39

Part [1.1] — Measures of Classification Accuracy

for the
Prediction of Survival Times

e Patrick J. Heagerty PhD
e Department of Biostatistics
e University of Washington

Biomarkers
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Session QOutline

Examples

> Breast Cancer Cytology Data
> Mayo PBC Data
> Cystic Fibrosis Foundation Registry Data

Previous approaches

ROC overview

TP, FP for survival outcomes

ROC;" (p)

ROC’E/D(p), AUC(t), and concordance, C7

ROC (p) interpretation and dynamic criteria,

Further work

Biomarkers
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Example: Comparing cytometry measures

Breast Cancer among Younger Women

e N = 253 women BC diagnosed aged 20 to 44.
e Endpoint: time-until-death (any cause)

e Cytometry measurements:
> ‘“old"” (S-phase ungated)
> “new” (S-phase gated)

e Goal: compare measures as predictors of mortality

e Heagerty, Lumley & Pepe (2000)

Biomarkers
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%S Gated

New versus Old Method

%S Ungated

Biomarkers
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Predictive Survival Models

Mayo PBC Data

e N = 312 subjects, 125 deaths, 1974-1986

e Baseline measurements: bilirubin, prothrombin time, albumin...

e Goal: predict mortality; “medical management”

Biomarkers
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Prognosis in Primary Biliary Cirrhosis: Model for Decision
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The ideal mathematical model for predicting survival
for individual patients with primary biliary cirrhosis
should be based on a small number of inexpensive, non-
invasive measurements that are universally available.
Such a model would be useful in medical management
by aiding in the selection of patients for and timing of
orthotopic liver tr lantation. This paper describes

" the development, testing and use of a mathematical

model for predicting survival. The Cox regression
method and comprehensive data from 312 Mayo Clinic
patients with primary biliary cirrhosis were used to
derive a model based on patient’s age, total serum bili-
rubin and serum albumin concentrations, prothrombin
time and severity of edema. When cross-validated on an
independent set of 106 Mayo Clinic primary biliary

- cirrhosis patients, the model predicted survival accu-

rately. Our model was found to be comparable in quality
to two other primary biliary cirrhosis survival models
reported in the literature and to have the advantage of
not requiring liver biopsy.

Orthotopic liver transplantation is considered to be
potentially life-saving for selected patients with ad-
vanced or end-stage primary biliary cirrhosis. The avail-
ability of a model to predict survival probability for an
individual patient would improve selection of patients
for transplantation and the timing of that transplanta-
tion. Also, such a model could be used to help to decide
which patients are appropriate, medically and ethically,
for clinical trials of other treatment modalities. In addi-
tion, the model could be used for education and counsel-
ing of the patient and the family.

Using the Cox proportional hazards regression proce-
dure (1), Roll et al. at Yale (2) and Christensen et al. in
Europe (3) independently developed multivariate sur-
vival models. The Yale model used patient’s age, serum
silirubin concentration, hepatomegaly and presence of
portal fibrosis or cirrhosis to predict survival. The Eu-
ropean model used age, bilirubin and albumin concentra-

Received June 28, 1988; accepted December 12, 1988.

Supported by Research Grant AM-34238 from the National Insti-
tutes of Health.

t Present address: Department of Biostatistics, University of Wash-
ington, Seattle, Washington.

Address reprint requests to: E. Rolland Dickson, M.D., Mayo Clinic,
200 First St. SW, Rochester, Minnesota 55905,

tions, presence of cirrhosis, presence of cholestasis anc
whether or not azathioprine was prescribed. However,
neither model was developed as a medical management
tool, and both models required liver biopsy.

This paper describes a pragmatic model based on in-
expensive, noninvasive measurements that are univer-
sally and readily available.

PATIENTS AND METHODS
Patient Population

To develop the model, we used natural history data on the
312 primary biliary cirrhgsis patients enrolled in either of two
double-blind, placeb trolled, randomized clinical trials at
the Mayo Clinic evaluating the use of D-penicillamine -for
treating primary biliary cirrhosis. To be eligible for these trials,
patients had to meet well-established clinical, biochemical,
serologic and histologic criteria for primary biliary cirrhosis
(4). Patient accrual took place from January, 1974, through
May, 1984. One clinical trial (unpublished data) involved pa-
tients with histologic Stage 1 or 2 primary biliary cirrhosis; the
other involved Stage 3 and 4 patients (4). Both trials found no
therapeutic diff betw trol and D-penicillamine-
treated pati The study protocols required that no patient
be taking any antiinflammatory or immunosuppressive medi-
cation (other than the study capsule). Therefore, it was d d
appropriate to bine all study partici to determine the
natural history of primary biliary cirrhosis.

In addition, we had available 112 patients who were eligible
for the trials but declined to participate. None of these patients
was taking an i ppressive or antiinfl tory medi-
cation at the time of trial eligibility. These patients were used
for model validation. It is possible that some of the cross-
validation patients were exposed to antiinflammatory or im-
munosuppressive medication during the follow-up period. How-
ever, there has been no report of a totally effective regimen for
biliary cirrhosis (5). Therefore, it is unlikely that the natural
course of their disease was altered by any medication.

Data Collection

A comprehensive clinical and laboratory data base was es-
tablished on each patient. The data were collected prospectively
in the trial patients, by using standardized forms, definitions,
and study protocols, at entry and at yearly intervals (see Table
1 for the variables measured). For the nontrial patients, the
baseline data were collected from patients’ records.

At entry, a liver biopsy specimen was obtained, and the

Biomarkers
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Predictive Survival Models

Cystic Fibrosis Data

N = 23,530 subjects, 4,772 deaths, 1986-2000
n = 160, 005 longitudinal observations
Longitudinal measurements: FEV1, weight, height

Goal: predict mortality; transplantation selection

Biomarkers
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Accuracy: Some proposals

R? Generalizations

e Korn and Simon (1990)
e Schemper and Henderson (2000)
e O'Quigley and Xu (2001)

TP, FP, ROC Generalizations

e Etzioni et al. (1999); Slate and Turnbull (1999)
e Heagerty, Lumley, and Pepe (2000)
e Heagerty and Zheng (2005)

Biomarkers
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Some Comments

e Schemper and Henderson (2000), p. 249:

“Consequently, there have been a number of attempts to
develop measures akin to I2? for Cox proportional hazards
models [[references]|, though as yet, none have been
generally accepted.”

e These versions of R? are not about variance in T'. They focus on
average variances of the counting process:

N(t) = 1(T < t)

Biomarkers



R?: Schemper and Henderson (2000)

|dea: N@t)=1T<t) with E[N(t)]=1-5(t)
Without Covariates With Covariates
variance S(t)[1— S(t)] S| X)[1—-S(t]|X)]
average (X) Ex{St|X)[1-S(t]|X)]}
average (T) [, S(O)[1 = S@)|f(t)dt [, Ex {S(t|X)[L—S(t|X)]}f(t)dt
} 3
Dy Dx

Proposal: | R? = (Dg — Dx)/Dy

Biomarkers
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Some Comments

Natural to think of survival through counting process N(t).

Common to use ROC curves for logistic regression / binary
classification.

Q:

Extend classification error rate concepts to survival data?

Biomarkers
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Components of Accuracy

e | Calibration

> Bias — does observed match predicted?

> Evaluated graphically and formally.

e | Discrimination

> Does prediction separate subjects with different risks?

> Evaluated qualitatively based on K-M plots.

Harrell, Lee and Mark (1996)

Biomarkers
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BC Survival: New Measurement (gated)
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BC Survival: Old Measurement (ungated)
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(b) Survival for %S, Ungated
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Binary Classification

Sensitivity

“True Positive”

BINARY TEST

CONTINUOUS MARKER

Specificity

“True Negative”

BINARY TEST

CONTINUOUS MARKER

53

P(T+|D=1)
P(M>c|D=1)

P(T— | D =0)
P(M<c|D=0)

Biomarkers



54

ROC Curve

An ROC curve plots the True Positive Rate, TP(c), versus the False
Positive Rate, FP(c) for all possible cutpoints, c:

FP(c) = P(M >c|D=0)
TP(¢) = P(M>c|D=1)
ROC Curve : [FP(c), TP(c)] Ve

Biomarkers



Marker versus Disease status
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Marker versus Disease status
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Marker versus Disease status
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Marker versus Disease status
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Marker versus Disease status
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Marker versus Disease status
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Marker versus Disease status
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Marker versus Disease status
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Marker versus Disease status
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Marker versus Disease status
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ROC Curves

. Compare different markers over full spectrum of error

combinations.

. Compare sensitivity when controlling specificity (eg. TP when

FP=10%).

. AUC interpretation:

“For a randomly chosen case and control, the area under the ROC
curve is the probability that the marker for the case is greater than

the marker for the control.”

. AUC is a marker-outcome concordance summary.

Biomarkers
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Does a (repeated) measurement predict onset?

experience an event (soon)?
> eg FEV1

> e.g. death time

Q: | Can a measurement be used to accurately guide

longitudinal treatment decisions?

> e.g. lung transplantation

Q: | Can a measurement accurately predict which CASES will

Biomarkers
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Classification Errors

True Positive Rate

P( high measurement | CASE )

False Positive Rate

P( high measurement | CONTROL )

Biomarkers
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Issues Related to Time

Q:

When is the measurement taken?

> At baseline: Y (0)
> At a follow-up time ¢: Y (¢)

Q:

What time is used to determine when someone is a CASE

or a CONTROL?

>

>

>

>

Case = event (disease, death) before time t.
Case = event (disease, death) at time ¢.
Control = event-free through time t.

Control = event-free through a large follow-up time ¢*.

Biomarkers
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Our approaches

measurement | case control
Heagerty, Lumley & Pepe (2000) | baseline T <t T >t
Zheng & Heagerty (2004) longitudinal T =1 T > t*
Heagerty & Zheng (2005) baseline T =t T >t
Zheng & Heagerty (2007) longitudinal T <t T >t
Saha & Heagerty (2011) longitudinal T=t,0=5|T>t

Biomarkers
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Sensitivity and Specificity for Survival

Let T" denote the survival time, and let N(¢) denote the counting
process for the uncensored outcome:

N(#) = (T < t)

Possible definitions:

/

Cumulative N(t) =1

CASE(?)
Incident  dN(t) =1

\
)

Static N(t*) =0

CONTROL(t) : <
Dynamic  N(t) =0

\

o Where t* is a fixed “large” time, t* >>t.

Biomarkers
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HLP(2000)

0 1 2 3 4 5 6 7 8 9 10
Time
ZH(2004)
| 0 : ; ] ) : ‘ i . 0 10
Time
HZ(2005)
| 0 : ; ] ) : ‘ i ’ ‘ 10
Time
ZH(2007)
I T T T l T l T T T T 1
0 1 2 3 4 5 6 7 8 9 10
Time
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[1] Sensitivity and Specificity for Survival

Define:

Heagerty, Lumley & Pepe (2000)

63

sensitivity“(¢c,t) : P(M >c|T <t)
P(M >c|N(t)=1)

specificity(¢,t) : P(M <c|T >t)
P(M <c| N(t)=0)

TP (c) = P(M>c|N(t)=1)

FPP() = P(M >c|N(t)=0)

Biomarkers
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[1] Time-dependent ROC Curve

An Cumulative/Dynamic ROC curve shows the ability of a marker to
separate the cumulative cases through time t (e.g. T' < t) from the
controls at time t (e.g. T > t).

Define curve | p, ROCIEC/D(p) |:

ROC,%(p) = TPC{[FP"'(p)}
= TP%(cP)
where ¢’ p=FP()

Define AUC as:
AUC(t) = / ROCY® (p) dp

Biomarkers
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Estimation: NNE for S(m, )

With censored times a valid ROC solution can be provided by using an
estimator of the bivariate distribution function for [M, T.

Define:

S(e,t) = P[M >c,T >t

S(c,t) = / TS0t | M = w)dFy ()

where Fi(u) is the distribution function for M.

Biomarkers
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Akritas (1994):

~ 1 ~
S, (e,t) = = > S (| M = M)1(M; > c)

where Sy (t| M = M;) is a suitable estimator of the conditional

survival function characterized by a smoothing parameter \,,.

Biomarkers
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Estimation: NNE for S(m, )

Define:
~ {1 = Fuy(e)] = Sy, (e, 1)}
P [M>c|N@t) =1 = FENTY
. B o Sy (¢, t)
Py [M<c|Nt)=0 = 1 WO

AN

where Sy () = S\ (—o0,t).
e For NNE \,, = O(n~1/3) sufficient for weak consistency.

e Results from Akritas (1994) and van de Vaart and Wellner (1996)
imply that the bootstrap can be used for inference.

Biomarkers
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Accuracy Comparisons

Sensitivity

e Using gated (new) measurement:
o P[M; < 5.4| N(60m) = 0] = 0.71
(M > 5.4 | N(60m) = 1] = 0.82

“U> “U>

(ol ) measurement:
o P[M, <|3.5|| N(60m) = 0] =|0.71
o P[M 2>35\N(60m)—1]—054

e Using ungated

e Therefore, controlling M; and M5 to have equal specificity, the new
measure, M7, has a greater sensitivity.

Biomarkers
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Accuracy Comparisons

AUC Calculations

e AUC for gated (new): 0.80,
Bootstrap 95% ClI: (0.72,0.89)

e AUC for ungated (old): 0.68,
Bootstrap 95% Cl: (0.56,0.77)

e 95% CI for difference in areas (new-old): (0.03, 0.26)

Biomarkers



Summary

Define time-dependent ROC curves based on prospective data

cumulative occurence of events.

| ocal survival estimation handles censored event times.

Tool to evaluate a marker or a survival regression model score.

R package: survivalROC (see web for doc/validation)
* Alternative definitions?

* More general longitudinal marker scenario?

and

e Heagerty, Lumley and Pepe (2000) “Time-dependent ROC Curves
for Censored Survival Data and a Diagnostic Marker” Biometrics

71
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[2] Sensitivity and Specificity for Survival

Define:

Heagerty & Zheng (2005)

72

sensitivity' (¢,t) : P(M >c|T =1)
P(M > c|dN(t) = 1)

specificity (¢, t) : P(M <¢|T >t)
P(M <c¢| N(t)=0)

TP/(c) = P(M>c|dN(t)=1)

FPP(c) = P(M >c|N(t)=0)

Biomarkers



[2] Time-dependent ROC Curve

An Incident/Dynamic ROC curve shows the ability of a marker to
separate the cases (1" = t) from the controls (7" > t) within a
(potential) risk-set (T > t).

Define curve | p, ROC’E/D(p) ]:

ROC/P(p) = TP{[FP""}(p)}
= TPYcP)
where ¢’ p=FP()

Define AUC as function of time:

AUC(t) = / ROC,® (p) dp

73
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Marker

log—normal survival example

RHO =-0.8

log(Time)

Biomarkers



log-normal survival example
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log-normal survival example
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log-normal survival example
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log-normal survival example
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log-normal survival example
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Marker

75-5

log-normal survival example
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I/D ROC curves for log—normal

o |
—
o0}
g
© |
2:’ o
=
‘B
c
Q
2«
S
— log(t) =-1.5
N ol —  log(t) =-1
o L —— log(t) =-0.5
log(t) = 0
’ log(t) =0.5
— log(t) =1
o
o .
\ \ \ \ \ \
0.0 0.2 0.4 0.6 0.8 1.0
1-specificity

76

Biomarkers



77

AUC(t) and Concordance

Q:

The I/D ROC curve and AUC(t) provide time-specific summaries

of accuracy, but is there a single global summary?

Concordance:

C = P(MJ>M]€‘TJ<T]€)
c - / AUC(E) - w(t) dt

t

with w(t) =2 f(t) - S(t)

Biomarkers
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AUC(t) and Concordance

e Time can be restricted to (0,7) to obtain:

C— P(Mj>Mk|Tj<Tk,Tj<7')

_ / CAUC() - wT (1) dt

with w™ (1) = w(t)/[1 — 52(7')]
e (U is directly related to Kendall's tau, K:
C=K/2+1/2

> Korn and Simon (1990)
> Harrell, Lee and Mark (1996)

Biomarkers
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AUC(t)
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Estimation: Issues

FPP(c) = P(M > c¢|T >t) can be estimated non-parametrically
for times when ) . R;(t) moderate-to-large, where

R;(t) = 1(T7 > t), “at-risk” indicator.

However, estimation of T P}(c) = P(M > ¢ | T = t) requires
some sort of smoothing since the observed subset with T; = ¢ may
only contain one observation.

Essentially we are interested in regression quantiles for the marker
as a function of time, T' = ¢, but T' may be censored (coarsened
covariate).

The hazard can be used as a “bridge” to estimate T'P}(p).
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Estimation: Proportional Hazards

Assume:

o (M, TF,A;) iid

e Independent censoring, C;.

e No assumption for marker distribution.

Hazard Model:

)\(t ’ Mz) — Ao(t) exp(fy . Mz)
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Estimation: Proportional Hazards

To estimate F'PP(c) we use the empirical distribution for the “control
set” (T > t):

ﬁ?(c) = Znit - R;(t+) - 1(M; > ¢)

(

where Ri(t+) = (T >t), n = ZRZ-(H—)
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Estimation: Proportional Hazards

To estimate T'P}(c) we use the “exponential tilt” of the empirical
distribution for the risk set (7™ > t):

TP,(c) — > mltA) - 104> o

where mi(t,y) = Ri(t) - exp(vy - M;) /W,
W, = ZRi(t) cexp(y - M;), Ri(t) = 1T} > t)

e Xu and O'Quigley (2000) show that the weights, 7; (¢, ), applied to
the risk set provide consistent estimation of P(M; > ¢ | T; = t).

e Partial likelihood connections: E(M | T =t).
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Estimation: Hazard as Bridge

A general definition for the hazard is

P(T, =t | M)
P(T; >t | M)

At | M) =

Then using a little algebra yields

Biomarkers
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Estimation: Hazard as Bridge

A general definition for the hazard is

At | M) =

Then using a little algebra yields

P(T; =t | M;)

P(T; >t | M;)

A

P(M; =m | T; >t)

7

Estimate <=  Smooth model

N

+ Empirical
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Estimation: non-PH

Estimation assuming PH can be relaxed using a varying coefficient
model:

A(E | M;) = Ao(t) exp[y(¢) - M;]
e Estimation of ~(t)
> Hastie and Tibshirani (1993)
> Cai and Sun (2003) [local linear MPLE]

> simple smoothing of scaled Schoenfeld residuals
e Only assumes smooth hazard ratios, and linearity in M.

e Linearity in M can be relaxed using functions f(M).
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Estimation: non-PH

Only the estimate of T'P}(c) is modified:
Zm 1(M; > c)

where it v(t)] = R;(t) - exp|y(t) - M;]/W;

Wi = 3" Ri(t) - exply(t) - M|

7
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Some Simulations

e Data (M;,logT;) were generated as bivariate normal with a
correlation of p = —0.7.

e The sample size for each simulated data set was N = 200.

e The AUC(t) curve and the integrated curve, C”, was estimated

using:

> maximum likelihood assuming a bivariate normal model

> Cox model which assumes proportional hazards

> local maximum partial likelihood for the varying-coefficient
model A(t) = A\o(t) exp[y(t) - M;]

> local linear smooth of the scaled Schoenfeld residuals to

estimate the varying-coefficient model.
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AUC(t) Estimated Using Local-linear MPL

AUC()
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40% Censoring

MLE Cox model local MPLE residual smooth

log time  AUC(t) mean (s.d.)  mean (s.d.)  mean (s.d.)  mean (s.d.)
-2.0 0.884 0.884 (0.019) 0.749 (0.031) 0.859 (0.054) 0.875 (0.048)
-1.5 0.833 0.834 (0.021) 0.742 (0.029) 0.818 (0.035) 0.827  (0.037)
-1.0 0.782 0.782 (0.021) 0.732 (0.026) 0.770 (0.035) 0.772  (0.035)
0.5 0.734 0734  (0.020) 0.722 (0.024) 0.724 (0.038) 0.722  (0.039)
0.0 0.693 0.693 (0.019) 0.712 (0.024) 0.689 (0.042) 0.687 (0.041)
0.5 0.660 0.660 (0.018) 0.702 (0.026) 0.654 (0.045) 0.655 (0.043)
1.0 0.634 0.635 (0.016) 0.689 (0.035) 0.633 (0.057) 0.637 (0.048)
1.5 0.614 0.614 (0.015) 0.653 (0.055) 0.617 (0.075) 0.614 (0.051)
2.0 0.598 0.599 (0.013) 0.560 (0.073) 0.555 (0.075) 0.546  (0.058)
cT 0.741 0741 (0.017) 0727 (0.022) 0.740  (0.021) 0.742  (0.021)
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lllustration: PBC Data

e Marker, M;, derived as linear predictor from Cox model:

Covariate estimate s.e. Z
log(bilirubin) 0.099 8.87
log(prothrombin time) 1.033 294
edema 0.300 2.62
albumin -0.944 0.237 -3.99
age 0.024 3.88

e Accuracy evaluated using \o(t) exp|y(t) - M;]

e local-linear MPLE for ~(t)

e (5) predictor model compared to (4) predictor excluding bilirubin
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I/D ROC curves for PBC model score
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lllustration: PBC Data

AUC
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Summary

e Extension of ROC concepts to risk sets.

e Estimation based on hazard model.

e Varying coefficient — simple methods look promising.

e All summaries can be obtained from routine Cox model output.
e Criterion for marker and/or model comparison.

e Separation of marker generation and marker evaluation.

e Note: R? for PBC data estimated as 0.32 (max possible 0.98)

e Heagerty and Zheng (2005) “Survival Model Predictive Accuracy
and ROC Curves" Biometrics
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Extension to Longitudinal Markers

TP, FP based on longitudinal marker

TP(c) = P[M(@t)>c|T =1
FPP(c) = P[M(t)>c|T >t

No simple “concordance”, but [ AUC(t) - w(t)dt

Dynamic criterion, ¢P(t), controls specificity

Pt) : p=P[M(t)>PEt)| T > 1]

Summary ROC curve shows total percent test positive when
controlling FP using dynamic criterion.
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P American Journal of Epidemiology
M Copyright © 2001 by The Johns Hopkins University School of Hygiene and Public Health

All rights reserved

Predictive 5-Year Survivorship Model of Cystic Fibrosis

Theodore G. Liou,'? Frederick R. Adler,3* Staééy C. Fi’tzSimméns,-"'g Barbara C. Cahill,>® Jonathan R. Hibbs,’
and Bruce C. Marshall'?8 .

Vol. 153, No. 4
Printed in US.A.

The objective of this study was to create a 5-year survivorship model to identify key tlinical features of cystic
fibrosis. Such a model could help researchers and clinicians to evaluate therapies, improve the design of
prospective studies, monitor practice patterns, counsel individual patients, and determine the best candidates

for lung transplantation. The authors used information from the Cystic Fibrosis Foundation Patient Registry .

(CFFPR), which has collected longitudinal data on approximately 90% of cystic fibrosis patients diagnosed in
the United States since 1986. They developed multivariate logistic regression models by using data on 5,820
patients randomly selected from 11,630 in the CFFPR in 1993. Models were tested for goodness of fit and were
validated for the remaining 5,810 patients for 1993. The validated 5-year survivorship model included age, forced
expiratory volume in 1 second as a percentage of predicted normal, gender, weight-for-age z score, pancreatic
sufficiency, diabetes mellitus, Staphylococcus aureus infection, Burkerholderia cepacia infection, and annual
number of acute pulmonary exacerbations. The model provides insights into the complex nature of cystic fibrosis
and supplies a rigorous tool for clinical practice and research. Am J Epidemiol 2001;153:345-52.

cystic fibrosis; Iogistic models; models, theoretical; multivariate analysis; proportional hazards models; survival
analysis
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lllustration: CFF Data and Longitudinal Markers

e Split sample (development / validation)

e Time-dependent covariate Cox model

Covariate  estimate s.e. Z
fevl -0.0868 0.0022 -40.03
fevl(T2) 0.0535 0.0062 8.65
fevl(T3) 0.0282 0.0118 2.40

gender 0.1235 0.0459 2.69
weightZ -0.4334 0.0382 -11.34
heightZ -0.0603 0.0299 -2.02

e Accuracy evaluated using Ao(t) exp[y(t) - M;(¢)]
e Measurement spacing: median = 1.00, Q1 = 0.87, Q3 = 1.22
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Survival
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True Positive Rate
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Summary Survival ROC Curve

Dynamic criterion | Saha and Heagerty (manuscript)

Q:

Pt) : p=PIME#) > )| T > 1]

If a fixed time-dependent FP rate of p is used then what percent

of cases will test positive at the appropriate time?

Total Sensitivity / PIM(t) > P(t) | T = 1] - PIT = t]dt

t

TTP(p) = ROC(p) = Er [ROC?/D(ZD)]

Note: Consider a time lag, L, such that the marker used to model the
hazard is M (t — L). This leads to “test positive L units before failure.”
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Threshold functions for FP = 0.01, 0.05, and 0.10
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Summary Survival ROC for CFF Data
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AUC(t) for CFF Data
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Estimation for Summary ROC Curve

o ROCE/D(p) estimated using semi-parametric methods of Heagerty
and Zheng (2005)

e Summary curve then averages time-dependent ROC curves with
respect to the distribution of times, T}, estimated using standard
non-parametric methods (Kaplan-Meier).

e Inference for T'T'P(p) using sum over event times and appropriate
CLT.

e One approach to comparison of marker A to marker B is:

~ TTPy(p)
~ TTPg(p)

r'I'T' P(p)

e Q: interpret AUC here?
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lllustration using MACS Data

e Kaslow et al. (1987)

e Sero-negative men at baseline: 3,426

e Observed to seroconvert: 479

e Observed events: 176 AIDS, 34 died before AIDS
e Candidate markers: longitudinal CD4 and CDS8

e Composite marker: Cox model using sum and diff for CD4 and
CD8 (e.g. four predictors)
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Figure 2. Summary survival ROC curve and l-year and 10-year ROC curves for a
composite marker from MACS data.
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Figure 3. Summary survival ROC curve for three markers from MACS data.
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Disease Screening
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Disease Screening

TP(t,s) = P|Y(s)>c|CASE={T <t},T > 5]
FP(t,s) = P|Y(s)>c|CONTROL=A{T >t},T > s

Total Test Positive Proximal

e Screening times S = {s1, 52, 53,...}

e Positive Proximal: s = s;, and t = 541
PlY(sj) >¢; | T < sj41,T = s
e TTPP( c1,co,...)

ZTP(t = $j+1,5 = 85) X [S(s5) — S(s5+1)]

J
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Summary

Accuracy summary

ROCY® (p)
AUC(t)
ROC(p)

C

vary (M,t)

vary (t)

vary (M)

global
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Summary

Longitudinal data as predictors of an event time
Accuracy using sequential binary classification
Connections to partial likelihood

Software
> R code — survivalR0C

> R code — risksetR0OC
Now: Inference

Future: Relax strong censoring assumption
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Steyerberg et al

Epidemiology * Volume 21, Number 1, |January 2010

TABLE 1. Characteristics of Some Traditional and Novel Performance Measures
Aspect Measure Visualization Characteristics
Overall performance B2, Brier Validation graph Better with lower distance between ¥ and 7.
Captures calibration and discrimination aspects
Discrimination ¢ statistic ROC curve Rank order statistic; interpretation for a pair of
subjects with and without the outcome
Discrimination slope Box plot Difference in mean of predictions between
outcomes; easy visualization
Calibration Calibration-in-the-large Calibration or validation graph Compare mean (y) versus mean (7); essential
aspect for external validation
Calibration slope Regression slope of linear predictor; essential
aspect for internal and external validation; related
to “shrinkage” of regression coefficients
Hosmer-Lemeshow test Compares observed to predicted by decile of
predicted probability
Reclassification Reclassification table Cross-table or scatter plot Compare classifications from 2 models (one with,

Clinical usefulness

Reclassification statistic

Net reclassification index (NRI)

Integrated discrimination index (IDI)

Net benefit (NB)
Decision curve analysis (DCA)

Box plots for 2 models (one with,
one without a marker)

Cross-table
Decision curve

one without a marker) for changes

Compare observed outcomes to predicted risks
within cross-classified categories

Compare classifications from 2 models for changes
by outcome for a net calculation of changes in
the right direction

Integrates the NRI over all possible cut-offs;
equivalent to difference in discrimination slopes

Net number of true positives gained by using a
model compared to no model at a single
threshold (NB) or over a range of thresholds
(DCA)
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Discrimination Slope / IDI

e Pencina et al. (2008)

e Integrated Discrimination Improvement

e | ldea:

> Let p(M;) = P[D | M;]

> Contrast mean risk in cases and mean risk in controls

AP = I_Dcase o pcontrol

> DIl = APnew — APold

> Note: model-based
e Uno et al. (2012) extend to D = 1(T < t)

e (Q: application to incident cases?

112 Biomarkers



113

Net Reclassification Index

Consider two marker/models that generate predictions

Consider whether M5 “moves”’ cases and controls relative to M,
> D(t) disease status at time ¢
> p1(t) and po(t) based on My, Ms
Case D(t) =1 Control D(t) =0
p2(t) — p1(t) >0 P(+,1) P(+,0)
()~ () <0 | P(=1) P(-,0)
NRI:

NRI(t) = [P(+,1) = P(=,1)] + [P(=,0) = P(+,0)]

A\ . 7
Ve N/

case:up/down control:down/up

Pencina et al. (2008); French et al. (2012)
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Disease .
Treatment O p
No disease .
1-p
Disease
C
No treatment -\ P
No disease ;
1-p

Figure 1 A decision tree for treatment. The probability of dis-
ease 1s given by p; a, b, ¢, and d give, respectively, the value of true
positive, false positive, false negative, and true negative.
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Decision Curve Analysis

e Vickers and Elkin (2006)

e Consider the context where patients have outcomes (e.g. QALY)
that depend on their disease status and the treatment they receive
as shown on previous figure.

e Consider a decision function
AM,m) = 1(M > m)

e Let A(M, m) =1 denote that treatment is used, and let
A(M,m) = 0 denote that no treatment is used
e Q: What is the population mean if no treatment is used?

e (: What is the population mean if universal treatment is used?

e (: What is the population mean if selective treatment is used?
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Decision Curve Analysis

e No treatment: Tx = A(M,+00) =0

treatment disease group size mean

Tx D 0 a
D 0 b
Tx D p(D) C
D p(D) d

Population mean:

Biomarkers
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Decision Curve Analysis

e Universal treatment: Tz = A(M,—o0) =1

treatment disease group size mean

Tx D p(D) a
D p(D) b
Tx D 0 C
D 0 d

Population mean:

p(l) =a-p(D)+b-p(D)
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Decision Curve Analysis

e Selective treatment: A(M,m)

treatment disease group size mean
Tx D plA(M,m)=1| D] -p(D) a
D plA(M,m)=1|D]-p(D) b
Tx D plA(M,m)=0| D] p(D) C
D plA(M,m)=0| D] - p(D) d

Population mean:

p(m) = (a—c)TP(m)p(D) + c-p(D) +
(b—d) FP(m) p(D) + d-p(D)
~ - N——
A(m) 1(0)
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Decision Curve Analysis

e Equipoise: if u(1) was thought to be overall just as beneficial as
1(0) when p(D) = p* then we would have:

a-p(D)+b-p(D) = c-p(D)+d-p(D)
u(1) (0)
(@a—c)  1-=p
(d—b)  p*

e Interpretation:
> (a — c¢): benefit of treating a case

> (b—d): cost of treating a non-case
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Decision Curve Analysis

e |f we standardize and set (a — ¢) = 1 then we obtain the relative
benefit of not treating a non-case (e.g. —cost):

*

p
(1 —p*)

e For any cost/benefit we can then compare use of a model/marker
via A(M,m) to 1£(0) (no treatment) to obtain the standardized
net benefit:

(d—b) =

A(m) =TP(m)-p(D) — FP(m)-p(D)-
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Decision Curve Analysis

Note that we really have a net benefit surface, A(m, p*)

One option would be to explore the net benefit of a decision
function that chooses treatment if the predicted probability of
disease is greater than p*: (here assume monotone risk function)

AM,m*) = 1(M >m")
= 1[P(D|M=m)>P(D|M=m")=p"]

Decision curve:

A(p*) = TP(m*) - p(D) — FP(m*)- p(D)- uf—p)

Plot: [ p*, A(p*) |
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Net Benefit

-.05

0 20 40 60 80 100
Threshold Probability in %

Figure 2 Decision curve for a model to predict seminal vesicle
invasion (SVI) in patients with prostate cancer. Solid Iline: predic-
tion model. Dotted line: assume all patients have SVI. Thin line:
assume no patients have SVI. The graph gives the expected net
benefit per patient relative to no seminal vesicle tip removal in any
patient (“treat none”). The unit is the benefit associated with 1 SVI
patient duly undergoing surgical excision of the seminal vesicle tip.
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Summary

e Prognosis — Action — Yield

e Cost / benefit

e “Value of information”

e (: action based on prognosis?
e (: outcome independent of m?

e www.decisoncurveanalysis.org
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