High-throughput Testing

Noah Simon and Richard Simon

July 2016

Testing vs Prediction

On each of n patients measure

$$
y_{i} \text { - single binary outcome }
$$

(eg. progression after a year, PCR)
$\mathbf{x}_{i}-p$-vector of features
(eg. SNPs, gene expression values)

Want to test for x_{j} with different means in the two classes; for

- Variable selection in predictive modeling
- Learning underlying biology

Testing for a single feature

For a single j calculate two-sample t-statistic:

$$
T_{j}=\frac{\bar{x}_{j}^{(c)}-\bar{x}_{j}^{(d)}}{s_{j}}
$$

s_{j} is your favorite estimate of standard error
Compare to the cutoff of corresponding t-distribution
Reject if T_{j} is sufficiently large

Testing many features

With many tests we need to think more carefully about error

Do we want to limit

- probability of even a single false rejection?
familywise error rate
- expected proportion of false rejections?
false discovery rate

Controlling familywise error rate

Find t so that

$$
P_{H_{0}}\left(\text { any } \quad T_{j}>t\right) \leq \alpha
$$

Note.

$$
P_{H_{0}}\left(\text { any } T_{j}>t\right)=P_{H_{0}}\left(\max T_{j}>t\right)
$$

For independent statistics, this gives us "Sidak's procedure":
Reject H_{j} if $p_{j} \leq 1-(1-\alpha)^{1 /(\# \text { tests })}$

What about under dependence?

eg. What if the expression values are dependent (with unknown structure)?

Conservative Estimate (Bonferroni)

$$
P\left(\max T_{j}>t\right) \leq(\# \text { tests }) * P(T>t)
$$

Gives us the test:
Reject H_{j} if $p_{j} \leq \frac{\alpha}{(\# \text { tests })}$

Improvements

This can be improved using the "Holm" procedure:

1. Order the p -values (lowest to highest) $p_{(1)}, p_{(2)}, \ldots$
2. Find the first k with

$$
p_{(k)}>\frac{\alpha}{(\# \text { tests })+1-k} \quad\left[\begin{array}{ll}
\text { vs } & \frac{\alpha}{(\# \text { tests })}
\end{array}\right]
$$

3. reject hypotheses corresponding to $p_{(1)}, \ldots, p_{(k)}$

Less conservative; not much less though

False Discovery Rates

Family-wise Error Rate vs False Discovery Rate

If we call 50 features significant, may not care about 1 or 2 false positives.

Care more about

$$
F D P=\frac{\# \text { False Rejections }}{\# \text { Total Rejections }}
$$

and

$$
F D R=E[F D P] .
$$

Estimating FDR

How many rejections do I expect if I :

Run 100 null tests at 0.05 level?
How about for 1000 tests?
How about p tests, at level α ?

Estimating FDR

What's a reasonable FDR estimate if I:

Expect 5 significant results under a global null, and see 20
Run 10000 tests, at level 0.001 and find 20 significant
Run p tests, at level α and find k significant

Under Global Null

t-statistic Histogram

With 1000 non-zero δ_{j} of varying size

t-statistic Histogram

FDR estimate

Formally

Benjamini and Hochberg (under independence/positive dependence):

Find the maximum order statistic (k) such that

$$
\frac{p_{(k)} *(\# \text { tests })}{k} \leq \alpha
$$

Reject all j with $p_{j}<p_{(k)}$.
This controls $F D R$ at α.

Comparison to Bonferroni

Benjamini and Hochberg:
Find the maximum order statistic (k) such that

$$
p_{(k)} \leq \frac{\alpha k}{(\# \text { tests })}
$$

Reject all j with $p_{j}<p_{(k)}$.
As opposed to Bonferroni:
Reject p_{j} if

$$
p_{j} \leq \frac{\alpha}{(\# \text { tests })}
$$

FDR estimate

Formally

Benjamini and Yekutieli (under arbitrary dependence):
Find the maximum order statistic (k) such that

$$
\frac{p_{(k)} *(\# \text { tests })\left[\sum_{i=1}^{(\# \text { tests })} 1 / i\right]}{k} \leq \alpha
$$

Reject all j with $p_{j}<p_{(k)}$.
This controls FDR at α under arbitrary dependence.
note. $\sum_{i=1}^{m} 1 / i \approx \log (m)$

Significance Analysis of Microarrays (SAM)

For BH , use $\alpha *$ (\#tests) to estimate number of false positives.
SAM cleverly uses permutations:
For a cutoff t, want to estimate $\mathrm{E}\left[\#\left\{T_{j}>t\right\}\right]$:

1. Permute class labels
2. With the new labels calculate a null set of statistics $T_{1}^{\text {null }}, \ldots, T_{\text {(\#tests) }}^{\text {null }}$
3. calculate the number of these null statistics that exceed t.

Run the above many times, and average the number of exceedences.

Estimation

For ease of exposition, assume we have a pooled se, and equal class sizes.

Can think of

$$
T_{j} / \sqrt{n}=\frac{\bar{x}_{j}^{(1)}-\bar{x}_{j}^{(2)}}{\sqrt{n} s_{j}} \dot{\sim} N\left(\delta_{j}, 1 / n\right)
$$

where

$$
\delta_{j}=\frac{\mu_{j}^{(1)}-\mu_{j}^{(2)}}{\sigma_{j}}
$$

δ_{j} quantifies the separation between the two classes for feature j.
A reasonable measure of practical significance

A bad way to estimate δ_{j}

Suppose we

1. Calculate our many t-statistics
2. use Benjamini-Yekutieli procedure (with FDR of 0.01) and find 10 significant features

How do we estimate their corresponding δs ?
How about with $\hat{\delta}_{j}=T_{j} / \sqrt{n}$?
NO. This induces a systematic bias.

Selection Bias / Multiplicity

We have selected the most extreme statistics
While we have adjusted for this in testing if $\delta_{j}=0 \ldots$
We must also use an adjustment in estimating nonzero δ_{j}.

Winner's Curse

Correcting Selection Bias

One popular correction approach uses Empirical Bayes (Efron)
Assume that $\delta_{j} \sim g(\cdot)$ for some prior g.
We observe $T_{j}=\delta_{j}+N(0,1 / n)$
This implies $T_{j} \sim f(\cdot)$ with $f=\phi * g$
Use a smoother to estimate f by \hat{f} from data
Deconvolve \hat{f} and ϕ to get \hat{g}.
Calculate bayesian posterior with prior \hat{g}

Empirical Bayes Correction

Actually correct from a frequentist viewpoint (compound decision theory)

Assumes independence (small - moderate departures ok in practice)
Decent R support.

Takeaways

Multiplicity Correction is important in testing:

- Family-wise Error Rate control (often too conservative)
- False Discovery Rate control (more appropriate)

Also need to adjust in effect-size estimation!

- Empirical Bayes

