Section Il: developing a marker-based treatment rule

» Treatment decision rule
» Optimal Treatment Regime
» Estimating optimal treatment regime

» Q-learning (Regression modeling)
» A-learning (Advantage learning)

» Direct optimization



Treatment Decision Rule



Treatment Decision Rule

Assume: There is a clinical outcome by which treatment benefit
can be assessed

» Survival time, CD4 count, indicator of no myocardial
infarction within 30 days, ...

» Lower outcomes are better

Intuitively: Rules should depend on characteristics (variables,
covariates ) that exhibit a qualitative interaction with treatment

» Tailoring variables/ treatment selection biomarker



Tailoring Variables

RTO
o
£
<]
3
=
o
o
j=}
o
2 TRT 1
TRTO
TRT
[ 1
No Mutation Mutation

2.4



Tailoring Variables
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Statistical Framework

Simplest setting: A single decision with two treatment options
Observed data: (D;, X;, A;), i =1,...,n, independently and
identically distributed (iid)

» D; outcome, X; baseline covariates, A; = 0,1 treatment
received

Treatment regime: An individualized treatment rule
» A function d : X — {0, 1}



Simple example

Which treatment to give patients who present with nonpsychotic
Chronic Major Depressive Disorder?

» Options: Nefazodone (Drug) or Drug + Cognitive Behavioral
Therapy (CBT)

» Data: 681 patients in the Nefazodone-CBASP clinical trial
(Keller et al., 2000)

> Available information: 50 prognostic variables, e.g., age,
baseline depression score

» Qutcome: Hamilton Rating Scale for Depression

Keller et al. (NEJM 2000)
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Simple example

A regime example:

MOOD > 22
No Yes
SLEEPD2 > 5 Drug + CBT (36%)
No Yes
HAMD > 26 Drug + CBT (30%)

No Yes

Drug (18%) Drug + CBT (16%)



Simple example

» Even simpler example: If MOOD > 22 = Drug + CBT,;
otherwise = Drug

» Mathematically: The formal rule is

d(MOOD) = /(MOOD > 22)

» Optimal regime: If followed by all patients in the population,
would lead to smallest expected outcome among all regimes in

D
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Simple example

» Even simpler example: If MOOD > 22 = Drug + CBT;
otherwise = Drug

> Mathematically: The formal rule is

d(MOOD) = /(MOOD > 22)



Optimal Treatment Regime



Considerations

v

Identify the subset that are good tailoring variables

v

Regime d(X): a function of X

v

There are many possible regimes d:

D: class of all possible treatment regimes

v

Can we find the optimal treatment regime in D?

v

Optimal regime: If followed by all patients in the population,
would lead to smallest expected outcome among all regimes in
D



Potential Outcomes

Single decision: Possible treatment options a € {0, 1}

» For a randomly chosen patient from the population, define the
random variable D(a) = the outcome the patient would
experience if s/he were to receive treatment option a

» “Potential outcome”

» E.g., D(1)= the outcome a patient would have if s/he were
given treatment 1, and similarly for D(0)



Optimal regime

» Potential outcome for a regime: D(d) = the outcome a
patient would have if s/he received treatment according to a
regime d € D

» E.g., if the patient has information X

D(d) = D(1)I{d(X) = 1} + D(0)I{d(X) = 0}}

» E{D(d)|X = x} is the expected outcome for a patient with
information x if s/he were to receive treatment according to
regime d € D.

» E{D(d)} = E[E{D(d)|X = x}] is the expected outcome for
the population if all patients were to receive treatment
according to regime d € D.



Optimal regime

» The optimal treatment regime d* € D minimizes the expected
outcome

d* = argmin E{D(d)}
deD

» Thatis, E{D(d*)} < E{D(d)} for all d € D

» Also, E{D(d*)|X = x} < E{D(d)|X = x} for all d € D and
for all patient subgroups defined by x.



|dentifying the optimal treatment regime

» Discover optimal regimes based on data.

» The optimal regime is defined in terms of potential outcomes,
not the observed data

» Possible under certain assumptions
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Potential Outcomes
Positivity: P(A = a|X = x) strictly positive for all x, i.e.,
0 < P(A =1|X) < 1 almost surely, usually satisfied in a

randomized trial

Consistency: D(a) = D whenever treatment a is actually
received, usually satisfied in a randomized trial

No unmeasured confounders: Assume that

D(0), D(1) I1 A|X

» X contains all information used to assign treatments in the
data

» Automatically satisfied for data from a randomized trial



Potential Outcomes

» Implies that

E{D(1)} = E[E{D(1)|X}]
= E[E{D(1)|A=1,X}]
= E{E(DIA=1,X)}

and similarly for E{D(0)}
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Optimal Regime

» Under certain assumptions (positivity, consistency and no
unmeasured confounders)

E{D(d)} = E[E{D(d)IX}]
= E[E(D(1)|A=1,X){d(X) =1}
+E(D(0)|IA =0, X)/{d(X) = 0}]
= E[E(D|A=1,X)I{d(X)=1
+E(D|A =0, X)I{d(X) = 0}].

» Optimal treatment regime can be derived in terms of observed
outcomes.



Optimal Regime

» Optimal Individualized Treatment Rule:

E(D|X,A=1) < E(D|X,A=0)= d*(X)

1
E(D|X,A=1)> E(D|X,A=0)= d*(X)=0

If E(D|X,A) were known, we could find d*.

» Problem: E(D|X, A) is unknown.



Estimating optimal treatment regime



Q-learning (Regression modeling)
» If we had a sample of data (X;, A;,D;),i =1,...,n, we can
posit a regression model
E(DIA, X) = (A, X; B)

and estimate (3 using e.g. least squares/logistic regression/cox
regression.

» The estimator for the optimal treatment regime

dn(x) = 1{(L, x; Bn) = (0, x; Bn)},

D(d) =

» E(D(d)) = EI[E(D|A=1,X,D(d) =1)I g)]

1)+ E(D|A=0,X,D(d) = 0)/(D(d)



Q-learning (Regression modeling)
» Estimate E{D(d)} by

n Y (L, X, Ba)d(X0) + (0, Xi, Ba){1 — d(Xi)}]
i=1

» Estimate for E{D(d*)}
I’7_1 Z[/.L(]., Xi, Bn)a\n(X/) + M(Oa Xi7 Bn){l - a\”(Xl)}]7
i=1

where d* is estimated by d.

» u(A, X; 3) may be misspecified.



A-learning (Advantage learning)

v

Advantage learning (A-learning) is a more robust method for
estimating the optimal treatment regime

v

One does not need to know the entire function E(D|A, X).

v

It suffices to only consider

A(X) = E(D|A=0,X) — E(D|A=1,X)

v

d*(x) = {A(x) > 0}.



Advantage function

» A function of A, X

v

Advantage: the increase in the expected response had the
individual received the optimal treatment

v

A(X) <0, d*(X) =0
» A = 0, no advantage
» A =1, the advantage in the mean response would be A(X)

v

A(X) >0, d"(X)=1
» A =1, no advantage
» A =0, the advantage in the mean response would be —A(X)

v

Advantage function: —A(X)[/{A(X) > 0} — A

Murphy (JRSSB, 2003)



Advantage learning

> E{D(d")} = E{E(D — A(X)[H{A(X) = 0} — Al X)}.
» Consider models for A(x), A(x; 1)

» Estimate E{Y(d*)} by

n~t Y (D = AX; Pa)H{A(XG $n) = 0} = A)),

i=1

12,, can be estimated using semiparametric techniques.



Direct Optimization: Classification Perspective

Intuition: Classification

Given a new observation XN&W

, predict the class label d*MeW,

» No direct information on the true class labels, d*.

» Can we assign the right treatment based on the observed
information?

The

X" Similar to X
Small Outcomes >--------- T same
- treatment
Patients, i
X ~
- X" Similar to X Th?
Large Outcomes D>-----=-------"> opposite

treatment
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Directly estimating the Optimal Regime
Thoughts: Minimize a “good” estimator for E{D(d)}

» 7(X) = P(A = 1|X) is the propensity score for treatment

» 7(X) known for randomized study; Can also be estimated
using the data (A;, X;),i =1,...,n, e.g., logistic regression
m(X;v) and estimate «y by 4.

» The propensity of receiving treatment consistent with d(X)
P{d(X)[X} = P(A=d(X)|X)
= E[Ad(X)+ (1 - A){1-d(X)}X]
= a(X)d(X)+ {1 —=(X)H{1-d(X)}.



Directly estimating the Optimal Regime

Identify estimators for E{D(d)}:

> Inverse probability weighted estimator

1y~ A= d(X0)}D;
IPWE(d) = ZP{d X)X.31 (1)

» Consistent for E{D(d)} if 7(X;~), and hence P{d(X;)|X,%}
is correctly specified



Outcome Weighted Learning (OWL)

v

Minimize IPWE(d) (1)

v

For any rule d, 2d(X) — 1 = sign{f(X)} for some function f.

» Hence, minimize:

n Z P{d ’X A1 I{(2A; — 1) # sign(f(Xi)}.

v

Can be treated as recoding A = {—1,1}

Zhao et al. (JASA 2012)
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Convex Surrogate Losses for Computation Relaxation

Computation challenges: non-convexity and discontinuity of 0-1
loss.

Replace 0-1 loss by convex surrogate loss

v

Hinge loss, ¢(t) = max(1 — t,0).

—t

v

Exponential loss, ¢(t) = e

v

Logistic loss, ¢(t) = log(1 +e™*).

v

Squared hinge loss, ¢(t) = {max(1 — t,0)}2.
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Convex Surrogate Losses
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Outcome Weighted Learning
Objective Function: Regularization Framework
_ 2
Z Bra %37 @A - DFOY M @

> ||f]| is some norm for f, and A, controls the severity of the
penalty on the functions.

» A linear decision rule: f(X) = XTB + Bo, with ||f]| as the
Euclidean norm of 3.
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Outcome Weighted Learning

» Estimated individualized treatment rule:
dn(X) = sign(fa(X)),

where f, is the solution to (2).

» Variable selection is possible, e.g., change ||| to ||f].
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Efficient Augmentation and Relaxation Learning

» Doubly robust augmented inverse probability weighted

estimator
AIPWE(d) = *Z{lﬁd_ il ’f()}yf (3)
HA; = d(X;)} = P{d(Xi|X,5} o &
S AL C]
where

m(X; B) = u(1, X; 5)d(X) + u(0, X; B){1 — d(X)}

is a model for E{D(d)|X} and u(A, X; 3) is a model for
E(DIA, X)

» Consistent if either 7(X;~) or u(A, X; ) is correct
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Efficient Augmentation and Relaxation Learning

» Outcome weighted learning is a special case with m(X;; B) =0

» AIPWE(d) is more efficient than IPWE(d) for estimating
E{D(d)}

> A similar solution: replacing 0-1 loss with a convex loss
function
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Direct optimization: Optimal Restricted Regime

A class of regimes

d(X7B) = I{,U(].,X,ﬁ) > ,U(O,X,,B)},

indexed by S,
» E.g.,

E(D|A, X) = exp{1 + X1 + 2X5 + 3X1. Xz + A(L — 2X; + X2)}

Zhang et al. (Biometrics 2012)
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Direct optimization: Optimal Restricted Regime

» Posit

(A, X; B) = Bo + B1X1 + BaXo + A(B3 + aX1 + BsX2)

» The regimes /{u(1,X; 3) > u(0, X; 8)} define a class D,
with elements

1(Xo > mXi+mg) or 1(Xo < mXi+mo), mo = —53/Ps, m = —Pa/Ps

depending on the sign of G5

» The optimal regime in this case is contained in D,
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Optimal Restricted Regime

Consider directly regimes of the form D, = {d(X,n)} indexed by n
» Write d,,(X) = d(X,n), eg., d(X,n) = 1(Xo < mX1 + no)

v

Defined based on clinical practice, cost, and interpretability,
without reference to a regression model.

» d* may or may not be in D, but still of interest

v

Optimal restricted regime dy;(X) = d(X,n"),

n* = argmin E{D(d,)}
n

*

v

Estimate the optimal restricted regime by estimating 7



Estimating the Optimal Restricted Regime

» Minimize a “good" estimator for E{D(d))} in n:

v

Estimators 7 for n* obtained by minimizing IPWE(d),) or
AIPWE (dy) in n

v

Non-smooth functions of 1; must use suitable optimization
techniques (RGENOUD package in R)

v

Estimators for E{D(d,)}
IPWE (dy,,.) or AIPWE(d;,...)

Can calculate standard errors



Depression Data

» Compare drug therapy (A = 0) with drug + behavioral
therapy (A=1)

» Five covariates: Age, Gender, HAMABase (pre-treatment
total Hamilton Anxiety Rating Scale score), Sleep (sleep
disturbance score), Mood (mood cognition score)

» Response: 24-item Hamilton Rating Scale for Depression

> Number of patients: 436



Analyzing Depression Data

> Q-learning: D~1+ X+ A+ XA

» Efficient Augmentation and Relaxation Learning:
» Logistic loss: ¢(t) = log(1l + e™*)
» Outcome model: D~ 1+ X+ A+ XA
» Propensity model: A~ X



Results

> Q-learning: d(X) = /(—0.83 + 0.01Age — 0.55Gender +
0.06HAMABase + 0.01Sleep — 0.04Mood < 0).

» Efficient Augmentation and Relaxation Learning:
d(X) = 1(—0.94 4+ 0.00Age — 0.33Gender +
0.05HAMABase + 0.02Sleep — 0.01Mood < 0).



