
Section II: developing a marker-based treatment rule

I Treatment decision rule

I Optimal Treatment Regime

I Estimating optimal treatment regime

I Q-learning (Regression modeling)

I A-learning (Advantage learning)

I Direct optimization
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Treatment Decision Rule

Assume: There is a clinical outcome by which treatment benefit
can be assessed

I Survival time, CD4 count, indicator of no myocardial
infarction within 30 days, . . .

I Lower outcomes are better

Intuitively: Rules should depend on characteristics (variables ,
covariates ) that exhibit a qualitative interaction with treatment

I Tailoring variables/ treatment selection biomarker
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Statistical Framework

Simplest setting: A single decision with two treatment options

Observed data: (Di ,Xi ,Ai ), i = 1, . . . , n, independently and
identically distributed (iid)

I Di outcome, Xi baseline covariates, Ai = 0, 1 treatment
received

Treatment regime: An individualized treatment rule

I A function d : X → {0, 1}
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Simple example

Which treatment to give patients who present with nonpsychotic
Chronic Major Depressive Disorder ?

I Options: Nefazodone (Drug) or Drug + Cognitive Behavioral
Therapy (CBT)

I Data: 681 patients in the Nefazodone-CBASP clinical trial
(Keller et al., 2000)

I Available information: 50 prognostic variables, e.g., age,
baseline depression score

I Outcome: Hamilton Rating Scale for Depression

Keller et al. (NEJM 2000)
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Simple example
A regime example:

12 E. B. LABER AND Y.Q. ZHAO

The data we use in this analysis comprises 215 subjects randomized to nefazodone, 212 ran-380

domized to cognitive behavioral therapy, and 220 randomized to both. The primary outcome
for the study was the Hamilton Rating Scale for Depression, which we use as our response. To
match our development which assumes higher values are better, we subtract this score from 50.
We consider 22 potential covariates for tailoring treatment, listed in the Supplementary Material.
Figure 3 shows the decision rule estimated by minimum impurity decision assignment. The esti-385

mated decision rule assigns nefazodone and cognitive behavioral therapy to patients with a high
mood disturbance, high sleep disturbance, or high baseline depression score. Thus, the estimated
decision rule recommends intensive treatment, nefazodone and cognitive behavioral therapy, to
patients presenting with more severe symptoms.

The marginal mean outcome of the learned decision rule, estimated using ten-fold cross-390

validation, is 38.8, which turns out to be the marginal mean outcome of assigning all subjects
to the more intensive nefazodone and cognitive behavioral therapy. A linear decision rule fit us-
ing ridge regression tuned using generalized cross-validation assigns all subjects to nefazodone
and cognitive behavioral therapy. Thus, the difference between the learned decision rule using
minimum impurity decision assignments and assigning all patients to nefazodone and cognitive395

behavioral therapy is not significant. Hence, for reasons of cost and patient burden, one should
prefer the rule learned by minimum impurity decision assignments which assigns the drug alone
to 18% of patients. Assigning all patients to nefazodone has an estimated marginal mean out-
come of only 33.9, suggesting that the minimum impurity decision assignments estimator has
effectively identified individuals in the population who are unlikely to benefit from augmenting400

nefazodone with cognitive behavioral therapy.

MOOD � 22

SLEEPD2 � 5

No

Drug + CBT (36%)

Yes

HAMD � 26

No

Drug + CBT (30%)

Yes

Drug + CBT (16%)

Yes

Drug (18%)

No

Fig. 3. Learned decision rule for nafazodone study.
Patients with high mood disturbance (MOOD), poor
sleep (SLEEPD2), or more severe depression symptoms
(HAMD) are assigned nefazodone and cognitive behav-
ioral therapy (Drug + CBT), others are assigned nefa-

zodone.
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Simple example

I Even simpler example: If MOOD ≥ 22 ⇒ Drug + CBT;
otherwise ⇒ Drug

I Mathematically: The formal rule is

d(MOOD) = I (MOOD > 22)

I Optimal regime : If followed by all patients in the population,
would lead to smallest expected outcome among all regimes in
D
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Optimal Treatment Regime
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Considerations

I Identify the subset that are good tailoring variables

I Regime d(X ): a function of X

I There are many possible regimes d :

D: class of all possible treatment regimes

I Can we find the optimal treatment regime in D?

I Optimal regime : If followed by all patients in the population,
would lead to smallest expected outcome among all regimes in
D
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Potential Outcomes

Single decision: Possible treatment options a ∈ {0, 1}

I For a randomly chosen patient from the population, define the
random variable D(a) = the outcome the patient would
experience if s/he were to receive treatment option a

I “Potential outcome ”

I E.g., D(1)= the outcome a patient would have if s/he were
given treatment 1, and similarly for D(0)
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Optimal regime

I Potential outcome for a regime: D(d) = the outcome a
patient would have if s/he received treatment according to a
regime d ∈ D

I E.g., if the patient has information X

D(d) = D(1)I{d(X ) = 1}+ D(0)I{d(X ) = 0}}

I E{D(d)|X = x} is the expected outcome for a patient with
information x if s/he were to receive treatment according to
regime d ∈ D.

I E{D(d)} = E [E{D(d)|X = x}] is the expected outcome for
the population if all patients were to receive treatment
according to regime d ∈ D.
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Optimal regime

I The optimal treatment regime d∗ ∈ D minimizes the expected
outcome

d∗ = argmin
d∈D

E{D(d)}

I That is, E{D(d∗)} ≤ E{D(d)} for all d ∈ D

I Also, E{D(d∗)|X = x} ≤ E{D(d)|X = x} for all d ∈ D and
for all patient subgroups defined by x .
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Identifying the optimal treatment regime

I Discover optimal regimes based on data.

I The optimal regime is defined in terms of potential outcomes,
not the observed data

I Possible under certain assumptions
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Potential Outcomes

Positivity: P(A = a|X = x) strictly positive for all x , i.e.,
0 < P(A = 1|X ) < 1 almost surely, usually satisfied in a
randomized trial

Consistency: D(a) = D whenever treatment a is actually
received, usually satisfied in a randomized trial

No unmeasured confounders: Assume that

D(0),D(1)q A|X

I X contains all information used to assign treatments in the
data

I Automatically satisfied for data from a randomized trial
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Potential Outcomes

I Implies that

E{D(1)} = E [E{D(1)|X}]
= E [E{D(1)|A = 1,X}]
= E{E (D|A = 1,X ) }

and similarly for E{D(0)}
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Optimal Regime

I Under certain assumptions (positivity, consistency and no
unmeasured confounders)

E{D(d)} = E [E{D(d)|X}]
= E [E (D(1)|A = 1,X )I{d(X ) = 1}

+E (D(0)|A = 0,X )I{d(X ) = 0}]
= E [E (D|A = 1,X )I{d(X ) = 1}

+E (D|A = 0,X )I{d(X ) = 0}].

I Optimal treatment regime can be derived in terms of observed
outcomes.

2.19



Optimal Regime

I Optimal Individualized Treatment Rule:

E (D|X ,A = 1) ≤ E (D|X ,A = 0)⇒ d∗(X ) = 1

E (D|X ,A = 1) > E (D|X ,A = 0)⇒ d∗(X ) = 0

If E (D|X ,A) were known, we could find d∗.

I Problem: E (D|X ,A) is unknown.
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Estimating optimal treatment regime
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Q-learning (Regression modeling)

I If we had a sample of data (Xi ,Ai ,Di ), i = 1, . . . , n, we can
posit a regression model

E (D|A,X ) = µ(A,X ;β)

and estimate β̂ using e.g. least squares/logistic regression/cox
regression.

I The estimator for the optimal treatment regime

d̂n(x) = I{µ(1, x ; β̂n) ≥ µ(0, x ; β̂n)},

I Ê (D(d)) = Ê [Ê (D|A = 1,X ,D(d) = 1)I (D(d) =
1) + Ê (D|A = 0,X ,D(d) = 0)I (D(d) = 0)]
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Q-learning (Regression modeling)

I Estimate E{D(d)} by

n−1
n∑

i=1

[µ(1,Xi , β̂n)d(Xi ) + µ(0,Xi , β̂n){1− d(Xi )}]

I Estimate for E{D(d∗)}

n−1
n∑

i=1

[µ(1,Xi , β̂n)d̂n(Xi ) + µ(0,Xi , β̂n){1− d̂n(Xi )}],

where d∗ is estimated by d̂n.

I µ(A,X ;β) may be misspecified.
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A-learning (Advantage learning)

I Advantage learning (A-learning) is a more robust method for
estimating the optimal treatment regime

I One does not need to know the entire function E (D|A,X ).

I It suffices to only consider

∆(X ) = E (D|A = 0,X )− E (D|A = 1,X )

I d∗(x) = I{∆(x) ≥ 0}.
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Advantage function

I A function of A,X

I Advantage: the increase in the expected response had the
individual received the optimal treatment

I ∆(X ) < 0, d∗(X ) = 0
I A = 0, no advantage
I A = 1, the advantage in the mean response would be ∆(X )

I ∆(X ) ≥ 0, d∗(X ) = 1
I A = 1, no advantage
I A = 0, the advantage in the mean response would be −∆(X )

I Advantage function: −∆(X )[I{∆(X ) ≥ 0} − A]

Murphy (JRSSB, 2003)
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Advantage learning

I E{D(d∗)} = E{E (D −∆(X )[I{∆(X ) ≥ 0} − A]|X )}.

I Consider models for ∆(x),∆(x ;ψ)

I Estimate E{Y (d∗)} by

n−1
n∑

i=1

(Di −∆(Xi ; ψ̂n)[I{∆(Xi ; ψ̂n) ≥ 0} − Ai ]),

ψ̂n can be estimated using semiparametric techniques.
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Direct Optimization: Classification Perspective

Intuition: Classification
Given a new observation Xnew, predict the class label d∗,new.

I No direct information on the true class labels, d∗.

I Can we assign the right treatment based on the observed
information?

Patients,
X

Small Outcomes

Large Outcomes

The
same

treatment

The
opposite
treatment

Xnew Similar to X

Xnew Similar to X

1
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Directly estimating the Optimal Regime

Thoughts: Minimize a “good ” estimator for E{D(d)}

I π(X ) = P(A = 1|X ) is the propensity score for treatment

I π(X ) known for randomized study; Can also be estimated
using the data (Ai ,Xi ), i = 1, . . . , n, e.g., logistic regression
π(X ; γ) and estimate γ by γ̂.

I The propensity of receiving treatment consistent with d(X )

P{d(X )|X} = P(A = d(X )|X )

= E [Ad(X ) + (1− A){1− d(X )}|X ]

= π(X )d(X ) + {1− π(X )}{1− d(X )}.
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Directly estimating the Optimal Regime

Identify estimators for E{D(d)}:

I Inverse probability weighted estimator

IPWE (d) = n−1
n∑

i=1

I{Ai = d(Xi )}Di

P{d(Xi )|X , γ̂}
. (1)

I Consistent for E{D(d)} if π(X ; γ), and hence P{d(Xi )|X , γ̂}
is correctly specified
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Outcome Weighted Learning (OWL)

I Minimize IPWE (d) (1)

I For any rule d , 2d(X )− 1 = sign{f (X )} for some function f .

I Hence, minimize:

n−1
n∑

i=1

−Di

P{d(Xi )|X , γ̂}
I{(2Ai − 1) 6= sign(f (Xi )}.

I Can be treated as recoding A = {−1, 1}
Zhao et al. (JASA 2012)
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Convex Surrogate Losses for Computation Relaxation

Computation challenges: non-convexity and discontinuity of 0-1
loss.

Replace 0-1 loss by convex surrogate loss

I Hinge loss, φ(t) = max(1− t, 0).

I Exponential loss, φ(t) = e−t .

I Logistic loss, φ(t) = log(1 + e−t).

I Squared hinge loss, φ(t) = {max(1− t, 0)}2.
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Convex Surrogate Losses
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Outcome Weighted Learning

Objective Function: Regularization Framework

min
f

1

n

n∑
i=1

−Di

P{d(Xi )|X , γ̂}
φ{(2Ai − 1)f (Xi ))}+ λn‖f ‖2. (2)

I ‖f ‖ is some norm for f , and λn controls the severity of the
penalty on the functions.

I A linear decision rule: f (X ) = XTβ + β0, with ‖f ‖ as the
Euclidean norm of β.
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Outcome Weighted Learning

I Estimated individualized treatment rule:

d̂n(X ) = sign(f̂n(X )),

where f̂n is the solution to (2).

I Variable selection is possible, e.g., change ‖f ‖2 to ‖f ‖.
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Efficient Augmentation and Relaxation Learning

I Doubly robust augmented inverse probability weighted
estimator

AIPWE (d) = n−1
n∑

i=1

{
I{Ai = d(Xi )}Di

P{d(Xi )|X , γ̂}
(3)

− I{Ai = d(Xi )} − P{d(Xi |X , γ̂}
P{d(Xi )|X , γ̂}

m(Xi ; β̂)

}
,

where

m(X ;β) = µ(1,X ;β)d(X ) + µ(0,X ;β){1− d(X )}

is a model for E{D(d)|X} and µ(A,X ;β) is a model for
E (D|A,X )

I Consistent if either π(X ; γ) or µ(A,X ;β) is correct
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Efficient Augmentation and Relaxation Learning

I Outcome weighted learning is a special case with m(Xi ; β̂) ≡ 0

I AIPWE (d) is more efficient than IPWE (d) for estimating
E{D(d)}

I A similar solution: replacing 0-1 loss with a convex loss
function
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Direct optimization: Optimal Restricted Regime

A class of regimes

d(X , β) = I{µ(1,X ;β) > µ(0,X ;β)},

indexed by β,

I E.g.,

E (D|A,X ) = exp{1 + X1 + 2X2 + 3X1X2 + A(1− 2X1 + X2)}

⇒ d∗(X ) = I (X2 ≥ 2X1 − 1)

Zhang et al. (Biometrics 2012)
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Direct optimization: Optimal Restricted Regime

I Posit

µ(A,X ;β) = β0 + β1X1 + β2X2 + A(β3 + β4X1 + β5X2)

I The regimes I{µ(1,X ;β) > µ(0,X ;β)} define a class Dη
with elements

I (X2 ≥ η1X1+η0) or I (X2 ≤ η1X1+η0), η0 = −β3/β5, η1 = −β4/β5

depending on the sign of β5

I The optimal regime in this case is contained in Dη

2.38



Optimal Restricted Regime

Consider directly regimes of the form Dη = {d(X , η)} indexed by η

I Write dη(X ) = d(X , η), e.g., d(X , η) = I (X2 ≤ η1X1 + η0)

I Defined based on clinical practice, cost, and interpretability,
without reference to a regression model.

I d∗ may or may not be in Dη but still of interest

I Optimal restricted regime d∗η (X ) = d(X , η∗),

η∗ = argmin
η

E{D(dη)}

I Estimate the optimal restricted regime by estimating η∗
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Estimating the Optimal Restricted Regime

I Minimize a “good ” estimator for E{D(dη)} in η:

I Estimators η̂ for η∗ obtained by minimizing IPWE (dη) or
AIPWE (dη) in η

I Non-smooth functions of η; must use suitable optimization
techniques (rgenoud package in R)

I Estimators for E{D(dη)}

IPWE (dη̂ipwe ) or AIPWE (dη̂aipwe )

Can calculate standard errors
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Depression Data

I Compare drug therapy (A = 0) with drug + behavioral
therapy (A = 1)

I Five covariates: Age, Gender, HAMABase (pre-treatment
total Hamilton Anxiety Rating Scale score), Sleep (sleep
disturbance score), Mood (mood cognition score)

I Response: 24-item Hamilton Rating Scale for Depression

I Number of patients: 436
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Analyzing Depression Data

I Q-learning: D ∼ 1 + X + A + XA

I Efficient Augmentation and Relaxation Learning:
I Logistic loss: φ(t) = log(1 + e−t)
I Outcome model: D ∼ 1 + X + A + XA
I Propensity model: A ∼ X
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Results

I Q-learning: d̂(X ) = I (−0.83 + 0.01Age − 0.55Gender +
0.06HAMABase + 0.01Sleep − 0.04Mood < 0).

I Efficient Augmentation and Relaxation Learning:
d̂(X ) = I (−0.94 + 0.00Age − 0.33Gender +
0.05HAMABase + 0.02Sleep − 0.01Mood < 0).
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