Part [1.2] — Extensions: Competing Risks Endpoints
and Non-Parametric AUC(t) Estimation

e Patrick J. Heagerty PhD
e Department of Biostatistics
e University of Washington
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Session QOutline

e Examples
> Breast Cancer: 70 gene prediction / validation

> HIV: markers of disease progression
e Competing Risks Data
e TP and cause-specific endpoints / Estimation (non-parametric)
e T P! and cause-specific endpoints / Estimation (semi-parametric)

e lllustration / Software
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Example: BC and 70-gene Signature among
Node-negative

Breast Cancer Prediction

N = 307 women from (5) Euro Centers
Endpoint(s):
> time-until-distant-metastases (next slide)

> disease-free-survival

Predictive measurements:
> Clinicopathologic risk assessment

> 70-gene Signature
Goal: validate (added) utility of “signature”
Buyse et al. (2006) JNCI
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Probability of event

Patients Events Risk group

52 i Gene signature low risk, clinical low risk
<1 59 11 Gene signature low nsk, clinical high risk _—

28 & Gene signature high nsk, clinical low risk

163 52 Gene signature high risk, clinical high risk -

! | I I | I I
0 2 4 6 8 10 12 14
Year
52 20 47 44 41 36 28 17
59 58 55 51 51 4 36 26
28 26 25 21 16 12 10 3
163 143 126 115 101 a1 74 46
Number at risk
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Gene signature score, for time to distant (Gene signature score, for overall

metastases at 5 years survival at 10 years
a =N
g Q)
o -
2, 2 .
o Z o
0 13} -
£ - £ .
5 ° 5 °
N, N,
=] =
AUUC = 081 AUC = 0.648
=3 S |
o5 - . - . - =R - - : - -
00 02 04 06 08 1.0 00 02 04 06 08 10
1-specificity 1-specificity
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Example: Immune markers and disease progression

Multicenter AIDS Cohort Study

e /N = 447 men observed to seroconvert

e Endpoint(s):
> time-until-AIDS

> time-until-death

e Predictive measurements:
> CD4, CD8 at “baseline”
> CD4, CD8 measured every 6 months

e Goal: evaluate markers as predictors of disease-progression

e Saha and Heagerty (2011)
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Control o AIDS - Death
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Competing Risks Endpoints

e Observed time-until-event, and type of event.

> Death, cause = ( BC, other)

e "“Derived’ time-until-first-event, and type of event
> Time until progression or Death (first event, type)
> e.g. metastases, death (without metastases first)

> e.g. AIDS, death (without AIDS first)

e | Representation

> (T7,0;) where 6, =0,1,2,...,C

> 0;: censored = 0; types =1, 2, ... C
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Sensitivity and Specificity for Survival (again!)

Let T" denote the survival time, and let N(t) denote the counting
process for the uncensored outcome:

N(#) = 1(T < t)

Possible definitions:

Cumulative N(t) =1

CASE(t) : <
Incident dN(t) =1

Static  N(t*) =0

CONTROL(t) : <
Dynamic N(¢) =0

o Where t* is a fixed “large” time, t* >>t.
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Sensitivity and Specificity for Cause-specific Survival

Define:

sensitivity“ (¢, t;d) @ P(M >c¢|T <t;6 =d)

specificity (¢, t) : P(M <¢|T >t)
e "“Cases’ are broken into finer groups based on the type of case.

e e.g. high marker given metastases by time ¢ (d=1)

e e.g. high marker given death w/o metastases by time ¢ (d=2)
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Sensitivity and Specificity for Cause-specific Survival

Example: d=1, 2

Case 1
Case 2

Control

TP (c, 1)
TPE(c,2)
FP/(c)

T, <t,6=1

T; <t, 6=2

T; >t 6 =11,2]
PM>c|T;<t,d=1)
PM>c|T; <t 6§=2)
PM>c|T; >t d=][1,2])
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Estimation: Using “local” Cumulative Incidence

e | Cause-specific Cumulative Incidence

> Cy(t) = P(T <t;6 =d)
> Percent of population with event of type d by time ¢.

e Non-parametric estimation (K&P 1980, p. 168)

Ca(t) = S(s—) - Aals)

s<t
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Estimation: Using “local” Cumulative Incidence

e Cumulative incidence estimator can handle censoring.
e Parallel the estimation of HLP(2000) using:

P(M>e¢,T<t35=d)

PM>c|T<t,d=d) 0
d

numerator = / PT<t,0d=d|M=m)- P(M =m)dmn

_ /Oocd(t\M:m).P(M:m)dm
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Estimation: Using “local” Cumulative Incidence

e Use local cause-specific cumulative incidence to estimate
Ca(t | M = m) and use empirical for P(M = m).

e Note:

P(T>t|M=m)=1-) P(T<td=d|M=m)
d

e Use above to estimate F'PP(c) such that joint distribution is
proper.
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Marker versus Disease status
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Software / lllustration

e Software: CRAN package for R called survivalR0OC — we have
extended this to implement the competing risks calculations. (P.

Saha)

e | MACS Data

> Baseline (e.g. seroconversion time) values of CD4 and CD8

> Linear combination based on Cox regression
> Case Type 1 = AIDS
> Case Type 2 = death before AIDS

> Time for cumulative case status = 5 years
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Time: 5 Years
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Review: Sensitivity and Specificity for Survival

Define:

Heagerty and Zheng (2005) / Saha and Heagerty (2011)

sensitivity' (¢, t) : P[M(t) > ¢ | T=t]
P[M(t) > c|dN(t) = 1]

specificity (¢, t) : P[M(t) <c|T >t
PM(t) < c| N(t) = 0]

TPl(c) = P[M(t) > c|dN(t)=1]

FPP(c) P[M(t) > c| N(t) = 0]
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Sensitivity and Specificity for Cause-specific Survival

Define:

sensitivity' (¢, t; d) P(M > c|T=t;6 =d)

specificity” (c, t) PM<c|T>t)

e "“Cases’ are broken into finer groups based on the type of case.

e e.g. high marker given metastases at time ¢ (d=1)

e e.g. high marker given death w/o metastases at time ¢ (d=2)
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Sensitivity and Specificity for Cause-specific Survival

Example: d=1, 2

Case 1
Case 2

Control

TP!(c,1)
TP/(c,2)
FP/(c)

Tizt, o0=1
Tizt, 0=2
T, >t, 0 = [1,2]

P(M > c
P(M > c
P(M > c

Tizt, 0 = ].)
Tz‘zt, 5 — 2)
T, >t 6 =]1,2])
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Estimation: Hazard as Bridge

A general definition for the cause-specific hazard is

P(T,=t,0, =d| M;)
P(T; >t | M;)

A (¢ M) =

Then using a little algebra yields

P(M;=m|T;=t,0;=d) (d)(\M—m) P(Mz':m\Tz‘Zt)

Ve

Estimate <= Smooth model + Empirical

Note: direct (easy) generalization of the HZ(2005) methods.

144 Biomarkers



Software / lllustration

e Software: CRAN package for R called risksetROC — we have
extended this to implement the competing risks calculations, and
to handle time-dependent covariates. (P. Saha)

e | MACS Data
> Longitudinal values of CD4 and CDS8

> Linear combination based on Cox regression
> Case Type 1 = AIDS (n=176)
> Case Type 2 = death before AIDS (n=34)

> ROC curve, and AUC versus time
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TP

1.0

0.8

0.6

0.4

0.2

0.0

Method: Local Linear Cox Model, Time: 5 Years

— AIDS .
- - - Death i
f.f
£
IF!
!
| [ | I | |
0.0 0.2 0.4 0.6 0.8 1.0
FP

Biomarkers



148

AUC

0.6 0.7 0.8 0.9 1.0

0.5

0.4

Method: Local Linear Cox Model

— AIDS
Death
== All Cause

20

40

60 80

Time

100

120

Biomarkers



Summary

e Extension of time-dependent ROC methods to competing risks
data.

e Cumulative Cases — uses non-parametric methods based on local

cumulative incidence calculations.

e Incident Cases — uses semi-parametric methods that parallel those
outlined in Heagerty and Zheng (2005).

e Time-dependent markers.
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Motivation: Treatment Prioritization

e Organ transplantation seeks to prioritize limited donor organs by
identifying those subjects who are at risk of death without
intervention (and who would do well if transplanted).

> Lung Allocation Score (see Gries et al. 2010)
> MELD Score (Model for Endstage Liver Disease)
e The scientific goal is one where over time a good model /marker

would identify those subjects at risk of death (from among those
still at-risk).

e Q: Where do diseased subjects who die rank among those in the
risk set?
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Development of the Allocation System for
Deceased Donor Liver Transplantation

John M. Coombes, MD and James F. Trotter, MD

As the number of pre- and post-transplant solid organ recipients continues to grow, it becomes
important for all physicians to have an understanding of the process of organ procurement and
allocation. In the United States, the current system for allocation and transplantation of human
solid organs has been heavily influenced by the experience in deceased donor liver
transplantation (DDLT). This review highlights the significant changes that have occurred over
the past 10 years in DDLT, with specific attention to the impact of the Model for Endstage Liver
Disease (MELD) score on organ allocation and pre- and post-transplant survival.

DDLT is managed by the United Network for Organ Sharing (UNOS) which oversees organ
procurement and allocation across geographically defined Organ Procurement Organizations
(OPOs). For many years, deceased donor livers were allocated to waiting list patients based on
subjective parameters of disease severity and accrued waiting time. In addition, organs have
traditionally been retained within the OPO where they are procured contributing to geographic
disparities in disease severity at the time of transplantation among deceased donor recipients.

In response to a perceived unfairness in organ allocation, Congress issued its “Final Rule” in
1998. The Rule called for a more objective ranking of waiting list patients and more parity in
disease severity among transplant recipients across OPOs.To date, little progress has been made
in eliminating geographic inequities. Patients in the smallest OPOs continue to receive liver
transplants at a lower level of disease severity. However, strides have been made to standardize
assessments of disease severity and better prioritize waiting list patients. The MELD score has
emerged as an excellent predictor of short-term mortality in patients with advanced liver
disease, and patients listed for liver transplantation are now ranked based on their respective
MELD scores. This has improved organ access to the most severely ill patients without
compromising waiting list mortality or post-transplant survival.
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Weighted Mean Rank: Motivation

e | Descriptive:

> Q: Where does the CASE rank among members of risk set?

> Q: If we considered the top 10% of CONTROL marker values
within a risk set then what is the probability that the CASE is

within the top 10%7?

° Connection:

>
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Example: PBC and Model(5) Score

Case Rank within Risk Set
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Example: PBC and Model(5) Score

Case Rank within Risk Set
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Example: PBC and Model(5) Score

mean.rank
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Case Rank within Risk Set

e | Define:
> Rank CASE relative to CONTROLS
> Controls: RP(t) ={k : Np(t)=0}
> Let nY = |RY(¢)]

M*(t) — Mj fOI’ dN](t) =1
1 k
A = o5 ST AM(@E) > My
t keRO(t)
risk set rank of M *(t) | — 1
Ar -~ | of M(0)
{
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Nonparametric Estimation of AUC(t)

e Multiple cases in a risk set leads to:

> Let R'(¢) denote j such that dN;(t) =1
> ny = RY()]

_i% Z ig Z 1[M; > My]

JERL(L) b KeERO(1)

e Note that A(t) is a random variable where:

E[A(t)] = P[M; > M, | dN;(t) = 1, N, (t) = 0] = AUCYP(¢)
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Nonparametric Estimation of AUC(t)

e | Estimation:

— Given that A(t) is a random variable

smoothing, or local averages can be used to estimate AUC(t):

> Define a neighborhood of time ¢ based on a sample-size
dependent bandwidth h,,.

e.g. Ni(hy,)=1[t—hp,t+ hy]

> Compute a local average:

158

AUC(t)

1
=Wt 2 Al

t; GNt(hn)
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Nonparametric Estimation of AUC(t)

e More generally use a kernel function to obtain a weighted average

> Ky (x) is a kernel function with bandwidth A,

e Define the Weighted Mean Rank (WMR) Estimator:

AUC(t) = K (t;—t)- A(ty)

> Where K* is normalized version of kernel function such that
Zj K;:n(tj —t) =1.
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Asymptotic Properties of WMR Estimator

e \We can show that the estimator is consistent and asymptotically
normal (CAN).

e Theory uses a U-statistic central limit theorem.

e Variance estimation is obtained based on analytical expressions
that are straight-forward to compute.

e Data-driven bandwidth — we have implemented a jackknike
cross-validation method to estimate the integrated mean squared
error (IMSE) and can choose a bandwidth to minimize this
criterion.
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AUC based on five—-covariate Model
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AUC
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Comparison of Markers

e A key use of ROC and AUC methods is to compare the prognostic
potential of different markers.

e Data used for comparison is paired: (M;y, M;3)

e Using WMR methods we simply compute locally weighted
averages of the difference:

AUC,(t) = Y Ki (t;—t) - Ai(t))
AUCH(t) = Y Kj (t;—1t) - As(t))
Dio(t) = ZKE-'Zn (t; —t) - [Ar(t5) — Aa(t))]
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Difference in AUC

-04

Difference in AUC between five—covariate model and four—covariate model
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Table 3: Simulation results for comparison of semi-parametric approach of Heagerty and Zheng (2005)
(HZ2005) and non-parametric approach WMR. We assumed (log T', M) follows a mixture of two multivari-
ate normal distributions: (log T, MU }) ~ Ny(-1.5,-1.5,1,1,0) if Z = 1 and (log W) M (N)) ~
N5(0,0,1,1,-0.8) if Z = 0 where Z ~ Bernoulli (0.2). We show the estimated HZ2005, WMR, MCSDs
and the SD estimated using the proposed variance estimator (EstSD) and the coverage (nominal: 95.0) for

WMR.
Log time

-2.5
20
-1.5
-1.0
0.5
0.0
0.5
1.0
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AUC(t) HZ2005

0.378
0.481
0.591
0.673
0.709
0.709
0.691
0.669

0.173
0.346
0.551
0.660
0.689
0.684
0.666
0.646

MCSD
0.069
0.087
0.071
0.048
0.032
0.023
0.022
0.022

WMR
0.376
0477
0.595
0.674
0.708
0.710
0.692
0.669

MCSD
0.109
0.083
0.062
0.048
0.035
0.030
0.034
0.042

EstSD  Coverage

0.097
0.075
0.057
0.043
0.034
0.030
0.033
0.041

87.7
91.1
92.0
91.6
93.7
94.8
92.3
93.9
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Additional Comments

e For a baseline marker the C-index can also be estimated as the

global weighted average:
C = / At) - 2f(£)S(t) dt

e We can also directly apply the WMR estimator to time-dependent
covariates, M (%), since the method is based on risk-sets and the

case rank within the riskset.

e | Time-dependent Covariate Example:

> Cystic Fibrosis Data
> FEV1, height, and weight are time-dependent
> Compare semi-parametric estimate of HZ(2005) to WMR

166 Biomarkers



AUC Based on Risk Set Rank
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mean.rank
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IMSE versus bandwidth
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Case Rank within Risk Set
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Some Current Extensions

e Recall that one of our motivating questions asked:

> Q: How often does the CASE marker rank in the top 10% of
the risk set (or among controls)?

e This concept is directly connected to sensitivity:

TPYP(p,t) = P[M;>cP|T; =t
E{1[A(t) > (1—p)]} = CASE(t) > (1-p)% of CONTROLS(t)
= TPY?(p,1)
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Some Current Extensions

_——1/D

Non-Parametric T'P

> Select a value of false-positive rate: p

> Derive the indicators:

H(t,p) =1[ A(t) > (1—p) |

> Locally weighted averages to obtain smooth curve in time:

1 /IDD

TP, (t,p)=

ZKh (t —t;)

- H(t,p)

Biomarkers



Example: PBC and Model(5) Score

mean.rank
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MACS Model Score: I/D ROC t=60
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Summary

The Case rank is a descriptive summary that is clinically
meaningful.

Using the case-rank provide a basis for non-parametric estimation
of time-dependent accuracy summaries.

WMR provides non-parametric estimation with analytical

expressions for standard errors.
Methods extend to allow time-dependent markers.

Methods extend to estimation of time-dependent sensitivity.
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Summary

Accuracy summary Estimation

ROCY®(p) : vary (Mt)  SP, NP
AUC(t) : wvary (t) SP, NP

ROC(p) : wvary (M) SP, NP

C' : global SP, NP
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Thanks!
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