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Prognostic Biomarker for a Continuous Measure

On each of n patients measure

yi - single continuous outcome
(eg. blood pressure, tumor growth)

xi - p-vector of features
(eg. SNPs, gene expression values)

Want to model yi by xi to

I Predict high risk patients (give them additional care)

I Learn the underlying biology
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An Oldie But a Goodie

Linear Regression:

We assume that
yi = β0 + x>i β + εi

Generally fit by solving:

minβ0,β
1

2

∑(
yi − β0 − x>i β

)2
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An Oldie But a Goodie

Diabetes data example

n = 442, p = 10

yi is quantitative measure of disease progression (one year
after baseline)

xi includes age, sex, BMI, avg BP, and six serum
measurements
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An Oldie But a Goodie

Can use ηi = β̂0 + β̂>xi to predict risk.

Or can stratify

ηi ≥ cutoff → high risk

ηi < cutoff → low risk

Choosing the cutoff can be tricky
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An Oldie But a Goodie
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An Oldie But a Goodie

Two Issues

When p ∼ n (or p > n), estimate is highly variable

When true model is far from linear, estimate is inflexible
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Working in High Dimensions

For p ∼ n we need an often reasonable assumption:

Most of the features are [conditionally] unrelated to response

More formally: In the model

yi = β0 + x>i β + εi

Most of the βj are 0 (or very nearly 0).
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Bet on Sparsity

Is this assumption reasonable?

Often

If not, statistical trickery generally will not help.

Either need more samples

Or more benchwork
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Taking Advantage of Sparsity

How do we fit a sparse model?

Most obvious approach is:

minimizeβ0,β
∑
i

(
yi − β0 − x>i β

)2
subject to # {j |βj 6= 0} ≤ d

Unfortunately, this is computationally intractable.
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Taking Advantage of Sparsity

How do we fit a sparse model?

Instead we use the Lasso

minimizeβ0,β
∑
i

(
yi − β0 − x>i β

)2
subject to

∑
j

|βj | ≤ c

This can be solved as fast as (or faster than) least squares.
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Taking Advantage of Sparsity

How does this give us sparsity?

Decreasing c increases sparsity.
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Taking Advantage of Sparsity

Equivalent Penalized Form

minimizeβ0,β
∑
i

(
yi − β0 − x>i β

)2
+ λ

∑
j

|βj |

c in constrained form ←→ λ in penalized form
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Choosing λ

In practice everyone uses

Training/test validation

OR

Cross-validation
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Training/Test Validation

1. Choose candidate λ-values: λ1, . . . , λM

2. Split observations into two groups: training and test

3. For each candidate m ≤ M

3.1 Training Data → Build model with λm

3.2 Test Data → Apply model to get “predictions”

4. Evaluate the predictions for each model choose the best.
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Training/Test Validation

Evaluating each model

For each λm we have ŷ
(m)
i i = 1, . . . , ntest .

Simplest evaluation via mean-square-error:

performancem =
∑

i∈test data

(
yi − ŷ

(m)
i

)2
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Training/Test Validation
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Cross-Validation
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Cross-Validation

1. Choose candidate λ-values: λ1, . . . , λM

2. Split observations into K folds:

3. For each candidate m ≤ M, and each fold k ≤ K

3.1 Data (minus fold k) → Build model with λm

3.2 Data (fold k) → Apply model to get “predictions”

4. Evaluate models (now on all data)
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Making Linear Regression Less Linear

What if the relationship isn’t linear?

y = 3 sin(x) + ε

y = 2ex + ε

y = 3x2 + 2x + 1 + ε

If we know the functional form we can still use “linear regression”
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Making Linear Regression Less Linear

y = 3 sin(x) + ε: x

→
sin(x)


y = 3x2 + 2x + 1 + ε:x

→
x x2
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Making Linear Regression Less Linear

What if we don’t know the right functional form?

Use a flexible basis expansion:

I polynomial basisx

→
x x2 · · · xk


I hockey-stick (/spline) basisx

→
x (x − t1)+ · · · (x − tk)+
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Making Linear Regression Less Linear
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Making Linear Regression Less Linear

For high dimensional problems, expand each variable

x1 x2 · · · xp

→
x1 · · · xk

1 x2 · · · xk
2 · · · xp · · · xk

p


and use the Lasso on this expanded problem.

k must be small (∼ 5ish)

Spline basis generally outperforms polynomial
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Prognostic Biomarker for a Binary Measure

On each of n patients measure

yi - single binary outcome
(eg. Progression after a year, pCR)

xi - p-vector of features
(eg. SNPs, gene expression values)

More common than continuous response
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Logistic Regression

Relate it back to continuous methods:

For continuous response solve:

minimizeβ,β0
∑
i

(
yi − β0 − x>i β

)2
One interpretation:

If
yi |xi ∼ N

(
x>i β, σ

2
)

then maximizing likelihood is equivalent to least squares.
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Logistic Regression

Relate it back to continuous methods:

For Binary Response, consider

yi |xi ∼ ber

(
pi =

eβ0+x>i β

1 + eβ0+x>i β

)

Maximizing likelihood is equivalent to minimizing

` (β, β0) = −
∑
i

[
yi

(
β0 + x>i β

)
− log

(
1 + eβ0+x>i β

)]
This is just logistic regression
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Diabetes Example

Additionally:

166/221 test-positive vs 55/221 test-negative

patients with above median progression
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Penalized Logistic Regression

As in least squares, we can induce sparsity:

minimizeβ,β0 ` (β, β0) + λ
∑
|βj |

Choosing λ is a bit tricky.

We need a measure of the performance of our model
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Penalized Logistic Regression

As in least squares, we can induce sparsity:

minimizeβ,β0 ` (β, β0) + λ
∑
|βj |

Choosing λ is a bit tricky.

We need a measure of the performance of our model
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Choosing λ

Using CV, we get

η̂i = β̂0
train

+ x>i β̂
train
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Choosing λ

For each patient we have a CV score

η̂i = β̂0
train

+ x>i β̂
train

Now plug-in

p̂i =
e η̂i

1 + e η̂i

And use Cross-Validated Predictive Likelihood as our measure∏
i

p̂yi
i (1− p̂i )

1−yi

(Some software equivalently uses the negative log-likelihood)
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Choosing λ

Can also classify patients using p̂i :

ĉlass i =

{
1 : p̂i ≥ 0.5
0 : p̂i < 0.5

And use Cross-Validated Misclassification Rate as our measure

proportion
(

yi 6= ĉlass i

)
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Example

Prognostic Biomarker for pCR of HER2+ breast cancer patients on
Herceptin + CT

n = 60 patients, with 28 pCR

Expression from p = 5349 genes with non-negligable variance

GEO: GSE50948
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Example
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Some Other Classifiers

Many other classification choices. Noteworthy high dimensional
options:

Diagonal Linear Discriminant Analysis (DLDA)

Nearest Shrunken Centroid (PAM)

Support Vector Machine (SVM)

Find a score based on features: xi → x>i β indicating likelihood of
each class
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DLDA

Assumes:

Gaussian features within class With Pooled Diagonal Covariance:

(xi|yi = 0) ∼ N (µ0,D) (xi|yi = 1) ∼ N (µ1,D)

Estimate µ1, µ2, D by maximum likelihood.

Calculate Probability of each class using Bayes and plug-in.

Score is:
ηi = D̂−1 (µ̂1 − µ̂0)> xi
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PAM

Assumes:

Gaussian features within class With Pooled Diagonal Covariance:

(xi|yi = 0) ∼ N (µ0,D) (xi|yi = 1) ∼ N (µ1,D)

Estimate µ1, µ2 with shrinkage!

µ̃1j = µ̃2j for most j

Score is:

ηi = D̂−1 (µ̃1 − µ̃0)> xi
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SVM

No statistical model: just discriminant method.

Finds the maximum-margin separating hyperplane

Score is (signed) distance from hyperplane

ηi = β>xi + β0

Can be adapted for incomplete separation
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Prognostic Biomarker for Survival Data

On each of n patients measure

(ti , si ) - time, censoring-status
(eg. Disease free survival)

xi - p-vector of features
(eg. SNPs, gene expression values)
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Prognostic Biomarker for Survival Data

Hazard is

probability density of failure at time t given survival up to t.

Want to model the hazard as a function of covariates
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Prognostic Biomarker for Survival Data

We will use Cox Proportional Hazards Model

Assumes hazard is
λ(t) = h(t)ex

>
i β

where

h(t) is covariate-independent baseline hazard

ex
>
i β is covariate-based tilt
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Prognostic Biomarker for Survival Data

Considering Partial Likelihood — likelihood at only event times

h(t) falls out.

L (β) =
∏
i∈D

ex
>
i β∑

j∈Ri
ex

>
j β

Maximizing this is equivalent to minimizing

`(β) = −
∑
i∈D

x>i β − log

∑
j∈Ri

ex
>
j β
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Bells and Whistles

Similar additions as continuous/binary response

minimizeβ ` (β) + λ
∑
|βj |

Trickiest for choosing λ yet.
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Straightforward CV approach

Find CV estimate for each patient

η̂i = x>i β̂
train

Calculate CV predictive partial likelihood

∏
i∈D

e η̂i∑
j∈Ri

e η̂j

Not necessarily a great measure
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