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Covariate Adjustment in Randomized Trials: A Survey

Pocock et al. (2002) surveyed 50 randomized clinical trial reports.
Findings:

1 36 used covariate adjustment.

2 12 reports emphasized adjusted over unadjusted analysis.

“The statistical properties of covariate-adjustment are quite
complex and often poorly understood, and there remains confusion
as to what is an appropriate statistical strategy.”

Saquib, Saquib, Ioannidis (2013) surveyed 200 randomized clinical
trial reports.
42% used some form of covariate adjustment.
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Covariate Adjustment in Randomized Trials: EMA
Guideline

2015 Guideline by the the European Medicines Agency:

In case of a strong or moderate association between a
baseline covariate(s) and the primary outcome measure,
adjustment for such covariate(s) generally improves the
efficiency of the analysis and avoids conditional bias from
chance covariate imbalance.

We address the following challenge: there are multiple statistical
methods for adjusting for baseline variables, and little guidance on
which to use.
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Goal of Covariate Adjustment

Population Average Treatment Effect is a contrast between
mean outcome if all were assigned to treatment versus all
assigned to control. (Intention To Treat)

Goal: Estimation of Average Treatment Effect in a
Randomized Trial.
If baseline variables prognostic for outcome, can improve
precision compared to unadjusted estimator.

We require estimators to be consistent (i.e., converge to
Average Treatment Effect) without making any parametric
model assumptions.

Covariate adjustment has potential to substantially improve
precision (shorter CI’s), reduce sample size, and reduce trial
duration.
Intuition: Gain precision by adjusting for chance imbalances in
prognostic baseline variables between study arms.

Michael Rosenblum, Johns Hopkins University Module 1: Leveraging Prognostic Baseline Variables



Definition: Population Average Treatment Effect

Primary outcome Y , study arm A, and baseline variable vector B.
Population mean outcome under treatment and control:
µ1 = E (Y |A = 1) and µ0 = E (Y |A = 0).
Population Average Treatment Effect: contrast between µ1, µ0.

Examples of Population Average Treatment Effects:

If continuous outcome, mean difference: µ1 − µ0.

If binary outcome, then
µ1 = P(Y = 1|A = 1), µ0 = P(Y = 1|A = 0).

risk difference: µ1 − µ0.
relative risk: µ1/µ0.
log odds ratio (OR): log [{µ1/(1− µ1)} / {µ0/(1− µ0)}] .
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NOT the Goals of Covariate Adjustment

Not: Estimation of Conditional (within stratum of B)
Treatment Effects, e.g., E (Y |A = 1,B)− E (Y |A = 0,B).

Not: Finding subpopulations who benefit.
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We Do Not Make Any Parametric Model Assumptions

Population distribution of Y given A,B may differ arbitrarily
from, e.g., linear regr. model E (Y |A,B) = β0 + β1A + β2B.
True relationships among B,A,Y may be much more complex
than this.
We require consistent estimators under arbitrary model
misspecification.

Hypothetical Example of Misspecification:
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Assumptions

We assume:

Treatment Randomized (A independent of B) by design.

Participant data vectors (Bi ,Ai ,Yi ), for i = 1 to n,
independent, identically distributed draws from unknown
distribution P.

These assumptions (or similar) are needed for standard, unadjusted
estimator to be consistent (converge to average treatment effect).

No assumptions on the relationship among B,A,Y except
randomization (A,B independent).
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Example: ANCOVA estimator

For continuous outcome Y :

Fit linear regression model E (Y |A,B) = β0 + β1A + β2B.

Estimator of Average Treatment Effect
E (Y |A = 1)− E (Y |A = 0) is β̂1.

Some remarkable properties of ANCOVA estimator β̂1 (Yang and
Tsiatis, 2001):

Consistent (converges to average treatment effect) under
arbitrary model misspecification.

Equal or better precision (asymptotically) than unadjusted
estimator (difference between sample means).
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Example: Planning Alzheimer’s Disease Trial

Problem: Confirmatory trial of new treatment for preventing
progression from mild cognitive impairment to Alzheimer’s Disease
(PI: Michela Gallagher).

Primary Outcome Y : Change in Clinical Dementia Rating
(CDR) at 2 years vs. baseline.

Study arms A: new drug vs. placebo.

Baseline variables B: CDR, ApoE4 genotype, concurrent
medications, brain structure measurements.

Goal: Estimate Avg. Treatment Effect E (Y |A = 1)− E (Y |A = 0).
Simulated trials based on resampling participants from Alzheimer’s
Disease Neuroimaging Initiative (ADNI).

13% precision gain from adjusted estimator compared to
unadjusted.

Equivalent to 12% (1− 1
1.13) reduction in required sample size.
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Intuition: How does Covariate Adjustment Work?

For continuous outcome Y :

Fit linear regression model E (Y |A,B) = β0 + β1A + β2B.

Estimator of Average Treatment Effect
E (Y |A = 1)− E (Y |A = 0) is β̂1.

β̂1 consistent under arbitrary model misspecification, and equal or
better precision (asymptotically) than unadjusted estimator.

Intuition: Adjusts for chance imbalances in prognostic baseline
variables between study arms.

Consider simpler covariate adjusted estimator if B single
dichotomous variable:
First compute difference between sample means within each
stratum of B; then combine proportional to overall prevalence of B.

Michael Rosenblum, Johns Hopkins University Module 1: Leveraging Prognostic Baseline Variables



Covariate Adjustment with Binary Outcomes

For dichotomous Y :

Fit logistic regression model for
P(Y = 1|A,B) = logit−1(β0 + β1A + β2B).

Compute standardized estimators for treatment specific means
µ0, µ1:

µ̂0 = 1
n

∑n
i=1 logit−1(β̂0 + β̂2Bi )

µ̂1 = 1
n

∑n
i=1 logit−1(β̂0 + β̂1 + β̂2Bi )

Estimator is constrast of interest between µ1, µ0, e.g., risk
difference µ̂1 − µ̂0.

Estimator µ̂1 − µ̂0 consistent under arbitrary model
misspecification (Moore and van der Laan, 2009).
Same holds for log OR: log [{µ̂1/(1− µ̂1)} / {µ̂0/(1− µ̂0)}].

Note: estimated coefficent β̂1 not consistent for (unconditional)
log OR, even when model correct.
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Example: Planning MISTIE Phase III Stroke Trial

Problem: Confirmatory trial of new surgical treatment for
intracerebral hemorrhage (PI: Daniel Hanley).

Primary Outcome Y : modified Rankin Scale ≤ 3 at 180 days
from enrollment.

Study arms A: surgery vs. standard of care.

Baseline variables B: NIH Stroke Scale, clot volume, and
location.

Goal: Estimate Avg. Treatment Effect
P(Y = 1|A = 1)− P(Y = 1|A = 0).
Simulated trials based on resampling participants from MISTIE
Phase II data.

38% precision gain from adjusted estimator compared to
unadjusted.

Equivalent to 28% (1− 1
1.38) reduction in required sample size.
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Improved Covariate Adjustment with Binary Outcomes

For dichotomous Y :

Fit logistic regression model for
P(Y = 1|A,B) = logit−1(β0 + β1A + β2B).

Compute standardized estimators for treatment specific means
µ0, µ1:

µ̂0 = 1
n

∑n
i=1 logit−1(β̂0 + β̂2Bi )

µ̂1 = 1
n

∑n
i=1 logit−1(β̂0 + β̂1 + β̂2Bi )

Estimator of risk difference is µ̂1 − µ̂0.

Estimator consistent under arbitrary model misspecification, but
not necessarily as or more precise as unadjusted estimator.

Colantuoni and Rosenblum (2015) add step to above estimator
that guarantees consistent and as or more precise than unadjusted.
It is special case of estimators from Rotnitzky et al. (2012), and
related to Robins (2007). Estimator of Tan (2010) has same
property.
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Handling Missing Outcome Data

Unless outcome missing completely at random (MCAR),
unadjusted estimator inconsistent.

Easy to modify covariate adjusted estimator to also adjust for
missing outcomes.

Under missing at random assumption (MAR, i.e., missingness
independent of potential outcome given basline variables),
covariate adjusted estimator that also models missingness is
consistent if this model or outcome regression model correct.

In simulated trials based on MISTIE Phase II data.

Under MCAR, gain precision.

Under MAR, Bias and MSE reduction.
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Covariate Adjustment

Prespecify method + variables. Also report unadjusted.

Best when combined with information monitoring (can get
sample size reduction even under null).

Efficiency gains (as percent) similar for small and large trials.
(May be most important in large trials.)

Caution: not too many variables (depends on sample size).

Caution: when estimating standard error and/or constructing
CI, use bootstrap or sandwich estimator.

Can lose efficiency (at small sample size) if all baseline
variables pure noise, but losses small.
In simulations, 2% loss at sample size 100; < 1% loss at
sample size 1000 (Colantuoni and Rosenblum 2015).

Recommendation: can try out diagnostic in our paper and if
get substantial signal that baseline variables prognostic,
consider covariate adjustment.
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