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Considerations in Designing Clinical Trials

Goal: determine efficacy of a treatment (or difference between
treatments)

One- or two-sided hypothesis test based on a statistic of
interest, chosen to be scientifically/clinically relevant
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Considerations in Designing Clinical Trials

Scientific:
I Answer clinical question of interest with useful estimates and

intervals
I Evaluate mechanistic questions

Ethical:
I Quickly identify treatments that cause harm
I Get effective treatments to patients quickly
I Release patients from a less promising trial so that they might

participate in other trials

Financial:
I Patient costs expensive; limit number of patients required
I Long duration increases operating costs
I Bringing a good drug to market sooner allows an earlier profit,

advantage in competition

Sarah Emerson and Scott Emerson Adaptive Designs 5 / 143

Foundations: Group Sequential Designs
Inference following Group Sequential Designs

Adaptive Sequential Designs

Clinical Trial Design
Example Setting
Design Comparison

1 Foundations: Group Sequential Designs
Clinical Trial Design
Example Setting
Design Comparison

2 Inference following Group Sequential Designs
Inference Goals
Inference Approaches
Inference Optimality Criteria

3 Adaptive Sequential Designs
Forms of Adaptation Considered
Considerations in Adapting Future Sampling Path
Types of Adaptation Rules
Adaptive Designs using Standard Group Sequential Software

Sarah Emerson and Scott Emerson Adaptive Designs 6 / 143



Foundations: Group Sequential Designs
Inference following Group Sequential Designs

Adaptive Sequential Designs

Clinical Trial Design
Example Setting
Design Comparison

Example Study Setting

Goal: Determine efficacy of new/experimental treatment (A)
relative to standard of care/placebo control (B).

Protocol:
I Accrue n subjects
I Randomize at 1:r ratio to treatment A or B (we will consider r

= 1, so 1:1 randomization)
F nA = n

1+r = n
2 = Number of subjects receiving treatment A

F nB = rn
1+r = n

2 = Number of subjects receiving treatment B
I Measure outcomes

F XAi for subject i receiving experimental treatment A
F XBi for subject i receiving control treatment B.
F For now, we assume outcomes are immediately available for all

subjects.
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Example Study Setting

Population parameters:
I µA = E [XAi ] (unknown)
I µB = E [XBi ] (unknown)
I σ2 = Var[XAi ] = Var[XBi ] (common variance, assumed known

for now, and taken to be σ2 = 1)

Parameter of interest: θ = µA − µB

I Null hypothesis H0 : θ = θ0 = 0 (no difference in mean
treatment effect)

I Alternative hypothesis H0 : θ = θA = 0.46 (experimental
treatment mean is larger, indicating superiority over control)
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Example Study Setting

Sample statistic notation:
I X̄A = 1

nA

∑nA
i=1 XAi (sample mean of treatment A group)

I X̄B = 1
nB

∑nB
i=1 XBi (sample mean of treatment B group)

Note:

Var[X̄A − X̄B ] = σ2

(
1

nA
+

1

nB

)

= 1

(
2

n
+

2

n

)
if nA = nB =

n

2
and σ2 = 1

=
4

n
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Possible Designs

Fixed	  Sample	  
•  Gather	  n	  =	  290	  subjects	  randomized	  at	  1:1	  ra=o	  to	  
treatments	  A	  and	  B	  (nA	  =	  nB	  =	  145)	  

•  Measure	  outcomes	  XAi	  or	  XBi	  for	  each	  subject.	  
•  Compute	  two-‐sample	  z-‐sta=s=c:	  

•  Reject	  H0	  if	  	  
•  Equivalently,	  reject	  H0	  if	  	  

z(!0 ) =
XA ! XB !!0
" 2 ( 1nA +

1
nB
)
=
XA ! XB

4! 2 / n
= n

2 XA ! XB( )

z(!0 )> z" =!
"1(1"") =1.96

(XA ! XB )> 1.96
n / 2

= 0.2298

Significance Level = 0.025
Power = 0.975 at Design Alternative θA = 0.46
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Sequential Trials

Ethical and financial issues in clinical trials may be improved by
performing multiple interim analyses during the trial

Maintain control of the significance level and the power at the
design alternative by adjusting the decision criteria at each
analysis

Allowing early stopping of the trial at interim analyses typically
reduces the expected trial duration and number of subjects
required
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Possible Designs

Fixed	  Sample	  
•  Gather	  n	  =	  290	  subjects	  randomized	  at	  1:1	  ra=o	  to	  
treatments	  A	  and	  B	  (nA	  =	  nB	  =	  145)	  

•  Measure	  outcomes	  XAi	  or	  XBi	  for	  each	  subject.	  
•  Compute	  two-‐sample	  z-‐sta=s=c:	  

•  Reject	  H0	  if	  	  
•  Equivalently,	  reject	  H0	  if	  	  

z(!0 ) =
XA ! XB !!0
" 2 ( 1nA +

1
nB
)
=
XA ! XB

4! 2 / n
= n

2 XA ! XB( )

z(!0 )> z" =!
"1(1"") =1.96

(XA ! XB )> 1.96
n / 2

= 0.2298

Significance Level = 0.025
Power = 0.975 at Design Alternative θA = 0.46
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Possible Designs

Group	  Sequen=al	  Design	  1:	  O’Brien-‐Fleming	  Boundary	  
	  

100	  
Subjects	  

200	  
Subjects	  

300	  
Subjects	  

Samp.	  Mean	  Diff.	  >	  0.6894	  
Declare	  drug	  works	  	  

Samp.	  Mean	  Diff.	  >	  0.3447	  
Declare	  drug	  works	  	  

Samp.	  Mean	  Diff.	  >	  0.2298	  
Declare	  drug	  works	  	  

Samp.	  Mean	  Diff.	  <	  -‐0.2298	  
Declare	  drug	  does	  not	  
works	  	  

Samp.	  Mean	  Diff.	  <	  0.1149	  
Declare	  drug	  does	  not	  
work	  	  

Samp.	  Mean	  Diff.	  <	  0.2298	  
Declare	  drug	  does	  not	  
work	  	  

Else:	  Get	  100	  
more	  subjects	  

Else:	  Get	  100	  
more	  subjects	  

Significance Level = 0.025
Power = 0.975 at Design Alternative θA = 0.46
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Possible Designs

Group	  Sequen=al	  Design	  2:	  Pocock	  Boundary	  
	  

128	  
Subjects	  

256	  
Subjects	  

384	  
Subjects	  

Samp.	  Mean	  Diff.	  >	  0.3980	  
Declare	  drug	  works	  	  

Samp.	  Mean	  Diff.	  >	  0.2814	  
Declare	  drug	  works	  	  

Samp.	  Mean	  Diff.	  >	  0.2298	  
Declare	  drug	  works	  	  

Samp.	  Mean	  Diff.	  <	  0.0616	  
Declare	  drug	  does	  not	  
works	  	  

Samp.	  Mean	  Diff.	  <	  0.1782	  
Declare	  drug	  does	  not	  
work	  	  

Samp.	  Mean	  Diff.	  <	  0.2298	  
Declare	  drug	  does	  not	  
work	  	  

Else:	  Get	  128	  
more	  subjects	  

Else:	  Get	  128	  
more	  subjects	  

Significance Level = 0.025
Power = 0.975 at Design Alternative θA = 0.46
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Group Sequential Trials: Definition

A group sequential design is defined by a Stopping Rule consisting
of:

1 Analysis Times: A set of J analysis times n1, n2, . . . , nJ defined
in terms of the amount of statistical information accumulated

I nj = total number of subjects or number of events (across all
arms) observed up to the jth analysis.

I nAj , nBj = number of subjects on arm A or B, respectively,
observed up to the jth analysis. nAj + nBj = nj .
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Group Sequential Trials: Definition

Incremental Analysis Times/Sample Sizes:
I n∗j = nj − nj−1 = incremental number of subjects/events

(across all arms) added between (j − 1)st and jth analyses
I n∗Aj = nAj − nA(j−1), n∗Bj = nBj − nB(j−1) = incremental number

of subjects/events added on each arm
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Group Sequential Trials: Definition

2 Test Statistic: A test statistic Tj calculated from the data
accumulated so far at each analysis time j = 1, 2, . . . J .
Examples:

I Partial Sum/Partial Sum Difference:

Sj =

nAj∑

i=1

XAi −
nBj∑

i=1

XBi

I MLE:

θ̂j =
1

nAj

nAj∑

i=1

XAi −
1

nBj

nBj∑

i=1

XBi

= X̄Aj − X̄Bj
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Group Sequential Trials: Definition

I z-statistic:

Zj =
θ̂j − θ0√
σ2

nAj
+ σ2

nBj

=
θ̂j − θ0

σ
√

1
nAj

+ 1
nBj

I Fixed-sample p-value:

Pj = 1− Φ(Zj)
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Group Sequential Trials: Definition

Incremental Test Statistics:
I Incremental Partial Sum/Partial Sum Difference:

S∗j =

nAj∑

i=nA(j−1)+1

XAi −
nBj∑

i=nB(j−1)+1

XBi

I Incremental MLE:

θ̂∗j =
1

n∗Aj

nAj∑

nA(j−1)+1

XAi −
1

n∗Bj

nBj∑

i=nB(j−1)+1

XBi

= X̄ ∗Aj − X̄ ∗Bj
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Group Sequential Trials: Definition

I Incremental z-statistic:

Z ∗j =
θ̂∗j − θ0√
σ2

n∗Aj
+ σ2

n∗Bj

=
θ̂∗j − θ0

σ
√

1
n∗Aj

+ 1
n∗Bj

I Incremental Fixed-sample p-value:

P∗j = 1− Φ(Z ∗j )
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Group Sequential Trials: Definition

3 Stopping Boundary: A set of boundary values
aj ≤ bj ≤ cj ≤ dj for each analysis time j = 1, 2, . . . , J

I Decision rule:
Tj ≥ dj Stop trial at j th analysis and

accept upper hypothesis

cj < Tj < dj Continue trial

bj ≤ Tj ≤ cj Stop trial at j th analysis and
accept null hypothesis (two-sided test)

aj < Tj < bj Continue trial

Tj ≤ aj Stop trial at j th analysis and
accept lower hypothesis
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Group Sequential Trials: Definition

I The regions Cj = (aj , bj) ∪ (cj , dj) are called the continuation
regions at analysis j .

F If the test statistic belongs to this interval or set of intervals, the
trial is continued beyond analysis j .

I The complement of the continuation regions Sj = C′j are called
the stopping regions at analysis j .

F If the test statistic belongs to this interval or set of intervals, the
trial is stopped at analysis j .
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Group Sequential Trials: Definition

I (aj , bj , cj , dj) for j = 1, . . . , J must be chosen to obtain desired
significance level α:

Pθ0(Reject H0 at any j = 1, . . . , J) = α

I aJ = bJ and cJ = dJ to guarantee that a decision is made by
the final analysis

I For a one-sided design, bj = cj for all j .
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Example Stopping Boundary Figure
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Stopping Boundary Specification

Great flexibility in choice of boundary
I Error spending designs
I Unified family of group sequential designs (Kittelson and

Emerson 1999), includes
F O’Brien-Fleming
F Pocock
F Wang and Tsiatis
F ...and others

as special cases.

Sarah Emerson and Scott Emerson Adaptive Designs 25 / 143



Foundations: Group Sequential Designs
Inference following Group Sequential Designs

Adaptive Sequential Designs

Clinical Trial Design
Example Setting
Design Comparison

Stopping Boundary Specification

Several Possible Designs with:
J = 3 Analyses

Significance Level = 0.025
Power = 0.975 at Design Alternative θA = 0.46
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Group Sequential Trials: Sufficient Statistic

When a group sequential trial is stopped, the sufficient statistic is
(M , SM) (or (M , θ̂M)) where

M is analysis time at which trial stops, M ∈ {1, 2, . . . , J};
M = j if the trial stops at the jth analysis.

SM is the observed partial sum/partial sum difference when the
trial stops.

θ̂M is the observed MLE when the trial stops.

This statistic (M , SM) or (M , θ̂M) may be abbreviated as (M , S) or
(M , θ̂).
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Possible Designs

Fixed	  Sample	  
•  Gather	  n	  =	  290	  subjects	  randomized	  at	  1:1	  ra=o	  to	  
treatments	  A	  and	  B	  (nA	  =	  nB	  =	  145)	  

•  Measure	  outcomes	  XAi	  or	  XBi	  for	  each	  subject.	  
•  Compute	  two-‐sample	  z-‐sta=s=c:	  

•  Reject	  H0	  if	  	  
•  Equivalently,	  reject	  H0	  if	  	  

z(!0 ) =
XA ! XB !!0
" 2 ( 1nA +

1
nB
)
=
XA ! XB

4! 2 / n
= n

2 XA ! XB( )

z(!0 )> z" =!
"1(1"") =1.96

(XA ! XB )> 1.96
n / 2

= 0.2298

Significance Level = 0.025
Power = 0.975 at Design Alternative θA = 0.46
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Possible Designs

Fixed Sample Design

Number of Analyses: J = 1

Test Statistic: Tj = θ̂j = Sample Mean

j nj aj bj cj dj
1 290 0.2298 0.2298 0.2298 0.2298
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Possible Designs

Fixed Sample Design
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Possible Designs

Fixed Sample Design
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Possible Designs

Fixed Sample Design
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Possible Designs

Group	  Sequen=al	  Design	  1:	  O’Brien-‐Fleming	  Boundary	  
	  

100	  
Subjects	  

200	  
Subjects	  

300	  
Subjects	  

Samp.	  Mean	  Diff.	  >	  0.6894	  
Declare	  drug	  works	  	  

Samp.	  Mean	  Diff.	  >	  0.3447	  
Declare	  drug	  works	  	  

Samp.	  Mean	  Diff.	  >	  0.2298	  
Declare	  drug	  works	  	  

Samp.	  Mean	  Diff.	  <	  -‐0.2298	  
Declare	  drug	  does	  not	  
works	  	  

Samp.	  Mean	  Diff.	  <	  0.1149	  
Declare	  drug	  does	  not	  
work	  	  

Samp.	  Mean	  Diff.	  <	  0.2298	  
Declare	  drug	  does	  not	  
work	  	  

Else:	  Get	  100	  
more	  subjects	  

Else:	  Get	  100	  
more	  subjects	  

Significance Level = 0.025
Power = 0.975 at Design Alternative θA = 0.46
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Possible Designs

O’Brien-Fleming Group Sequential Design

Number of Analyses: J = 3

Test Statistic: Tj = θ̂j = Sample Mean

j nj aj bj cj dj
1 100 -0.2298 0.2298 0.2298 0.6894
2 200 0.1149 0.2298 0.2298 0.3447
3 300 0.2298 0.2298 0.2298 0.2298
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Possible Designs

O’Brien-Fleming Group Sequential Design
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O’Brien-Fleming Group Sequential Design
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Possible Designs

Group	  Sequen=al	  Design	  2:	  Pocock	  Boundary	  
	  

128	  
Subjects	  

256	  
Subjects	  

384	  
Subjects	  

Samp.	  Mean	  Diff.	  >	  0.3980	  
Declare	  drug	  works	  	  

Samp.	  Mean	  Diff.	  >	  0.2814	  
Declare	  drug	  works	  	  

Samp.	  Mean	  Diff.	  >	  0.2298	  
Declare	  drug	  works	  	  

Samp.	  Mean	  Diff.	  <	  0.0616	  
Declare	  drug	  does	  not	  
works	  	  

Samp.	  Mean	  Diff.	  <	  0.1782	  
Declare	  drug	  does	  not	  
work	  	  

Samp.	  Mean	  Diff.	  <	  0.2298	  
Declare	  drug	  does	  not	  
work	  	  

Else:	  Get	  128	  
more	  subjects	  

Else:	  Get	  128	  
more	  subjects	  

Significance Level = 0.025
Power = 0.975 at Design Alternative θA = 0.46

Sarah Emerson and Scott Emerson Adaptive Designs 34 / 143



Foundations: Group Sequential Designs
Inference following Group Sequential Designs

Adaptive Sequential Designs

Clinical Trial Design
Example Setting
Design Comparison

Possible Designs

Pocock Group Sequential Design

Number of Analyses: J = 3

Test Statistic: Tj = θ̂j = Sample Mean

j nj aj bj cj dj
1 128 0.0616 0.2298 0.2298 0.3980
2 256 0.1782 0.2298 0.2298 0.2814
3 384 0.2298 0.2298 0.2298 0.2298
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Possible Designs

Pocock Group Sequential Design
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Pocock Group Sequential Design
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Boundary Scales

The same stopping boundary can be represented on many
different test-statistic scales, including partial sum difference,
sample mean, z-statistic, p-value, etc.

Sarah Emerson and Scott Emerson Adaptive Designs 37 / 143



Foundations: Group Sequential Designs
Inference following Group Sequential Designs

Adaptive Sequential Designs

Clinical Trial Design
Example Setting
Design Comparison

Boundary Scales
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Clinical Trial Optimality Criteria: Comparing

Sequential Designs

In comparing different types of sequential designs, we must
select criteria that we wish to constrain or optimize. Possibilities
include:

F Maximal possible sample size nJ
I For range of parameter values θ:

F Power Pθ(Reject H0)
F Average sample size (ASN)
F Probability of using more than q subjects
F Median sample size (or any other quantile)

All but the first of these criteria require knowledge of the
sampling distribution of the sufficient statistic (M , SM) given a
parameter value θ.
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Clinical Trial Optimality Criteria

Maximal Sample Size

The maximal sample size for a sequential design is just nJ : the
largest sample size at which an analysis may possibly be
performed.

Fixed O’Brien-Fleming Pocock
291 300 384
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Sequential Trial Sampling Density

For the remaining optimality criteria, the sampling density for
the statistic (M , S) is required.

We will use Sj as the test statistic Tj for ease of discussion;
recall that the stopping boundary can be equivalently expressed
on many scales.

For simplicity we will assume n∗Aj = n∗Bj = 1
2
n∗j for all j .

Analogous formulae for different randomization ratios may be
extended from this case.

We use the fact that

Sj = S∗1 + S∗2 + . . . + S∗j and S∗j ∼ N

(
n∗j
2
θ, n∗j σ

2

)
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Sequential Trial Sampling Density

To obtain the sampling density at an observed value (M = j , S = s),
we have to consider the possible paths that could reach this point.

If j = 1:
I The test statistic S1 must have been in the stopping region
Sj ⇔ S1 6∈ C1.

I The value of the test statistic S1 is S1 = s.

If j > 1:
I At all analyses ` = 1, 2, . . . , j − 1, the test statistic S` must

have been in the continuation region C`
I At analysis j the test statistic Sj must have been in the

stopping region Sj ⇔ Sj 6∈ Cj .
I The value of the test statistic Sj is Sj = s.
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Sequential Trial Sampling Density

Following Armitage et al. (1969), the density of (M = j , S = s) is

pM,S(j , s; θ) =

{
fM,S(j , s; θ) if s ∈ Sj
0 otherwise

where the (sub)density fM,S(j , s; θ) is recursively defined as

fM,S(1, s; θ) =
1

σ
√
n1

φ

(
s − n1 θ/2

σ
√
n1

)

fM,S(j , s; θ) =

∫

Cj−1

1

σ
√

n∗j
φ

(
s − u − n∗j θ/2

σ
√
n∗j

)
fM,S(j − 1, u, ; θ) du

for j = 2, . . . , J
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Sequential Trial Sampling Density
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Sequential Trial Sampling Density
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Sequential Trial Sampling Density
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Sequential Trial Stopping Probabilities

Using the density pM,S(j , s; θ), analysis time stopping
probabilities may be obtained as

Total: Pθ(M = j Total) =

∫

Sj
pM,S(j , u) du

Upper: Pθ(M = j , Upper) =

∫

u≥dj
pM,S(j , u) du

Null: Pθ(M = j , Null) =

∫

bj≤u≤cj
pM,S(j , u) du

Lower: Pθ(M = j , Lower) =

∫

u≤aj
pM,S(j , u) du
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Sequential Trial Stopping Probabilities
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Sequential Trial Stopping Probabilities
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Sequential Trial Stopping Probabilities
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Sequential Trial Stopping Probabilities

−0.4 0.0 0.2 0.4 0.6 0.8

0
2

4
6

Analysis Time 1: n1 = 100

x

f(
x)

Total Stopping Probability =  0.044

−0.4 0.0 0.2 0.4 0.6 0.8

0
2

4
6

Analysis Time 1: n1 = 100

x

f(
x)

Upper Stopping Probability =  0.002

−0.4 0.0 0.2 0.4 0.6 0.8

0
2

4
6

Analysis Time 1: n1 = 100

x

f(
x)

Lower Stopping Probability =  0.042

−0.4 0.0 0.2 0.4 0.6 0.8

0
2

4
6

Analysis Time 2: n2 = 200

x

f(
x)

Total Stopping Probability =  0.509

−0.4 0.0 0.2 0.4 0.6 0.8

0
2

4
6

Analysis Time 2: n2 = 200

x

f(
x)

Upper Stopping Probability =  0.05

−0.4 0.0 0.2 0.4 0.6 0.8

0
2

4
6

Analysis Time 2: n2 = 200

x

f(
x)

Lower Stopping Probability =  0.458

−0.4 0.0 0.2 0.4 0.6 0.8

0
2

4
6

Analysis Time 3: n3 = 300

x

f(
x)

Total Stopping Probability =  0.447

−0.4 0.0 0.2 0.4 0.6 0.8

0
2

4
6

Analysis Time 3: n3 = 300

x

f(
x)

Upper Stopping Probability =  0.111

−0.4 0.0 0.2 0.4 0.6 0.8

0
2

4
6

Analysis Time 3: n3 = 300

x
f(

x)

Lower Stopping Probability =  0.336

True θ

True θ = 0.115

Sarah Emerson and Scott Emerson Adaptive Designs 47 / 143

Foundations: Group Sequential Designs
Inference following Group Sequential Designs

Adaptive Sequential Designs

Clinical Trial Design
Example Setting
Design Comparison

Sequential Trial Stopping Probabilities

Analysis Time Stopping Probabilities:
O’Brien-Fleming Group Sequential Design

−0.2 0.0 0.2 0.4 0.6

0.
0

0.
4

0.
8

Analysis Time 1

θ

S
to

pp
in

g 
P

ro
ba

bi
lit

y

−0.2 0.0 0.2 0.4 0.6

0.
0

0.
4

0.
8

Analysis Time 2

θ

S
to

pp
in

g 
P

ro
ba

bi
lit

y

−0.2 0.0 0.2 0.4 0.6

0.
0

0.
4

0.
8

Analysis Time 3

θ

S
to

pp
in

g 
P

ro
ba

bi
lit

y

−0.2 0.0 0.2 0.4 0.6

0.
0

0.
4

0.
8

θ

C
um

ul
at

iv
e 

S
to

pp
in

g 
P

ro
ba

bi
lit

y

Sarah Emerson and Scott Emerson Adaptive Designs 48 / 143



Foundations: Group Sequential Designs
Inference following Group Sequential Designs

Adaptive Sequential Designs

Clinical Trial Design
Example Setting
Design Comparison

Sequential Trial Stopping Probabilities

Analysis Time Stopping Probabilities:
Pocock Group Sequential Design

−0.2 0.0 0.2 0.4 0.6

0.
0

0.
4

0.
8

Analysis Time 1

θ

S
to

pp
in

g 
P

ro
ba

bi
lit

y

−0.2 0.0 0.2 0.4 0.6

0.
0

0.
4

0.
8

Analysis Time 2

θ

S
to

pp
in

g 
P

ro
ba

bi
lit

y

−0.2 0.0 0.2 0.4 0.6

0.
0

0.
4

0.
8

Analysis Time 3

θ

S
to

pp
in

g 
P

ro
ba

bi
lit

y

−0.2 0.0 0.2 0.4 0.6

0.
0

0.
4

0.
8

θ

C
um

ul
at

iv
e 

S
to

pp
in

g 
P

ro
ba

bi
lit

y

Sarah Emerson and Scott Emerson Adaptive Designs 48 / 143

Foundations: Group Sequential Designs
Inference following Group Sequential Designs

Adaptive Sequential Designs

Clinical Trial Design
Example Setting
Design Comparison

Clinical Trial Optimality Criteria

Power

Here we consider the upper power for a one-sided test of a
greater alternative.

Using the total analysis time stopping probabilities
Pθ(M = j , Total), the power may be obtained as

Power(θ) = 1− β(θ) =
J∑

j=1

Pθ(M = j , Upper)
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Power

For example, under the design alternative θ = 0.4596, the
O’Brien-Fleming design has the following upper stopping
probabilities:

j Nj Pθ=0.4596(M = j , Upper)
1 100 0.1253
2 200 0.6670
3 300 0.1827

The power when θ = 0.4596 is therefore

Power(θ = 0.4596) = 0.1253 + 0.6670 + 0.1827

= 0.975
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Average Sample Size (ASN)

Using the total analysis time stopping probabilities
Pθ(M = j , Total), the average sample size may be obtained as

ASN(θ) =
J∑

j=1

Pθ(M = j , Total)nj
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Average Sample Size (ASN)

For example, under the null hypothesis θ = 0 the
O’Brien-Fleming design has the following total stopping
probabilities:

j nj Pθ=0(M = j , Total)
1 100 0.1256
2 200 0.6742
3 300 0.2002

The average sample size (ASN) when θ = 0 is therefore

ASN(θ = 0) = 100(0.1256) + 200(0.6742) + 300(0.2002)

= 207.4663

Sarah Emerson and Scott Emerson Adaptive Designs 53 / 143

Foundations: Group Sequential Designs
Inference following Group Sequential Designs

Adaptive Sequential Designs

Clinical Trial Design
Example Setting
Design Comparison

Clinical Trial Optimality Criteria

Average Sample Size (ASN)
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Probability of More Than q Subjects

Using the total analysis time stopping probabilities
Pθ(M = j , Total), the probability of using more than q subjects
may be obtained as

Pθ(nM ≥ q) =
∑

j :nj>q

Pθ(M = j , Total)
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Probability of More Than 290 Subjects
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Percentile of Sample Size Distribution

Using the total analysis time stopping probabilities
Pθ(M = j , Total), the pth percentile of the sample size
distribution may be obtained as

qp(θ) = min{nj :

j∑

`=1

Pθ(M = `, Total) ≥ p}

Sarah Emerson and Scott Emerson Adaptive Designs 57 / 143



Foundations: Group Sequential Designs
Inference following Group Sequential Designs

Adaptive Sequential Designs

Inference Goals
Inference Approaches
Inference Optimality Criteria

1 Foundations: Group Sequential Designs
Clinical Trial Design
Example Setting
Design Comparison

2 Inference following Group Sequential Designs
Inference Goals
Inference Approaches
Inference Optimality Criteria

3 Adaptive Sequential Designs
Forms of Adaptation Considered
Considerations in Adapting Future Sampling Path
Types of Adaptation Rules
Adaptive Designs using Standard Group Sequential Software

Sarah Emerson and Scott Emerson Adaptive Designs 58 / 143

Foundations: Group Sequential Designs
Inference following Group Sequential Designs

Adaptive Sequential Designs

Inference Goals
Inference Approaches
Inference Optimality Criteria

Group Sequential Design Inference Goals

Trial designed to decide between H0 : θ = θ0 and
HA : θ = θA > θ0 with significance level α and power 1− β
when θ = θA.

Decision at end of trial:
I Reject H0 : θ = θ0
I Fail to reject H0 : θ = θ0 (‘Accept’ H0)

Almost always want more information than just this binary
decision:

I How large is the effect?
I How confident are we in the estimated effect?
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Group Sequential Design Inference Goals

Hypothesis Testing: Decide between H0 : θ = θ0 and
HA : θ > θ0.

I Design constructed to test particular value of θ0 at desired level
α, with desired power 1− β to detect a particular θA > θ0.

I We may want to perform a test of a different null hypothesis at
the conclusion of the test.

Point Estimates: Estimates of θ satisfying various optimality
criteria. (How large is the effect?)

Confidence Intervals: Interval estimates C1−α of θ satisfying
Pθ(θ ∈ C1−α) = 1− α (How confident are we in the estimated
effect?)
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Obtaining p-values for tests of general null

hypotheses

First consider fixed sample inference: X1, . . . ,Xn
iid∼ N (µ, σ2)

where µ is unknown but σ2 is known.

H0 : µ = 0 vs. HA : µ = 1

Recall the interpretation of a p-value for a fixed sample test of
H0 : θ = θ

′
0 when the observed statistic is X = x :

pθ0 = Probability of a more ‘extreme’ result than

X = x when θ = θ
′
0
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Obtaining p-values for tests of general null

hypotheses

Need to decide which of the possible sample results (outcomes)
at the end of the trial are more ‘extreme’: More convincing for
the alternative/less convincing for the null.

I Larger values of X̄n are more convincing for HA and less
convincing for H0.

I e.g., X̄n = 0.7 is stronger evidence for the alternative/against
the null than X̄n = 0.3.
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Obtaining p-values for tests of general null

hypotheses

This concept of a p-value may be used in the group sequential
design setting to obtain tests of null hypotheses other than the
design null hypothesis θ0.

Ordering of the sample space (outcome space): Define an
ordering or partial ordering of all possible outcomes (M , S) to
specify which results will be considered more extreme under the
null/stronger evidence for the alternative.

Unlike in fixed sample inference (at least in normal setting), no
obvious ordering exists since sufficient statistic is bivariate
(outcome space is 2-dimensional)
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Group Sequential Design Inference Approaches

Suppose, as in earlier example, testing H0 : θ = θ0 = 0 vs.
HA : θ = θA = 0.4596.

Recall O’Brien-Fleming design with α = 0.025, power
1− β = 0.975:

Number of Analyses: J = 3

Test Statistic: Tj = θ̂j = Sample Mean

j nj aj bj cj dj
1 100 -0.2298 0.2298 0.2298 0.6894
2 200 0.1149 0.2298 0.2298 0.3447
3 300 0.2298 0.2298 0.2298 0.2298
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Group Sequential Design Inference Approaches

Consider two possible outcomes:
I Outcome 1: (M1 = 1, θ̂1 = 0.7)
I Outcome 2: (M2 = 2, θ̂2 = 0.8)

Which of these outcomes would you consider stronger evidence
for the alternative, θ = 0.45/weaker evidence for the null θ = 0?
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Group Sequential Design Inference Approaches
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Sample Mean Ordering

Sample Mean Ordering:

Outcomes are ordered according to the value of the MLE
θ̂M = θ̂.

Consider two outcomes
I Outcome 1: (M = j1, θ̂ = t1)
I Outcome 2: (M = j2, θ̂ = t2)

Outcome 1 would be considered more extreme under the Sample
Mean ordering as follows:

(j1, t1) �SM (j2, t2) if t1 > t2
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Sample Mean Ordering
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Analysis Time Ordering

Analysis Time Ordering:
Outcomes are ordered according to

1 Stopping time M
2 MLE θ̂

Consider two outcomes:
I Outcome 1: (M = j1, θ̂ = t1)
I Outcome 2: (M = j2, θ̂ = t2)

Outcome 1 would be considered more extreme under the Analysis
Time ordering as follows:

(j1, t1) �AT (j2, t2) if





j1 < j2 and t1 ≥ dj1
j1 > j2 and t2 ≤ aj2
j1 = j2 and t1 > t2
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Analysis Time Ordering
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Likelihood Ratio Ordering

(Signed) Likelihood Ratio Ordering:
Outcomes are ordered according to signed likelihood ratio test
statistic for hypothesized θ

′
0

Consider two outcomes:
I Outcome 1: (M = j1, θ̂ = t1)
I Outcome 2: (M = j2, θ̂ = t2)

Outcome 1 would be considered more extreme under the Likelihood
Ratio ordering as follows:

(j1, t1) �AT (j2, t2) if

sign(t1 − θ
′
0)

pM,T (j1, t1; θ = t1)

pM,T (j1, t1; θ = θ
′
0)
> sign(t2 − θ

′
0)

pM,T (j2, t2; θ = t2)

pM,T (j2, t2; θ = θ
′
0)
,

i.e., if
√
nj2(t2 − θ

′
0) >

√
nj1(t1 − θ

′
0)
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Outcome Space Orderings

For both the Sample Mean ordering and the Analysis Time
ordering, the ordering does not depend upon the null hypothesis
being tested.

In contrast, note that the Likelihood Ratio ordering depends on
the value of θ

′
0 being tested, and therefore may order the

outcome space differently for different θ
′
0 values.
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Outcome Space Orderings

It can be shown that the Sample Mean and Analysis Time
orderings produce stochastically ordered distributions of the
outcomes under the proposed ordering:

Pθ
(

(M , θ̂) � (j , t)
)

is an increasing function of θ

for both �SM and �AT orderings.

In contrast, stochastic ordering has not been proven for the
Likelihood Ratio ordering.
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Confidence Intervals from p-values

Construct one-sided p-values p1(θ0) for test of H0 : θ = θ0 vs.
HA : θ > θ0 using chosen ordering of sample space.

Obtain two-sided p-values as p(θ0) = 2 ∗min(p1(θ0), 1− p1(θ0))

Construct confidence intervals using hypothesis test/confidence
interval duality:

C = {θ0 : p(θ0) > α}
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Confidence Intervals from Sample Space Orderings

Using the O’Brien-Fleming Boundary (Group Sequential Design
1)

Observe Outcome 1: (M = 1, θ̂ = 0.7)

Method 95% CI for θ
Sample Mean Ordering (0.305, 0.971)
Analysis Time Ordering (0.308, 1.090)
Likelihood Ratio Ordering (0.265, 1.02)
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Confidence Intervals from Sample Space Orderings

Using the O’Brien-Fleming Boundary (Group Sequential Design
1)

Observe Outcome 2: (M = 2, θ̂ = 0.8)

Method 95% CI for θ
Sample Mean Ordering (0.407, 1.170)
Analysis Time Ordering (0.297, 1.010)
Likelihood Ratio Ordering (0.515, 1.030)
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Alternative Confidence Interval Approach:

Repeated Confidence Intervals

Repeated Confidence Intervals (Jennison and Turnbull, 1989):

Invert a level α two-sided group sequential test at each stage
j = 1, . . . , J to obtain intervals Ij such that

Pθ (θ ∈ Ij for all j = 1, . . . , J) = 1− α

Ij is the set of all values of θ
′
0 for which a group sequential test

of H0 : θ = θ
′
0 would not reject at stage j .
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Alternative Confidence Interval Approach:

Repeated Confidence Intervals

Ij can be rephrased in terms of the test statistic Tj(θ
′
0) which

depends upon the null hypothesis value.

The group sequential stopping rule can be expressed as

Reject H0 : θ = θ
′
0 if Tj(θ

′
0) < aj or Tj(θ

′
0) > dj .

Thus we have

Ij =
{
θ
′
0 : aj ≤ Tj(θ

′
0) ≤ dj

}
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Alternative Confidence Interval Approach:

Repeated Confidence Intervals

Consider the normal setting (with no mean variance relationship)

Let {J , nj ,Tj , (aj , bj , cj , dj) for j = 1, . . . , J} be a level α group
sequential test of H0 : θ = 0 vs. HA : θ 6= 0

Consider the boundary scale Tj = θ̂j
The interval Ij at stage j is

Ij =
{
θ
′
0 : aj ≤ θ̂j − θ

′
0 ≤ dj

}

The repeated confidence interval for θ is therefore
{
θ
′
0 : aj ≤ θ̂j − θ

′
0 ≤ dj for all j = 1, . . . , J

}
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Point Estimation

Given that we observe an outcome (M , θ̂) = (j , t), we would like
to provide a point estimate for the parameter θ.

Several options have been proposed:
I Maximum Likelihood Estimator
I Bias-Adjusted Mean
I Median-Unbiased Estimator
I (And several others)
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Point Estimation

Maximum Likelihood Estimate:

θ̂MLE = θ̂

= X̄A − X̄B

The MLE is typically a biased estimate of θ:

Eθ[θ̂] 6= θ

For example, when θ = 0, the expected value of the difference in
sample means when the trial stops is

Eθ=0[θ̂] = −0.033 6= 0
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Bias-adjusted Mean: θ̂BAM is the value of θ
′

satisfying

E
[
θ̂; θ

′
]

= t;

that is, the value of the parameter for which the observed
statistic is the expected value under that parameter value.
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Example:

Using the O’Brien-Fleming Boundary (Group Sequential Design
1)

Suppose the trial stops with (M , θ̂) = (2, 0.093). Then the BAM
is found by searching for θ

′
such that

E
[
θ̂; θ

′
]

= 0.093
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Example:

Using the O’Brien-Fleming Boundary (Group Sequential Design
1)

Suppose the trial stops with (M , θ̂) = (2, 0.093). Then the BAM
is found by searching for θ

′
such that

E
[
θ̂; θ

′
]

= 0.093

We see from the previous slide that when θ = 0.115,

E
[
θ̂; θ = 0.115

]
= 0.093.

Therefore, the BAM when (M , θ̂) = (2, 0.093) is

θ̂BAM = 0.115
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Median-unbiased Mean: θ̂MUE is the value of θ
′

satisfying

P
(

(M , S) � (m, s); θ
′
)

= 0.5;

that is, the value of the parameter for which the observed
statistic would be the median of the sampling distribution under
that parameter value.

Note that this estimator depends on the ordering of the outcome
space.
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Observe Outcome 1: (M = 1, θ̂ = 0.7)

Method Estimate of θ
MLE 0.700
BAM 0.659
MUE (SM) 0.653
MUE (AT) 0.700
MUE (LR) 0.644

Sarah Emerson and Scott Emerson Adaptive Designs 89 / 143

Foundations: Group Sequential Designs
Inference following Group Sequential Designs

Adaptive Sequential Designs

Inference Goals
Inference Approaches
Inference Optimality Criteria

Point Estimation

Observe Outcome 2: (M = 2, θ̂ = 0.8)

Method Estimate of θ
MLE 0.800
BAM 0.762
MUE (SM) 0.780
MUE (AT) 0.679
MUE (LR) 0.786
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Inference Optimality Criteria: Confidence Intervals

How should we decide which method of CI construction is
better?

I Coverage probability close to nominal level 1− α
I Confidence interval width: narrow intervals preferred, more

efficient
I Convexity: Does the method produce a true interval?
I Agreement with design hypothesis test decision
I Agreement with a reasonable point estimate
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Confidence Interval Optimality Criteria

Coverage Probability:

Let C1−α be a nominal (1− α)100% confidence interval for the
parameter θ.

Recall that the confidence interval is random: when the
experiment is repeated, we will obtain different limits for the
interval.

The coverage probability is P(θ ∈ C1−α).

This should be the target level (1−α)100% by construction, but
it is important to assess whether that is actually being achieved.
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Confidence Interval Optimality Criteria

Interval Width:

Methods that produce shorter/narrower intervals with the same
coverage probability are preferred: more precision about the
estimate of θ.

In fixed sample setting with known variance, the width is
constant for a given sample size.

In contrast, in the group sequential setting interval width is
random and its distribution depends upon the true value of θ.

Interval length may be compared on basis of
I Average width
I Median/other quantile of width
I Probability that the width exceeds some given size
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Confidence Interval Optimality Criteria

Convexity:

Are the confidence regions true intervals?

If θ1 ∈ C and θ2 ∈ C, then we would like to have all parameter
values θ∗ between θ1 and θ2 also in C.

That is, we want
βθ1 + (1− β)θ2 ∈ C

for any β ∈ (0, 1).
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Confidence Interval Optimality Criteria

Agreement with Decision:

If the study is stopped for efficacy then we would prefer that θ0
not be in the (1− α)100% confidence region, where α is level
for which the stopping boundaries were designed.

I That is, if the design null hypothesis H0 : θ = θ0 is rejected by
the level α by the stopping boundary, θ0 6∈ C.

If the study is stopped for futility then the design alternative at
which the design has power 1− β = 1− α should not be in the
confidence region.

I That is, if the design null hypothesis H0 : θ = θ0 is accepted by
the stopping boundary that has power 1− α to detect the
alternative θ = θA, then θA 6∈ C
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Confidence Interval Optimality Criteria

Agreement with Point Estimate:

If θ̃ is an estimate of the parameter θ, and C is a confidence
interval for θ, it is preferable to have θ̃ ∈ C.

This is an optimality criterion for both the estimate and the
interval

It is more important to have agreement with well-behaved
estimators like the Bias-adjusted Mean than with poorer
estimators like the MLE.

Some reasonable confidence intervals may not contain the MLE
with non-negligible probability, which is more acceptable due to
the bias of the MLE.

Sarah Emerson and Scott Emerson Adaptive Designs 97 / 143



Foundations: Group Sequential Designs
Inference following Group Sequential Designs

Adaptive Sequential Designs

Inference Goals
Inference Approaches
Inference Optimality Criteria

Inference Optimality Criteria: Point Estimates

How should we decide which method of point estimate
construction is better/which to use?

I Bias
I Mean-squared Error
I Agreement with reasonable confidence interval
I Agreement with design hypothesis test decision
I (Consistency)
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Point Estimates Optimality Criteria

Bias:

Is the expected value of the estimator equal to the true
parameter value?

The bias of an estimator θ̃ for the parameter θ is

B(θ; θ) = E(θ̃)− θ

An estimator θ̃ is unbiased if

E (θ̃) = θ

Low or zero bias is desirable, other properties being equal.
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Mean-squared Error:

What is the expected squared distance between the estimator
and the true parameter value?

The mean-squared error of an estimator θ̃ for the parameter θ is

MSE(θ̃; θ) = E
[

(θ̃ − θ)2
]

It can be shown that

MSE(θ̃; θ) =
[
B(θ̃; θ)

]2
+ Var[θ̃]

Small mean-squared error is desirable.
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Agreement with Confidence Interval:

If θ̃ is an estimate of the parameter θ, and C is a confidence
interval for θ, it is preferable to have θ̃ ∈ C.

This is an optimality criterion for both the estimate and the
interval

It is more important to have agreement with well-behaved
confidence intervals (i.e. those that are narrower, form true
intervals, etc.)
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Point Estimates Optimality Criteria

Agreement with Decision:

Is it possible that the estimate be in the null hypothesis region
of the parameter space, but the decision based on the boundary
is to reject the null?

That is, if θ̃ ≤ θ0 we do not want to reject H0 : θ = θ0 in favor
of a greater alternative.
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Consistency

Does the estimator converge (in probability) to the true value as
the sample size increases to infinity?

This property is less emphasized for sequential designs, as we are
primarily interested in the sample size for which the study is
planned.

(You may, nevertheless, encounter papers where consistency of
estimators in a group sequential design setting is considered.)
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Types of Design Adaptation

Many possible ways to adaptively modify future analysis plan at
an interim analysis. Examples:

I Sample size re-estimation
I Adaptive randomization
I Dropping inferior treatment groups
I Change of endpoint
I Change of hypothesis
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Types of Design Adaptation

The common theme among adaptive designs is the use of an
interim effect estimate to adjust the plans for future analyses.

Here we focus solely on adaptive sample size and stopping
boundary modification based on interim effect estimate.

Note that modifying sample sizes due to updated information on
ancillary statistics/information growth is not considered in this
setting, and does not require as careful attention to protecting
Type I error rate.
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Adaptive Sample Size and Stopping Boundary

Modification

The type of design adaptation we consider here involves using an
interim estimate of effect size to modify the future analyses.

Modification may affect any or all of the following components
of the future analysis plan:

I Number of future analyses
I Timing/sample size for future analyses
I Stopping boundary/critical value(s) for future analyses
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Why Adapt?

Proposed Benefits of Adaptive Sample Size and Stopping
Boundary modification?

I Re-power study to detect smaller/larger effect size if interim
estimate indicates a value substantially different from design
hypotheses

I Increased flexibility in accrual decisions, justification for sample
size

I Possibly improve efficiency
I Potential cost reduction, particularly in time-to-event setting
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Considerations in Adapting Sample Size/Stopping

Boundary

If adaptation is performed without careful adjustment of
stopping boundary, Type I error can be greatly inflated.

Proschan and Hunsberger (1995):
I Two-stage design: n1 in first stage
I Interim effect size estimate at first stage used to choose n2 for

second stage
I Depending upon how n2 chosen, Type I error probability can

more than double: 0.05→ 0.1146
I Even Bonferroni correction would not fix this inflation of Type I

error rate.
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Some Proposed Adaptation Rules

Proschan and Hunsberger (conditional error)

Lehmacher and Wassmer 1999 (reweighted statistic)

Cui, Hung, Wang 1999 (reweighted statistic)

Muller and Schafer 2001 (conditional error)

Brannath, Posch, Bauer 2002 (recursive combination
tests/conditional error)

Gao, Ware, Mehta 2008 (conditional error, sample size guided by
conditional power)

Mehta and Pocock 2010 (conditional error, sample size guided
by conditional power)

More general: Any path of group sequential designs chosen to
have correct rejection rate under null
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Some Proposed Adaptation Rules

Adaptation rules in literature can be categorized into three
general approaches:

I Reweighting the test statistic: using the same stopping
boundary (critical values) with different sample sizes

I Conditional error preservation: using possibly different stopping
boundary (critical values) and different sample sizes

I General pre-specified design such that overall type I error rate is
controlled

We will see that these are listed in order of increasing flexibility.
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Adaptation Rules: Reweighted Statistic/Combining

p-values

The first type of adaptation rule starts with a group sequential
design:

I {J, nj ,Tj , (aj , bj , cj , dj) for j = 1, . . . , J}
I Let Tj be either the z-statistic Zj or the fixed sample p-value Pj .
I Incremental test statistics Z ∗j and P∗j , computed only from the

data acquired in the jth group.

At some interim analysis h (1 ≤ h < J), the future incremental
sample sizes may be modified:

I n∗j → ñ∗j for j = h + 1, h + 2, . . . , J
I For notational conveniene, we let ñ∗j = n∗j for j = 1, . . . , h.

I Let T̃ ∗j be the incremental test statistic computed using the
new sample size for the jth stage, ñ∗j .
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Adaptation Rules: Reweighted Statistic/Combining

p-values

First consider the normal mean setting with nAj = nBj =
nj
2

, so

Zj =
(θ̂j − θ0)

√
nj

2σ

Z ∗j =
(θ̂∗j − θ0)

√
n∗j

2σ

Note that we can write

θ̂j =

n∗1
2
θ̂∗1 +

n∗2
2
θ̂2
∗

+ . . . +
n∗j
2
θ̂∗j

n∗1
2

+
n∗2
2

+ . . . +
n∗j
2

=

∑j
`=1 n

∗
` θ̂
∗
`∑j

`=1 n`
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Adaptation Rules: Reweighted Statistic/Combining

p-values

Therefore, we can decompose Zj in terms of the incremental Z ∗`
as

Zj =

√
nj

2σ

(∑j
`=1 n

∗
` θ̂
∗
`∑j

`=1 n`
− θ0

)

=

√
nj

2σ

(∑j
`=1 n

∗
` (θ̂∗` − θ0)

nj

)

=

∑j
`=1

√
n∗`Z

∗
`√

n∗j
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Adaptation Rules: Reweighted Statistic/Combining

p-values

If the incremental group sizes are modified, we still have

Z̃ ∗j =
(˜̂
θ∗j − θ0)

√
ñ∗j

2σ
∼ N(0, 1) under H0 : θ = θ0

Note, however, that if the sample sizes ñj and the incremental
sample sizes ñ∗j depend on interim effect estimates, we do not
have ñj independent of Z ∗` for ` 6= j .
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Adaptation Rules: Reweighted Statistic/Combining

p-values

Therefore, the statistic

Z̃j =

∑j
`=1

√
ñ∗` Z̃

∗
`√

ñ∗j

may not be N(0, 1) under H0, as it is no longer a standardized
sum of independent normal random variables.

Sarah Emerson and Scott Emerson Adaptive Designs 118 / 143

Foundations: Group Sequential Designs
Inference following Group Sequential Designs

Adaptive Sequential Designs

Forms of Adaptation Considered
Considerations in Adapting Future Sampling Path
Types of Adaptation Rules
Adaptive Designs using Standard Group Sequential Software

Adaptation Rules: Reweighted Statistic/Combining

p-values

If instead we use pre-specified weights (variances) w` for each
Z ∗` in computing the test statistic, we do obtain a standard
normal random variable under H0:

Yj =

∑j
`=1

√
w`Z̃

∗
`√∑j

`=1 w`

since
√
w`Z

∗
` ∼ N(0,w`) so

∑j
`=1

√
w`Z

∗
` ∼ N(0,

∑j
`=1 w`)

A natural choice for the weights w` is the originally planned
sample sizes

w` = n∗`
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Adaptation Rules: Reweighted Statistic/Combining

p-values

The statistic Yj is compared to the originally planned stopping
boundary critical values for the jth stage.

This procedure has the same Type I error rate as the original
group sequential design.
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Adaptation Rules: Reweighted Statistic/Combining

p-values

The reweighting approach can also be expressed, more generally,
as an approach of combining p-values.

Setting
I A total of J potential analyses are allowed.
I The data gathered in each stage is independent of all other

stages (independent increments)
I Incremental p-values P∗j for each stage are exact (or at least

near-exact) in the sense that

PH0(P∗j ≤ u) ≈ u for all u ∈ [0, 1]
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Adaptation Rules: Reweighted Statistic/Combining

p-values

Then the following test statistic may be compared to a level α
stopping boundary with J analyses on the Z -scale (reject H0 for
large Qj ⇔ greater alternative).

Qj =
1√
j

j∑

i=1

Φ(1− P∗j )

This approach protects the type I error rate at level α, no matter
what incremental sample sizes n∗j are used for each stage.

Incremental sample sizes may be modified at any time

Number of possible future analyses may not be changed
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Adaptation Rules: Conditional Error/Modified

Critical Value

The second type of adaptation rule also starts with a group
sequential design:

I {J, nj ,Tj , (aj , bj , cj , dj) for j = 1, . . . , J}
I At some interim analysis h (1 ≤ h < J), the entire future

sampling plan and stopping boundary may be modified:
F n∗j → ñ∗j for j = h + 1, h + 2, . . . , J

F (aj , bj , cj , dj)→ (ãj , b̃j , c̃j , d̃j) for j = h + 1, h + 2, . . . , J̃

I Note that the entire sample path: (sample size, boundary, and
number of future analyses) may change.
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Adaptation Rules: Conditional Error/Modified

Critical Value

The conditional rejection rate
I at a specified true value of the parameter θ,
I given the current test statistic value/estimate of effect size
θ̂h = th, and

I using a particular future sampling path k :

{J̃(k), ñ(k)j , T̃
(k)
j , (ã

(k)
j , b̃

(k)
j , c̃

(k)
j , d̃

(k)
j ) for j = h + 1, . . . , J̃(k)}

is given by

CPθ(Sampling Path k |θ̂h = th) =

Pθ(Reject H0 at any j = h + 1, . . . , J̃k using sampling path k|θ̂h = th)
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Adaptation Rules: Conditional Error/Modified

Critical Value

Conditional type I error rate is the conditional rejection rate
under the null hypothesis H0 : θ = θ0

If we constrain our future sampling paths to match the original
conditional type I error rate, i.e. ensure that

CPθ0(Original Sampling Path k = 0|θ̂h = th) =

CPθ0(Sampling Path k |θ̂h = th)

then the overall type I error rate of the adaptive design is
controlled at the original level α.
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Adaptation Rules: Conditional Error/Modified

Critical Value

Popular methods of conditional error adaptation:
I Consider adaptation at the next to last stage h = J − 1.
I Modification of final sample size only; no increase in number of

future analyses is considered.
I To maintain conditional type I error rate, the critical values

(ãJ , b̃J , c̃J , d̃J) must be adjusted based on the new final sample
size ñJ = nJ−1 + ñ∗J

I Typically, a one-sided design is considered, so ãJ = d̃J and
therefore a single critical value ãJ(ñJ) must be solved for, in
terms of the new incremental sample size ñ∗J .
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Adaptation Rules: Conditional Error/Modified

Critical Value

Gao, Ware, and Mehta 2008 provide formulae for the critical
value ã(ñ∗J) given an observed test statistic ZJ−1 = zJ−1 and a
new incremental sample size ñ∗J :

ãJ(ñ∗J) =
1√
ñJ

[√
ñ∗J√
n∗J

(aJ
√
nJ − zh

√
nJ−1) + zh

√
nJ−1

]

It can be shown that this is equivalent to reweighting the
z-statistic and using the original critical value aJ :

I Changing the statistic, keeping the boundary ⇔
Keeping the statistic, changing the boundary
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Adaptation Rules: Conditional Error/Modified

Critical Value

Contrary to the statement in Gao, Ware, and Mehta 2008:

“The equivalence of the three methods demonstrates
that the sample size re-estimation method of Cui,
Hung, and Wang is valid and does not truly
down-weight any portion of the data.”

this equivalence instead demonstrates that modifying the critical
value based on a new sample size is the same as down-weighting
some of the data and is therefore likely to be an inefficient
approach.
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Example Adaptation Rules: Conditional

Error/Modified Critical Value

Adaptive final sample size may be chosen according to any
desired criteria

Popular choice of adaptive final sample size is to chose ñJ to
attain a desired level of conditional power, where the
conditional power is evaluated using the current effect size
estimate θ̂h as the true parameter.
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Adaptation Rules: Conditional Error/Modified

Critical Value

Given desired conditional power 1− β, we find ñ∗J such that

Pθ̂L

(
Z̃J > ãJ(ñ∗J)

)
= 1− β

where Z̃J is the cumulative z-statistic using ñJ = nJ−1 + ñ∗J
observations.

Since ãJ(ñ∗J) is a function of ñ∗J , this expression can be solved for
the desired value ñ∗J .
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Adaptation Rules: Conditional Error/Modified

Critical Value

Gao, Ware, and Mehta 2008 also provide formulae for the new
final sample size ñJ needed to obtain conditional power of 1− β,
given that ZJ−1 = zJ−1:

ñJ =
nJ−1
z2J−1

[
(aJ
√
nJ − zJ−1

√
nJ−1)√

n∗J
+ zβ

]2
+ nJ−1

Sarah Emerson and Scott Emerson Adaptive Designs 131 / 143



Foundations: Group Sequential Designs
Inference following Group Sequential Designs

Adaptive Sequential Designs

Forms of Adaptation Considered
Considerations in Adapting Future Sampling Path
Types of Adaptation Rules
Adaptive Designs using Standard Group Sequential Software

Adaptation Rules: Conditional Error/Modified

Critical Value

Consider a design to test H0 : θ = 0 vs. HA : θ = 0.5544 at level
α = 0.025 with power 0.975 to detect the alternative.

Sample size N = 200 with critical value 0.2772 on the sample
mean scale (1.96 on the z-statistic scale)

After N1 = 100 subjects, an interim analysis is performed to
adaptively modify the final sample size.

The final sample size is chosen to obtain conditional power 0.90
at the interim estimate of effect size.

A maximum sample size of 500 is allowed.
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Adaptation Rules: Conditional Error/Modified

Critical Value
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Adaptation Rules: Adaptive Switching between

Sampling Path

The third, most general type of adaptation rule can be thought
of as adaptively switching between different group sequential
designs (different sampling paths).
Starting with a group sequential design:

I {J(0), n(0)j ,T
(0)
j , (a

(0)
j , b

(0)
j , c

(0)
j , d

(0)
j ) for j = 1, . . . , J(0)}

At some interim analysis h (1 ≤ h < J), adaptively select one of
r possible future sampling paths.
Valid adaptive design controlling overall type I error rate as long
as:

I Total probability under H0 : θ = θ0 of rejecting H0 is
constrained to be ≤ α

I Exactly one future sampling path is selected.
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Adaptation Rules: Adaptive Switching between

Sampling Path

Details:

At interim analysis h (1 ≤ h < J), the continuation region for

T
(0)
h is partitioned into r disjoint continuation sets C(k)h , for

k = 1, . . . , r .

If T
(0)
h ∈ C(k)h , then the future stopping boundary will be the kth

future group sequential sampling path:

I {J(k), n(k)j ,T
(k)
j , (a

(k)
j , b

(k)
j , c

(k)
j , d

(k)
j ) for j = h + 1, . . . , J(k)},

for k = 1, . . . , r

Let K be the random variable denoting which path is chosen,
K ∈ {1, . . . , r}: K = k if T

(0)
h ∈ C(k)h .
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Adaptation Rules: Adaptive Switching between
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Adaptation Rules: Adaptive Switching between

Sampling Path
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Sampling Path
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Adaptation Rules: Adaptive Switching between

Sampling Path

Compared to the previous two approaches (reweighting and
preserving conditional type I error rates), the adaptive switching
approach is more flexible.

Control of the unconditional type I error rate may be
accomplished without constraining the conditional type I error
rates.
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Adaptation Rules: Adaptive Switching between

Sampling Path

Adaptive designs as proposed in Gao, Ware, Mehta 2008
(GWM) and others can be represented in this adaptive switching
framework.

Since
I sample sizes must be discrete, and
I there is almost always (always) a maximal possible sample size

set

any adaptive rule can be regarded as switching between a finite
number of future group sequential sampling paths.
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Adaptation Rules: Adaptive Switching between

Sampling Path

In practice, we have found that the performance of an adaptive
rule with a large number r of different possible group sequential
sampling paths is not much different from an adaptive rule with
a small number of possible sampling paths.

e.g. A discretized GWM design with just r = 4 different possible
group sequential sampling paths has practically identical
performance to one with r = 100 different sampling paths.
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Adaptive Switching Designs using Standard Group

Sequential Software

Any pre-specified adaptive design can be represented and
calculated using standard group sequential software that allows:

I Arbitrarily spaced analyses
I Constrained and partially constrained boundary searches
I Numerical integration to find stopping probabilities and

stopping densities

Basic idea:
I Specify each possible group sequential sampling path after

analysis time h as a different group sequential design with first
analysis at time nh.
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Competing Issues in Clinical Trials

Ethics: individual and collective

Clinical science: overall patient health

Basic Science: mechanisms

Statistical: reliable and precise answers

Economic/Operational: feasibility, profits and/or costs
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Considering Adaptation

What do we gain?
I Efficiency?
I Flexibility?

What do we lose?
I Efficiency?
I Interpretability?
I Ease of implementation?

How do we make fair comparisons?
I Same number or schedule of analyses, or trial duration?
I Same power at the alternative? Same power curve?
I How to measure efficiency?
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Efficiency of Adaptive Testing

Methods of adaptive hypothesis testing based on combination or
conditional error functions violate sufficiency principle

I Same sample mean and N at stopping could lead to opposite
decisions (see next slide)

Suffer efficiency losses compared to GSDs
I Losses of ∼ 40% in certain cases (Jennison and Turnbull 2006)

Efficiency loss due to testing method or poor sample size
modification rules?
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Violation of Sufficiency Principle
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Our Research on Efficiency

Consider completely pre-specified adaptive designs with testing
adhering to sufficiency principle

I Differences in operating characteristics due to adaptation rule,
not testing method

Explore efficiency gains over group sequential designs

Explore efficient types of adaptations

Compare to frequently proposed adaptation rules
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Setting and Notation

Potential observations XAi on treatment A and XBi on treatment
B, for i = 1, 2, ..., independently distributed

I Means µA and µB and common known variance σ2

Parameter of interest: θ = µA − µB

I Positive values of θ indicate superiority of new treatment

Up to J interim analyses with sample sizes N1,N2,N3, ...,NJ

At the jth analysis, let

I Partial Sum: Sj =
∑NAj

i=1 XAi −
∑NBj

i=1 XBi

I MLE: θ̂j = XAj − XBj
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Setting and Notation

Upper-case letters for random variables, lower-case for fixed
quantities

Use a * to denote incremental data

I N∗j = Nj − Nj−1 (with N0 = 0)

I S∗j =
∑NAj

i=NAj−1+1 XAi −
∑NBj

i=NBj−1+1 XBi

I θ̂∗j = X
∗
Aj − X

∗
Bj and Z ∗j =

(θ̂∗j −θ0)√
σ2

N∗
Aj

+ σ2

N∗
Bj

Outcomes immediately observed

Test null H0 : θ = θ0 = 0 against one-sided alternative θ > 0
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A Class of Pre-specified Adaptive Designs

Single adaptation occurs at analysis time j = h

At adaptation analysis (j = h), there are r mutually exclusive
continuation sets, denoted C k

h , k = 1, . . . , r

Each continuation set C k
h at adaptation analysis corresponds to

future group sequential path k

Random sample path variable K can take values 0, 1, . . . , r

Define three-dimensional test statistic (M , S ,K )

I M is stage, S is partial sum, K is path at stopping
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Example of Adaptive Design
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Sampling Density

N∗j = nk∗j is fixed conditional on Sj−1 = s ∈ C k
j−1

Assume equal allocation (NAj = NBj). Appealing to the central
limit theorem,

I S∗1 ∼ N(n0
A1 θ, 2 n0

A1 σ
2)

I S∗j | Sj−1 ∼ N(nk∗Aj θ, 2 nk∗Aj σ
2)
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Sampling Density

Following Armitage et al. (1969), density of (M = j , S = s,K = k) is

pM,S ,K (j , s, k ; θ) =

{
fM,S ,K (j , s, k ; θ) if s ∈ Sk

j

0 otherwise

where the (sub)density is recursively defined as

fM,S,K (1, s, 0; θ) =
1√

2 n0
A1 σ

φ

(
s − n0

A1 θ√
2 n0

A1 σ

)

fM,S,K (j , s, k ; θ) =

∫

C k
j−1

1√
2 nk∗Aj σ

φ


 s − u − nk∗Aj θ√

2 nk∗Aj σ


 fM,S,K (j , u, k; θ) du

for k = 0, j = 2, . . . , h (if h > 1) and k = 1, . . . , r , j = h + 1, . . . , Jk
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Sampling Density

Easy to show the following relation:

pM,S,K (j , s, k ; θ) = pM,S ,K (j , s, k ; 0) exp

(
s θ

2σ2
− θ2

4σ2
nkAj

)

⇒ MLE is sample mean θ̂ = XA − XB

⇒ (N , S) minimally sufficient for θ
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Computations

Can compute density of sample mean, β(θ), ASN(θ), etc.

All computations just functions of density and/or operating
characteristics (OC) of a set of r + 1 group sequential designs

Can modify existing group sequential software to carry out
computations

All our results using R package RCTdesign built from S-Plus
module S+SeqTrial
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Efficiency of Adaptive Testing

Our research on efficiency...

Define optimality criteria in two simple, realistic RCT settings
with different scientific constraints

Derive optimal competing fixed sample, GS, adaptive designs
I Restrict attention to symmetric designs

Compare operating characteristics

Describe in detail sampling plan of optimal adaptive designs
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Setting 1: Optimality Criteria

Number of analyses constrained to max of two

Type I error α = 0.025, power β = 0.975 at θ = ∆

Initial candidate design: fixed n = 4
(z1−α+zβ)2

∆2

(WLOG, σ2 = 1)

Primary interest: find most efficient design meeting constraints

I Efficiency measured by average sample size in presence of truly
ineffective (under null) or effective (under alternative) treatment
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Setting 1: Optimal GSD

2-analysis GSD with Pocock-like stopping boundaries

Analyses at 50% and 118% of original fixed sample size n

Stopping boundaries for futility and efficacy at first analysis
0.21∆ and 0.79∆ on sample mean scale

I (0.57, 2.21) on Z -scale
I (4.9%, 95.1%) on conditional power scale assuming θ = θ̂1

I (81.8%, 99.0%) on conditional power scale assuming θ = ∆

ASN of 68.54% of fixed sample size n at design alternatives
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Finding the “Optimal” Adaptive Design

Find optimal adaptive designs with increasing number r of
continuation regions...

1 Holding constant α, β, first-stage stopping bounds of optimal
GSD, choose C 1

1 and n1
2 to minimize ASN at design alternatives

based on numerical grid search

2 Proceed to 3 continuation regions by holding C 1
1 constant and

finding optimal split of C 2
1 into 2 continuation regions

3 Proceed to 4 continuation regions by optimally splitting C 1
1 . . .
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Setting 1: Results

Table: Average, maximal sample sizes of competing designs in units of n

Number of Continuation Regions

0a 1b 2 3 4 5 6 7 8

ASNθ=0,∆ 1 0.6854 0.6831 0.6828 0.6825 0.6824 0.6824 0.6824 0.6824

% Difference +45.9% Ref -0.34% -0.38% -0.42% -0.43% -0.43% -0.44% -0.44%
Maximal N 1 1.18 1.24 1.24 1.26 1.26 1.26 1.26 1.28
a. Fixed Sample Design

b. Group Sequential Design (Reference design)

Efficiency gain by optimal adaptive design minimal (< 0.5%)

Gain largely achieved with r = 2, negligible decreases with r > 4

Sarah Emerson and Scott Emerson Adaptive Designs 22 / 144



Statistical Efficiency of Adaptation
Complete Inference after Adaptation

Evaluating Inferential Methods
Additional Issues

Adaptive Time-to-event Setting

Setting 1: The Optimal Adaptive Design

Sarah Emerson and Scott Emerson Adaptive Designs 23 / 144

Statistical Efficiency of Adaptation
Complete Inference after Adaptation

Evaluating Inferential Methods
Additional Issues

Adaptive Time-to-event Setting

Setting 1: Describing the Design

Increasing # regions only modestly increases maximal N
I Designs frequently proposed in literature allow ≥ 2-fold increase

Largest maximal sample sizes chosen near center of group
sequential continuation region, smallest near boundaries

∼ Optimal thresholds for increasing N2 (relative to GSD)
I (0.34∆, 0.66∆) on sample mean scale
I (0.95, 1.83) on Z scale
I (0.19, 0.81) on CP(z1; MLE) scale
I (0.89, 0.98) on CP(z1; ∆) scale

Thresholds on conditional power scale change substantially
based on presumption of MLE or ∆ as true treatment effect
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Setting 1: Other Efficiency Considerations

Efficiency gain at alternatives (θ = 0 and θ = ∆) offset by losses
at intermediate treatment effects (0.25∆− 0.75∆)

I ASN increases ∼ same magnitude as efficiency gains

Negligible power differences (< 0.0005) between adaptive design
and GSD at intermediate θs

Adding additional analysis to GSD leads to much larger
efficiency gain than allowing adaptivity

I Reduces ASN of GSD by 6.3% as compared to < 0.5%
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Setting 1: Other Efficiency Considerations

Efficiency index of design A: ratio of fixed sample size needed to
match its power over its ASN
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Setting 2: Optimality Criteria

Only one “stopping analysis”

Earlier “adaptation” analysis to determine optimal sample size

α = 0.025, β = 0.975 at θ = ∆, candidate fixed n = 4
(z1−α+zβ)2

∆2

Minimum sample size for stopping of nmin < n required for
adequate safety profile

I Assume nmin = 0.75n (similar patterns with other choices)

“Adaptation” analysis may occur at range of time points nadapt
I Let nadapt = q ∗ nmin and consider q ∈ {0.1, 0.2, ..., 0.9, 1.0}

Primary interest: find most efficient design meeting constraints
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Setting 2: Results

q (Proportion of nmin at which adaptation occurs)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ASNθ=0,∆ 0.99 0.97 0.94 0.91 0.88 0.86 0.84 0.82 0.80 0.78
Maximal N 1.07 1.12 1.16 1.18 1.20 1.21 1.21 1.20 1.18 1.17

Adding “adaptation” analysis leads to meaningful efficiency
gains over fixed sample test, reducing ASN by ∼ 20%

Best design allows stopping at “adaptation” analysis

Behavior improves as statistical info at adaptation increases
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Setting 2: Describing the Designs

Largest maximal sample size chosen near middle

N increased up to ∼ 20%, much less than frequently proposed

∼ Optimal thresholds for increasing N (q = 0.5)
I (0.13∆, 0.87∆) on sample mean scale
I (0.30, 2.10) on Z scale
I (0.03, 0.97) on CP(z1; MLE) scale
I (0.80, 0.99) on CP(z1; ∆) scale

Thresholds on CP scales depend heavily on presumed θ and may
not represent intuitive thresholds

Thresholds on CP(z1; MLE) scale deviate from designs proposed
in literature - have set lower threshold to 36% (MP 2010)
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Results on Efficiency

Optimal adaptive designs attain very small efficiency gains
(< 0.5%) over group sequential designs with same # analyses

I Offset by losses at other plausible treatment effects

I Far outpaced by adding an analysis to group sequential design

Insight into good and bad choices of adaptive sampling plans

I Only few continuation regions and possible final Ns necessary

I Better to adapt with more information and when stopping
permitted

I Efficient designs qualitatively different than those in literature
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Design in Literature (MP 2010)
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Limitations

Many parameters can vary
I Number, timing of analyses, family of stopping boundaries,

definition of “efficiency,” scientific constraints

We covered fraction of this space
I Focused on symmetric designs in two settings
I Defined “efficiency” and “optimal” based on ASN at design

alternatives, holding power constant

True minimum ASN not guaranteed for r > 2
I Sensitivity procedures iterating between adjacent regions do not

provide further reduction

Statistical efficiency not only (or most important) concern...
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Other Results: Jennison and Turnbull 2006

Compared optimal pre-specified adaptive designs derived under
Bayesian framework to optimal group sequential designs

Sample size adaptation led to efficiency gains of < 1.5% (holding
constant type I error, power, maximum N, and # analyses)

“Observed the sampling rules of optimal adaptive tests to be
qualitatively different from rules based on conditional power...”

I Optimal rules selected smaller maximal Ns when interim
statistic close to stopping bounds, larger maximal Ns in middle

I Others reported similar patterns (Posch, Bauer, Brannath 2003)
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Efficiency in Survival Setting

See Emerson, Rudser, and Emerson 2011 (or ask Sarah!)

In survival setting, statistical information based on # of events,
while cost based on # of patients and length of follow-up

Evaluate tradeoffs between efficiency (average # events), power,
cost

Possibly greater (but still relatively small) benefits from
pre-specified adaptation to sampling plan in time-to-event
setting

I Depends on effect size, accrual rate, per-patient cost, interest
rate
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Stochastic Curtailment and Conditional Power
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Stochastic Curtailment and Conditional Power

Wide range of conditional power values for each boundary as
assumptions and reference design vary

I Efficient threshold on one scale markedly inefficient on another

Degree of changes in CP do not accurately reflect changes in
unconditional power and ASN

Efficient choices may not correspond to intuitively desirable
changes
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1-1 Correspondence Between Scales

1-1 correspondence between scales for stopping/adaptation
boundaries (see Emerson 2007 for relationships)

I Sample mean, Z statistic, fixed sample P-value, error-spending
function, conditional power under θ̂, conditional power under ∆,
Bayesian predictive power under some prior, Bayesian posterior
probability of some hypothesis

Choice of scale relatively unimportant if scientific constraints are
met, important operating characteristics evaluated

I Don’t choose “intuitive” rule (e.g., stop early if CP< 30%,
increase N to achieve CP=90% if CP< 90%) and call it a day!
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Collaborate, Evaluate, and Iterate

Consider scientific/regulatory constraints

I Maximal feasible sample size, minimal sample size (for adequate
safety profile), early conservatism

Consider important operating characteristics

I Type I error, power under important alternatives, stopping
boundaries on different scales, sample size distribution, stopping
probabilities, inference reported at stopping

Compare candidate designs, modify designs to achieve desired
operating characteristics, etc.
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Schizophrenia Example (Mehta and Pocock 2010)

Randomized, phase 3 trial of new drug versus control in patients
with negative symptoms schizophrenia

Primary endpoint: change from baseline in Negative Symptoms
Assessment (NSA)

Desire high power at alternative ∆ = 2 with SD ∼ 7.5

I Mean difference as small as 1.6 considered clinically important

Need complete data on at least 200 patients for adequate safety
profile

Assume overrunning minimal (for ease of illustration)
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Schizophrenia Example

Fixed sample design with n = 442 and 80% power at ∆ = 2
underpowered at ∆ = 1.6

Fixed sample design with n = 690 and 80% power at ∆ = 1.6
not feasible

Also consider group sequential and adaptive designs with up to 2
analyses

I Compare important operating characteristics
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Inference for Pre-specified Design
Inference after Unplanned Adaptation

1 Statistical Efficiency of Adaptation

2 Complete Inference after Adaptation
Inference for Pre-specified Design
Inference after Unplanned Adaptation

3 Evaluating Inferential Methods

4 Additional Issues

5 Adaptive Time-to-event Setting
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Motivation for Additional Research

Despite unclear efficiency gains, adaptive designs implemented in
practice, so research needed to propose, evaluate estimation
methods

I Desire for “innovative” designs

I One sponsor even requires justification if adaptation not
included?

False positive rate and statistical efficiency not only concerns
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Case Study: NECAT

Inhalation of mercury vapor from dental amalgam restorations
may have adverse health effects

Children 6-10 years old randomized to receive dental restoration
using either amalgam or resin composite

Primary outcome: change in full-scale IQ from baseline to 5
years

I 3 point decline in IQ considered clinically important
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Fixed Sample Hypothesis Testing

Use trial data to decide whether to reject the null hypothesis
that amalgam restorations do not lower children’s mean IQ

Design trial to attain low false positive rate (if truly no effect)
and high true positive rate (if truly a 3 point average IQ
difference)

Typically 5% false positive rate and 80% or 90% power
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Testing versus Estimation

Testing typically based on P-value: probability of obtaining more
extreme difference in mean IQ change than what was observed if
there were truly no treatment effect

I If p < 0.05, reject null hypothesis of no amalgam effect on IQ

Four scenarios: What do you conclude?

Study P-value

A 0.263
B 0.263
C 0.025
D 0.025
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Testing versus Estimation

Four scenarios: What do you conclude?

Study Estimate Confidence Interval P-value

A 0.5 (-0.4, 1.4) 0.263
B 4.5 (-3.4, 12.3) 0.263
C 0.5 (0.1, 0.9) 0.025
D 4.5 (0.5, 8.4) 0.025

A: no statistical significance, and ruled out clinical importance

B: no statistical significance, but consistent with important effect

C: statistical significance, but ruled out clinical importance

D: statistical significance, and consistent with important effect
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The Need for Good Estimates

Confirmatory phase III RCTs must produce interpretable results

I Regulatory decisions based on statistical and clinical significance

I Appropriate labeling of newly approved treatment indications

I Clinicians can effectively practice evidence-based medicine
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Complete Inference

Four numbers (with good properties):

Best point estimate of treatment effect

Confidence interval providing range of effects consistent with
data

P-value reflecting strength of statistical evidence against no
effect
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Sequential Analyses: Statistical Challenges

Sequential testing has implications on estimation of the
treatment effect in addition to hypothesis testing

We stop early only if extreme results are observed

I Fixed sample estimates such as the sample mean tend to be
biased (to the extreme)

I Confidence intervals do not have correct coverage probabilities
(may be conservative or anti-conservative)

We need point and interval estimates, adjusted for sequential
analyses, with desirable “properties”
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Connection to Other Types of Studies

Bottom line: implications of performing multiple comparisons

I Inflated false positive rate

I Random high bias in estimates of treatment effect for positive
results (“winner’s curse”, “sophomore slump”)

Applies to many other settings

I Multiple analyses over time

I Multiple subgroup analyses (e.g. by genetic or other biomarker)

I Multiple endpoints

I Publication bias (multiple studies)
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Estimation after Sequential Hypothesis Testing

Compute estimates, P-values based on true sampling density:
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Estimation after Sequential Testing

Example: P-values still probability of observing more “extreme”
data under null hypothesis of no treatment effect
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Well-understood Methods

Extensive literature on estimation after group sequential test

I Different methods to compute bias-adjusted point estimates,
and correct (adjusted) confidence intervals and P-values

I Extensive evaluation of properties assessing the reliability and
precision of estimates, CIs, P-values

I Variety of software available for design, conduct, analysis of
group sequential designs (PEST, East, SeqTrial, SAS, R)

Adjusted estimates should be reported, but often are not (even
by the best journals)
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Extension of Group Sequential Approaches

Extend orderings of outcome space to adaptive setting

I Compute p-values

I Compute confidence regions

I Compute median-unbiased estimates

Extend bias-adjusted mean to adaptive setting

Extend software and evaluate methods
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Adaptive Sampling Density of Sample Mean

Under null (left) and alternative (right)
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Duality of Testing and Confidence Sets

Confidence set: all hypothesized values of θ that would not be
rejected by appropriately sized hypothesis test given observed data

Define acceptance region of “non-extreme” results for each θ:

A(θ, α) = {(j , t, k) : 1− α > P[ (M ,T ,K ) � (j , t, k); θ ] > α}

Use acceptance region to define equal-tailed (1− 2α)× 100%
confidence set:

CSα(M ,T ,K ) = {θ : (M ,T ,K ) ∈ A(θ, α)}
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Exact Confidence Sets

To apply, need to define “more extreme” (�) with outcome ordering:

{(j , t, k) : t ∈ Skj ; k = 0, j = 1, . . . , h and k = 1, . . . , r , j = h + 1, . . . , Jk}

Neyman-Pearson: likelihood ratio most powerful for simple
hypothesis

Density does not have monotone likelihood ratio, so composite
hypothesis theory for optimal tests and CIs does not apply

Useful to extend straightforward group sequential orderings and
evaluate range of properties under variety of designs

I Relative behavior likely depends on design and treatment effect

Sarah Emerson and Scott Emerson Adaptive Designs 58 / 144



Statistical Efficiency of Adaptation
Complete Inference after Adaptation

Evaluating Inferential Methods
Additional Issues

Adaptive Time-to-event Setting

Inference for Pre-specified Design
Inference after Unplanned Adaptation

Orderings of Outcome Space

Recall the orderings of the outcome space for standard group
sequential designs:

Sample Mean Ordering

Analysis Time Ordering

Signed Likelihood Ratio Ordering
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Sample Mean Ordering
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Analysis Time Ordering
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Analysis Time Ordering
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Orderings of Outcome Space

We can extend these orderings to adaptive sequential trial designs:
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Orderings of Outcome Space

Sample mean ordering (SM). Outcomes ordered according to MLE
T ≡ θ̂:

(j ′, t ′, k ′) � (j , t, k) if t ′ > t

Signed likelihood ratio ordering (LR). Outcomes ordered according
to signed likelihood ratio test statistic against hypothesized θ′:

(j ′, t ′, k ′) �θ′ (j , t, k) if

sign(t ′ − θ′) pM,T ,K (j ′,t′,k ′; θ=t′)
pM,T ,K (j ′,t′,k ′; θ=θ′) > sign(t − θ′) pM,T ,K (j ,t,k; θ=t)

pM,T ,K (j ,t,k; θ=θ′) , i.e., if

√
nk
′

Aj ′(t
′ − θ′) >

√
nkAj(t − θ′)
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Orderings of Outcome Space

Stage-wise orderings. Outcomes ordered according to “stage”
study stops.

I Earlier is “more extreme”

I Unlike GS setting, ranks of analysis times and sample sizes not
necessarily equal

I How to rank statistics observed at same stage through different
paths?

I Several ways to impose this in adaptive setting
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Stage-wise Orderings

Analysis time + Z statistic ordering (Z):

(j ′, t ′, k ′) � (j , t, k) if





j ′ < j and t ′ ∈ Sk ′(1)
j ′

j ′ > j and t ∈ Sk ′(0)
j ′

j ′ = j and z ′ > z

Analysis time + re-weighted Z statistic ordering (Zw):

(j ′, t ′, k ′) � (j , t, k) if





j ′ < j and t ′ ∈ Sk ′(1)
j ′

j ′ > j and t ∈ Sk ′(0)
j ′

j ′ = j and z ′w > zw

Statistical information ordering (N):

(j ′, t ′, k ′) � (j , t, k) if





nk
′

j ′ < nkj and t ′ ∈ Sk ′(1)
j ′

nk
′

j ′ > nkj and t ∈ Sk ′(0)
j ′

nk
′

j ′ = nkj and t ′ > t
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Point Estimates and P-values

Define the following point estimates for θ given (M ,T ,K ) = (j , t, k):

Sample Mean (MLE): θ̂ = XA − XB = t

Bias adjusted mean (BAM) θ̌: ET [T ; θ̌ ] = t

Median unbiased estimates (MUE) θ̃o :

P[ (M ,T ,K ) �o (j , t, k); θ̃o ] = 1
2

For H0 : θ = θ0, define a P-value under imposed ordering O = o:

p-valueo = P[ (M ,T ,K ) �o (j , t, k); θ0 ]
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Statistics as Usual

We frequently use different orderings of the outcome space in
order to carry out tests and compute point, interval estimates

I Wald vs. Score vs. Likelihood Ratio

Seek as reliable and precise inference as possible

Desirable properties in sequential setting enumerated by
Emerson, Jennison and Turnbull, and others
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Unplanned Adaptation: Motivation

Motivation

I Flexibility to modify design (e.g., sample size / power) based on
external information

F If truly external (independent), no adjustment to inference
needed, but difficult to prove interim data had no role?

I Flexibility to adapt utilizing information on additional endpoints

Worth potential losses in reliability, efficiency due to lack of
planning?

I (Plus logistical challenges inherent to all adaptive designs)
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Testing versus Estimation

Many methods to control type I error rate in presence of
unplanned adaptation

I All equivalent to conditional error approach (J+T 2003,
Proschan 2009)

Limited research on estimation after adaptive hypothesis test

I Exploration of absolute bias of MLE
F As high as 40% of SD of first-stage sample mean in 2-stage

setting (Brannath et al. 2006)

I Extension of repeated confidence intervals

I Inversion of conditional error testing approach

Sarah Emerson and Scott Emerson Adaptive Designs 70 / 144

Statistical Efficiency of Adaptation
Complete Inference after Adaptation

Evaluating Inferential Methods
Additional Issues

Adaptive Time-to-event Setting

Inference for Pre-specified Design
Inference after Unplanned Adaptation

Brannath, Mehta, and Posch (BMP) 2009

Outcomes ordered according to smallest level of significance µ
for which a conditional-error based adaptive hypothesis test of
H0 : θ = θ′ would be rejected:

(j ′, t ′, k ′, t ′h) �θ′,GSD (j , t, k , th) if

µ(j ′, t ′, k ′, t ′h; θ′,GSD) < µ(j , t, k , th; θ′,GSD)

Depends on θ′, interim estimate th, and original GSD

But does not depend on what sampling plan we would have
chosen had other interim data been observed

Sarah Emerson and Scott Emerson Adaptive Designs 71 / 144



Statistical Efficiency of Adaptation
Complete Inference after Adaptation

Evaluating Inferential Methods
Additional Issues

Adaptive Time-to-event Setting

Inference for Pre-specified Design
Inference after Unplanned Adaptation

Gao, Liu, and Mehta (2012)

More intuitive derivation of approach to invert conditional
error-based tests

Compute stage-wise ordered p-value of “backward image” of
observed test statistic

Backward image is statistic in outcome space of originally
planned design with same stage-wise p-value (conditional on
interim estimate) as in adaptively chosen future sampling plan

Appears to be two-sided generalization of BMP approach
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Assessing Reliability and Precision of Inference

Confidence sets

I True intervals

F If P[ (M,T ,K ) �o (j , t, k); θ ] increases in θ for each (j , t, k)

(proof found for sample mean ordering)

F Otherwise, negligible effects on coverage

I Consistency with hypothesis test

F Requires same ordering for decisions, P-values, intervals

I Shorter expected length
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Assessing Reliability and Precision of Inference

Point estimates

I Low bias, variance, mean squared error (MSE)

P-values

I High probabilities of falling below important thresholds

F e.g., 0.0252 = 0.000625 to potentially approximate statistical
strength of evidence of two independent studies
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Approach to Evaluating Inferential Methods

Estimates derived in iterative search by numerically integrating
several group sequential densities

I Densities convolutions of normals and truncated normals

I Difficult to come up with analytic results on relative behavior

I Resort to Monte Carlo simulation

Develop extensive comparison framework to evaluate methods

I 10,000 simulated trials under a range of treatment effects
across a variety of adaptive sampling plans
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Comparison Framework

Pre-specified adaptive tests of H0 : θ = 0 against one-sided
alternative θ > 0 with α = 0.025, power β at θ = ∆, with varying:

Degree of early conservatism (reference OF or Pocock GSD)

Symmetry of early stopping (symmetric or only for superiority)

Power at ∆ (80% to 97.5%)

Maximum number of analyses (2, 3, or 4)

Timing of adaptation (25% to 75% of original NJ)

Maximum allowable sample size (25% to 100% increase)

Rule for determining final sample size (symmetric or
conditional-power based)
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Adaptively Chosen Sample Size

Example of symmetric and CP-based N2 functions
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Differences in Boundaries and Power

Comparing testing based on different orderings of outcome space
(OF reference, symmetric NJ rule, 100% maximal increase)...
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Avoiding Inconsistent Inference

Should use same ordering for testing as for estimation
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Confidence Intervals: Correct Coverage

Standard error of CI coverage with 10,000 simulations: 0.0022

OF Reference GSD Pocock Reference GSD

Power Naive SM LR BMP Naive SM LR BMP

Symmetric NJ function, up to 50% Increase

0.025 0.9442 0.9455 0.9449 0.9462 0.9425 0.9484 0.9485 0.9481
0.500 0.9314 0.9507 0.9488 0.9507 0.9458 0.9507 0.9504 0.9507
0.900 0.9402 0.9493 0.9478 0.9476 0.9350 0.9465 0.9467 0.9466

CP-based NJ function, up to 100% Increase

0.025 0.9428 0.9494 0.9497 0.9494 0.9441 0.9502 0.9508 0.9505
0.500 0.9181 0.9462 0.9469 0.9466 0.9355 0.9461 0.9476 0.9462
0.900 0.9291 0.9501 0.9501 0.9501 0.9365 0.9494 0.9489 0.9496
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Estimates: Median-unbiased

SE of probability exceeds MUE with 10,000 simulations: 0.005

OF Reference GSD Pocock Reference GSD

Power SM LR BMP SM LR BMP

Symmetric NJ function, up to 100% Increase

0.0250 0.4956 0.4993 0.4960 0.4983 0.4986 0.4960
0.5000 0.5082 0.5076 0.5081 0.5100 0.5093 0.5095
0.9000 0.5019 0.5006 0.4970 0.5034 0.5028 0.5011

CP-based NJ function, up to 100% Increase

0.0250 0.4975 0.4997 0.4958 0.5032 0.5035 0.5025
0.5000 0.5079 0.5075 0.5064 0.5027 0.5027 0.5045
0.9000 0.5001 0.4981 0.5050 0.5105 0.5099 0.5094
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Results: Naive Inference

MLE substantially higher bias than adjusted estimates at all but
intermediate effects and higher MSE (up to 40%) across nearly
all designs and effects considered

Naive 95% CIs lack exact coverage, typically 92-93% coverage,
occasionally near 90%

Performance may be worse with more complex multistage
designs
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Comparing Confidence Intervals: Example

Reference OF design, symmetric (left) or CP-based (right) NJ

function, up to 50% increase, J = 2

Sarah Emerson and Scott Emerson Adaptive Designs 84 / 144

Statistical Efficiency of Adaptation
Complete Inference after Adaptation

Evaluating Inferential Methods
Additional Issues

Adaptive Time-to-event Setting

Comparing Confidence Intervals: Trends

Likelihood ratio ordering shorter expected CI length across nearly
all designs and treatment effects studied

I ∼ 1− 10% shorter, depending on setting

I Margin increases with greater potential inflation of NJ

I Margin slightly larger for CP-based than symmetric NJ function

Sample mean slightly superior (∼ 1− 3%) to BMP in some
settings, similar in others
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Comparing Point Estimates: Example

Reference Pocock design, symmetric (left) or CP-based (right)
NJ function, up to 100% increase, J = 2
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Comparing Point Estimates: Example

Reference Pocock design, symmetric (left) or CP-based (right)
NJ function, up to 100% increase, J = 2
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Comparing Point Estimates: Trends

Bias adjusted mean best MSE across nearly all designs and
treatment effects considered

I ∼ 1− 20% lower, depending on setting and comparator

I Margin increases with NJ inflation, CP-based adaptation

I Lower bias at extreme effects, variance at intermediate effects

I All CIs observed to always contain BAM

SM, LR MUEs up to 15% lower MSE than BMP MUE

LR MUE slightly superior (∼ 1− 3%) to SM MUE in some
settings, similar in others
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Comparing P-values: Example

Reference OF (left) or Pocock (right) design, CP-based NJ

function, up to 50% increase, J = 2
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Comparing P-values: Trends

Likelihood ratio ordering tends to demonstrate greater
probabilities of potentially “pivotal” P-values

I Up to ∼ 20% greater (on absolute scale), depending on setting

I Margin increases with greater NJ inflation, CP-based adaptation

I Margin larger for tests derived from OF reference designs

Sample mean modestly superior (up to ∼ 10% on absolute
scale) to BMP in most settings, similar in others
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Summary and Conclusions

Bias adjusted mean most reliable and precise point estimate

Likelihood ratio ordering CIs and P-values behaved best

Margins increase with NJ inflation, CP-based NJ function

Qualitative differences persist varying many design parameters

I Quantitative differences decrease for early, late adaptations

MLE and inference using other orderings poor relative behavior
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Cost of Planning not to Plan

Most proposed adaptations could be pre-specified at design stage

Substantial cost of failing to plan ahead and resorting to
conditional error-based (BMP) estimation

I Large increase (up to 20%) in MSE of point estimate

I Modest increase (up to 10%) in expected CI length

I Large decrease (up to 20%) in probability of pivotal P-value

I Cost is largest for typically proposed adaptation rules

I Due to inversion of conditional error tests or stage-wise ordering
of backward image?

BMP inference has reasonable behavior if needed
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Case Study: An Antidepressant in MDD

Randomized placebo-controlled clinical trial to study safety and
effectiveness of novel antidepressant in major depressive disorder

Primary outcome is 50% improvement at 8 weeks in Hamilton
depression rating scale

30% response rate expected on placebo

10% improvement on treatment considered minimal clinically
important difference
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Case Study: An Antidepressant in MDD

Candidate designs:

Fixed sample design with 176 participants per arm

I α = 2.5% type I error, β = 90% power at θ = 0.165, threshold
for statistical significance of 10%

Two-analysis O’Brien and Fleming and Pocock group sequential
designs with same α, β, significance threshold

Adaptive designs derived from these GSDs, using symmetric or
conditional power-based rules
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Statistical versus Clinical Significance

Goal of RCTs not statistical significance but instead
“statistically reliable evaluation regarding whether the
experimental intervention is safe and provides clinically
meaningful benefit.” (Fleming 2006)

Yet adaptation often proposed to increase conditional power
presuming treatment effects below the MCID

Threshold for statistical significance on scale of estimated
treatment effect varies greatly under LR, BMP orderings

I May fall below MCID: ranges from 8.0% to 13.2%
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Statistical versus Clinical Significance

Boundary differences result in power differences
(OF reference, symmetric NJ rule, 50% maximal increase)...

Sarah Emerson and Scott Emerson Adaptive Designs 97 / 144



Statistical Efficiency of Adaptation
Complete Inference after Adaptation

Evaluating Inferential Methods
Additional Issues

Adaptive Time-to-event Setting

Statistical versus Clinical Significance

Consider success as statistical and clinical (> 10%) significance:
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Maintaining Confidentiality

Maintaining confidentiality protects trial integrity

Additional challenges in conduct of adaptive trial

I Sample size may be function of interim estimate:

N2(θ̂1) =




d0
2 n0

2−θ̂1 n1√
n0

2−n1
−
√
V Φ−1(0.1)

θ̂1




2

+ n1

I Potential unblinding through new recruitment targets
F Example: New N2 = 227 allows approximation of 13% estimate

I Less likely with only few possible final sample sizes
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Maintaining Confidentiality

Possible approaches if knowledge of adaptively chosen sample size and
adaptation rule allows reasonably precise estimate of interim effect?

Blind trial investigators involved in treatment, outcome
assessment to new sample size

Blind trial investigators to Adaptive Charter (which describes
adaptation rule)

Rely on unplanned adaptation by DMC

I Too much to ask of DMC? Will require sponsor
input/knowledge regardless...
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Logistical and Ethical Issues

Increased effort in planning, protocol development, monitoring

I FDA Draft Guidance: “added complexities... call for more
detailed documentation”

I SAP must include “summary of each adaptation and its impact
upon critical statistical issues”

Ethics of weighting subjects differently

I And should weighted or unweighted estimate be reported?

Allow even greater bias knowing crude estimates will be reported
in journals/labeling, interpreted as reliable
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Additional Challenges: Summary

Relative behavior of LR, BMP orderings, adaptive designs in
general suffer when considering statistical and clinical
significance

Important added logistical and ethical challenges in design and
conduct

In many cases, these considerations alone may render adaptive
design inappropriate
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Summary and Conclusions

Pre-specified adaptation attains minor efficiency gain (< 0.5%)

I Efficient designs differ qualitatively from those in literature

I Should evaluate important operating characteristics and
modifying/comparing candidate designs

Estimation methods after adaptive test developed and evaluated

I Avoid using naive CIs and MLE

I Bias adjusted mean, LR or SM ordering better behavior with
respect to important measures of reliability, precision

I Failing to pre-specify (BMP) comes with meaningful cost
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Editorial

Carefully compare candidate designs before deciding to adapt

Potential gains in flexibility, efficiency through sample size
adaptation likely not worth added interpretability, logistical
challenges in most settings

Possibly more promise with adaptive subgroup selection (e.g.,
with a pre-specified, clearly defined targeted subset expected to
benefit more – see Rosenblum research)
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Abstract 

A great many confirmatory phase 3 clinical trials have as their primary 

endpoint a comparison of the distribution of time to some event (e.g., time 

to death or progression free survival).  

– The most common statistical analysis models include the logrank test 

and/or the proportional hazards regression model.  

– Just as commonly, the true distributions do not satisfy the proportional 

hazards assumption.  
 

Providing users are aware of the nuances of those methods, such 

departures need not preclude the use of those analytic techniques any 

more than violations of the location shift hypothesis precludes the use of 

the t test.  
 

In this talk I discuss some aspects of the analysis of censored time to event 

data that must be carefully considered in sequential and adaptive sampling. 

In particular, I discuss the how the changing censoring distribution during a 

sequential trial affects the analysis of distributions with crossing hazards 

and crossing survival curves.  
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Overall Goal: “Drug Discovery” 

• More generally  

– a therapy / preventive strategy or diagnostic / prognostic 

procedure 

– for some disease 

– in some population of patients 

 

• A sequential, adaptive series of experiments to establish 

– Safety of investigations / dose                (phase 1) 

– Safety of therapy                                     (phase 2) 

– Measures of efficacy                               (phase 2) 

• Treatment, population, and outcomes 

– Confirmation of efficacy                          (phase 3) 

– Confirmation of effectiveness                 (phase 3, post-marketing) 
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Science and Statistics 

• Statistics is about science 

– (Science in the broadest sense of the word) 

 

• Science is about proving things to people 

– (The validity of any proof rests solely on the willingness of the 

audience to believe it) 

 

• What do we need to consider as we strive to meet the burden of 

proof with adaptive modification of a RCT design? 

 

• Does time to event data affect those issues? 

– Short answer: No, UNLESS subject to censoring 

– So, true answer: Yes. 
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Design: Distinctions without Differences 

• There is no such thing as a “Bayesian design” 

 

• Every RCT design has a Bayesian interpretation 

– (And each person may have a different such interpretation) 

 

• Every RCT design has a frequentist interpretation 

– (In poorly designed trials, this may not be known exactly) 

 

• In this talk I focus on the use of both interpretations 

– Phase 2: Bayesian probability space 

– Phase 3: Frequentist probability space 

– Entire process: Both Bayesian and frequentist optimality criteria 
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Application to Drug Discovery 

• We consider a population of candidate drugs 

 

• We use RCT to “diagnose” truly beneficial drugs 

 

• Use both frequentist and Bayesian optimality criteria 

– Sponsor:  

• High probability of adopting a beneficial drug   (frequentist power) 

 

– Regulatory: 

• Low probability of adopting ineffective drug        (freq type 1 error) 

• High probability that adopted drugs work      (posterior probability) 

 

– Public Health                    (frequentist sample space, Bayes criteria) 

• Maximize the number of good drugs adopted 

• Minimize the number of ineffective drugs adopted 
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Frequentist vs Bayesian: Bayes Factor 

• Frequentist and Bayesian inference truly complementary 

– Frequentist: Design so the same data not likely from null / alt 

– Bayesian: Explore updated beliefs based on a range of priors 

 

• Bayes rule tells us that we can parameterize the positive 

predictive value by the type I error and prevalence 

– Maximize new information by maximizing Bayes factor 

– With simple hypotheses: 

 

oddspriorFactorBayesoddsposterior

prevalence

prevalence

errItype

power

PPV

PPV

prevalenceerrItypeprevalencepower

prevalencepower
PPV













11

1
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Adaptive Sampling: General Case 

• At each interim analysis, possibly modify statistical or scientific 

aspects of the RCT 

 

• Primarily statistical characteristics  

– Maximal statistical information  (UNLESS: impact on MCID) 

– Schedule of analyses                (UNLESS: time-varying effects) 

– Conditions for stopping             (UNLESS: time-varying effects) 

– Randomization ratios                (UNLESS: introduce confounding) 

– Statistical criteria for credible evidence 

 

• Primarily scientific characteristics 

– Target patient population (inclusion, exclusion criteria) 

– Treatment (dose, administration, frequency, duration) 

– Clinical outcome and/or statistical summary measure 
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FDA Guidance on Adaptive RCT Designs 

• Distinctions by role of trial 

– “Adequate and well-controlled” (Kefauver-Harris wording) 

– “Exploratory” 

• Distinctions by adaptive methodology 

– “Well understood” 

• Fixed sample design 

• Blinded adaptation 

• Group sequential with pre-specified stopping rule 

– “Less well understood” 

• “Adaptive” designs with a prospectively defined opportunity to 

modify specific aspects of study designs based on review of 

unblinded interim data 

– “Not within scope of guidance” 

• Modifications to trial conduct based on unblinded interim data 

that are not prospectively defined 
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FDA Concerns 

• Statistical errors: Type 1 error; power 

 

• Bias of estimates of treatment effect 

– Definition of treatment effect 

– Bias from multiplicity 

 

• Information available for subgroups, dose response, secondary 

endpoints 

 

• Operational bias from release of interim results 

– Effect on treatment of ongoing patients 

– Effect on accrual to the study 

– Effect on ascertainment of outcomes 
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Control of Type 1 Errors 

• Proschan and Hunsberger (1995) 

– Adaptive modification of RCT design at a single interim analysis 

can more than double type 1 error unless carefully controlled 

 

• Those authors describe adaptations to maintain experimentwise 

type I error and increase conditional power 

– Must prespecify a conditional error function 

 

  

– Often choose function from some specified test 

 

 

– Find critical value to maintain type I error 
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Alternative Approaches 

• Combining P values (Bauer & Kohne, 1994) 

– Based on R.A. Fisher’s method 

– Extended to weighted combinations 

 

• Cui, Hung, and Wang (1999) 

– Maintain conditional error from pre-specified design 

 

• Self-designing Trial (Fisher, 1998) 

– Combine arbitrary test statistics from sequential groups using 

weighting of groups pespecified “just in time” 
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Data at j-th Analysis: Immediate Outcome 

• Subjects accrued at different stages are independent 

• Statistics as weighted average of data accrued between analyses 
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Conditional Distn: Immediate Outcomes 

• Sample size Nj
* and parameter θj can be adaptively chosen based 

on data from prior stages 1,…,j-1 

– (Most often we choose  θj  =  θ  with immediate data) 
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Estimands by Stage: Time to Event 

• Most often we choose  θj  =  θ  with immediate data 

 

• In time to event data, a common treatment effect across stages is 

reasonable under some assumptions 

– Strong null hypothesis (exact equality of distributions) 

– Strong parametric or semi-parametric assumptions 

 

• The most common methods of analyzing time to event data will 

often lead to varying treatment effect parameters across stages 

– Proportional hazards regression with non proportional hazards 

data 

– Weak null hypotheses of equality of summary measures (e.g., 

medians, average hazard ratio) 
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Hypothetical Example: Setting 

• Consider survival with a particular treatment used in renal dialysis 

patients 

 

• Extract data from registry of dialysis patients 

 

• To ensure quality, only use data after 1995 

– Incident cases in 1995: Follow-up 1995 – 2002 (8 years) 

– Prevalent cases in 1995: Data from 1995 - 2002 

• Incident in 1994: Information about 2nd – 9th year 

• Incident in 1993: Information about 3rd – 10th year 

• … 

• Incident in 1988: Information about 8th – 15th year 
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Hypothetical Example: KM Curves 
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Who Wants To Be A Millionaire? 

• Proportional hazards analysis estimates a Treatment : Control 

hazard ratio of 

 

          A:      2.07   (logrank P = .0018) 

          B:      1.13   (logrank P = .0018) 

          C:      0.87   (logrank P = .0018) 

          D:      0.48   (logrank P = .0018) 

 

 

– Lifelines:  

• 50-50? Ask the audience? Call a friend? 
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Hypothetical Example: KM Curves 
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Who Wants To Be A Millionaire? 

 Proportional hazards analysis estimates a Treatment : Control 

hazard ratio of 

 

           

          B:      1.13   (logrank P = .0018) 

                     

  

The weighting using the risk sets made no scientific sense 

– Statistical precision to estimate a meaningless quantity is 

meaningless 
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Partial Likelihood Based Score 

• Logrank statistic 
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Weighted Logrank Statistics 

• Choose additional weights to detect anticipated effects 
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Impact on Noninferiority Trials 

• Weak null hypothesis is of greatest interest 

– Standard superior to placebo 

– Comparator (on average) equivalent to placebo 
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Conditional Distn: Immediate Outcomes 

• Sample size Nj
* and parameter θj can be adaptively chosen based 

on data from prior stages 1,…,j-1 

– (Most often we choose  θj  =  θ  with immediate data) 
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Protecting Type I Error 

• Test based on weighted averages of incremental test statistics 

– Allow arbitrary weights Wj specified by stage j-1 
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Complications: Longitudinal Outcomes 

• Bauer and Posch (2004) noted that in the presence of incomplete 

data, partially observed outcome data may be informative of the 

later contributions to test statistics 

 

• We need to make distinctions between 

– Independent subjects accrued at different stages 

– Statistical information about the primary outcome available at 

different analyses 

 

• Owing to delayed observations, contributions to the primary test 

statistic at the k-th stage may come from subjects accrued at prior 

stages 

– Baseline and secondary outcome data available at prior analyses 

on those subject may inform the value of future data 
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Data at j-th Analysis: Delayed Outcome 

• Subjects accrued at different stages are independent 

• Some data is “missing” 

 

 

 

                          valueP sample Fixed    

                                                          statistic  ZNormalized    

ˆ        ,,,ˆ ˆ effect      treatmentEstimated    

,,                                                                     data outcome 2

,                              ,      observed) (msng, data outcome 1

,,                                                                         data Baseline

                                                            info)(stat  size Sample

Cumulative                                 lIncrementa                   analysis interimth At 

*

*

1

*

*

*ˆ

1

*

1

*****

**

1

*o

OM*OM*o

**

1

*

**

1

*

k

k
N

j
Z

k

j
j

N

kk

k
N

j

k

j
j

N

k

M

k

O

kkkkk

kkk

kkkk

kkk

kkk

P

ZZ

YYXN

WWWW

YYYY

XXXX

NNNN

k





































Sarah Emerson and Scott Emerson Adaptive Designs 132 / 144

Statistical Efficiency of Adaptation
Complete Inference after Adaptation

Evaluating Inferential Methods
Additional Issues

Adaptive Time-to-event Setting

Special Topic: Adaptive Time-to-event Setting

28 

Major Problem: Delayed Outcome 

• When sample size Nj
* and parameter θj adaptively chosen based 

on data from prior stages 1,…,j-1, some aspect of the “future” 

contributions may already be known 
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Impact of Adjusted Analyses 

• Clearly, the assumptions of such approaches as CHW do not 

hold 

– The test statistic at the k-th analysis does not capture all of the 

information present in the data 

 

• If we take the worst case assumption that the interim data has 

perfect information about the future we can “cherry-pick” the best 

analysis time 

– This can inflate the type 1 error substantially, depending upon 

how many censored subjects are present 

 

• If one imagines that we would use the CHW adjustment that re-

weights the data, even more damage can be done 

– We can upweight the highly random fluctuations in small amounts 

of information 
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Potential Solutions 

• Jenkins, Stone & Jennison (2010) 

– Only use data available at the k-th stage analysis 

 

• Irle & Schaefer (2012) 

– Prespecify how the full k-th stage data will eventually contribute to 

the estimate of θk  

 

• Magirr, Jaki, Koenig & Posch  (2014, arXiv.org) 

– Assume worst case of full knowledge of future data and sponsor 

selection of most favorable P value 
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Comments: Burden of Proof Dilemma 

• There is a contradiction of standard practices when viewing the 

incomplete data  

– We would never accept the secondary outcomes as validated 

surrogates 

– But we feel that we must allow for the possibility that the 

secondary outcomes were perfectly predictive of the eventual 

data 

 

• We are in some sense preferring mini-max optimality criteria over 

a Bayes estimator 
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Comments: Impact on RCT Design 

• The candidate approaches will protect the type 1 error, but the 

impact on power (and PPV) is as yet unclear 

 

• Weighted statistics are not based on minimal sufficient statistics 

– But greatest loss in efficiency comes from late occurring adaptive 

analyses with large increases in maximal statistical information 

– Time to event will not generally have this 

 

• The adaptation is based on imprecise estimates of the estimates 

that will eventually contribute to inference 

 

• We may have to eventually either 

– Ignore some observed data (JS&S, I&S), or 

– Adjust for worst case multiple comparisons 
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What if No Adjustment? 

• Many methods for adaptive designs seem to suggest that there is 

no need to adjust for the adaptive analysis if there were no 

changes to the study design 

 

• However, changes to the censoring distribution definitely affect 

– Distribution-free interpretation of the treatment effect parameter 

– Statistical precision of the estimated treatment effect 

– Type 1 error when testing a weak null (e.g., noninferiority) 

 

• Furthermore, “less understood” analysis models prone to inflation 

of type 1 error when testing a strong null 

– Information growth with weighted log rank tests is not always 

proportional to the number of events 
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“Intent to Cheat” Zone 

• At interim analysis, choose range of interim estimates that lead to 

increased accrual of patients 

 

• How bad can we inflate type 1 error when holding number of 

events constant? 

 

• Logrank test under strong null: Not at all 

 

• Weighted logrank tests: Up to relative increase of 20% 

– Sequela of true information growth depends on more than 

number of events 

– Power largely unaffected, so PPV decreases 
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Information Growth with Adaptation 
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Inflation of Type 1 Error 

• Function of definition of the adaptation zone 

– Varies according to weighted log rank test 
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Final Comments 

• There is still much for us to understand about the implementation 

of adaptive designs 

 

• Most often the “less well understood” part is how they interact 

with particular data analysis methods 

– In particular, the analysis of censored time to event data has 

many scientific and statistical issues 

 

• How much detail about accrual patterns, etc. do we want to have 

to examine for each RCT? 

 

• How much do we truly gain from the adaptive designs? 

– (Wouldn’t it be nice if statistical researchers started evaluating 

their new methods in a manner similar to evaluation of new 

drugs?) 
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Bottom Line 

• There is no substitute for planning a study in advance 

– At Phase 2, adaptive designs may be useful to better control 

parameters leading to Phase 3 

• Most importantly, learn to take “NO” for an answer 

– At Phase 3, there seems little to be gained from adaptive trials 

• We need to be able to do inference, and poorly designed 

adaptive trials can lead to some very perplexing estimation 

methods 

 

• “Opportunity is missed by most people because it is dressed 

in overalls and looks like work.”  -- Thomas Edison 

 

• In clinical science, it is the steady, incremental steps that are 

likely to have the greatest impact.  
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Really Bottom Line 

 

      “You better think (think)  

        about what you’re  

           trying to do…” 

 
                                          -Aretha Franklin, “Think” 
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