Introduction to Clinical Trials - Day 2

Session 6 - Group Sequential Monitoring

Presented July 26, 2016

Susanne J. May Department of Biostatistics University of Washington

Daniel L. Gillen Department of Statistics University of California, Irvine

©2016 Daniel L. Gillen, PhD and Susanne J. May, PhD

Trial monitoring

Elements and motivation for trial monitoring

- Motivation: Many trials have been stopped early:
 - Physician health study showed that aspirin reduces the risk of cardiovascular death.
 - A phase III study of tamoxifen for prevention of breast cancer among women at risk for breast cancer showed a reduction in breast cancer incidence.
 - A phase III study of anti-arrhythmia drugs for prevention of death in people with cardiac arrhythmia stopped due to excess deaths with the anti-arrhythmia drugs.
 - A phase III study of folic acid supplements for prevention of neural tube defects.
 - ► Women's Health Initiative: Hormones cause heart disease.

SISCR UW - 2016

SISCR - RCT, Day 2 - 6 : 1

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs

Example: Sepsis trial

SISCR UW - 2016

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential

Example: Sepsis trial

designs

Trial monitoring

Elements and motivation for trial monitoring

- What is trial monitoring?
 - Monitoring for quality control; for example,
 - Patient accrual.
 - Data quality/completeness.
 - Unanticipated adverse events.
 - Monitoring study endpoints(s); for example,
 - Treatment benefits.
 - Toxicity differences.
 - Good quality control should be part of every study to ensure that the study achieves its goals.
 - Monitoring study endpoints is not applicable in every study, and requires special statistical methods to avoid increased statistical errors.

SISCR - RCT, Day 2 - 6 :3

Trial monitoring

Elements and motivation for trial monitoring

- Reasons to monitor study endpoints:
 - To maintain the validity of the informed consent for:
 - Subjects currently enrolled in the study.
 - New subjects entering the study.
 - To ensure the ethics of randomization.
 - Randomization is only ethical under equipoise.
 - ► If there is not equipoise, then the trial should stop.
 - To identify the best treatment as quickly as possible:
 - For the benefit of all patients (i.e., so that the best treatment becomes standard practice).
 - For the benefit of study participants (i.e., so that participants are not given inferior therapies for any longer than necessary).

SISCR UW - 2016

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs

Example: Sepsis trial

SISCR UW - 2016

Elements of Trial Monitoring Group Sequential

Designs Statistical framework for

designs

trial monitoring Types of group sequential

Example: Sepsis trial

Trial monitoring

Elements and motivation for trial monitoring

- If not done properly, monitoring of endpoints can lead to biased results:
 - Data driven analyses cause bias:
 - Analyzing study results because they look good leads to an overestimate of treatment benefits.
 - Publication or presentation of 'preliminary results' can affect:
 - Ability to accrue subjects.
 - Type of subjects that are referred and accrued.
 - Treatment of patients not in the study.
 - Failure to design for interim analyses can lead to hasty decisions. Decisions made 'in the heat of the moment' are subject to:
 - Inadequate consideration of trade-offs between competing endpoints (toxicity versus benefit).
 - External pressures from study investigators or sponsors.
 - Lack of objectivity by study monitors.

SISCR - RCT, Day 2 - 6 :5

Trial monitoring

Elements and motivation for trial monitoring

- ► Thus,
 - Monitoring of study endpoints is often required for ethical reasons.
 - Monitoring of study endpoints must carefully planned as part of study design to:
 - Avoid bias
 - Assure careful decisions
 - Maintain desired statistical properties

SISCR UW - 2016

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs

Example: Sepsis trial

Elements of Trial

Statistical framework for trial monitoring

Types of group sequential

Example: Sepsis trial

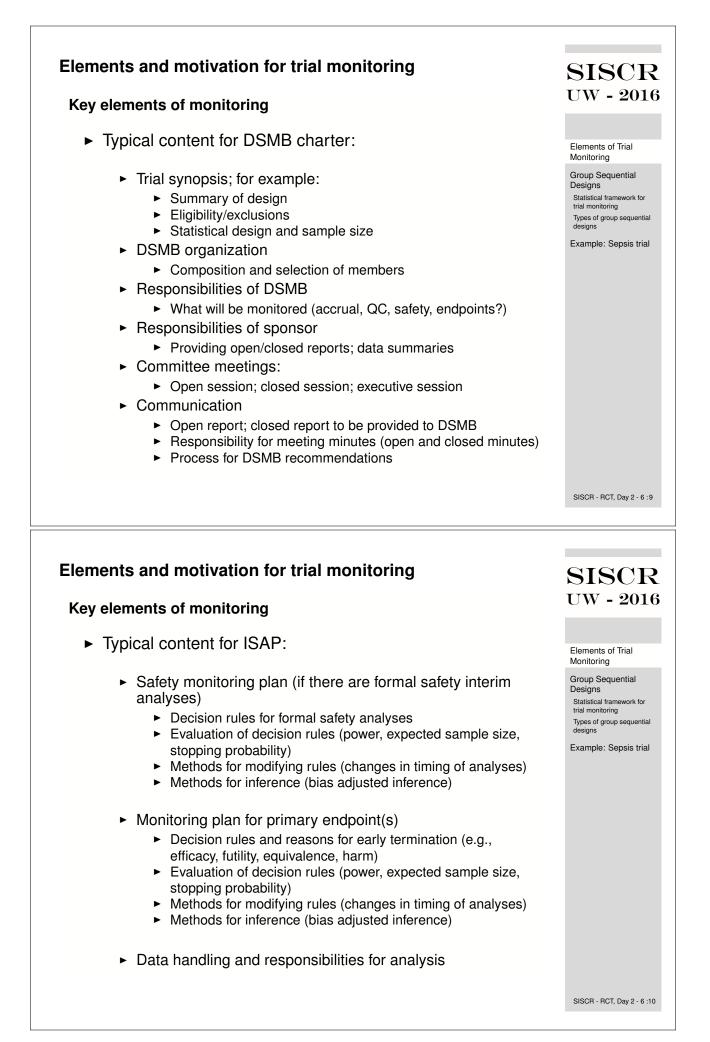
Monitoring Group Sequential Designs

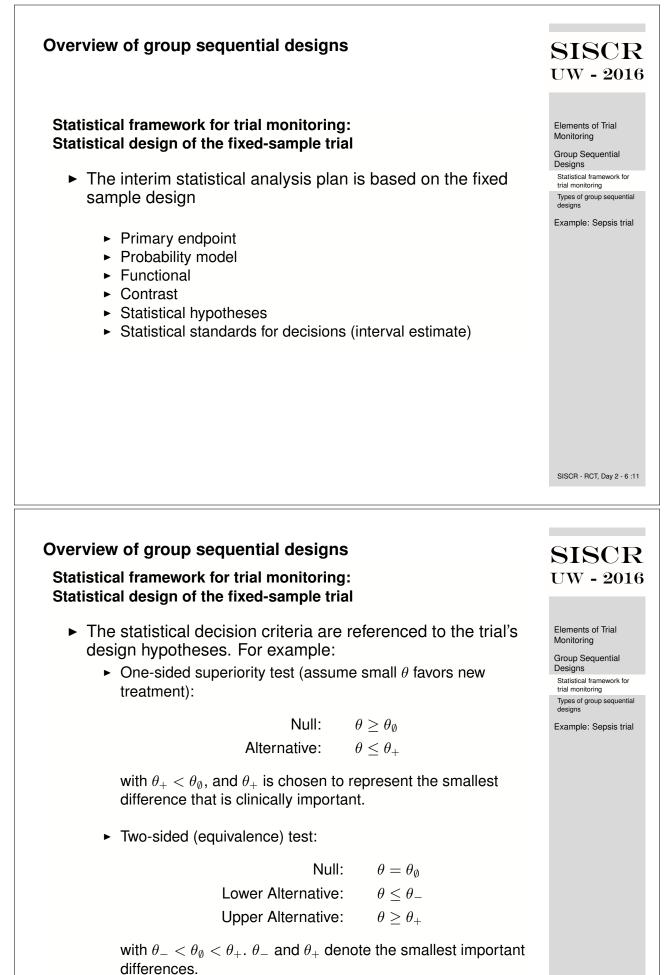
designs

	d motivation for trial monitoring	SISCI
Key element	UW - 201	
 Inverse * *	 e trials monitored? estigator knowledge of interim results can lead to biased ults: Negative results may lead to loss of enthusiasm. Positive interim results may lead to inappropriate early publication. Either result may cause changes in the types of subjects who are recruited into the trial. ta Safety and Monitoring Boards (DSMB)" are used to bid biased decisions: DSMB members are <i>independent</i> of the study investigators The DSMB reviews unblinded data in the midst of a trial to: Assure the trial is safe to continue. Make decisions about early termination based on the statistical monitoring plan ("group-sequential clinical trial design"). 	Elements of Trial Monitoring Group Sequential Designs Statistical framework for trial monitoring Types of group sequentia designs Example: Sepsis tria
		SISCR - RCT, Day 2 - 6 :

Elements and motivation for trial monitoring

Key elements of monitoring


The trial monitoring plan is typically pre-specified in two documents:


- ► DSMB charter:
 - Defines scope of trial monitoring
 - Defines DSMB responsibilities
 - Defines sponsor responsibilities
 - Pre-specifies monitoring plans and decisions (reasons for stopping)
- Interim Statistical Analysis Plan (ISAP):
 - Defines monitoring endpoint(s)
 - Pre-specifies analysis timing, decision criteria, and rationale
 - Pre-specifies methods for implementation (changes to analysis timing)
 - Pre-specifies adjustments to statistical inference about treatment effects

SISCR UW - 2016

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs

Overview of group sequential designs

Statistical framework for trial monitoring: Selecting decision criteria

- A decision to stop needs to consider what has or has not been ruled out. For example
 - One-sided superiority test (assume small θ favors new treatment):
 - Stop for superiority when any harm (θ ≥ θ_∅) has been ruled out.
 - Stop for futility when important benefits (θ ≤ θ₊) have been ruled out.
 - Two-sided (equivalence) test:
 - Stop for treatment A better than treatment B when inferiority of A (θ ≤ θ_∅) has been ruled out.
 - Stop for treatment *B* better than treatment *A* when inferiority of $B (\theta \ge \theta_{\emptyset})$ has been ruled out.
 - Stop for equivalence when important differences (either $\theta \ge \theta_+$ or $\theta \le \theta_-$) have been ruled out.
- The hypotheses that have been ruled in/out are given by the interval estimate.

Overview of group sequential designs

Statistical framework for trial monitoring: Group sequential designs (superiority trial)

- Suppose that the trial is planned for j = 1, ..., J interim analyses.
- Let $\hat{\theta}_j$ denote the estimated treatment effect at the *j*th analysis.
- Consider stopping criteria $a_i < d_i$ with:

 $\hat{\theta}_j \leq a_j \Rightarrow$ Decide new treatment is superior $\hat{\theta}_j \geq d_j \Rightarrow$ Decide new treatment is not superior $a_j < \hat{\theta}_j < d_j \Rightarrow$ Continue trial

Set $a_J = d_J$ so that the trial stops by the *J*th analysis.

How should we choose these critical values?

SISCR UW - 2016

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring

Types of group sequential designs

Example: Sepsis trial

SISCR - RCT, Day 2 - 6 :13

SISCR UW - 2016

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs

Statistical framework for trial monitoring

Inadequacy of Fixed Sample Methods

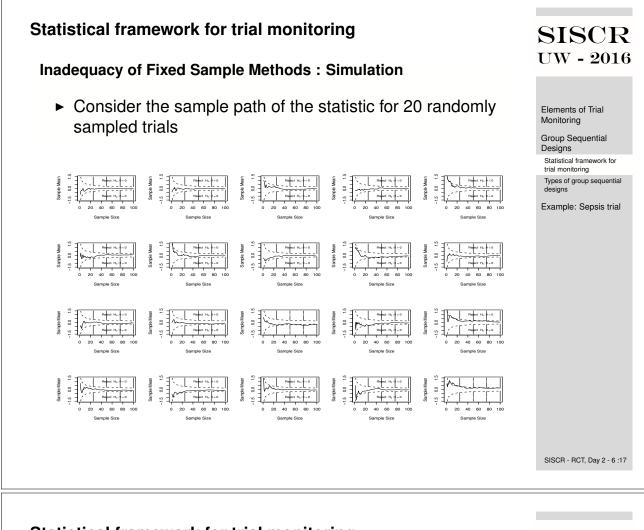
- Suppose we simply ignore the fact that we are repeatedly testing our hypothesis
- We can quickly see the impact of this via simulation
 - Let $X_i \sim_{\mathsf{iid}} \mathcal{N}(\theta, \sigma^2)$
 - ▶ j = 1, ..., 4 equally spaced analyses at 25, 50, 75, and 100 observations
 - Test statistic after n_j observations have been accrued

$$\bar{X}_{n_j} = \frac{1}{n_j} \sum_{i=1}^{n_j} X_i$$

- Test $H_0: \theta = 0$ with level $\alpha = .05$
- ► Fixed sample methods (2-sided test): Reject H₀ first time

$$|ar{X}_{n_j}|>z_{1-lpha/2}rac{\sigma}{\sqrt{n_j}}, \hspace{0.5cm} j=1,2,3,4$$

Elements of Trial Monitoring


Group Sequential Designs Statistical framework for

trial monitoring Types of group sequential designs

Example: Sepsis trial

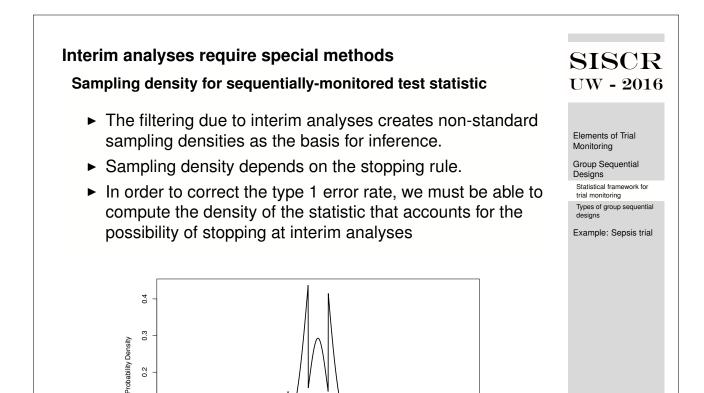
SISCR - RCT, Day 2 - 6 :15

Statistical framework for trial monitoring SISCR **UW - 2016** Inadequacy of Fixed Sample Methods : Simulation ► Consider the sample path of the statistic for a single Elements of Trial Monitoring simulated trial Group Sequential Designs Statistical framework for trial monitoring Types of group sequential 5.1 designs Example: Sepsis trial 1.0 0.5 Sample Mean 0.0 -0.5 -10 -1.5 20 40 80 100 60 Sample Size

Statistical framework for trial monitoring

Inadequacy of Fixed Sample Methods : Simulation

- Simulated type I error rate using fixed sample methods
- Based on 100,000 simulations


Significant	Proportion	Number	Proportion
at	Significant	Significant	Significant
Analysis 1	0.05075	Exactly 1	0.07753
Analysis 2	0.04978	Exactly 2	0.02975
Analysis 3	0.05029	Exactly 3	0.01439
Analysis 4	0.05154	All 4	0.00554
		Any	0.12721

SISCR UW - 2016

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential

designs

5

10

Sampling density for sequentially sampled test statistic

0.1

0.0

-5

- ► Let C_j denote the continuation set at the *j*th interim analysis.
- Let (*M*, *S*) denote the bivariate statistic where *M* denotes the stopping time (1 ≤ *M* ≤ *J*) and *S* = *S_M* denotes the value of the partial sum statistic at the stopping time.

х

The sampling density for the observation (M = m, S = s) is:

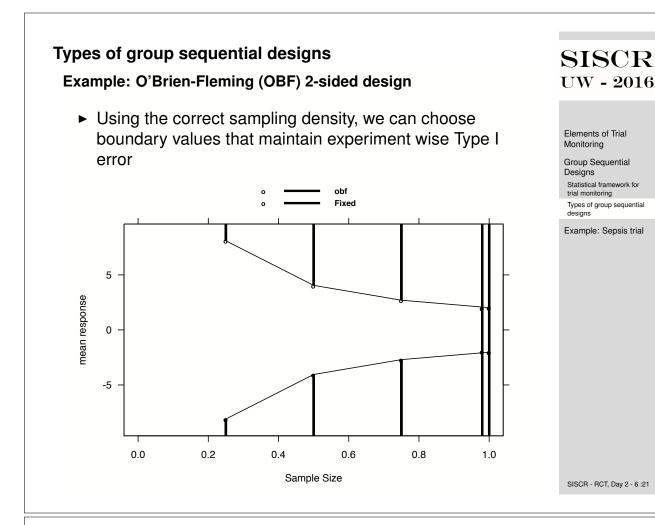
$$p(m,s; heta) = egin{cases} f(m,s; heta) & s
ot\in \mathcal{C}_m \ 0 & else \end{cases}$$

where the (sub)density function $f(j, s; \theta)$ is recursively defined as

$$f(1, s; \theta) = \frac{1}{\sqrt{n_1 V}} \phi\left(\frac{s - n_1 \theta}{\sqrt{n_1 V}}\right)$$

$$f(j, s; \theta) = \int_{\mathcal{C}_{(j-1)}} \frac{1}{\sqrt{n_j V}} \phi\left(\frac{s - u - n_j \theta}{\sqrt{n_j V}}\right) f(j - 1, u; \theta) \, du,$$

$$j = 2, \dots, m$$


SISCR UW - 2016

SISCR - RCT, Day 2 - 6 :19

Elements of Trial Monitoring

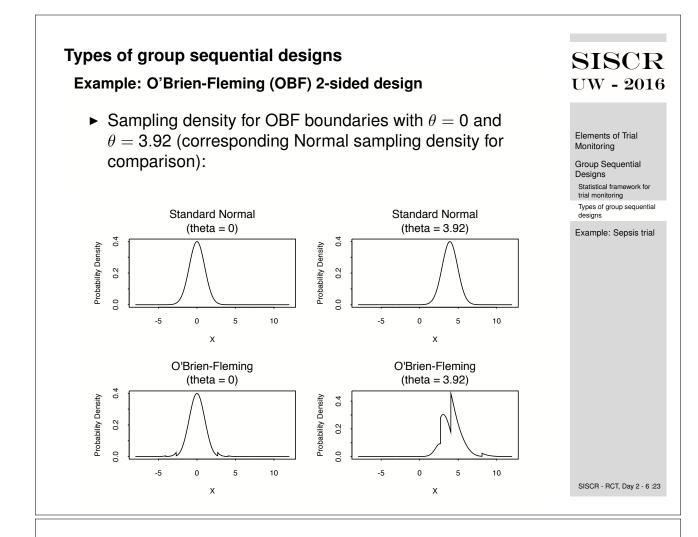
Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs

Example: Sepsis trial

Types of group sequential designs

Example: O'Brien-Fleming (OBF) 2-sided design

- Simulated type I error rate using fixed sample methods
- Based on 100,000 simulations


Significant	Proportion	Number	Proportion
at	Significant	Significant	Significant
Analysis 1	0.00006	Exactly 1	0.03610
Analysis 2	0.00409	Exactly 2	0.01198
Analysis 3	0.01910	Exactly 3	0.00210
Analysis 4	0.04315	All 4	0.00001
L		Any	0.05019

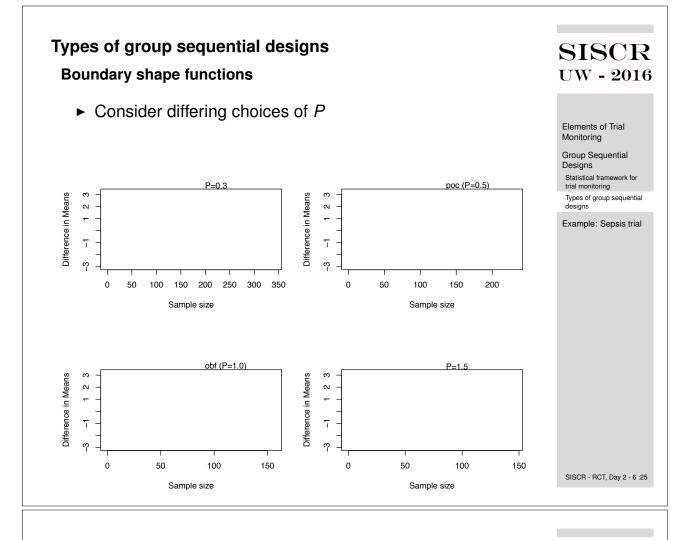
SISCR UW - 2016

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs

Example: Sepsis trial

Types of group sequential designs


Boundary shape functions

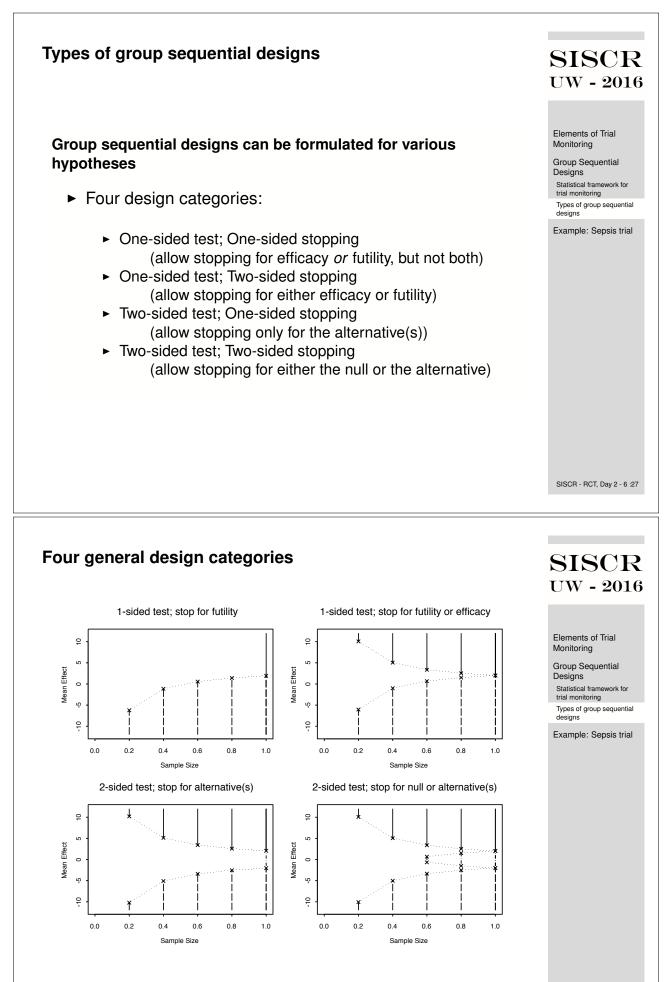
- There are an infinite number of stopping boundaries to choose from that will maintain a given family-wise error
 - They will differ in required sample size and power
- Kittelson and Emerson (1999) described a "unified family" of designs that are parameterized by three parameters (A, R, and P)
- Parameterization of boundary shape function includes many previously described approaches
 - Wang & Tsiatis boundary shape functions:
 - ► A = 0, R = 0, and P > 0
 - ► *P* = 0.5 : Pocock (1977)
 - ► *P* = 1.0 : O'Brien-Fleming (1979)
 - Triangular Test boundary shape functions (Whitehead):
 - A = 1, R = 0, and P = 1
 - Sequential Conditional Probability Ratio Test (Xiong):
 - ► *R* = 0.5, and *P* = 0.5

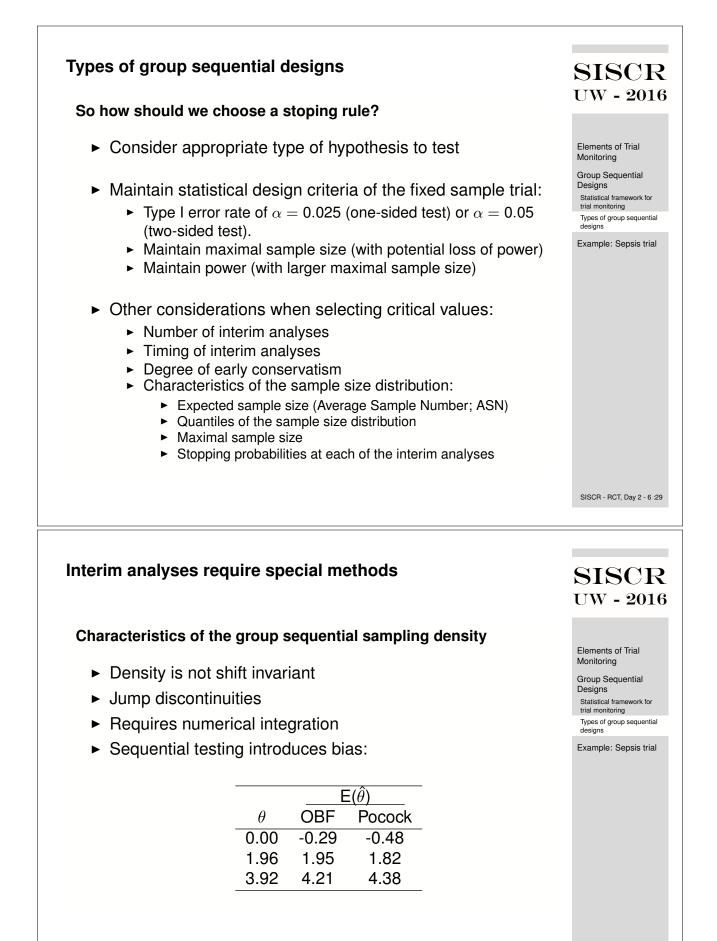
SISCR UW - 2016

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs

Example: OBF (P=1) versus Pocock (P=0.5) 1-sided designs


obf ο рос 0 8 6 mean response 4 2 0 -2 -4 0.0 0.2 0.4 0.6 0.8 1.0 Sample Size


SISCR UW - 2016

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs

Example: Sepsis trial

Background

- Critically ill patients often get overwhelming bacterial infection (sepsis), after which mortality is high
- Gram negative sepsis is often characterized by production of endotoxin, which is thought to be the cause of much of the ill effects of gram negative sepsis
- Hypothesis: Administering antibody to endotoxin may decrease morbidity and mortality
- Two previous randomized clinical trials showed a slight benefit
- There were no safety concerns at the inception of the trial

SISCR UW - 2016

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs

Example: Sepsis trial

SISCR - RCT, Day 2 - 6 :31

Case Study : Sepsis Trial

Definition of Treatment

- Single administration of antibody to endotoxin within 24 hours of diagnosis of sepsis
- ► Reductions in dose not applicable
- Ancillary treatments unrestricted

SISCR UW - 2016

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs

Defining the target population

- Patients in ICU with newly diagnosed sepsis
- Infected with gram negative organisms
 - culture proven
 - gram stain

SISCR - RCT, Day 2 - 6 :33

Case Study : Sepsis Trial

Defining the Comparison Group

- ► Need to ensure scientific credibility for regulatory approval
- Crossover designs impossible
- Ultimate decision:
 - Single comparison group treated with placebo
 - Not interested in studying dose response
 - No similar current therapy (still ethical to use placebo)
 - Randomized
 - Allow for causal inference
 - No blocking

SISCR UW - 2016

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs

Example: Sepsis trial

SISCR UW - 2016

Elements of Trial Monitoring Group Sequential

Example: Sepsis trial

Designs Statistical framework for trial monitoring Types of group sequential

designs

Defining the Outcomes of Interest

- ► Goals:
 - Primary: Increase survival
 - Long term (always best)
 - Short term (many other processes may intervene)
 - Secondary: Decrease morbidity

Refinement of the primary endpoint

- Possible primary endpoints
 - Time to death
 - Mortality rate at a fixed point in time
 - Time alive out of ICU during fixed period of time

SISCR UW - 2016

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs

Example: Sepsis trial

SISCR - RCT, Day 2 - 6 :35

Case Study : Sepsis Trial

Refinement of the primary endpoint

Option 1: Time to death (censored continuous data)

- Trial is likely to have early censoring due to logistical constraints of the trauma centers
- Such early censoring might place emphasis on clinically meaningless improvements in very short term survival
 - eg. We may be detecting differences in 1 day survival even though there is no difference in survival at 10 days

SISCR UW - 2016

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs

Refinement of the primary endpoint

Option 2: Mortality rate at a fixed point in time (binary data)

- ► Allows for choice of a *scientifically* relevant time frame
 - Treatment is a single administration; short half-life
- ► Allows for choice of a *clinically* relevant time frame
 - Avoids sensitivity to improvements lasting only short periods of time

SISCR - RCT, Day 2 - 6 :37

Case Study : Sepsis Trial

Refinement of the primary endpoint

Option 3: Time alive out of the ICU during a fixed period of time (continuous data)

- Incorporates morbidity endpoints
- Addresses patient quality of life
- May be sensitive to clinically meaningless improvements depending upon the time frame chosen

SISCR UW - 2016

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs

Example: Sepsis trial

SISCR UW - 2016

Elements of Trial

Example: Sepsis trial

Monitoring Group Sequential

Designs Statistical framework for trial monitoring Types of group sequential

designs

Refinement of the primary endpoint

Final Choice: Mortality rate at a fixed point in time (binary data)

- Sponsor proposed 14 day mortality
- ► FDA countered with a suggestion of 28 day mortality

SISCR - RCT, Day 2 - 6 :39

SISCR UW - 2016

Elements of Trial Monitoring Group Sequential

Types of group sequential

Example: Sepsis trial

Designs Statistical framework for trial monitoring

designs

Case Study : Sepsis Trial

Method of analysis

- Test for differences in binomial proportions
 - Ease of interpretation
 - ► 28 day mortality not a rare event
 - 1:1 correspondence with tests of odds ratio (for known baseline event rates)
- No adjustment for covariates
- Statistical information dictated by mean variance relationship of Bernoulli random variables:
 - ► Let Y_{ki} denote binary response (mortality at 28 days) for *i*-th subject in group k, k = 0, 1
 - $Y_{ki} \sim \mathcal{B}(1, \theta_k)$
 - $E[Y_{ki}] = \theta_k$ and $Var[Y_{ki}] = \theta_k(1 \theta_k)$

SISCR UW - 2016

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs

Example: Sepsis trial

Definition of statistical hypotheses

Null hypothesis

- ► No difference in mortality between groups
- Estimated baseline rate
 - ▶ 28 day mortality: 30%
 - (needed in this case to estimate variability)

Alternative hypothesis

- One-sided test for decreased mortality
- Targeted 28 day mortality rate in antibody arm: 25%
 - ► 5% absolute difference in mortality

Case Study : Sepsis Trial

Criteria for statistical evidence

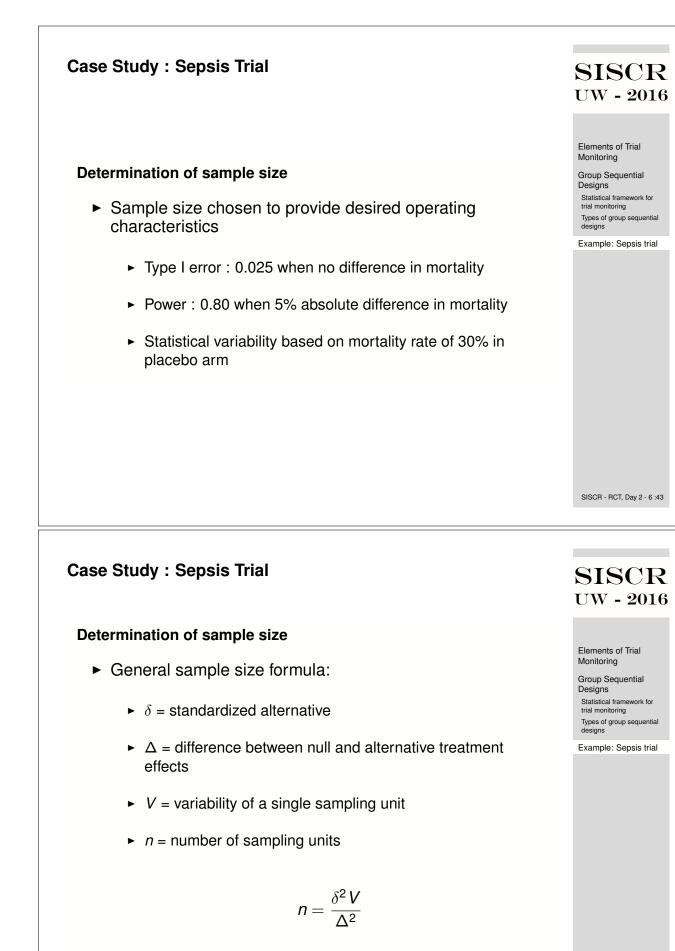
- Type I error: Probability of falsely rejecting the null hypothesis
 Standards:
 - ► Two-sided hypothesis tests: 0.050
 - One-sided hypothesis test: 0.025
- <u>Power</u>: Probability of correctly rejecting the null hypothesis (1-type II error)
- Popular choice: 80% power

SISCR UW - 2016

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs

Example: Sepsis trial


SISCR - RCT, Day 2 - 6 :41

SISCR UW - 2016

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs

Example: Sepsis trial

Determination of sample size

- Parameter values in the present case:
 - $\delta = (z_{1-\alpha} + z_{\beta})$ with $\alpha = 0.025$ and $\beta = 0.80$
 - $\Delta = \theta_{1,H_1} \theta_{0,H_1} = -0.05$
 - ► $V = \theta_{1,H_1}(1 \theta_{1,H_1}) + \theta_{0,H_1}(1 \theta_{0,H_1}) =$.25 × .75 + .3 × .7 = .3975
 - n = sample size per arm

$$n = rac{\delta^2 V}{\Delta^2} = rac{(1.96 + .841)^2 \times .3975}{(-.05)^2} = 1247.97
ightarrow 1248$$

SISCR UW - 2016

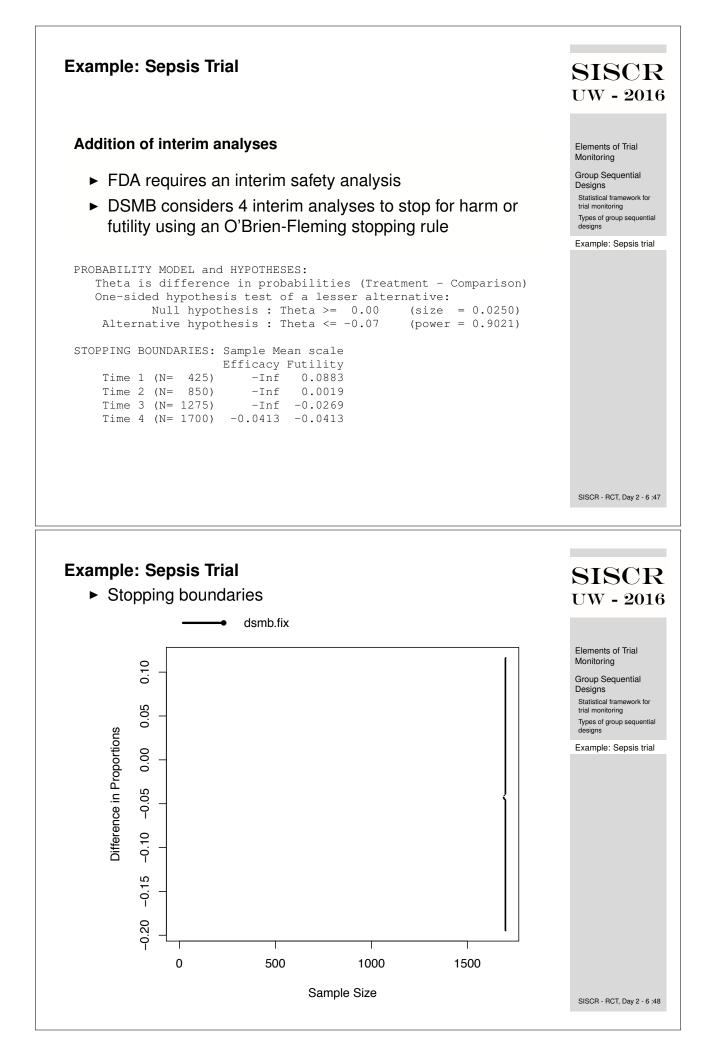
Elements of Trial Monitoring

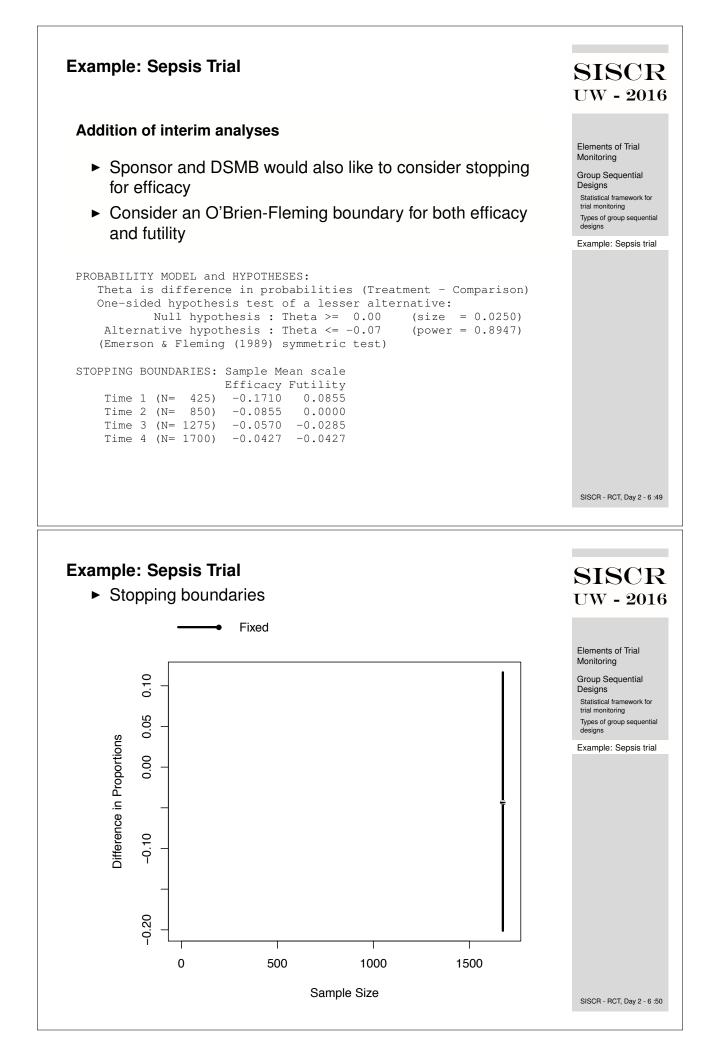
Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs

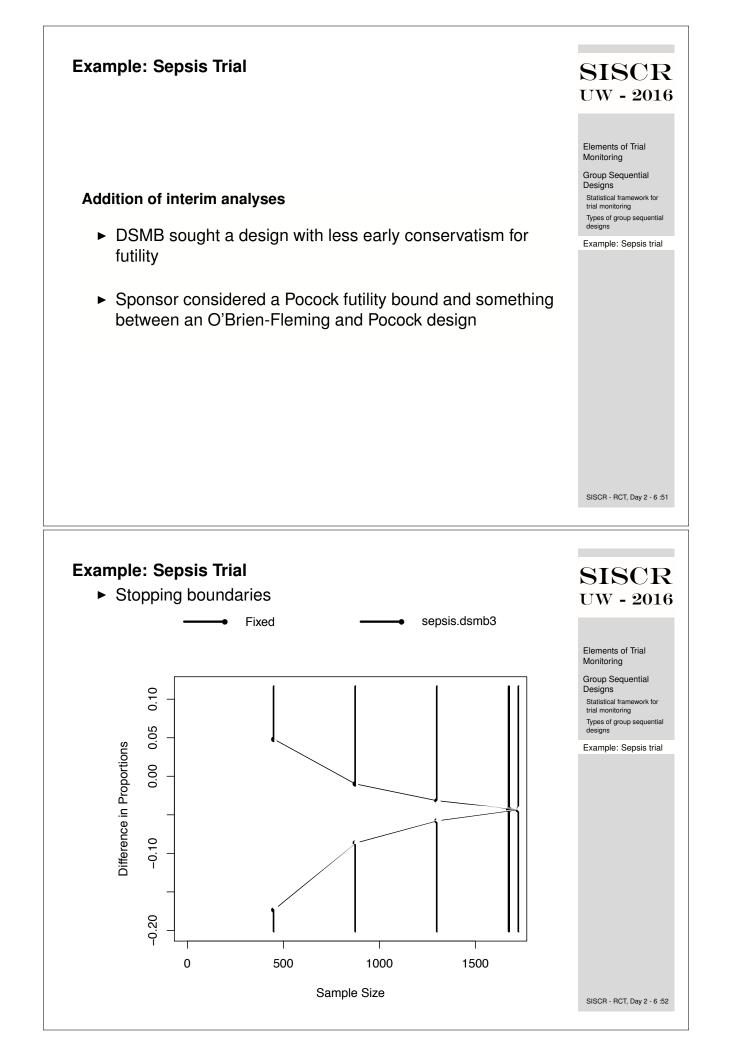
Example: Sepsis trial

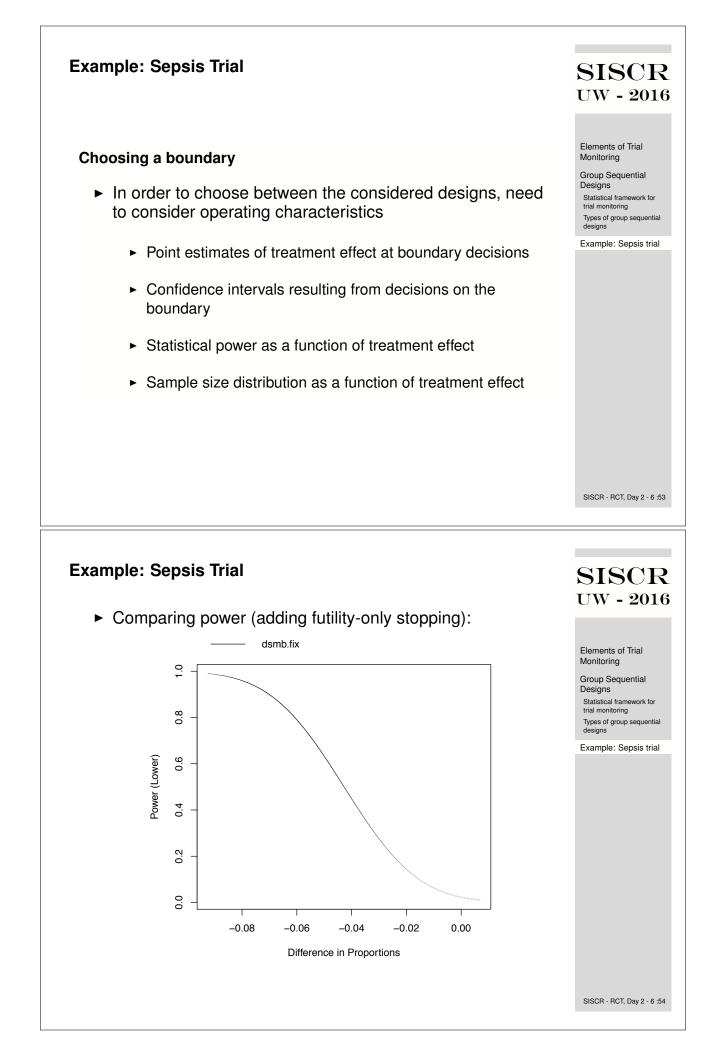
SISCR - RCT, Day 2 - 6 :45

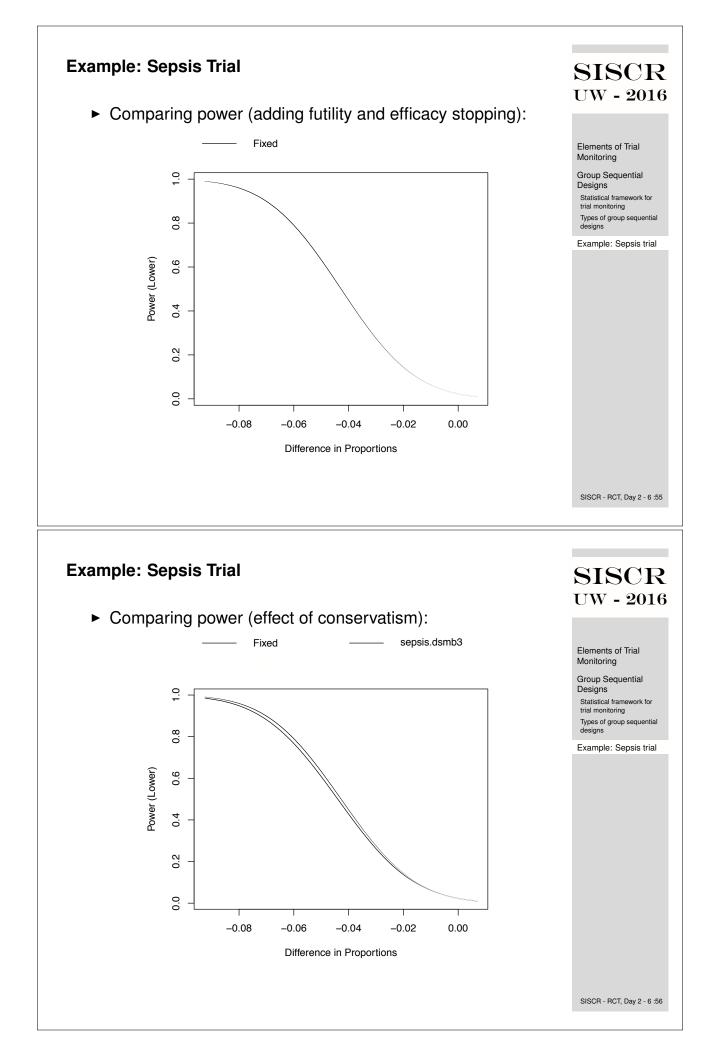
Case Study : Sepsis Trial

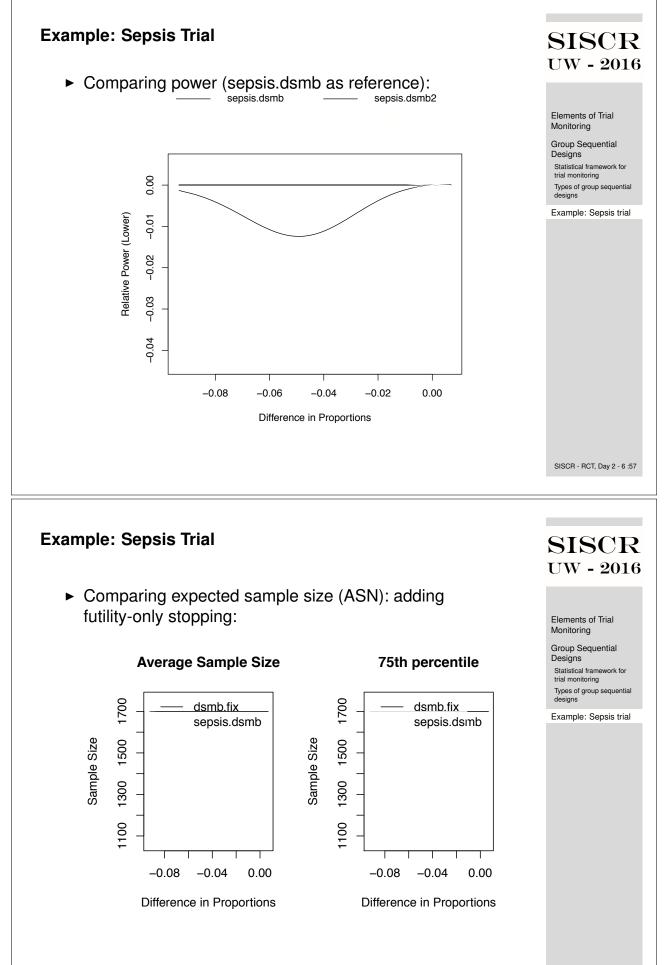

Resulting Fixed sample design

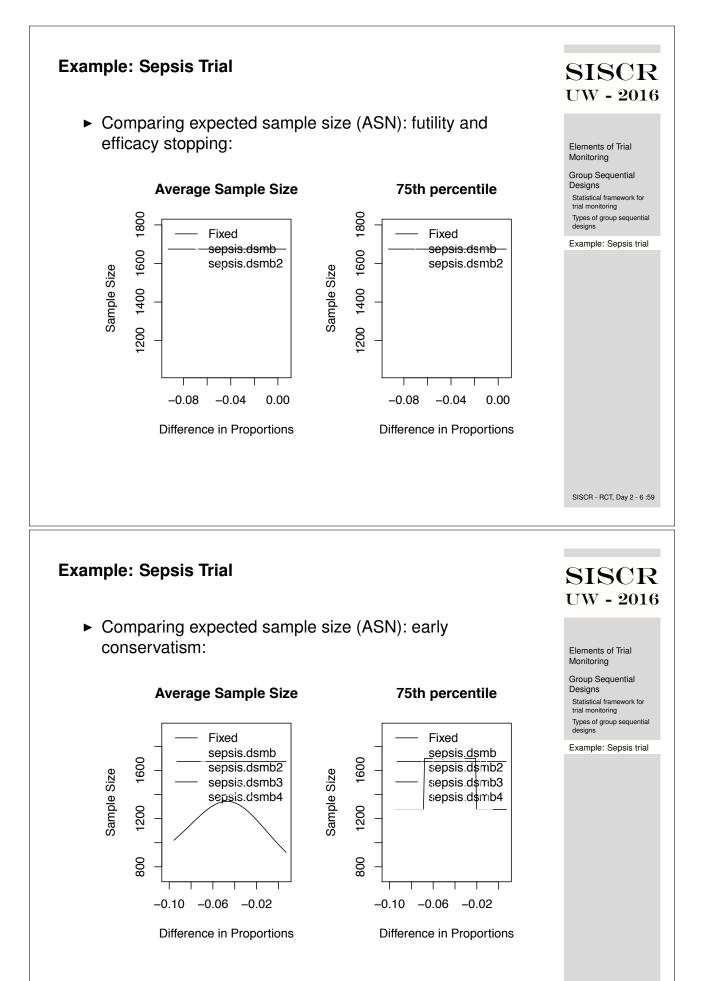

- Problem: Sponsor was concerned that 2496 (2×1248) patients would be logistically infeasible and wanted to consider a design with 1700 patients
- ► Operating characteristics with *N*=1700:
 - Critical value : -0.0424
 - 64% power for alternative of 5% absolute difference; 90% power for alternative of 7% absolute difference; Corresponding p-value : 0.025
 - ▶ 95% confidence interval : (-0.085, 0)
 - Interpretation: Smallest magnitude of (observed) effect which would result in a significant result is a 4.24% decrease in mortality on the treatment arm with corresponding CI (-0.085, 0).


SISCR UW - 2016


Elements of Trial Monitoring


Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs





SISCR - RCT, Day 2 - 6 :60

Example: Sepsis Trial

General behavior of interim analyses

- Decreasing early conservatism gave smaller ASN for unimportant benefits.
- Decreasing early conservatism also reduces power for efficacy.

SISCR - RCT, Day 2 - 6 :61

Example: Sepsis Trial

General behavior of interim analyses

- For any given sample size, adding interim analyses reduces power.
- For any given power, adding interim analyses increases the sample size.
- Having fewer interim analyses:
 - Leads to properties (maximal sample size, power, etc) that are closer to those of a fixed sample study.
 - However, ASN may be larger and stopping probabilities lower.
- Having more early conservatism:
 - Leads to properties (maximal sample size, power, etc) that are closer to those of a fixed sample study.
 - However, ASN may be larger and stopping probabilities lower.

SISCR UW - 2016

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs

Example: Sepsis trial

Elements of Trial Monitoring

Group Sequential Designs Statistical framework for trial monitoring Types of group sequential designs