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Prognostic Biomarker for a Continuous Measure

On each of n patients measure

y; - single continuous outcome

X; - p-vector of features

Want to model y; by x; to
» Predict high risk patients (give them additional care)

» Learn the underlying biology
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An Oldie But a Goodie

Linear Regression:

We assume that
yi=Bo+x' B+e

Generally fit by solving:

. 1 2
ming,.8 5 > <Yi — fo — X:'T/B>
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An Oldie But a Goodie

Diabetes data example
n=442, p =10

y; is quantitative measure of disease progression (one year
after baseline)

x; includes age, sex, BMI, avg BP, and six serum
measurements
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An Oldie But a Goodie

Can use n; = BAO + BTX; to predict risk.

Or can stratify
n; > cutoff — high risk

ni < cutoff — low risk

Choosing the cutoff can be tricky
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An Oldie But a Goodie
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An Oldie But a Goodie

Two lIssues

When p ~ n (or p > n), estimate is highly

When true model is far from linear, estimate is
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Working in High Dimensions

For p ~ n we need an often reasonable assumption:

Most of the features are [conditionally] unrelated to response

More formally: In the model
yi =Bo+x' B+e€

Most of the 3; are 0 (or very nearly 0).
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Bet on Sparsity

Is this assumption reasonable?

Often

If not, statistical trickery generally will not help.
Either need more samples

Or more benchwork
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Taking Advantage of Sparsity

How do we fit a sparse model?

Most obvious approach is:

2
minimizegoﬁ Z (y,' — ,80 — X,T/B)

subject to #1{j1B; #0} < d

Unfortunately, this is computationally intractable.
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Taking Advantage of Sparsity

How do we fit a sparse model?
Instead we use the Lasso
minimizeg, 3 Z (y,- — Bo — X; B)

1
subject to Z 1Bj| <
J

This can be solved as fast as (or faster than) least squares.
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Taking Advantage of Sparsity

How does this give us sparsity?

Decreasing c increases sparsity.
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Taking Advantage of Sparsity

Equivalent Penalized Form
2
minimizeﬁoﬁ Z (y; — Bo — X,Tﬂ> + A Z ’ﬁJ’
i J

in constrained form <— )\ in penalized form
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Choosing A

In practice everyone uses

Training/test validation
OR

Cross-validation
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Training/Test Validation

1. Choose candidate A-values: A1,...,Am

N

. Split observations into two groups: training and test

3. For each candidate m < M
3.1 Training Data — Build model with A,

3.2 Test Data —  Apply model to get “predictions”

4. Evaluate the predictions for each model choose the best.
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Training/Test Validation

Evaluating each model

For each A\, we have )7.('") i=1,..., Nest.

1

Simplest evaluation via mean-square-error:

2
performance,, = Z <y,- — f/l-(m))

i€test data
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Training/Test Validation

D Validation Set
- Training Set
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Cross-Validation

[] Vvalidation Set
- Training Set

Round 1 Round 2 Round 3 Round 10
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Cross-Validation

1. Choose candidate A-values: Aq,..., Ay

N

. Split observations into K folds:

3. For each candidate m < M, and each fold kK < K
3.1 Data (minus fold k) — Build model with A,

3.2 Data (fold k) —  Apply model to get “predictions”

o

. Evaluate models (now on all data)
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Making Linear Regression Less Linear

What if the relationship isn't linear?

y = 3sin(x) + ¢
y=2e"+e¢
y=3x>4+2x+1+c¢

If we know the functional form we can still use “linear regression”
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Making Linear Regression Less Linear

)-)

y=3x2+2x+1+e

y = 3sin(x) + €
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Making Linear Regression Less Linear

What if we don’t know the right functional form?
Use a flexible basis expansion:

» polynomial basis

» hockey-stick (/spline) basis

x| = x| (x—=t), || (x—te),
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Making Linear Regression Less Linear
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Making Linear Regression Less Linear

For high dimensional problems, expand each variable

Xl X2 X/J —> Xl Xl X2 X2 XP

and use the Lasso on this expanded problem.

k must be small (~ bish)

Spline basis generally outperforms polynomial
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Prognostic Biomarker for a Binary Measure

On each of n patients measure

¥i - single binary outcome

X; - p-vector of features

More common than continuous response
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Logistic Regression

Relate it back to continuous methods:

For continuous response solve:

2
minimizeﬂﬁo Z (y,- — ﬁo — X,Tﬁ>
i

One interpretation:

If
Yilxi ~ N (X,TB,02>

then maximizing likelihood is equivalent to least squares.

26 /44



Logistic Regression

Relate it back to continuous methods:

For Binary Response, consider

eﬁO"‘X,'Tﬁ
)’i|Xi ~ ber { pi= 1+ eﬁo-l—xl.Tﬁ

Maximizing likelihood is equivalent to minimizing

0(8, Bo) = — Z [)/i (ﬁo +X;TB) — log <1 + eﬂo+XiTB>}

1

This is just logistic regression
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Diabetes Example

g 3
5 <
o 3+

R e ‘

0.0 02 0.4 06 0.8 10
Predicted Score
Additionally:

/221 test-positive  vs /221 test-negative

patients with above median progression
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Penalized Logistic Regression

As in least squares, we can induce sparsity:

minimizeg g, ¢ (3, fo) + A Z 153;
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Penalized Logistic Regression

As in least squares, we can induce sparsity:

minimizeg g, ¢ (3, fo) + A Z 153;

Choosing A is a bit tricky.

We need a measure of the performance of our model
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Choosing A

[J Validation Set
Bl Taining Set

Round 1 Round 2 Round 3 Round 10

Using CV, we get

~ train

=P +x BT
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Choosing A

For each patient we have a CV score

train

T Atrai
BO X, B rain

Now plug-in X

eni
1+ e
And use Cross-Validated Predictive Likelihood as our measure

IiI Ay: 1 —Yi

(Some software equivalently uses the negative log-likelihood)

pi =
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Choosing A

Can also classify patients using p;:

— 1 :p,>05
class; = 0 :p <05
. P .

And use Cross-Validated Misclassification Rate as our measure

proportion (y,- * Ja?s;)
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Example

Prognostic Biomarker for pCR of HER2+ breast cancer patients on
Herceptin + CT

n = 60 patients, with 28 pCR
Expression from p = 5349 genes with non-negligable variance

GEO: GSE50948
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Example

Binomial Deviance
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Some Other Classifiers

Many other classification choices. Noteworthy high dimensional
options:

Diagonal Linear Discriminant Analysis (DLDA)
Nearest Shrunken Centroid (PAM)

Support Vector Machine (SVM)

Find a score based on features: x; — xiTB indicating likelihood of
each class
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DLDA

Assumes:

Gaussian features within class With Pooled Diagonal Covariance:

(xilyi =0) ~ N(uo, D)  (xilyi =1) ~ N(u1,D)

Estimate p1, po, D by maximum likelihood.
Calculate Probability of each class using Bayes and plug-in.
Score is:

)T

ni = D71 (fir — fio) " xi
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PAM

Assumes:

Gaussian features within class With Pooled Diagonal Covariance:

(xilyi =0) ~ N(uo, D)  (xilyi =1) ~ N(u1,D)

Estimate 1, o with shrinkage!

for most j

Score is:

ni = D71 (fir — fio) " xi
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SVM

No statistical model: just discriminant method.

Finds the maximum-margin separating hyperplane

Xz N O

Score is (signed) distance from hyperplane
i =B X+ fo

Can be adapted for incomplete separation
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Prognostic Biomarker for Survival Data

On each of n patients measure

(ti,si) - time, censoring-status

X; - p-vector of features
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Prognostic Biomarker for Survival Data

Hazard is

probability density of failure at time t given survival up to t.

Want to model the hazard as a function of covariates
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Prognostic Biomarker for Survival Data

We will use Cox Proportional Hazards Model

Assumes hazard is

where
h(t) is baseline hazard

eXinB is tilt
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Prognostic Biomarker for Survival Data

Considering Partial Likelihood — likelihood at only event times

h(t) falls out.

.
ei P

LB =1l ==

X.
i€D ZjeR,- €/

Maximizing this is equivalent to minimizing

(B == [x B—log > ev”

ieD JER;
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Bells and Whistles

Similar additions as continuous/binary response

minimizeg £ () + A Z |Bj]

Trickiest for choosing A yet.
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Straightforward CV approach

Find CV estimate for each patient

77’ — XTﬁtram

Calculate CV predictive partial likelihood

H Z_[ER enj

ieD

Not necessarily a great measure
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