Part [1.0] – Measures of Classification Accuracy for the Prediction of Survival Times

- Patrick J. Heagerty PhD
- Department of Biostatistics
- University of Washington

Review: Cox Regression Model

- Introduction
 - ▷ Cox (1972)
- Model
 - hazard model
 - log hazard, survival models
 - ▷ PH assumption
 - Interpretation of coefficients
 - Specific examples

Biomarkers

Cox Regression Model

- Estimation
 - Coefficients
 - Partial likelihood
 - Approximation for ties
 - Survival curve(s)
 - > Hazard curve(s)
- Stratification
 - Using covariate
 - Using "true" stratification

Cox (1972)

- D.R. Cox (1972) "Regression Models and Life-Tables" (with discussion) JRSS-B, <u>74</u>: 187-220.
- "The present paper is largely concerned with the extension of the results of Kaplan and Meier to the comparison of life tables and more generally to the incorporation of regression-like arguments into life-table analysis." (p. 187)

• Model proposed:
$$\lambda(t \mid X) = \lambda_0(t) \cdot \exp(X\beta)$$

- "In the present paper we shall, however, concentrate on exploring the consequence of allowing $\lambda_0(t)$ to be arbitrary, main interest being in the regression parameters." (p. 190)
- "A Conditional Likelihood" later called Partial Likelihood.
- Score Test = LogRank Test

• Discussion:

- "Mr. Richard Peto (Oxford University): I have greatly enjoyed Professor Cox's paper. It seems to me to formulate and to solve the problem of regression of prognosis on other factors perfectly, and it is very pretty."
- Impact:
 - Science Citation Index: 29,140 citations (29 June 2015)
 - David R. Cox is knighted in 1985 in recognition of his scientific contributions.

Sir David R. Cox

Cox Regression Model

- Response Variable:
 - \triangleright Observed: (Y_i, δ_i)
 - \triangleright Of Interest: T_i , or $\lambda(t)$
- T_i survival, with distribution given by:
 - \triangleright Survival function: S(t)
 - ▷ Hazard function: $\lambda(t)$
- Observed Covariates: X_1, X_2, \ldots, X_k
 - ▷ For subject j we observe: $(Y_j, \delta_j), X_{1j}, X_{2j}, \ldots, X_{kj}$
- IDEA: same as with other regression models Model relates the covariates X₁,..., X_k to the distribution (either S(t) or λ(t)) of the response variable of interest, T.

Cox Regression Model

Model:

 $\lambda(t \mid X_1, X_2, \dots, X_k) = \lambda_0(t) \cdot \exp(\beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k)$

• Model: alternatively expressed as

 $\log \lambda(t \mid X_1, \dots, X_k) = \log \lambda_0(t) + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$

 $S(t \mid X_1, \dots, X_k) = [S_0(t)]^{[\exp(\beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k)]}$

• Note definitions:

$$\lambda_0(t) = \lambda(t \mid X_1 = 0, X_2 = 0, \dots, X_k = 0)$$

$$S_0(t) = S(t \mid X_1 = 0, X_2 = 0, \dots, X_k = 0)$$

Interpreting Cox Regression Coefficients

Proportional Hazards:

$$\mathsf{RR} = \frac{\lambda(t \mid X_1, X_2, \dots, X_k)}{\lambda(t \mid X_1 = 0, X_2 = 0, \dots, X_k = 0)}$$

$$= \exp(\beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k)$$

RR above is: "Relative risk, or hazard, of death comparing subjects with covariate values (X1, X2,..., Xk) to subjects with covariate values (0,0,...,0)."

Interpreting Cox Regression Coefficients

In General:

▷ β_m is the log RR (or log hazard ratio, log HR) comparing subjects with $X_m = (x + 1)$ to subjects with $X_m = x$, given that all other covariates are constant (ie. the same for the groups compared).

$$\frac{\lambda(t \mid X_1, \dots, \widetilde{X_m = (x+1)}, \dots, X_k)}{\lambda(t \mid X_1, \dots, \underbrace{X_m = (x)}_{here}, \dots, X_k)} = \frac{\lambda_0(t) \exp(\beta_1 X_1 + \dots \beta_m(x+1) + \dots + \beta_k X_k)}{\lambda_0(t) \exp(\beta_1 X_1 + \dots \beta_m(x) + \dots + \beta_k X_k)} = \exp(\beta_m)$$

Interpreting Cox Regression Coefficients

The RR Comparing 2 Covariate Values (vectors):

$$\mathbb{P} \quad \text{RR comparing } (X_1, X_2, \dots, X_k) \text{ to } (X'_1, X'_2, \dots, X'_k).$$

$$\text{RR}(X \text{ vs. } X') = \frac{\lambda(t \mid X_1, X_2, \dots, X_k)}{\lambda(t \mid X'_1, X'_2, \dots, X'_k)}$$

$$= \exp \left[\begin{array}{c} \beta_1 \cdot (X_1 - X'_1) + \\ \beta_2 \cdot (X_2 - X'_2) + \\ \dots + \\ \beta_k \cdot (X_k - X'_k) \end{array} \right]$$

Cox Model Examples

- **1**: One dichotomous covariate
 - $\triangleright X_E = 1$ if exposed; $X_E = 0$ if not exposed.

$$\triangleright \quad \lambda(t \mid X_E) = \lambda_0(t) \exp(\beta X_E)$$

Cox Model Examples

- 2: Dichotomous covariate; Dichotomous confounder
 - \triangleright $X_C = 1$ if level 2; $X_C = 0$ if level 1.
 - $\triangleright \quad \lambda(t \mid X_E, X_C) = \lambda_0(t) \exp(\beta_1 X_E + \beta_2 X_C)$

Cox Model Examples

- **3**: Dichotomous covariate; confounder; (interaction)
 - ▷ With interaction
 - $\triangleright \quad \lambda(t \mid X_E, X_C) = \lambda_0(t) \exp(\beta_1 X_E + \beta_2 X_C + \beta_3 X_E X_C)$

Cox Models: Comments

- In each example the hazard functions are "parallel" that is, the change in hazard over time was the same for each covariate value.
- For regression models there are different possible tests for a hypothesis about coefficients: likelihood ratio; score; Wald. (more later!)
- The score test for example (1) with $H_0: \beta = 0$ is the LogRank Test.
- The score test using "dummy variables" to code (4) groups with
 H₀: β₂ = β₃ = β₄ = 0 is the same as the K-sample Heterogeneity
 test (generalization of LogRank).

Fitting the Cox Model

Obtain estimates of β₁, β₂,..., β_k by maximizing the "partial likelihood" function:

$$P\mathcal{L}(\beta_1,\beta_2,\ldots,\beta_k).$$

$$\triangleright \quad \widehat{eta}_1, \widehat{eta}_2, \dots, \widehat{eta}_k$$
 are MPLE's

- ▷ Cl's for β_j using: $\widehat{\beta}_j \pm Z_{1-\alpha/2} \mathsf{SE}(\widehat{\beta}_j).$
- $\begin{tabular}{ll} $\mathsf{CI's for hazard ratio (HR) using:} \\ & \exp[\widehat{\beta}_j Z_{1-\alpha/2}\mathsf{SE}(\widehat{\beta}_j)], \ \exp[\widehat{\beta}_j + Z_{1-\alpha/2}\mathsf{SE}(\widehat{\beta}_j)] \end{tabular} \end{tabular}$
- Wald test, score test, and likelihood ratio test similar to logistic regression. Now using the partial likelihood.

Partial Likelihood

- Model: $\lambda(t \mid X_1, \dots, X_k) = \lambda_0(t) \exp(\beta_1 X_1 + \dots + \beta_k X_k)$
- Order Data:
 - \triangleright $t_{(i)}$ is the *i*th ordered failure time.
 - Assume no ties, and let $X_{(i)} = (X_{1(i)}, X_{2(i)}, \dots, X_{k(i)})$ be the covariates for the subject who dies at time $t_{(i)}$.
 - ▷ Let \mathcal{R}_i denote the "risk set" at time $t_{(i)}$, which denotes all subjects with $Y_j \ge t_{(i)}$.
- Partial Likelihood: (no ties)

$$P\mathcal{L}(\beta_1,\ldots,\beta_k) = \prod_{i=1}^J \frac{\exp(\beta_1 X_{1(i)} + \beta_2 X_{2(i)} + \ldots + \beta_k X_{k(i)})}{\sum_{j \in \mathcal{R}_i} \exp(\beta_1 X_{1j} + \beta_2 X_{2j} + \ldots + \beta_k X_{kj})}$$

Risk Set Illustration

D=death, L=lost, A=alive

Risk Set Illustration

- Failure times: $t_{(1)} = 1, t_{(2)} = 3, t_{(3)} = 4, t_{(4)} = 6.$
- Risk sets:
 - $\triangleright \quad \mathcal{R}_1 = \{ \qquad \qquad \}$
 - $\triangleright \quad \mathcal{R}_2 = \{ \qquad \}$
 - $\triangleright \ \mathcal{R}_3 = \{ \}$
 - $\triangleright \quad \mathcal{R}_4 = \{ \qquad \}$

- Cox (1972) "No information can be contributed about β by time intervals in which no failures occur because the component λ₀(t) might conceivably be identically zero in such intervals."
- Cox (1972) "We therefore argue conditionally on the set $\{t_{(i)}\}$ of instants at which failure occur."
- Cox (1972) "For the particular failure at time t_(i) conditional on the risk set, R_i, the probability that the failure is on the individual as observed is:

$$\frac{\exp(\beta_1 X_{1(i)} + \beta_2 X_{2(i)} + \ldots + \beta_k X_{k(i)})}{\sum_{j \in \mathcal{R}_i} \exp(\beta_1 X_{1j} + \beta_2 X_{2j} + \ldots + \beta_k X_{kj})}.$$

• Note: This likelihood contribution has the exact same form as a (matched) logistic regression conditional likelihood.

• Q: What is the probability of the observed data at time $t_{(i)}$ given that one person was observed to die among the risk set?

Note :
$$P[T \in (t, t + \Delta t] \mid T \ge t] \approx \lambda(t) \cdot \Delta t$$

Person who died : $\lambda_0(t) \exp(\beta_1 X_{1(i)} + \ldots + \beta_k X_{k(i)}) \Delta t = P_{(i)}$

Generic j in \mathcal{R}_i : $\lambda_0(t) \exp(\beta_1 X_{1j} + \ldots + \beta_k X_{kj}) \Delta t = P_j$

• Probability One Death, Was (i) :

 $P_{(i)} \times (1 - P_1) \times (1 - P_2) \dots \times \text{skip}(i) \times (1 - P_k)$

• Probability of One Death:

• Note: $(1 - P_j) \approx 1$ for small Δt .

• Now calculate the desired quantity:

$$P(\text{ Observed Data} | 1 \text{ death }) = \frac{P(\text{ Only (i) Dies })}{P(\text{ One Death })}$$

$$= \frac{P_{(i)} \prod_{k \neq (i)} (1 - P_k)}{\sum_{j \in \mathcal{R}_i} P_j \prod_{k \neq j} (1 - P_k)}$$

$$\approx \frac{P_{(i)}}{\sum_{j \in \mathcal{R}_i} P_j}$$

$$\frac{P_{(i)}}{\sum_{j\in\mathcal{R}_i} P_j} = \frac{\lambda_0(t) \exp(\beta_1 X_{1(i)} + \beta_2 X_{2(i)} + \dots + \beta_k X_{k(i)}) \cdot \Delta t}{\sum_{j\in\mathcal{R}_i} \lambda_0(t) \exp(\beta_1 X_{1j} + \beta_2 X_{2j} + \dots + \beta_k X_{kj}) \cdot \Delta t}$$
$$= \frac{\exp(\beta_1 X_{1(i)} + \beta_2 X_{2(i)} + \dots + \beta_k X_{k(i)})}{\sum_{j\in\mathcal{R}_i} \exp(\beta_1 X_{1j} + \beta_2 X_{2j} + \dots + \beta_k X_{kj})}$$

Partial Likelihood – Comments

Notice that our model is equivalent to

 $\log \lambda(t \mid X_1 \dots X_k) = \alpha(t) + \beta_1 X_1 + \dots \beta_k X_k$

where $\alpha(t) = \log \lambda_0(t)$, but the PL does not depend on $\alpha(t)$.

- Using the partial likelihood (PL) to estimate parameters provides estimates of the regression coefficients, β_i , only.
- The model is called "semi-parametric" since we only need to parameterize the effect of covariates, and do not say anything about the baseline hazard.
- **Q**: Why not just use standard maximum likelihood?
- A: To do so would require choosing a model for the baseline hazard, but we actually don't need to do that!

Partial Likelihood and Ties

- If there is more than one death at time $t_{(i)}$ then the denominator for the partial likelihood contribution will involve a large number of terms. For example if there are 20 people at risk at time $t_{(i)}$ and 3 die then there are "20 choose 3" = 1140 terms.
- Approximation (Breslow, Peto) default in STATA
 - ▷ The numerator can be calculated and represented using:
 - * Sum X_1 for deaths: $s_{1i} = \sum_{j:Y_j=t_{(i)}, \delta_j=1} X_{1j}$
 - * Sum X_2 for deaths: $s_{2i} = \sum_{j:Y_j=t_{(i)}, \delta_j=1} X_{2j}$ etc.
 - \triangleright The approximation with D_i deaths at time $t_{(i)}$ is:

$$P\mathcal{L}_A = \prod_{i=1}^J \frac{\exp(\beta_1 s_{1i} + \beta_2 s_{2i} + \ldots + \beta_k s_{ki})}{\left[\sum_{j \in \mathcal{R}_i} \exp(\beta_1 X_{1j} + \beta_2 X_{2j} + \ldots + \beta_k X_{kj})\right]^{D_i}}$$

Comments on Ties

- If **continuous** times, T_i , then ties should not be an issue.
 - ▷ Time recorded in (days,minutes).
 - ▷ Modest sample size.
- If discrete times, $T_i \in [t_k, t_{k+1})$, recorded then consider methods appropriate for discrete-time data (e.g. variants on logistic regression)
 - ▷ See Singer & Willett (2003) chpts 10–12; H& L pp. 268-9.

Comments on Ties

- However, there is plenty of room between continuous and discrete.
 - ▷ | Example: | **USRDS Data** = 200,000 subjects.
 - * 25% annual mortality = 50,000 deaths/year.
 - * 50,000 deaths/365 days = 137 deaths/day.
- Kalbfleisch & Prentice (2002), section 4.2.3 summarize options and relative pros/cons.
 - "Breslow method" simple to implement/justify; some bias if discrete.
 - ▷ "Efron method" also simple comp; performs well.
 - ▷ "exact method" justified; comp challenge.
 - Should be minor issue in general, and if not then perhaps a discrete-time approach should be considered.

Biomarkers

(Partial) Likelihood Ratio Tests

• Full Model:

$$\lambda(t|X) = \lambda_0(t) \exp(\beta_1 X_1 + \ldots + \beta_p X_p + \underbrace{\beta_{p+1} X_{p+1} + \ldots + \beta_k X_k}_{\text{extra}})$$

• Reduced Model:

$$\lambda(t|X) = \lambda_0(t) \exp(\beta_1 X_1 + \ldots + \beta_p X_p)$$

- In order to test:
 - \triangleright H_0 : Reduced model \Leftrightarrow $H_0: \beta_{p+1} = \ldots = \beta_k = 0$
 - \triangleright H_1 : Full model \Leftrightarrow H_1 : extra coeff $\neq 0$ somewhere
- Use the partial likelihood ratio statistic

 $X_{PLR}^2 = [2\log P\mathcal{L}(\texttt{FullModel}) - 2\log P\mathcal{L}(\texttt{ReducedModel})]$

(Partial) Likelihood Ratio Tests

- Under H_0 (reduced is correct) then $X_{PLR}^2 \sim \chi^2(df = (k p))$
- Degrees of freedom, df = (k p), equals the number of parameters set to 0 by the null hypothesis.
- Application is for situations where the models are "nested" the reduced model is a special case of the full model.
- Also can use Wald tests, and/or score tests. The PLR (Partial Likelihood Ratio) test is particularly useful when df> 1.
- The PLR statistic is equivalent (using a "double negative") to:

 $X_{PLR}^2 = \{ [-2\log P\mathcal{L}(\texttt{ReducedModel})] - [-2\log P\mathcal{L}(\texttt{FullModel})] \}$

Example of Cox Regression – Primary Billiary Cirrhosis (PBC)

- Data:
 - \triangleright A randomized trial with n = 312 subjects.
 - ▷ Long-term follow-up (10 years!)

• Objective:

Could the available clinical information be used to construct a predictive model that could be used to guide medical decisions?

Example Analysis using R – PBC

```
pbc.data <- read.table( "pbc-data.txt", header=T )</pre>
#
pbc.data$survival.time <- pbc.data$fudays</pre>
pbc.data$survival.status <- as.integer( pbc.data$status==2 )</pre>
#
#####
library(survival)
#####
#
##### Kaplan-Meier curve
#
Sout <- survfit( Surv(survival.time, survival.status) ~ 1, data=pbc.data
plot( Sout, mark.time=F, col="blue", xlab="Time (days)", ylab="Survival"
      lwd=2
            )
```

PBC Data

Time (days)

Cox model with log(bili), log(protime), edema, albumin, age
####### generate linear predictor for ordinary cox model: eta5
#

```
fit <- coxph( Surv(survival.time,survival.status) ~ log(bili) +</pre>
```

log(protime) +
edema +
albumin +
age,

```
data=pbc.data )
summary( fit )
#
###### get the risk score
#
eta5 <- fit$linear.predictors</pre>
```

n= 312, number of events= 125

	coef	exp(coef)	<pre>se(coef)</pre>	Z	$\Pr(z)$	
log(bili)	8.773e-01	2.404e+00	9.895e-02	8.866	< 2e-16	***
log(protime)	3.013e+00	2.035e+01	1.025e+00	2.939	0.003296	**
edema	7.846e-01	2.192e+00	2.998e-01	2.617	0.008872	**
albumin	-9.445e-01	3.889e-01	2.370e-01	-3.985	6.73e-05	***
age	9.169e-05	1.000e+00	2.363e-05	3.881	0.000104	***

Rsquare= 0.471 (max possible= 0.983) Likelihood ratio test= 198.5 on 5 df, p=0

KM Estimates by Model(5) Tertiles

Time (days)

```
##### generate linear predictor for ordinary cox model: eta4
#
#
fit <- coxph( Surv(survival.time,survival.status) ~ log(protime) +</pre>
                                        edema +
                                        albumin +
                                        age,
               data=pbc.data )
summary( fit )
#
# get the risk score
#
eta4 <- fit$linear.predictors</pre>
```

n= 312, number of events= 125

	coef	exp(coef)	se(coef)	Z	Pr(> z)		
log(protime)	4.140e+00	6.283e+01	8.703e-01	4.758	1.96e-06	***	
edema	1.190e+00	3.288e+00	2.953e-01	4.031	5.56e-05	***	
albumin	-1.314e+00	2.687e-01	2.228e-01	-5.897	3.71e-09	***	
age	6.689e-05	1.000e+00	2.515e-05	2.660	0.00782	**	
Rsquare= 0.32 (max possible= 0.983)							

Likelihood ratio test= 120.5 on 4 df, p=0

KM Estimates by Model(4) Tertiles

Time (days)

Compare eta5 and eta4

Biomarkers

Summary

- Cox regression is semi-parametric (and popular!)
- Covariates can be modeled in standard ways and inference performed using partial likelihood, score, and Wald tests.
- An important idea is the **risk set** at time t which usually includes a single CASE and multiple CONTROLS (at that time).
- **Q**: How well does the predictive model perform?
- Q: How to link the model to making medical decisions?