
2 2 2 RPN oo .
Towp = 1 E ((T.J.j - ITA) + W——h E Ta; 04, [1 — 1'4(./._/)] (38.1h)
3 ' L]

Key: differences in scale and lack of perfect correlation
over environments both generate G x E

"1

Falconer: G x E

® The modern treatment of G x E starts with
Falconer (1952)

— Measures of the same trait in different
environments are correlated traits

— Hence, if measured in k environments, it's a k-
dimensional trait

— Thus results from direct and correlated responses
apply to selectionon G x E
* |f selection in environment i, expected
change in environment j is

12



Hammond’s Conjecture

e Hammond (1947) suggested that selection
be undertaken in a more favorable
environment to maximize progress in a less
favorable one.

* |dea: perhaps more genetic variation, and
hence greater discrimination, between
genotypes.

e Downside: don’t know if Var(G) greater in
“better” environments. Even if it is, between-
environment correlation can be small.

13

Example 38.2. Falconerand Latyszewski (1952) and Fal coner (1960) selected for growth rate
inmicein two nutritional environments (this work was also discussed in Example 30.7). In one
environment, mice were housed individually and food was restricted to around 75% of normal
intalee, while in the other, mice were housed in groups of four to six and givenunlimited food.
Selection for increased weight gainwas effective in both environments, although heritability
was higher (0.29 to 0.20) in the restricted diet environment (although this difference was not
significant). The higher heritability value arose because while the additive genetic variance
was reduced in the poorer environment (by around 45%), the environmental variance was
reduced even more (around 66%). Falconer suggested that this red uction in rrf may be, in

part, due to rearing single versus multiple individuals.

When the restricted-diet selected individuals were grown in the unrestricted environment,
they showed a significant weight gain, but when the unrestricted-selected individuals were
reared inthe restricted dietenvironment, they did not. These results areadirect contradictionto
Hammond’s conjecture, in that selection in the poorer environment gave thelarger response in
the target pop ulation. Further, there were other significant differences. The high-feed selected
lines contained around 24% more body fat than the restricted-diet lines when both where
grown in the high-feed environment. Thus, selection in the restricted diet also resulted in
leanermice, which (inmany cases) woul d also be economicall y favored in a selection program.

14



Jinks-Connolly rule

Stability of the genotypic value over environments is
a measure of G x E sensitivity.

— High stability = low sensitivity

Antagonistic G x E selection

— Up-selecting in the bad environment

Synergistic G x E selection

— Up-selecting in the good environment

Jinks-Connolly rule:

— Antagonistic selection improves stability
(decreases environmental sensitivity), while
synergistic selection decreases stability

Antagonistic Synergistic

CR. 4

Low High Low High

| CRy

Low High Low High

Slope = measure of sensitivity. Reducing the slope increases stability

15
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While Jinks-Connolly suggests a general trend and is expected to hold more often than
not, Falconer (1990) noted that a modification of this rule held in all 24 experimental cases
he examined, namely that the sensitivity is [ess after antagonistic selection than after synergistic
selection. Since the sensitivity is a slope, this means that the change in the numerator of
Equation 38.5 is greater under antagonistic selection than under synergistic selection. When
selecting to decrease a trait, this requires

(Ry —CRy) — (CRy —Rp) >0 (38.6a)

which rearranges to recover
Ry+ Ry, >CRy + CRy, (38.6h)

with this same condition holding for selection to increase a trait. Hence, for Falconer’s
modification to hold, the less restrictive assumption that the sum of the direct responses is
greater than the sum of correlated responses must hold.

17

What about Falconer’s (1989) suggestion that mean performance over the two environ-
ments is best improved by antagonistic selection? If the mean change is equally weighted
in both environments, then when selecting to increase a trait, under antagonistic selection
direct response occurs in the low environment, while under synergistic selection direct re-
sponse occurs in the high environment. Thus, Falconer’s (1989) suggestion holds when the
average of the directresponse in low and the correlated response in high exceeds the direct
response in high and the correlated response in low;,

Rp+CRy >Ry +CRyL (38.7a)
Assuming equal selection in both environments, then from Equation 38.3a, this reduces to
hp(oa, tracay,) >hu(0a, +raca,) (38.7b)
Conversely, when selecting to decrease trait value, this condition becomes
Ry +CRy >Ry + CRy (38.7¢)

Note that Equations 38.7a and 38.7c are mutually exclusive, so that if antagonistic selection
is betterin one direction, it will be worse in the opposite direction. Thus, as Falconer (1990)
pointed out, there is little theoretical justification for his earlier (1989) suggestion.

18



The Cost to Response from G xE

As a benchmark for selection when G x E is present, if environmental structure is ignored
and simple mass selection used (choosing the best performing individuals based solely on
their phenotypic values), then the expected response becomes

b

T

. a
R=10,h? =7~

2 2 2
\/”(; toGetog

=

(38.9a)

=1

7|
o
IS

where 02 and 0%, ate the geneticand environmental variances. When o2, . is large relative to
7%, the heritability is low and selection very inefficient, as an individual’s phenotypicvalue
in one environmentis a poor predictorof theiraverage breeding value over all environments.
If we are selecting among clones (or pure lines) then o2, replaces 0%. Setting 02, to zero,
Matheson and Cotterill (1990) note that the “cost” (loss of potential gain) of genotype-
environment interaction when using standard mass selection is

2 2
- \/ 7¢O (38.0D)

2 2 2
nG‘ + (TCxE' + ”E
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Replication over environments can reduce effect of
G x E in selection response

If members of the same genotype/line are replicated over n,
random environments, response to selection based on line
(or family) means is

Q
QO

3
w|
3
Qe
_+_
=)
[11 b
+
9
C\. V]
N
o
r'::
+
3
:’- b
=

20



Estimating the GE term

While GE can be estimated directly from the mean in a cell (i.e.,
G, in E) we can usually get more information (and a better
estlmate) by considering the entire design and exploiting
structure in the GE terms

This approach also allows us to potentially predict the GE terms
in specific environments

Basic idea: replace GE; by ayy, or more generally by %, ayy,
These are called bladdltlve or Abllmear models. This (at first
sight) seems more complicated. Why do this?
With ng genotypes and ng environments, we have

- ngng GE terms (assuming no missing values)

- ng+ng o;and y;unique terms

— king + ng) unique terms in %, oy, -
Suppose 50 genotypes in 10 environments

- 500 GE terms, 60 unique o, and y,terms, and (for k=3), 180 unique
o, and yk, terms.

21

Finlay-Wilkinson Regression

Also called a joint regression or regression on an
environmental index.

Let u + G, be the mean of the ith genotype over all
environments, and u + E; be the average yield of
all genotypes in environment |

pi; =+ G+ Ej(1+3;)+ 90

The FW regression estimates GE; by the regression GE; = B,E+ ;
The regression coefficient is obtained for each genotype from the

slope of the regression of the G;; over the E;. §;

j is the residual (lack

of fit). If 63(GE) >> o2(3) , then the regre55|on accounted for most
of the variation in GE.

22



Slope a stability measure
pi; = p+ Gi + Ej(1+ 3i) + i

If B, = -1, strong G x E, with genotype i having
identical performance over all environments (good and

bad).
If B, =0, no G xE.

If B; > 0, G x E, magnifying the effect of the environment.
Over-performs in good environments, under-performs in
bad environments.

23

Application

* Yield in lines of wheat over different environments
was examined by Calderini and Slafer (1999). The
lines examined were from different eras of breeding
(for four different countries)

e Newer lines had larger values, but also had higher
slopes (large B, values), indicating |ess stability over
mean environmental conditions than see in older
lines

24
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Regression slope for each genotype is f,

SVD approaches

¢ |n Finlay-Wilkinson, the GE. term was estimated by
BiE; where E; was observeof We could also have
used y,G,, where y; is the regression of genotype
values over the j-t th environment. Again G, is

observable.

* Singular-value decomposition (SVD) approaches
consider a more general approach, approximating
GE; by 3, ayv,; where the oy; and v, are determined
by the first k terms in the SVD of the matrix of GE
terms.

* The SVD is a way to obtain the best approximation
of a full matrix by some matrix of lower dimension.




The Singular-Value Decomposition (SVD)

An n x p matrix A can always be decomposed as the product of three matrices: ann x p
diagonal matrix A and two unitary matrices, U which is n x n and V which is p x p. The
resulting singular value decomposition (SVD) of A is given by

Anxp - Unx nAnx pVT

pXp

(30.16a)

We have indicated the dimensionality of each matrix to allow the reader to verify that each
matrix multiplication conforms. The diagonal elements A;.---. A, of A correspond to the
singular values of A and awe ordered by decreasing magnitude. Returning to the unitary
matrices U and V, we can write each as a row vector of column vectors,

U= (u. -.u. -u,). V =(vi. v vy) (39.16b)

where u; and v; are n and p-dimensional column vectors (often called the left and right
singular vectors, respectively). Since both U and V are unitary, by definition (Appendix 4)

each column vector has length one and are mutually orthogonal (i.e., ifi # j, u,-u;fr = V; vJT =

0). Since A is diagonal, itimmediately follows from matrix multiplication that we can write
any elementin A as

Ai; = Z/\k Uik Vij (39.16¢)
=1

where Ai is the kth singular value and s < min(p.n) is the number of non-zero singular
values.

The importance of the singular value decomposition in the analysis of G xE arises from
the Eckart-Young theorem (1938), which relates the best approximation of a matrixby some
lower-rank (say k) matrix with the SVD. Define as our measure of goodness of fit between

a matrix A and a lower rank approximation A as the sum of squared differences over all

elements, ‘
D (A — Aiy)?
i3
Eckart and Young show that the best fitting approximation A of rank m < s is given from
the first m terms of the singular value decomposition (the rank-m SVD),

m

Aij = Z/\k Uik Vicj (39.17a)
k=1

For example, the best rank-2 approximation for the G x E interaction is given by
GE,'J- L )\1 i V41 + )\2 iz V52 (3917}))

where A; is the ith singular value of the GE matrix, u and v are the associated singular
vectors (see Example 39.3). The fraction of total variation of a matrixaccounted forby taking
the first m terms in its SVD is

m 2 2
Sy 2 Mt

Mea™ = N 4 A2
k=1 ij 1 s

28



A data set for soybeans grown in New York (Gauch 1992) gives the
GE matrix as
57 176 —233
—36 —196 233 Where GE; = value for
GE =] —45 -324 369 G s HPE
enotype I In envir.
—66 178 —112 yp J
89 165 —254
InR, the compact SVD (Equation 39.16d) of amatrix Xis givenby svd(X), returning the SVD
of GE as

0.40  0.21 0.18

—041  0.00 0091 746.10 0 0 012 064 -0.76
—-0.66  0.12 —0.30 0 131.36 0 081 —0.51 —0.30
0.26 —0.83  0.11 0 0 0.53 0.58 0.58  0.58
0.41 050 019
The first singular value accounts for 746.102/(743.26% + 131.36% + (.53%) = 97.0% of the

total variation of GE, while the second singular value accounts for 3.0%, so that together
they account for essentially all of the total variation. The rank-1 SVD approximation of GE is
givenby setting all of the diagonal elements of A except the first entry to zero,

040  0.21 0.18

—0.41 0.00 091 746.10 0 0 0.12  0.64 -0.76
GE, = | 066 012 —-0.30 0 0 0 0.81 =051 —0.30
026 —-0.83 0.11 0 0 0 0.58 058  0.58

0.41 0.50  0.19

Similarly, the rank-2 SVD is given by setting all but the first two singular val ues to zero,

0.40  0.21 0.18

—0.41 0.00 091 746.10 0 0 0.12 064 -0.76
GE; = | —066 0.12 —-0.30 0 131.36 0 0.81 —-0.51 —0.30
0.26 —0.83 0.11 0 0 0 0.58  0.58 0.58

0.41 0.50  0.19

For example, the rank-1 SVD approximation for GEj, is
gz1heq, = 746.10%(-0.66)*0.64 = -315

The rank-2 SVD approximation is gsz;Aqe4, + gzohsey, =
746.10*%(-0.66)*0.64 + 131.36* 0.12*(-0.51) = -323

Actual value is -324

Generally, the rank-2 SVD approximation for GE; is

gihey + gphoey
30



AMMI models

Additive main effects, multiplicative interaction (AMMI)
models use the first m terms in the SVD of GE:

m

GE;j = Z Nk Viei kg + iy
k=1
Giving
m
pij=p+Gi+E; + Z Ak Vi Mg + 03
k=1

AMMI is actually a family of models, with AMMI _
denoting AMMI with the first m SVD terms.

31

AMMI models

m

pij = p+ G+ E; + Z Ak Vei ki + 0ij

//* =

Fit main effects

Fit principal components .
to the interaction term -

] - - GE f— A L ’ o _.I_ O
(SVD is a generalization — * I‘Z—:l k Vki Tlkej 7 94
of PC methods) -

32



Factorial Regressions

¢ While AMMI models attempt to extract information
about how G x E interactions are related across sets of
genotypes and environments, factorial regressions
incorporate direct measures of environmental factors in
an attempt to account for the observed pattern of G x
E.

* The power of this approach is that if we can determine
whicE genotypes are more (or less) sensitive to which
environmental features, the breeder may be able to
more finely tailor a line to a particular environment
without necessarily requiring trials in the target
environment.

33

Suppose we have a series of m measured values from
the environments of interest (such as average rainfall,
maximum temperature, etc.) Let Xy denote the value
of the k-th environmental variable in environment j

Factorial regressions model the GE term as
the sensitivity C,; of environmental value k to genotype i,
(this is a regression slope to be estimated from the data)

m

GE;j = Z Cki Thj + Oij
k=1

Note that the Finlay-Wilkinson regression is a special
case wherem = 1 and X; is the mean trait value (over

all genotypes) in that environment.
34



Model

Interpretation

Finlay-Wilkinson
GE;; = 3:(E; — p) + 045

AMMI

GE,‘J‘ -

m

k1 M Yhi Thei + 045

Factorial Regression

GE; =3

m

oy Ci Thy + 0y

Reduced rank Factorial Regression

GE;; =3

m

ket Ghi (22, Chp Tpi) + 03

AMMI using Reduced rank
Factorial Regression

GE,'J' =

m

I Ak Yk (ZP ClkpTpj ) + fjij

/3; = sensitivity of genotype ¢ to the average effect F; of
the environment.

First m terms of the SVD of the GE matrix

A} is the amount of variation explained by axis k

Yi: = sensitivity of genotype ¢ to environmental axis k

nk; — value of environment j on the kth environmental axis

Modeling G x E using m measured environmental factors
x; = value of kth environmental factor in environment j
(i = sensitivity of genotype ¢ to kth environmental factor

Modeling G x Ebased on a reduced dimensional set of

the observed environmental factors by constructingm

combinations (axes) of these effects.

ckp = loading of pth environmental factor on axis k.

(ks = sensitivity of genotype ¢ to kth environimental
combination (axis)

The environmental axes 7;,; under AMMI are replaced by
the environmental axes generated by linear combinations
of measured environmental factors generated by a

reduced rank factorial regression, with ni; = >° ) Ckp'p;.

Mixed model analysis of G x E

® Thus far, our discussion of estimating GE has be set
in terms of fixed effects.

® Mixed models are a powerful alternative, as they
easily handle missing data (i.e., not all combinations
of G and E explored).

® As with all mixed models, key is the assumed
covariance structure

— Structured covariance models
* Compound symmetry
® Finlay-Wilkinson
e Factor-analytic models (closely related to

AMMI)

36



Basic GxE Mixed model

* Typically, we assume either G or E is fixed,
and the other random (making GE random)

e Taking E as fixed, basic model becomes
e z=XB+Z,g+Z,gete

— The vector B of fixed effects includes estimates of the E..
The vector g contains estimates of the G, values, while the
vector ge contains estimates of all the GE;.

— Typically we assume e ~ 0, 6,21, and independent
of g and ge.

— Models significantly differ on the variance/
covariance structure of g and ge.

37

Example

We have two genotypes and three environments. Let z denote the
k-th replicate of genotype i in environment j. Suppose we

have single replicates of genotype 1 in all three environments, two
replicates of genotype 2 in environment 1, and one in environment 3

111 GEy

Z121 ol GEy,

2131 { ) \ Gy GEls

o . B=1ES . =1 7 ]. ge= o e =

“211 \F-’ } 8 ((z) 8 GEy €211
\ '-212} 3 \("11‘22 \ '212}
2231 GEys €231

€111
€121

€131

Here Ef

jt + E;, with the E; constrained to sum to zero. The resulting design matsi ces are

1 0
0 1
0 0
L 0

\l 0
0 0

1
1] 1
Zy— | !

' 0
0 \l]
1 0

0
0
0

0|
Y
1

0
1
0
0
0
0

0
0
1
0
0
0

0
0
0
1
1
0

0
0
0
0
0
0
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Compound Symmetry assumption

* To proceed further on the analysis of the
mixed model, we need covariance
assumptions on g and ge.

* The compound symmetry assumption is
- 04G) = 05, 0*(GE;) = 0%
— Plus no covariances across effects

— Under these assumptions, the covariance of any
genotype across any two (different) environments
is the same.

— Likewise, the genetic variance within any
environment is constant across environments

— Net result, the genetic covariance is the same
between any two environments 39

Under the compound symmetry assumption, the genetic variance
and covariances become as follows:

Expected genetic variance within a given environment
o(2ijk. 2i50) = 0(Gs + GLEyj, Gy + GE )
=0(Gi,Gy) +o(GEy;, GE; )
2 2
=0gTogE
Genetic covariance of the same genotype across environments
o(2ij.2i) = 0(Gy + GE; Gy + GEy) = 0(G.Gy)
Genetic correlation across environments is constant
0'(3;

—
ot ocE

For our example, the resulting covariance matrix becomes

PG =

Vz =7, Vg ZJI-I' Znge Z£+Ve

, , )
Vg =o051bx2, Vge =06, plexe, Ve =0, Isxe 40



Mixed-model allows for missing values.

Under fixed-effect model, estimate of W = Z;.

BLUP estimates under mixed-model (E fixed, G random)

Assuming equal number of replicates for each 7j combination, the predicted yield j1;; given
an observed mean of z;; is given by

BLU-P(/l,'j) = T., + ]2“(2'-(?,1 -Z.)+ ])?:l','(:ij - _., —-Z;.+7Z.)
=ji+ E_; + 0% Gi+ b ﬁ?u‘

where for n, environments, the repeatability of genetic effects and interactions, are respec-
tively,

2 2 2
O tneog el

2 2
he; = bz =

7 o -
Oge t N0 +0; ocr T 0

Contrasting the estimated cellmeanunder LS (givenby the observed sample mean z;;) with
the predicted cell means under BLUP shows how BLUP shrinks the contributions from the
two random effects (G;, GE;j).

41

BLUP shrinks (regresses) the BLUE estimate
back towards zero

2 . 2 2
h% _ OGE -+ NeOc h%g _ OaE

2 , 2 2° 2 2
UGE-{—IICUG—i—O'e UGE -{-Oe

In particular, the BLUP contribution of the genotypic effect is h2 G, which is a shrinkage
of the BLUE estimate C’,- back to its mean (zero). The same is true for the G x E effect. The
amount of shrinkage is proportional to the lack of repeatability of these two contributions. If
1% is near one, there is verylittle shrinkage, while if 22 is near zero, its contribution is shrunk
back towards nearly zero. An informal (but helpful) way of thinking about shrinkage is that
the coefficient of shrinkage is the ratio of signal over signal plus noise, and is ameasure of
the “borrowing strength” from correlated observations. If there is little such information,
there is much more noise than signal, and the resulting shrinkage is considerable, while if
there is a strong signal, there is little shrinkage.
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Modification of the residual
covariance

Under compound symmetry, all the covariance matrices are a variance component times
an identity matrix. More realistic models replace these simple matrices with more com plex
ones. We could allow residual variances to vary overlines [nzf.ef,-j,.. ) = nf'] or environm ents
[o2(€;j2) = 02 ],in which case Vg becomes a diagonal matrix with the diagonal the appro-
pnate residual “ariance com ponent (e.g., Cullis et al. 1996). For our hypothetical design, if
residual variances are genotype-dependent,

. 2 2 2 2 2 2
Ve = diagonal(oy, .o, .07 0,0, .0. )
while if they are environment-dependent
; (22 22 o2 2 2 2
Ve = diagonal(oy, .07 .07 .0, .0, .00 )

Again, these can be estimated via REM L. Another modificationis when pedigree information
exists on the genotypes, in which case Vg may have off-diagonal elements reflecting relation-
ships among genotypes (Crossa et al. 2006, Oalcey et al. 2007, Piepho et al. 2008). Finally, one
can allow for differential correlations among genotype-environment interactions by suitably
modifying Vge, a paintwe develop in detail shorfly.

Extending genetic covariances

e Shukla’s model: starts with the compound symmetry
model, but allows for different G x E variances over
genotypes,

Cov(ge) = Diagonal (0%gg , ) 0%

The covariance of a genotype across environments is still

052

e Structured covariance models allow more
complicated (and more general) covariance matrices
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Covariances based on Finlay-Wilkinson

Zijk = p+ Gi + (1 + Bi) Ej + dij + €ijik

Previously we analyzed this model assuming a fixed-effects framework. Digby (1979)
showed that one could use an iterative least-squares approach to accommodate missing
data (certain genotype-environment combinations are missing). This is reasonable, as one
can borrow information from other observations in an attempt to predict the missing obser-
vation. Suppose that line five was not measured in environment three. Data from the other
genotypes can be used to estimate F; while observations on genotype five from other envi-
ronments can be used to estimate /45, with G Es5; being estimated by (1 + /45) F3. This shows
how information can be borrowed from other observations under this model by using cor-
relations between observations. In a mixed-model framework, such information borrowing
occurs through the covariance matrix associated with the vector of random effects.

We treat G, and B; as fixed effects, §; and e, as
random (fixed genetic effects, random environmental

effects)
45

Assume that the environmental effect, regression deviation, and residual error are all independent random
effects and have constantvanances,

E; ~ N{0.ap). 8 ~N(0,08). € ~ N(0,07)
Hence,
) 0 | £ . 0 ij # ki
ol E;. Ey) ={ 2 J T (. Okt ) = { 9 / b
o J=1 a5 ij = ki

The vanance of the trait value from an individual from line 7 randomly drawn aceross environments is

o (zijk) = (1 + 3i) %o} + of + 0
Peipho (1997a) notes that the regression residual and nomal residual vanances (if both homoscedastic)
cannot be separately esimated and hence can be combined into a single general residual vanance. The

covanance between two different genotypes (7 and %) in the same environment () similaily becames

(72[ ZijRkj) = al(1+3; :'E_) + (5,}.(1 + ‘flr..]E,' 4 5&.1 ]
= (14 8:)(1 4+ By)oy
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Let z; be a vector of observations of the line means within environment j (for simplificaion we assume a
single observation, but multi ple, and unequal, replication is easily accomm odated by modification of Ve).
Inmatnx form, the covanance matnx forz; is

1+ J|
Vi, = AT 4(0f + ol)I. where A= -
14+ d,,v
Observe that the assumed structure of the Finlay-WIkinson model translates undedying independent ran-
dom effects (E, 8) into correlated effects across the vector z of observations. This is a simple example of
a factor-analytic covariance structure where the covanance structusm is determined by a small number of
interacting factors.

Factor-analytic covariance structures allow one to consider more
general covariance structures informed by the data, rather than
assumed by the investigator.

Piepho (1997a) and Denis et al. (1997) showed how this general framework can be extended
to cases (e.g., Shulka 1972) where the lines have different variances,

Vg, = 0p AXT + diag(a3,.--- .03 )+ 021

? 0'110
Likewise much more general covariance structures for the residuals can be incorporated,

Vz, = 05 AXT + diag(o? .---.02 )+ Ve

: ‘5ng

AMMI-based structured covariance models

The same logicused to generated amixed-model Finlay- Wilkinson regression easily extends to other biad-
ditive models, such as AMMI. The AMMI,,, model is given by

m
gt = M + G! + E_] + ZAk"Tkl Tk + (siJ + €
k=1
m
=p+Gi+Ej+ Z Whi Vkj + €56

k=1

The second line simplifies the AMMI model (to allow for esimability)in two ways. First, the singular value
Ak 15 absorbed into the genotype sensitivity (uy;) and environmental (v4;) coefficients. Second, the errorin
predicting GE from the AMMI approximation (4;;) and the model residual (¢;;¢) are combinedinto a single
residual €], Assume genotypesare random and environments are fixed, so that £; and vy; are fixed, while
G; and wy,; are random (as is, of course, s:ﬂ). Assum e these underdying companents are independent and
homoscedastic,

Gi ~ N(0,0%,). wyi ~ N(0.0f). € ~ N(0.0} +03)

The resulting vanance for the trait value ofa random individual drawn from environment j becomes

m
2. \ 2 2 2 2 2
T l;uk.] =0+ E Th Uk +ogt+oc
k=1

Hence, the resulting genetic vanance in environment j is just

m
P2ey) = af 4 S oF o},
k=1



Likewise, the covanancebetween the same random genotype over different environments (j and ) becomes

m m
o zij.m) = o | Gi + Z Wi Vi Gi + Z Whei Uk
k=1 k=1
m m
2 , 2
=g+ Z O Wi Vg j. Wi Vit ) = g7 + Z Vkj Ukt O Whi s Whei )
oy k=1

m
= (r%; + E rri Uhj Ukt
k=1

The resulting covaniance matnix for the vector z; of observations of genotypes over the n, environments can

be wittenin the form .
Vg, =053+ AT 4021

where J 15 a matnx of ones, and A is the n, x m matnx,

Ukl Akt
A=(A1 -+ Am). where A =0} : =

Uk, /\Iru,
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Summary: Structured Covariance models
& random, E Fixed E random, G Fixed
o2(2ij) a(zij. zik) o2(zi5) o zij. 2kj)
Indexrange 1<j<n, 1<kj<n, 1<i<n, 1<ik <n,
C o + 0 oz of+0hy o%
S of + ”?:1;, ol of + ‘7?;, I o3
Fw oo + E;)'(T"); + (TEJ od + EjEk(T% 2ol + agl aj0RoE
FA(m) oE+ 3y N o2 4+ 30 Aejer 0%+ 3 N 0%+ 3¢ A ek
18] (rf Tk o? Tike

Summ ary the covanance structures for van ous mixed-models for Gx E. When G'is taken as random with
E fixed, 02[;,) ) 15 genetic vanance in environment j, while o(z;;. z;) 1s the covanance between a random
genotype (/) measured in environments j and k. When E taken as random, o%(z;) coresponds to the
vanance for an individual from genotype 7 drawn from a random environment, while o( z;;.z;) is the
covanance between genotypes 7 and £ when measured in across a random environment (). C corresponds
tothe Compound Symm etrymodel, Sis Shulda’s extension, FWis Finlay-Wikinsonwhere a; = 1+ 3;, FA(m)
is factor-analyticmodel (i.e., a mixed AMMI-typemodel) with m factors, Uis the completely Unstructured

model.
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Lecture 10:

Infinite-dimensional/Function-valued
Traits: Covariance Functions and
Random Regressions

Bruce Walsh lecture notes
Summer Institute in Statistical Genetics
Seattle, 20 — 22 July 2016

Longitudinal traits

* Many classic quantitative traits are longitudinal --
measured at multiple time points --- milk yield, body
size, etc.

* We have already examined the repeated-measures
design wherein an identical trait (assumed to be
unchanging) is measured multiple times.

* For most longitudinal traits, we expect the trait to
change over time, such as a growth curve.

e These are function-valued traits, also called infinite-
dimensional traits.

® One critical feature of such traits is that their additive
variances change with t, and trait values from
different time points have different correlations.
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Figure 3 - Mixed logistic growth curves (---) fitted for all progeny of'sire 1(24 males and 32 females)

and all progeny of sire 57 (20 males and 59 females) and associated average growth
curves (—).

Sci Agric. 66: 85-89

Norms of reaction

* The other type of function-valued trait is one indexed by some
continuous environmental variable (as opposed to time), such
as adult body weight as a function of temperature or grain yield
as a function of total rainfall.

e The measurement of such traits generally requires replication of
individuals over environments (versus the sequential evaluation
of a single individual with longitudinal traits). As with G x E, this
can be done

— Using clones/pure lines
— Using family members

e Such curves are common in ecology & evolution and are called

norms of reaction, and are measures of G x E
— Norms of reaction measure phenotypic plasticity --- variation

that can be expressed from a fixed genotype, which is often
an important adaptation in changing environments.
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Figure 18-6
Introduction to Genetic Analysis, Ninth Edition
© 2008 W. H. Freeman and Company

How to model such traits?

* One obvious approach is to treat the trait measured at discrete
time points as a series of correlated traits.

— Makes sense to do this for something like parity (litter
number), as individuals are all measured at the same event,
i.e., parity one, parity two, etc.

— However, with a trait like a growth or some performance
curve, we often expect to have different time measurements
for different individuals.

* We could either lump these into groups (reducing
precision) or treat each different time/tuning variable
value as a different trait (much missing data).

— Better solution: estimate the trait covariance function, where
Clty,t,) = Covlz(ty),z(t,)] or Cov[A(t;),Alt,)]




Covariance function approach

e Kirkpatrick popularized the use of covariance functions (largely

in evolutionary biology) in the mid-late 1980’s.

He noted that traits measured with respect to some continuous
indexing variable (such as time or temperature) have effectively
infinite dimensions, as one could (in theory) always consider
finer and finer time scales.

— Thus, rather than treat them as a (potentially) every-
expanding set of discrete correlated traits, better to simply
consider the covariance Cft;,t,) between any two time
points within the range of the sampled data. Note that
C(t;,t;) is the trait variance at time t,.

— C(t,,t,) is the covariance function, the logical extension of

the covariance matrix C(i,j) used for correlated traits, using
continuous, rather than integer, indexes.

Covariance functions (cont)

As with any quantitative trait, the covariance between the
values at two time points can be decomposed into an additive-
genetic (breeding value) covariance function and a residual (or

environmental) covariance function,
- C,ty,t) = Calty,ty) + Celty 1)
The issue in the estimation of the additive covariance function is
how one proceeds from an additive-covariance matrix estimate
G from discrete time points to a continuous function covering
all possible values with the span of time sampled to estimate G.
— Basic (initial) idea: Use curve-fitting based on low-degree
polynomials to use G to fit a covariance function
— This is typically done by using Legendre polynomials as the
basis function.




Riska et al. (1984) data on breeding values for log(body weight)

2 3 4

The basic idea was illustrated

by Kirkpatrick with a data set 436 522 424

on mouse body weight measured

at ages 2, 3, and 4 weeks. Riska é = | 522 808 665
et al. estimated the G matrix as 424 665 558

Plotting these values on
a lattice at these discrete
time points gives

ADDITIVE GENETIC
COVARIANCE
. | I E——
P
w
=
—_——-
|
- —_—a

Ideally, would like some sort of .
smooth curve for this data.

Towards the covariance function

* Suppose we assume the breeding value at time t (for
2 <t < 4 weeks) is in the form of a quadratic, so that
individual’s i breeding value is given by
— Here the a; (for 0 < j < 2) are regression

coefficients unigue to individual i, and are
unchanging over time.

e A different individual (j) also has a quadratic
regression, but with different coefficients
— 2
- Al =a,+a;t+a,t”
— the a; are referred to as random regression coefficients, as
they are random (drawn from some distribution) OVER

individuals, but constant over time WITHIN an individual.

10



Towards the covariance function (cont)

We can think of these random regression coefficients
as being drawn from a distribution:

2
ap 05  Oo1 Oo2
2
ap | ~0,Cqg. where Cgq=|o00n o] o1
(5] Tn2 T12 03

Ideally, we would like to use our estimate of G to make
inferences on the elements in Cg.

We can write the additive value in time t for individual
iasa'*t, where =a'=(ag a,, a, andth = (1, t, t?

"1

Towards the covariance function

The regression A(t) = a,_ + a,t+ a,t?=alt
yields the covariance function, as the value
of the vector t for different times are

constants, giving

COV[Ai(t1), Al(tz) ] = COV[aiTt1, aIth]
= t1T COV(aI,'aI) t2
=1, Cg t,

This is a bilinear form (the generalization of a
quadratic form).

12



a5 Oo1 Oo2 1
2] 2
=(1 &ty t1)| o0 o7 o012 to
2 2
Op2 O12 03 t3

Expanding gives

Cov[A(ty), A(ta)] = o5 + 001 (t1 + t2) + ooa(t] +t3)
+ ottty + o1a(t] ta + t1 t3) + 05 t7 15

More generally, fitting an m-th degree polynomial for A gives
the product of two m-degree polynomials for the covariance function

m

As(t) =) agt!

j: 0

m m

Cov[A;(t1), As(t)] = Y > ajt]h

7=0 k=0 13

Kirkpatrick estimated to covariance function

for the Riska data by assuming an individual’s breeding
value over time can be modeled by 2nd degree
polynomial. The resulting covariance function

gives the following surface:

ADDITIVE GENETIC

COVARIANCE

Estimated additive-genetic covariance function
14



Details

e Before building on these basic ideas to estimate the
covariance function, some background on Legendre
polynominals is required, as these are used as the basis
functions (building blocks) for curve-fitting instead of the
set (1, t, t2, ...t

— Specifically, we could approximate a function f(t) by
the k-th degree polynomial f(t) = =« at'.

— Instead, we approximate it by a weighted sum of the
functions ¢q(t), ¢4(1), ..., ¢ (t), where o(t) is a
polynomial of degree j (the Legendre polynomial of
orderj, for0 <j<k), using f(t) = =< b, ¢.(1).

15

Legendre Polynomials

For curve-fitting, orthogonal polynomials are often used, where ¢,(t)
denotes a k-th degree polynomial. The set of these building

blocks ¢, (t), ¢41(t), ... ¢ (t) .. are defined to be orthogonal in the sense
that the integral of ¢(t) q)j(t) = 0 when i and j are not equal. We also
assume they are scaled to have unit length, with the integral ¢2(t) = 1.

For-1<t<1, the first five scaled Legendre polynomials are given by

hot) = 0.7071

O,(t) = 1.2247 t

d,(t) = -0.7906 + 2.3717 t?

d5(t) = -2.8062 t + 4.6771 3

d4(t) = 0.7955 - 7.9550 t2 + 9.2808 t*
ds(t) = 4.2973 t- 20.5205 t3 + 18.4685 t°

For example, the curve y = a + b t can be written as

y = a/(0.7071) ¢o(t) + b/(1.2247) ¢,(t) for-1 <t < 1.

More generally, any k-th degree polynomial can be written as

AT q)i(t) 16



dot) = 0.7071
0,(t) = 1.2247
d,(t) = -0.7906 + 2.3717 2
d5(t) = -2.8062 t + 4.6771 3
d4(t) = 0.7955 - 7.9550 t2 + 9.2808 t*
ds(t) = 4.2973 t- 20.5205 t3 + 18.4685 t°
oo(t) 1
o1(t) t
In matrix form, ¢ = Mt, where ¢ = Z“;E;; t= ;3
@4(t) t!
@5 (1) t°
j-th row of M are the coefficients for the jth Legendre polynomial
0.7071 0 0 0 0 0
0 1.2247 0 0 0 0
Mo | —07906 0 2.3717 0 0 0
Row 4 = 0 —2.8062 0 4.5777 0 0
coefficients  ....oer > 0.7944 0 —7.9950 0 0.2808 0
for ¢ 0 4.2073 0 9205205 0 184685
1 t t t t4 £

17

How do we write the following 5th order polynomial in terms of
Legendre polynomials?

y =4 —6x+ 1422 + 262° + 502* — 1102°

4 1

—6 x

Note that y = a"x, where a= éé . X = i;

50 2t

—110 2’
@D(l‘) 1 1 (f)g(.‘l.‘)
o1(x) T x o1(x)
oo(z) | x? . - z? g1 | o2(x)
ba(z) | = M 3 implies B = M 6a()
oa(x) ;1.'? ;17? oOa(x)
o5(x) x? x? os(x)

Giving x = M1¢. Sincey = a'x = a’M-'¢, weights on Legendre
polynomials are given by a'™-!
18



Weights are given by a™™"!

(1 L2 L3 L4 L3 [E]

[1,] 0.7071 0.0000 0.0000 0.0000 0.0000 0.0000
[2,] 0.0000 1.2247 0.0000 0.0000 0.0000 O.0000

R returns 03,1 -0.7906 0.0000 2.3717 0.0000 0.0000 0.0000
[4,] 0.0000 -2.8062 0.0000 4.5777 0.0000 0.0000
[5,] 0.7944 0.0000 -7.9950 0.0000 9.2808 0.0000
[6,] 0.0000 4.2973 0.0000 -20.5205 0.0000 18.4685
> t(a)%*%solve(M)

L,1] L, 2] L,3] .4 L.3] L.6]
[1,] 26.51006 -32.1633 24.06409 -21.01970 5.387467 -5.956087

Giving y = 26.51006*y(x) -32.1633 *¢;(x) + 24.06409 *¢,(x)
-21.01970 *s(x) + 5.387467 *@,(x) -5.956087 *¢s(x)

More generally, any k-degree polynomial y = a"x, can be expressed as a
weighted series of the first k+1 Legendre polynomials ¢y, .., ¢, where the
weights are a"M-1. M is (k+1) x (k+1), with the jth row being the
coefficients on x for the j-th order Legendre polynomial.

19

The Covariance function in terms of
Legendre polynomials

* Express the trait breeding value for individual i at time t, by an
m-th order polynomial,

Alt) = 2™ ay ¢y (t), where a; ~ 0, Cg
— Define the vectors

o (1) = (Do), d¢(1), ..., () )T, which we often write as
just ¢, or ¢ for brevity

® a =(ag ay, - @iy )"

* Hence Ai(tj) = ¢m(t)Tai - aiTq)m(t)'
o CoVv[A(ty), Alt) 1= COV[aiT dmlty), aiT Orm(to)]
* Cov[Aty), Alty) ] = ¢n(ty)T Cg dnlty)

20



Covariance function (cont)

o CovlA(ty), At = 0 (t)" C dp (L)
e Recall fort, = (1,t,t% ..., t")" that

- ¢,(t) = Mt, where M is the (m+1) x (m+1) matrix
of coefficients for the first (m+1) Legendre
polynomials

e Substituting in ¢(t) = Mt yields
— CovA(t), Aty ] = t,TMTC5M t,, or
— CovIA(ty), Aty) 1 = t,THt,, with H=MTC;M

* This allows us to express the covariance function in
terms t, and t, directly

21

From G to Cg

* The key component to the covariance function is the
covariance matrix Cg for the additive genetic random
regression coefficients. How do we obtain this?

¢ We start with what Kirkpatrick called the “full
estimate”

— Given an estimated G matrix of the trait measured

at m time points, we can describe trait breeding
value as an m-1 degree polynomial

— This is done as a weighted combination of the first
m Legendre polynomials, ¢q, ¢, ... ¢\

~ Gy = CovIA (), Alt) ] = ¢,(t) Cg onlt)T

22



The full estimate does an element-by-element matching of G

to functions of ¢,,(t) (which are known constants) and Cg.

Gll Glm

G = . where Gy = (j>7 (t:)Gool(t;)
Gml e Gmm
" (t)Ggp(t1) - ¢ (t1)Gad(tn)

ST (tm)Gd(t)) - T (tm)GCd(tm)
@' (1) $(t1)

= : Gol| @ |=2"Ge®
@ (tm) B(tm)

23

T iy 1 -
G=0"G® implies Go = (@) Go”
where
(P,IT‘(fJ) Gol(ty)  o1(ty) -+ Gmoi(th)
&7 @ (t2) Oo(ta)  o1(t2) -+ GOm-1(ta2)
¢)T([‘m ) C’D([m ) ol (f m ) e C’m —1 (['m )

Note that ®@ is a matrix of constants --- the Legendre
polynomials evaluated at the sample time points. Note
that time points are scaled to be within (-1, 1), so
ordering time on the original scale as T, < ... <T_, scaled
values are given by t = 2(T. - T)/(T, - T,) -1

24



Example: Riska’s data

436.0 522.3 424.2
G = | 5223 R08.0 664.7
4242 664.7 558.0

oo(—1) o1(—1) oa(—1)\ < 2weeks, t=-1
P = ®0(0) o1(0)  02(0) < 3weeks, t=0
oo(l) o1(1) o2(1) < 4 weeks, t =1

0.7071 —1.2247  1.5811
= | 0.7071 0 —0.7906
0.7071  1.2247 1.5811

25

» 1348.1 666 —1117
Ge=(2") Gl | 666 212 —140
1117 140 145

> G<-matrix(c(436.0,522.3,424.2,522.3,808.0,664.7,424.2,664.7,558.0), nrow=3)
>0

11 L2 3]
[1,] 436.06 522.3 424.2
[2,] 522.3 808.0 664.7
[3,] 424.2 664.7 558.0
> Phi<-matrix(c(0.7071,0.7071,0.7071,-1.2247,0,1.2247,1.5811,-0.7906,1.5811), nrow=3)
> Phi

[,1] [,2] [,3]
[1,] 0.7671 -1.2247 1.5811
[2,] 0.7071 0.0000 -0.7906
[3,] 0.7671 1.2247 1.5811
> solve(Phi)%*% G ¥*% solve(t(Phi))

[,1] [,2] [,3]

[1,] 1348.14866 66.55166 -111.68492
[2,] 66.55166 24.26844 -14.01216
[3,] -111.68492 -14.01216  14.50677

26



The resulting covariance function becomes

Cov(t1,t2) = ¢" (t1)Gol(ta)

1348.1  66.6 —111.7\ [ 60(t1)
— (6o(t1) é1(t1) oo(t))| 666 242 —14.0 é1(t1)
—1117 —140 145 ] \6a(t1)

This bilinear form expresses the covariance function
in terms of the Legendre polynomials. Usually we
would like to express this as a polynomial in t; & t,:

One could do this by first substituting in the polynomial form
for ¢,(t), expanding and collecting terms. However, much
easier to do this in matrix form. Recall the coefficient

matrix M from earlier in the notes, where ¢ = Mt. Writing the
covariance function as ¢," G ¢, = (Mt))" G(Mt,)) =t," MTG- M t, =
t,THt,, where H=MTC;M.

27

The covariance function becomes t,THt,, with H=MTC5M

Since the first three Legendre polynomials are used, M is 3 x 3

0.7071 0 0
0 1.2247 0
—0.7906 0 23717
H-MTCgM gives

808.0 712 —2145
H=| 712 364 —407
—214.5 |

Expanding this out gives

Cov(A,A)) =808 +71.2(t; +t,) + 3644, 1,
-40.7(t,% t, + 11,2 -215.0(t,2 + t,9)
+ 81.6t,%t,2

M

More generally, the coefficient on t,""t,)7" in the covariance

expansion is given by H;. - the (i,j)-th element of H. 28



The Eigenstructure of Cg

e The variance-covariance matrix Cg of the random
regression coefficients is extremely information on the
nature of variation for the function-valued trait.

e The function-valued analogue of the eigenvector is the
eigenfunction, which also has an associated eigenvalue.
Akin to the eigvenvector associated with the largest
eigenvalue accounting for the largest single direction of
variation, the eigenfunction associated with the largest
eigenvalue is the functional curve associated with the
most variation.

e The eigenvalues of Cg_are the same as those for the
covariance function, while the associated eigenvectors
of C; give the weights on the orthogonal polynomials
that recover the eigenfunctions of the covariance
function. 29

Back to Riska’s data

L, (13481 666 1117
Ge=(2") Go={ 666 212 -140
117 140 145

> eigen(CG)
$values
[1] 1366.844364 24.544765 1.534744

: (,1]: L, 2] L, 3]
[1,]:-0.99526560 : 0.07934234 -0.05613532
[2,]:-0.05042736 -0.91529538 -0.39961406
[3,]: 0.08308671 : 0.39489133 -0.91496308

First eigenvector 30
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Associated eigenfunctions for Cg for the Riska dataset

27 a,=1361
Y@ o et —

AGE (weeks)
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Eigenfunctions of Cg

e |f e, denotes the eigenvector associated with
the ith eigenvalue A, of Cg, then for the
covariance function

— A is the ith eigenvalue

— associated eigenfunction is ¢,,(t)7 e

— = € 1o(t) + ey (t) + 7 + 4 (L)

— Since ¢ = Mt, we have (Mt)Te, = tT (MTe),
giving the weights on (1, t, t?, .. ,t™") as MT e,

— For Riska’s data, the leading eigenfunction is

— YP,(t) = 0.7693 - 0.0617 t - 0.1971 t?

33

Eigenfunctions: ,(t) = tT (MTe)

0.995 —0.079 0.056
e = 0.050 |, e = 0915 |, e; = | 0.400
—0.083 —0.395 0.915

- 0.769 - 0.256 - —0.684
Mie, =1 0062 |, Mle, = 1.121 |, Mles =1 0490
—0.197 —0.937 2.170

Po(t) = 0.256 + 1.121*t - 0.937*2
P5(t) = -0.684 + 0.490*t +2.170*t2

34
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Figure 3. Estimated first and second eigenfunction of the genetic covariance func-
tion, for orders of polynomial fit of 3 (x), 4 (+), 5 (*) and 6 (U), respectively (rank
3 estimates of the coefficient matrices).

Meyer's data on Cattle Weight 35

Over-fitting G¢?
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Figure 5. Estimates of genetic correlations for orders of polynomial fit (k) of 4
and 6.

Meyer's data showing how increasing the degree of polynomial used
results in over-fitting. In her words: “surfaces become ‘wiggly” “
36



Reduced estimation of Cg

e While the full estimate (rank Cg = rank of observed G) is
(relatively) straightforward, this likely results in an overfit of the
data, as the covariance function is forced to exactly fit the
observed values for all t;, t,, some of which are sampling noise

— Results in a less smooth covariance function than one based
on using a reduced dimension.

— Kirkpatrick originally suggested a least-squares approach,
while Meyer & Hill suggested a REML-based approach

— Key breakthrough, first noticed by Goddard, and fully
developed by Meyer, is the connection between covariance
functions and random regressions.

— This should not be surprising given that we started with
random regressions to motivate covariance functions.

— The key is that standard BLUP approaches (for multivariate
traits) can be used for random regressions.

37

Mixed-Models (BLUPs) for Longitudinal traits

e Simplest setting is the repeatability model, the trait breeding
and residual (permanent environmental) values are assumed
constant over time. The jth observation on i is

- a~0,Var(AA
* At the other extreme is the multiple-trait approach, where each
sampled time point is considered as a separate, but correlated,
trait. Here y; is the jth “trait” (sampled time point) for individual
I.
- a~0 GXA
® In the middle are random-regressions, where for the jth
observation (time t) on individual i is
— ¥ = U+ E0 aud(t) + Z7 pedy(t) + e
- a~0 Cs;and p,~ 0, C

38



The repeatability model

* The repeatability model assumes that the trait is unchanging
between observations, but multiple observations (records) are
taken over time to smooth out sampling noise (e)

* Such a record for individual k has three components
— Breeding value a,
— Common (permanent) environmental value py
— Residual value for ith observation e
¢ Resulting observation is thus
—Zg = Wt At Pty
* The repeatability of a trait is r = (0,?+0
e Resulting variance of the residuals is o

2)/

NTO

0,2
(1-r) 0,2

e z

39
Mixed-model y = Xf) + Za + Zp + e
a 0 oc4-A 0 0
p|l~10 0 oI 0
e 0 0 0 o1
Mixed-model equations
XTX X7z X'z 3 XTy
Z'X ZTZ+ ,\‘4A’1 AN/ al =1|2%
77X AN/ 277 + A1 p Z'y
where
\7rr;’71—r 4 \7(7371—1
A4 = (Tfl — 1’2 anc Ay — _(T—‘-: — . — /’2



The multiple-trait model

e With a clearly discrete number of stages (say k), a
longitudinal trait could be modeled as k correlated
traits, so that individual i has values y, y.,, .., Y-

* In this case, there is no need for permanent
environmental effects, as these now appear in
correlations among the residuals, the within-
individual environmental correlations (which are
estimated by REML).

* This can be put into standard Mixed Model
equations by simply “stacking” the vectors for each
trait to create one vector for each random effect.

41

For trait j (1 <j < k), the mixed model becomes

yj XJ'BJ- } ZJ"d, 8 O.J'

aJ' 0 ”ijA 0
(‘-J' 0 ' ﬂ'g I
J

We can write this asy = Xp + Za + e, where

Yy Xy - 0 B, Z, --- 0 a e

3 =N SR N I S IR N N R
(y,‘) ( o - X;.-) (51\4) (0 Zk) (ﬂk> (QA-)
Again, the BLUP for the vector of all EBVs is given by

i=gzlv™! (y ~ x,?a)

With V the covariance structure for this model
42



Covariance structure for EBVS

The resulting covariance structure for the stacked vector of breeding values is

a, a2(ADA - o(ALADA
0(5)_ L ~GzA

ay oA ADA - d2(ApA

where © denotes the Kronecker (or direct) product (LW Chapter 26) and

(72(;‘1) (T(_"l..’l;‘.)

a=|

F(Ag.Ay) e 0%(Ay)

is the matrix of genetic covariances of interest.

The genetic variance-covariance matrix G accounts
for the genetic covariances among traits. G has k
variances and k(k-1)/2 covariances, which must be

estimated (REML) from the data.
43

Covariance structure for residuals

Similarly, the covariance structure for the stacked vectors of residuals is

e a2(ey) - ole.ep)
‘7( : ) = E®I where E= : :

€. ”’(‘k-‘l) fT.z((A.)

Finally, we need to specify any covariances between a and e. By construction a(a,.e,) =
7(ay.e,) = 0, while the standard assumption is 7(A..e,) = o(A,.e,) = 0, giving the
covariance structure as

()

ax GoA 0
e 0 ExI

\ex

Here the matrix E accounts for within-individual correlations in the
environmental (or residual) values.

Il
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Random regressions

e Random regression models are basically a hybrid
between repeated records models and multiple-trait
models.

— The basic structure of the model is that the trait at time t is
the sum of potentially time-dependent fixed effects u(t), a
time-dependent breeding value a(t), a time-dependent
permanent environmental effect p(t), and a residual error e.
These last three are random effects

-yl =ult)+al)+p()+e

— a(t) and p (t) are both approximated by random regressions,
of order n and m, respectively (usually n = m)

- ai(tj) = 2" ayd(t) and p;(tj) = 2, bydi(t)

— The vectors a; and b; for individual i are handled in a multiple-trait
framework, with covariance matrices Cg and Cg for the within-

individual vectors of additive and permanent environmental
effects.
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To build up the random regression model, consider the g; observations
from different times for individual i

y(ti)

y, = = XiB; + Zia; + Ziop; + e;
.(/(tfq;)
in Pio €i0
Aim I)gm €im

Here are fitting m-degree polynomials (m < g;) for both the breeding value
and permanent environmental value regressions. We also assume that any
fixed-effects are not time dependent. Both of these assumptions are easily
relaxed.
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Model & covariance structure for vector y, of

observations from individual i
y(tin)

y; = = Xi8; + Zi1a; + Ziop; + e
.l/({‘iq,')

ain Pio €i0
Aim Pim €im

Covariance structure

a; 0 CG 0
Pi; ~ 0 . O CE
e; 0 0 0 o°1

o o
~—

The design matrix for the regression coefficients
on the breeding values is very information

v = XiB; + Zypa; + Ziop; + e

OO([."J) Tt om([‘il)

ol]([i'l) e C)rrz({i'.?)
Z -

Goltig;) -+ Omltig;)

Z, is a g; x (m+1) matrix of fixed constants that depend on the
values of order zero through m Legendre polynomials, where

the jth row represents these evaluated at time t;.
A KEY FEATURE is that this set of times could be different
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for each individual, yet the mixed model does all the bookkeeping

to fully account for this.
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As with the multiple trait model, stacking the individual vectors
allows us to put this model in standard form. Note that while the
vectors stacked for the multiple trait model represented the
vectors for each trait separately, here the stacked vectors are

the observations for each individual.

¥, a) P e

<
Il
»
Il
T
I
o
Il

yn An p n €n

y=XB8+Za+Zp+e

Z,, 0 -~ 0
. 0 Zyp --- 0

Z,,Z, Block diagonal z,-| . 0
0 Zln
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Full Model & covariance structure
¥ a) P e
yn a" pn e”
y=XB+Za+Zp+te

Covariance structure

a 0 A® CG 0 0
pl~10]. 0 IxCg O
e 0 0 0 0?1

More generally, we can replace 6,21 by R.
50



Mixed-model equations (slightly more
generalized covariance structure)

b X"R™ 'y
a 0 A®Cq 0 0
al = Z'{'R—ly pl~1{0]. 0 IxCg O
e 0 0 0 R
p ZyR™'y
where
X'"R™'X X"R'Z, X"R'Z,
H=|ZR'X ZIR'Z+A ' Cg Z'R™'Z,
ZIR™'X ZIR™'Z, ZIR™'Z, + 1 Cy'

E

51

Model-fitting issues

e A central issue is what degree m of
polynomials to use.

e Standard likelihood tests can be used
(compare m = k with m =k + 1).

e Meyer suggests that tests should be
comparing k with k + 2, as often going from
odd to even does not improve fit, but going
from even to even (k+2) does, and vice-versa.
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Response to selection

e Standard BLUP selection can be used, based
on some criteria for an optimal functional
value (curve) in the offspring.

* The expected response in the offspring is
simply obtained by substituting the average
of the parental breeding values into the
polynomial regression for the breeding value
to generate an expected offspring curve.

53



	MMSYLLABUS-16
	MM-SISG-2016-Lecture01
	MM-SISG-2016-Lecture02
	Muir Mixed Models Lecture 3 Overview
	Muir Mixed Models Lecture 4 BLUP breeding values
	Muir Mixed Models Lecture 5 Genomic Selection
	Muir Mixed Models Lecture 6 Correlated Residuals
	MM-SISG-2016-Lecture07
	Muir Mixed Models Lecture 8 Indirect Genetic Effects-social
	MM-SISG-2016-Lecture09
	MM-SISG-2016-Lecture10
	MM-SISG-2016-Lecture11

