
Section III: Evaluating markers

I Descriptive devices

I Assessing model calibration
I Recommended measures of marker performance

I Estimation and inference

I Critique of other marker performance measures

I Implications for comparing markers or rules
I Extensions:

I Formally incorporating treatment downsides
I Evaluating a prognostic marker
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Descriptive devices

I Risk curves

I Treatment effect curves

Terminology suggests the outcome is binary, but these devices also
apply to categorical and continuous outcomes.

Janes et al. (Int J Biostat 2014)
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Risk curves

For a single marker, risk curves plot the expected outcome as a
function of the marker, for each treatment.

We recommend aligning the curves for the two treatment groups
with respect to marker percentile F (X ), rather than marker value
X . I.e., plot E (D|A,X ) vs. F (X ) for A = 0, 1.
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Example: Oncotype DX marker in the breast cancer trial
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Treatment effect curves

Show the distribution of the marker-specific treatment effect,
∆(X ) = E (D|A = 0,X )− E (D|A = 1,X ).

Different scales are possible:

I Reverse-CDF, i.e. ∆(X ) = δ vs. F∆(δ). Also called a
predictiveness curve (Huang et al. 2007).

I Traditional CDF, i.e. F∆(δ) vs. ∆(X ) = δ.

I Density or histogram of ∆(X ).

Unlike the risk curve plot, this device applies to multivariate X .
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Treatment effect curve for the Oncotype DX marker:
Reverse CDF
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Treatment effect curve for the Oncotype DX marker:
Traditional CDF
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Checking model calibration

Estimating these curves requires modeling E (D|A,X ).

Good calibration of the E (D|A,X ) model is essential for validity of
the risk and treatment effect curves.

Two approaches to assessing calibration:

I Overlay observed risks and treatment effects on the plots

I Formally compare observed vs. predicted values using
Hosmer-Lemeshow goodness of fit tests
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Example: Oncotype DX risk curve calibration

No significant difference between observed and predicted risks in
either treatment group (p = 0.078 and 0.096, Hosmer-Lemeshow
test).
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Example: Oncotype DX treatment effect curve calibration
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Is the marker good enough to incorporate into clinical practice?
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Performance Measures
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Context

Goal is to evaluate the performance of marker-based treatment rule
d(X ).

I a rule estimated from the data, dn(X ), or a pre-specified rule

Focus on the setting where A = 0 is the default treatment choice
absent X .

I X is used to identify a subgroup likely to benefit from
treatment

The opposite scenario where A = 1 is the default and X is used to
identify a subgroup not likely to benefit from treatment is handled
analogously.
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Evaluating a marker-based treatment rule

Suppose that A = 0 is the default choice absent X .

The clinical impact of rule d(X ) is

I(d) = E (D | A = 0)− E (D | treat using rule d)

= E (D | A = 0)− E (D(d))

= [E (D | A = 0, d(X ) = 0) · P(d(X ) = 0)

+ E (D | A = 0, d(X ) = 1) · P(d(X ) = 1)]

− [E (D | A = 0, d(X ) = 0) · P(d(X ) = 0)

+ E (D | A = 1, d(X ) = 1) · P(d(X ) = 1)]

= E (∆(X ) | d(X ) = 1) · P(d(X ) = 1)

≡ β(d) · τ(d)

Song and Pepe 2004; Gunter et al. 2011; Janes et al. 2011; Zhang et al. 2012
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The two constituents of I(d),

I τ(d) = the proportion of subjects impacted by X
measurement, who are recommended treatment

I β(d) = average treatment efficacy in this subgroup

are important measures in their own right.

In practice we recommend reporting the triplet (I(d), τ(d), β(d)),
along with the expected outcomes under “treat all” and “treat
none” policies, ρ0 = E (D|A = 0) and ρ1 = E (D|A = 1).

3.15



If A = 1 is the default choice absent X ,

I(d) = E (D | A = 1)− E (D | treat using rule d)

= E (−∆(X ) | d(X ) = 0) · P(d(X ) = 0)

and the two constituents are

I τ(d) = P(d(X ) = 0) = the proportion impacted by X
measurement, who are recommended no treatment

I β(d) = E (−∆(X ) | d(X ) = 0) = average benefit of no
treatment in this subgroup
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Empirical estimation

Estimate the performance of rule d(X ) empirically using

τ̂ e(d) = P(d(X ) = 1)

β̂e(d) = E(D | A = 0, d(X ) = 1) − E(D | A = 1, d(X ) = 1)

Îe(d) = β̂e(d) · τ̂ e(d)

where P is the empirical probability and E is the empirical mean

I Equivalent to estimating E (D(d)) using the IPW estimator
defined in Section II

Janes et al. (Int J Biostat 2014)
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Model-based estimation

When d(X ) is derived using a model for E (D|A,X ), the resultant
model for ∆(X ) can be used to estimate performance in a
model-based fashion:

β̂m(d) = E(∆̂(X ) | d(X ) = 1)

Îm(d) = E(∆̂(X ) I (d(X ) = 1))

= β̂m(d) · τ̂ e(d)

Model-based estimators are more efficient. However they are
biased if the E (D|A,X ) model is mis-specified.

Janes et al. (Int J Biostat 2014)
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Inference

When evaluating performance of a pre-specified rule d(X ), all
estimates of performance are asymptotically normal. Quantile
bootstrap confidence intervals work well.

Similarly, when training data are used to derive dn(X ) and
independent test data are used to estimate performance,
estimators are asymptotically normal and the bootstrap can be
used for inference.

One exception to the above is when P(∆(X ) = 0) > 0, i.e. there
exist subjects with ∆(X ) identically 0. Performance estimates may
not be asymptotically normal and the bootstrap may not perform
well.
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Inference, continued

However, when the same data are used to derive dn(X ) and to
estimate performance

I Estimates are biased (overoptimistic)

I Estimators are not asymptotically normal. Bootstrap-based
confidence intervals may not have good coverage.

I Performance of normal-theory/bootstrap inferential methods
is expected to be worse for settings with: small n,
high-dimensional X , heavy marker/model selection

I There are partial solutions (next slide).

I This is an active research area.
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Partial solutions to drawing inference absent test data

Cross-validation (CV)

I Sample B training/test data splits. For each, obtain db
n (X )

using training data and estimate performance using test data.
Average performance estimates. Shift naive performance
estimates and confidence intervals down by the estimated bias
– the difference between naive and CV performance estimates.

Bootstrap bias correction: the “refined bootstrap” (Efron and
Tibshirani 1994)

I Sample B bootstrap datasets. For each, obtain db
n (X ) and

calculate the difference in estimated performance of this rule
using the bootstrap vs. original data. The average of these
differences estimates the bias. Shift naive performance
estimates and confidence intervals down by the estimated bias.

There are variations on each of these approaches.
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Example: Oncotype DX marker performance

Risk curves estimated using logistic regression. Bootstrap-bias-corrected

empirical performance estimates.
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Absent X , chemotherapy is the default.

Given X ,

I τ̂ = 53.0% avoid chemo, and associated toxicity and cost (0.2

to 80.1)

I β̂ = 3.5% lower risk of 5-yr. recurrence/death in subset
avoiding chemo. (-12.9 to 10.8)

I Estimated clinical impact is Î = 1.5% lower 5-yr.
recurrence/death rate (-3.6 5.7)

I 21% event rate under default “chemo. for all” policy is
reduced to 19.5% with use of X .

I 25% event rate under “chemo for none”
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Said another way,

I The overall efficacy of chemo. is a 3.9% absolute reduction in
the 5-yr. recurrence/death rate.

I The efficacy of X -based chemo. is a 3.9 + 1.5 = 5.4%
reduction in the 5-yr. recurrence/death rate.
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Other Performance Measures
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A marker-by-treatment interaction is insufficient

Testing for a marker-by-treatment interaction is a useful first step.

I An interaction is necessary, but not sufficient, for the marker
to have value

However, the interaction coefficient does not quantify marker
performance.

I Interpretation depends on the scale of the E (D|A,X ) model,
the other variables in the model, and the scale of the marker

I Easy to construct examples of markers with the same
interaction coefficient, but different clinical impact
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Example

Two markers with the same marker-by-treatment interaction, but
very different performance.

Janes et al. (Ann. Int. Med. 2011)
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What about biomarker accuracy?

Sensitivity, specificity, PPV, and NPV are classic performance
measures for diagnostic, screening, and prognostic markers.

FDA and IOM biomarker development guidance documents
advocate reporting accuracy measures

I without properly distinguishing between approaches for
diagnostic and prognostic and predictive/treatment selection
markers

Accuracy measures have been proposed for treatment selection
markers, for the setting of a binary outcome D

Huang et al. (Biometrics 2012), Zhang et al. (Ann Appl Stat 2014), Sitlani and Heagerty (Stat Med 2014), Simon
(JNCI 2015)
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Accuracy measures rely on potential outcomes

D(0) = potential outcome without treatment

D(1) = potential outcome with treatment

Trt. benefit ≡ D(0) = 1,D(1) = 0

No trt. benefit ≡ D(0) = D(1) or D(0) = 0,D(1) = 1

The accuracy of rule d(X ) is then measured by:

Sensitivity = P(d(X ) = 1 | Trt. benefit)

Specificity = P(d(X ) = 0 | No trt. benefit)

PPV = P(Trt. benefit | d(X ) = 1)

NPV = P(No trt. benefit | d(X ) = 0)

3.29



Fundamental problem

Almost never can both potential outcomes be observed and so we
do not know whether a subject benefits from treatment.

Therefore, in general the accuracy measures are not estimable from
data– even RCT data.
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Illustration: Two binary markers in an RCT (n = 2000)

Unobservable data: Marker-positivity by potential outcome

Bad outcome Good outcome
Benefit regardless regardless Harmed

from trt. of trt. of trt. by trt.
(n = 400) (n = 600) (n = 600) (n = 400)

Marker 1 Negative 200 250 400 250
Positive 200 350 200 150

Marker 2 Negative 100 350 500 150
Positive 300 250 100 250

Observable data: Marker-positivity by observed outcome

Treatment arm No trt. (n = 1000) Trt. (n = 1000)
Outcome Good Bad Good Bad

Marker 1 Negative 325 225 300 250
Positive 175 275 200 250

Marker 2 Negative 325 225 300 250
Positive 175 275 200 250

Janes et al. (JNCI 2015)
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The biomarkers have very different accuracy, but the same
observed data:

Marker 1 Sensitivity = 50% Specificity = 56%
PPV = 22% NPV = 82%
Prop. marker-positive = 56%

Marker 2 Sensitivity = 75% Specificity = 63%
PPV = 33% NPV = 91%
Prop. marker-positive = 56%

3.32



“Pragmatic” accuracy measures have been proposed which assume
D(0) ⊥ D(1) given X .

I This assumption is unlikely to hold in any clinical context

I This example illustrates the fallacy of these pragmatic
measures

Pragmatic Accuracy Sensitivityi = 61% Specificityi = 46%
(Both Markers) PPVi = 27% NPVi = 78%

Marker 1 Truth Sensitivity = 50% Specificity = 56%
PPV = 22% NPV = 82%

Marker 2 Truth Sensitivity = 75% Specificity = 63%
PPV = 33% NPV = 91%
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Our recommendation

In general, accuracy estimates depend on unverifiable assumptions
about the joint distribution of potential outcomes.

We recommend instead focusing on identifiable marker
performance measures: I, τ , β.

These measures do not depend on the joint distribution of
potential outcomes.
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Other performance measures

Recall ρ0 = E (D|A = 0) and ρ1 = E (D|A = 1). Note that
E (∆(X )) = ρ0 − ρ1.

Variance in treatment effect,

V∆ ≡
∫

(∆(X )− (ρ0 − ρ1))2 ∂F∆

Total gain,

TG ≡
∫
|∆(X )− (ρ0 − ρ1)| ∂F∆

I Two “global” performance measures– do not require
specifying a treatment rule

I They lack a clinically relevant interpretation

Janes et al. (Int J Biostat 2014)
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Any one performance measure is insufficient

We advocate reporting the triplet

τ(d) = P(d(X ) = 1)

β(d) = E (∆(X ) | d(X ) = 1)

I(d) = β(d) · τ(d)

No single measure says it all.

I E.g., a large β may not be compelling if τ is small

I E.g., if treatment has downsides not captured in D, I is
insufficient and we need τ to capture treatment “cost”
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Implications for comparing markers or treatment rules

Estimate contrasts in the above performance measures.

Again, our recommendation is to contrast

τ(d) = P(d(X ) = 1)

β(d) = E (∆(X ) | d(X ) = 1)

I(d) = β(d) · τ(d)

Performance measures can be compared using Wald-type
hypothesis tests.

Janes et al. (Int J Biostat 2014)
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Example: Two simulated markers in the breast cancer
context

Marker X1 Marker X2 X1 vs. X2

Estimate Estimate Estimated Diff. P-value
(95% CI) (95% CI) (95% CI)

τ̂ e 0.461 (0.000,0.700) 0.377 (0.304,0.470) 0.084 (-0.358,0.236) 0.768

β̂e 0.029 (-0.106,0.082) 0.238 (0.170,0.309) -0.209 (-0.342,-0.129) < 0.002

β̂m 0.023 (0.000,0.057) 0.262 (0.209,0.310) -0.239 (-0.294,-0.178) < 0.002

Îe 0.013 (-0.010,0.044) 0.090 (0.060,0.122) -0.076 (-0.111,-0.042) < 0.002

Îm 0.010 (0.000,0.037) 0.099 (0.071,0.129) -0.088 (-0.115,-0.061) < 0.002

3.39



Formally incorporating treatment downsides
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Incorporating treatment downsides into the treatment rule

The rule

d(X ) = I (E (D|A = 0,X )− E (D|A = 1,X ) > 0)

is optimal if the goal is to minimize E (D(d)).

If, however, there are additional downsides of treatment not
captured in D, it is compelling to consider rules of the form

dδ(X ) = I (E (D|A = 0,X )− E (D|A = 1,X ) > δ) ,

for δ > 0.

I Such rules are optimal for maximizing the net benefit of
marker-based treatment (Vickers et al. 2007; Janes et al.
2014)
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Choice of treatment effect threshold, δ

Decision theory suggests that δ should correspond to the
cost/dis-utility of treatment A relative to the cost/dis-utility of one
unit of the outcome D

I E.g. if treatment-associated toxicity is 1/10 the cost of the
binary clinical outcome, the optimal δ = 0.10

“Cost” is used broadly here; units may be dollars or
quality-adjusted life years (QALYs) or probabilities of downstream
events.

Vickers (Trials 2007); Janes et al. (Med Decis Making 2014)
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Choice of treatment effect threshold, continued

This result can be used in the other direction: given δ, the relative
importance of D and A (the cost ratio) is quantified.

I E.g., if ∆(X ) > 0.02 justifies a treatment recommendation,
this implies that the cost of the binary clinical outcome is 50
times the cost of treatment.
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Evaluating performance

The performance of treatment rule dδ(X ) can be evaluated using
the aforementioned metrics:

τ(dδ) = P(dδ(X ) = 1)

β(dδ) = E (∆(X ) | dδ(X ) = 1)

I(dδ) = E (D | A = 0)− E (D | treat using rule dδ)

= β(dδ) · τ(dδ)
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Net benefit

The net benefit measure captures the net impact of using the
marker to select treatment, including its impact on outcomes and
on treatment.

Let CD be the cost/dis-utility of one unit of D and CA be the
cost/dis-utility of treatment.

NB(dδ) ≡ Exp. cost under A = 0− Exp. cost using dδ

= [E (D | A = 0) − E (D | using rule dδ)]CD

− P(dδ(X ) = 1)CA

= I(dδ)CD − τ(dδ)CA

I This could be reduced by the dis-utility of measuring the
marker in everyone
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If the optimal rule for maximizing net benefit is used (δ = CA
CD

), the
net benefit in CD units is

NB(dδ) = I(dδ)− τ(dδ)δ

I Appealing that this NB formulation depends only on δ, and
not on CD or CA

Thus, NB(dδ) can be interpreted as the discounted reduction in
the expected outcome under marker-based treatment.

Note that if δ = 0, NB(dδ) = I(dδ).
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If A = 1 is the default absent X ,

NB(dδ) ≡ Exp. cost under A = 1 − Exp. cost using dδ

= [E (D | A = 1)− E (D | using rule dδ)]CD

+ [1− P(dδ(X ) = 1)]CA

= I(dδ)CD + τ(dδ)CA

= I(dδ) + τ(dδ)δ,

where the last line holds if δ = CA/CD and NB is in CD units.

Thus, NB(dδ) can be interpreted as the augmented reduction in
the expected outcome under marker-based treatment.
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Example: Oncotype DX marker performance

Suppose it is determined that ∆(X ) > 0.01 is large enough to
warrant a chemotherapy recommendation; women with
∆(X ) < 0.01 should be recommended no chemo.

We estimate that using this rule to recommend no chemo. would:

I Allow 56.3% of women to avoid chemo.

I Reduce the 5-yr. recurrence/death rate in this subgroup by
1.7%

I Reduce the population 5-yr. recurrence/death rate by 0.5%

I Yield a NB of 0.011. Thus, 1.1% is the augmented reduction
in the 5-yr. recurrence/death rate.

3.48



Evaluating a prognostic marker
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Definition

A prognostic marker/model predicts outcomes under standard of
care.

Prognostic markers are often used to guide treatment.

I E.g. Gail model for predicting breast cancer risk, used to
guide use of tamoxifen

I E.g. Framingham model for predicting CVD risk, used to
guide use of statins

I E.g. Partin tables used to guide treatment of prostate cancer

The (implicit) logic is that subjects at higher risk have a greater
absolute benefit from treatment if treatment has a constant
relative risk.

3.50



Common approach to prognostic marker evaluation

Use the marker to estimate a “risk score”, E (D | A = 0,X ), and
evaluate the ROC curve (AUC) or (Sens, Spec) of the risk score
using a chosen “high risk” threshold.

Or, for contrasting two models E (D | A = 0,X ) vs.
E (D | A = 0,Y ), evaluate the difference in AUCs, difference in
(Sens, Spec), or NRI.

These measures do not capture the value of the marker for guiding
treatment. To this end, we should evaluate the marker in an RCT
using the aforementioned performance metrics.
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Example: HIV prevention trial

RCT of PrEP vs. placebo for prevention of HIV infection in MSM.

An HIV risk prediction model was developed using data from the
placebo arm.

I Cox proportional hazards logic regression (Ruczinski et al.
2003)

What is the performance of the risk model for guiding treatment?

I Current WHO guideline recommends PrEP for subjects
estimated to be at or above 3% 1-yr. risk without PrEP
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Risk-based treatment recommendation

Based on Cox logic regression model fit using placebo-arm data.
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Without PrEP, est. 1-yr HIV incidence is 4.0% (2.9 - 5.2%)

PrEP for all yields est. incidence 2.3% (1.4 - 3.2%)

PrEP for high risk subjects yields est. incidence 2.4% (1.8 - 2.9%),

and requires treating only 55.2% (23.4 - 79.2%)

Empirical bootstrap bias-corrected performance estimates
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Summary

I Descriptive devices are useful for visualizing data

I Clinical impact and its constituents are recommended
performance measures

I Contrasts in these measures are recommended for comparing
markers or rules

I Extensions allow treatment downsides to be incorporated into
the treatment rule and its evaluation

I Prognostic markers used to select treatment should be
similarly evaluated
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