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Review: Cox Regression Model

• Introduction

▷ Cox (1972)

• Model

▷ hazard model

▷ log hazard, survival models

▷ PH assumption

▷ Interpretation of coefficients

▷ Specific examples
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Cox Regression Model

• Estimation

▷ Coefficients

▷ Partial likelihood

▷ Approximation for ties

▷ Survival curve(s)

▷ Hazard curve(s)

• Stratification

▷ Using covariate

▷ Using “true” stratification
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Cox (1972)

• D.R. Cox (1972) “Regression Models and Life-Tables”

(with discussion) JRSS-B, 74: 187-220.

• “The present paper is largely concerned with the extension of the

results of Kaplan and Meier to the comparison of life tables and

more generally to the incorporation of regression-like arguments

into life-table analysis.” (p. 187)

• Model proposed: λ(t | X) = λ0(t) · exp(Xβ)

• “In the present paper we shall, however, concentrate on exploring

the consequence of allowing λ0(t) to be arbitrary, main interest

being in the regression parameters.” (p. 190)

• “A Conditional Likelihood” – later called Partial Likelihood.

• Score Test = LogRank Test
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• Discussion:

▷ “Mr. Richard Peto (Oxford University): I have greatly enjoyed

Professor Cox’s paper. It seems to me to formulate and to

solve the problem of regression of prognosis on other factors

perfectly, and it is very pretty.”

• Impact:

▷ Science Citation Index: 29,140 citations (29 June 2015)

▷ David R. Cox is knighted in 1985 in recognition of his scientific

contributions.
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Sir David R. Cox
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Cox Regression Model

• Response Variable:

▷ Observed: (Yi, δi)

▷ Of Interest: Ti, or λ(t)

• Ti survival, with distribution given by:

▷ Survival function: S(t)

▷ Hazard function: λ(t)

• Observed Covariates: X1, X2, . . . , Xk

▷ For subject j we observe: (Yj , δj), X1j , X2j , . . . , Xkj

• IDEA: same as with other regression models – Model relates the

covariates X1, . . . , Xk to the distribution (either S(t) or λ(t)) of

the response variable of interest, T .
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Cox Regression Model

• Model:

λ(t | X1, X2, . . . , Xk) = λ0(t) · exp(β1X1 + β2X2 + . . .+ βkXk)

• Model: alternatively expressed as

log λ(t | X1, . . . , Xk) = log λ0(t) + β1X1 + β2X2 + . . .+ βkXk

S(t | X1, . . . , Xk) = [S0(t)]
[exp(β1X1+β2X2+...+βkXk)]

• Note definitions:

▷ λ0(t) = λ(t | X1 = 0, X2 = 0, . . . , Xk = 0)

▷ S0(t) = S(t | X1 = 0, X2 = 0, . . . , Xk = 0)
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Interpreting Cox Regression Coefficients

• Proportional Hazards:

RR =
λ(t | X1, X2, . . . , Xk)

λ(t | X1 = 0, X2 = 0, . . . , Xk = 0)

= exp(β1X1 + β2X2 + . . .+ βkXk)

• RR above is: “Relative risk, or hazard, of death comparing subjects

with covariate values (X1, X2, . . . , Xk) to subjects with covariate

values (0, 0, . . . , 0).”
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Interpreting Cox Regression Coefficients

• In General:

▷ βm is the log RR (or log hazard ratio, log HR) comparing

subjects with Xm = (x+ 1) to subjects with Xm = x, given

that all other covariates are constant (ie. the same for the

groups compared).

λ(t | X1, . . . ,

here︷ ︸︸ ︷
Xm = (x+ 1) . . . , Xk)

λ(t | X1, . . . , Xm = ( x )︸ ︷︷ ︸
here

, . . . , Xk)
=

λ0(t) exp(β1X1 + . . . βm(x+ 1) + . . .+ βkXk)

λ0(t) exp(β1X1 + . . . βm(x) + . . .+ βkXk)
= exp(βm)
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Interpreting Cox Regression Coefficients

• The RR Comparing 2 Covariate Values (vectors):

▷ RR comparing (X1, X2, . . . , Xk) to (X ′
1, X

′
2, . . . , X

′
k).

RR(X vs. X ′) =
λ(t | X1, X2, . . . , Xk)

λ(t | X ′
1, X

′
2 . . . , X

′
k)

= exp [ β1 · (X1 −X ′
1) +

β2 · (X2 −X ′
2) +

. . . +

βk · (Xk −X ′
k) ]
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Cox Model Examples

• 1: One dichotomous covariate

▷ XE = 1 if exposed; XE = 0 if not exposed.

▷ λ(t | XE) = λ0(t) exp(βXE)
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Cox Model Examples

• 2: Dichotomous covariate; Dichotomous confounder

▷ XC = 1 if level 2; XC = 0 if level 1.

▷ λ(t | XE , XC) = λ0(t) exp(β1XE + β2XC)
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Cox Model Examples

• 3: Dichotomous covariate; confounder; (interaction)

▷ With interaction

▷ λ(t | XE , XC) = λ0(t) exp(β1XE + β2XC + β3XEXC)
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Cox Models: Comments

• In each example the hazard functions are “parallel” – that is, the

change in hazard over time was the same for each covariate value.

• For regression models there are different possible tests for a

hypothesis about coefficients: likelihood ratio; score; Wald. (more

later!)

• The score test for example (1) with H0 : β = 0 is the LogRank

Test.

• The score test using “dummy variables” to code (4) groups with

H0 : β2 = β3 = β4 = 0 is the same as the K-sample Heterogeneity

test (generalization of LogRank).
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Fitting the Cox Model

• Obtain estimates of β1, β2, . . . , βk by maximizing the “partial

likelihood” function:

PL(β1, β2, . . . , βk).

▷ β̂1, β̂2, . . . , β̂k are MPLE’s

▷ CI’s for βj using:

β̂j ± Z1−α/2SE(β̂j).

▷ CI’s for hazard ratio (HR) using:

exp[β̂j−Z1−α/2SE(β̂j)], exp[β̂j+Z1−α/2SE(β̂j)]

▷ Wald test, score test, and likelihood ratio test similar to

logistic regression. Now using the partial likelihood.
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Partial Likelihood

• Model: λ(t | X1, . . . , Xk) = λ0(t) exp(β1X1 + . . .+ βkXk)

• Order Data:

▷ t(i) is the ith ordered failure time.

▷ Assume no ties, and let X(i) = (X1(i), X2(i), . . . , Xk(i)) be the

covariates for the subject who dies at time t(i).

▷ Let Ri denote the “risk set” at time t(i), which denotes all

subjects with Yj ≥ t(i).

• Partial Likelihood: (no ties)

PL(β1, . . . , βk) =

J∏
i=1

exp(β1X1(i) + β2X2(i) + . . .+ βkXk(i))∑
j∈Ri

exp(β1X1j + β2X2j + . . .+ βkXkj)
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Risk Set Illustration
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Risk Set Illustration

• Failure times: t(1) = 1, t(2) = 3, t(3) = 4, t(4) = 6.

• Risk sets:

▷ R1 = { }

▷ R2 = { }

▷ R3 = { }

▷ R4 = { }
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Partial Likelihood – Justification

• Cox (1972) – “No information can be contributed about β by time

intervals in which no failures occur because the component λ0(t)

might conceivably be identically zero in such intervals.”

• Cox (1972) – “We therefore argue conditionally on the set {t(i)}
of instants at which failure occur.”

• Cox (1972) – “For the particular failure at time t(i) conditional on

the risk set, Ri, the probability that the failure is on the individual

as observed is:

exp(β1X1(i) + β2X2(i) + . . .+ βkXk(i))∑
j∈Ri

exp(β1X1j + β2X2j + . . .+ βkXkj)
.

• Note: This likelihood contribution has the exact same form as

a (matched) logistic regression conditional likelihood.
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Partial Likelihood – Justification

• Q: What is the probability of the observed data at time t(i) given

that one person was observed to die among the risk set?

Note : P [T ∈ (t, t+∆t] | T ≥ t] ≈ λ(t) ·∆t

Person who died : λ0(t) exp(β1X1(i) + . . .+ βkXk(i))∆t = P(i)

Generic j in Ri : λ0(t) exp(β1X1j + . . .+ βkXkj)∆t = Pj
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Partial Likelihood – Justification

• Probability One Death, Was (i) :

P(i) × (1− P1)× (1− P2) . . .× skip(i)× (1− Pk)

• Probability of One Death:

P( One Death ) = P( 1 died, others lived )+

P( 2 died, others lived )+

. . .+

P( k died, others lived )

P( j died, others lived ) = Pj ×
∏
k ̸=j

(1− Pk)

• Note: (1− Pj) ≈ 1 for small ∆t.
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Partial Likelihood – Justification

• Now calculate the desired quantity:

P( Observed Data | 1 death ) =
P( Only (i) Dies )

P( One Death )

=
P(i)

∏
k ̸=(i)(1− Pk)∑

j∈Ri
Pj

∏
k ̸=j(1− Pk)

≈
P(i)∑
j∈Ri

Pj

P(i)∑
j∈Ri

Pj
=

λ0(t) exp(β1X1(i) + β2X2(i) + . . .+ βkXk(i)) ·∆t∑
j∈Ri

λ0(t) exp(β1X1j + β2X2j + . . .+ βkXkj) ·∆t

=
exp(β1X1(i) + β2X2(i) + . . .+ βkXk(i))∑
j∈Ri

exp(β1X1j + β2X2j + . . .+ βkXkj)
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Partial Likelihood – Comments

• Notice that our model is equivalent to

log λ(t | X1 . . . Xk) = α(t) + β1X1 + . . . βkXk

where α(t) = log λ0(t), but the PL does not depend on α(t).

• Using the partial likelihood (PL) to estimate parameters provides

estimates of the regression coefficients, βj , only.

• The model is called “semi-parametric” since we only need to

parameterize the effect of covariates, and do not say anything

about the baseline hazard.

• Q: Why not just use standard maximum likelihood?

• A: To do so would require choosing a model for the baseline

hazard, but we actually don’t need to do that!
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Partial Likelihood and Ties

• If there is more than one death at time t(i) then the denominator

for the partial likelihood contribution will involve a large number

of terms. For example if there are 20 people at risk at time t(i)
and 3 die then there are “20 choose 3” = 1140 terms.

• Approximation (Breslow, Peto) default in STATA

▷ The numerator can be calculated and represented using:

∗ Sum X1 for deaths: s1i =
∑

j:Yj=t(i),δj=1 X1j

∗ Sum X2 for deaths: s2i =
∑

j:Yj=t(i),δj=1 X2j etc.

▷ The approximation with Di deaths at time t(i) is:

PLA =

J∏
i=1

exp(β1s1i + β2s2i + . . .+ βkski)[∑
j∈Ri

exp(β1X1j + β2X2j + . . .+ βkXkj)
]Di
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Comments on Ties

• If continuous times, Ti, then ties should not be an issue.

▷ Time recorded in (days,minutes).

▷ Modest sample size.

• If discrete times, Ti ∈ [tk, tk+1), recorded then consider methods
appropriate for discrete-time data (e.g. variants on logistic regression)

▷ See Singer & Willett (2003) chpts 10–12; H& L pp. 268-9.
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Comments on Ties

• However, there is plenty of room between continuous and discrete.

▷ Example: USRDS Data = 200,000 subjects.

∗ 25% annual mortality = 50,000 deaths/year.

∗ 50,000 deaths/365 days = 137 deaths/day.

• Kalbfleisch & Prentice (2002), section 4.2.3 summarize options and
relative pros/cons.

▷ “Breslow method” – simple to implement/justify; some bias if
discrete.

▷ “Efron method” – also simple comp; performs well.

▷ “exact method” – justified; comp challenge.

▷ Should be minor issue in general, and if not then perhaps a
discrete-time approach should be considered.
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(Partial) Likelihood Ratio Tests

• Full Model:

λ(t|X) = λ0(t) exp(β1X1 + . . .+ βpXp + βp+1Xp+1 + . . . βkXk︸ ︷︷ ︸
extra

)

• Reduced Model:

λ(t|X) = λ0(t) exp(β1X1 + . . .+ βpXp)

• In order to test:

▷ H0 : Reduced model ⇔ H0 : βp+1 = . . . = βk = 0

▷ H1 : Full model ⇔ H1 : extra coeff ̸= 0 somewhere

• Use the partial likelihood ratio statistic

X2
PLR = [2 logPL(FullModel) − 2 logPL(ReducedModel)]
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(Partial) Likelihood Ratio Tests

• Under H0 (reduced is correct) then X2
PLR ∼ χ2(df = (k− p))

• Degrees of freedom, df = (k− p), equals the number of

parameters set to 0 by the null hypothesis.

• Application is for situations where the models are “nested” – the

reduced model is a special case of the full model.

• Also can use Wald tests, and/or score tests. The PLR (Partial

Likelihood Ratio) test is particularly useful when df> 1.

• The PLR statistic is equivalent (using a “double negative”) to:

X2
PLR = {[−2 logPL(ReducedModel)] − [−2 logPL(FullModel)]}
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Example of Cox Regression – Primary Billiary
Cirrhosis (PBC)

• Data:

▷ A randomized trial with n = 312 subjects.

▷ Long-term follow-up (10 years!)

• Objective:

▷ Could the available clinical information be used to construct a

predictive model that could be used to guide medical decisions?
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Example Analysis using R – PBC

pbc.data <- read.table( "pbc-data.txt", header=T )

#

pbc.data$survival.time <- pbc.data$fudays

pbc.data$survival.status <- as.integer( pbc.data$status==2 )

#

#####

library(survival)

#####

#

##### Kaplan-Meier curve

#

Sout <- survfit( Surv(survival.time,survival.status) ~ 1, data=pbc.data )

plot( Sout, mark.time=F, col="blue", xlab="Time (days)", ylab="Survival",

lwd=2 )
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PBC Data
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Example of Cox Regression – PBC

###### Cox model with log(bili), log(protime), edema, albumin, age

###### generate linear predictor for ordinary cox model: eta5

#

fit <- coxph( Surv(survival.time,survival.status) ~ log(bili) +

log(protime) +

edema +

albumin +

age,

data=pbc.data )

summary( fit )

#

##### get the risk score

#

eta5 <- fit$linear.predictors
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Example of Cox Regression – PBC

n= 312, number of events= 125

coef exp(coef) se(coef) z Pr(>|z|)

log(bili) 8.773e-01 2.404e+00 9.895e-02 8.866 < 2e-16 ***

log(protime) 3.013e+00 2.035e+01 1.025e+00 2.939 0.003296 **

edema 7.846e-01 2.192e+00 2.998e-01 2.617 0.008872 **

albumin -9.445e-01 3.889e-01 2.370e-01 -3.985 6.73e-05 ***

age 9.169e-05 1.000e+00 2.363e-05 3.881 0.000104 ***

---

Rsquare= 0.471 (max possible= 0.983 )

Likelihood ratio test= 198.5 on 5 df, p=0
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Example of Cox Regression – PBC
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Example of Cox Regression – PBC

##### generate linear predictor for ordinary cox model: eta4

#

#

fit <- coxph( Surv(survival.time,survival.status) ~ log(protime) +

edema +

albumin +

age,

data=pbc.data )

summary( fit )

#

# get the risk score

#

eta4 <- fit$linear.predictors
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Example of Cox Regression – PBC

n= 312, number of events= 125

coef exp(coef) se(coef) z Pr(>|z|)

log(protime) 4.140e+00 6.283e+01 8.703e-01 4.758 1.96e-06 ***

edema 1.190e+00 3.288e+00 2.953e-01 4.031 5.56e-05 ***

albumin -1.314e+00 2.687e-01 2.228e-01 -5.897 3.71e-09 ***

age 6.689e-05 1.000e+00 2.515e-05 2.660 0.00782 **

---

Rsquare= 0.32 (max possible= 0.983 )

Likelihood ratio test= 120.5 on 4 df, p=0
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Example of Cox Regression – PBC
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Example of Cox Regression – PBC
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Summary

• Cox regression is semi-parametric (and popular!)

• Covariates can be modeled in standard ways and inference

performed using partial likelihood, score, and Wald tests.

• An important idea is the risk set at time t which usually includes

a single CASE and multiple CONTROLS (at that time).

• Q: How well does the predictive model perform?

• Q: How to link the model to making medical decisions?
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