High-throughput Testing

Noah Simon and Richard Simon

July 2016

Testing vs Prediction

On each of *n* patients measure

 y_i - single binary outcome

(eg. progression after a year, PCR)

 \mathbf{x}_i - *p*-vector of features

(eg. SNPs, gene expression values)

Want to test for x_j with different means in the two classes; for

- Variable selection in predictive modeling
- Learning underlying biology

Testing for a single feature

For a single *j* calculate two-sample *t*-statistic:

$$T_j = \frac{\bar{x}_j^{(c)} - \bar{x}_j^{(d)}}{s_j},$$

 s_j is your favorite estimate of standard error

Compare to the cutoff of corresponding *t*-distribution

Reject if T_j is sufficiently large

With many tests we need to think more carefully about error

Do we want to limit

probability of even a single false rejection?

familywise error rate

expected proportion of false rejections?

false discovery rate

Controlling familywise error rate

Find t so that

$$P_{H_0}(ext{any} \ T_j > t) \leq \alpha$$

Note.

$$P_{H_0}$$
 (any $T_j > t$) = P_{H_0} (max $T_j > t$)

For independent statistics, this gives us "Sidak's procedure":

Reject H_j if $p_j \leq 1 - (1 - \alpha)^{1/(\#\text{tests})}$

What about under dependence?

eg. What if the expression values are dependent (with unknown structure)?

Conservative Estimate (Bonferroni)

 $P(max T_j > t) \leq (\#tests) * P(T > t)$

Gives us the test:

Reject H_j if $p_j \leq \frac{\alpha}{(\# \text{tests})}$

Improvements

This can be improved using the "Holm" procedure:

- 1. Order the p-values (lowest to highest) $p_{(1)}, p_{(2)}, \ldots$
- 2. Find the first k with

$$p_{(k)} > \frac{\alpha}{(\# \text{tests}) + 1 - k}$$
 vs $\frac{\alpha}{(\# \text{tests})}$

3. reject hypotheses corresponding to $p_{(1)}, \ldots, p_{(k)}$

Less conservative; not much less though

False Discovery Rates

Family-wise Error Rate vs False Discovery Rate

If we call 50 features significant, may not care about 1 or 2 false positives.

Care more about

$$FDP = \frac{\# \text{ False Rejections}}{\# \text{ Total Rejections}}$$

and

FDR = E[FDP].

How many rejections do I expect if I:

Run 100 null tests at 0.05 level?	(5)
How about for 1000 tests?	(50)
How about p tests, at level α ?	(lpha imes p)

What's a reasonable FDR estimate if I:

Expect 5 significant results under a global null, and see 20 (1/4) Run 10000 tests, at level 0.001 and find 20 significant (1/2) Run p tests, at level α and find k significant ($p\alpha/k$)

Under Global Null

t-statistic

With 1000 non-zero δ_j of varying size

p-value

t-statistic

FDR estimate

p-value

Formally

Benjamini and Hochberg (under independence/positive dependence):

Find the maximum order statistic (k) such that

$$\frac{p_{(k)} * (\# \text{tests})}{k} \le \alpha$$

Reject all j with $p_j < p_{(k)}$.

This controls *FDR* at α .

Comparison to Bonferroni

Benjamini and Hochberg:

Find the maximum order statistic (k) such that

$$p_{(k)} \leq \frac{\alpha k}{(\# \text{tests})}$$

Reject all j with $p_j < p_{(k)}$.

As opposed to Bonferroni:

Reject p_i if

$$p_j \leq \frac{\alpha}{(\# \text{tests})}$$

FDR estimate

Formally

Benjamini and Yekutieli (under arbitrary dependence):

Find the maximum order statistic (k) such that

$$\frac{p_{(k)} * (\# \text{tests}) \left[\sum_{i=1}^{(\# \text{tests})} 1/i \right]}{k} \le \alpha$$

Reject all j with $p_j < p_{(k)}$.

This controls *FDR* at α under arbitrary dependence.

note. $\sum_{i=1}^{m} 1/i \approx \log(m)$

Significance Analysis of Microarrays (SAM)

For BH, use $\alpha * (\# \text{tests})$ to estimate number of false positives.

SAM cleverly uses permutations:

For a cutoff t, want to estimate $E[\# \{T_j > t\}]$:

- 1. Permute class labels
- 2. With the new labels calculate a null set of statistics $T_1^{null}, \ldots, T_{(\#\text{tests})}^{null}$
- 3. calculate the number of these null statistics that exceed t.

Run the above many times, and average the number of exceedences.

Estimation

For ease of exposition, assume we have a pooled se, and equal class sizes.

Can think of

$$T_j/\sqrt{n} = \frac{\bar{x}_j^{(1)} - \bar{x}_j^{(2)}}{\sqrt{n}s_j} \sim N\left(\delta_j, 1/n\right),$$

where

$$\delta_j = \frac{\mu_j^{(1)} - \mu_j^{(2)}}{\sigma_j}$$

 δ_j quantifies the separation between the two classes for feature j.

A reasonable measure of practical significance

A bad way to estimate δ_j

Suppose we

- 1. Calculate our many t-statistics
- 2. use Benjamini-Yekutieli procedure (with FDR of 0.01) and find 10 significant features

How do we estimate their corresponding δs ?

How about with $\hat{\delta}_j = T_j / \sqrt{n}$?

NO. This induces a systematic bias.

We have selected the most extreme statistics

While we have adjusted for this in testing if $\delta_j = 0...$

We must also use an adjustment in estimating nonzero δ_j .

One popular correction approach uses Empirical Bayes (Efron)

Assume that $\delta_j \sim g(\cdot)$ for some prior g. We observe $T_j = \delta_j + N(0, 1/n)$ This implies $T_j \sim f(\cdot)$ with $f = \phi * g$ Use a smoother to estimate f by \hat{f} from data Deconvolve \hat{f} and ϕ to get \hat{g} . Calculate bayesian posterior with prior \hat{g} Actually correct from a frequentist viewpoint (compound decision theory)

Assumes independence (small - moderate departures ok in practice)

Decent R support.

Takeaways

Multiplicity Correction is important in testing:

- ► Family-wise Error Rate control (often too conservative)
- ► False Discovery Rate control (more appropriate)

Also need to adjust in effect-size estimation!

Empirical Bayes