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Survival outcomes with censoring
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Survival Outcomes with Censoring

I Interested in time-to-event outcome.

I Observe independently and identically distributed training
data (Xi ,Ai ,Di ,Ωi ), i = 1, . . . , n.

X : baseline variables, X ∈ Rp,
A: binary treatment options, A ∈ {0, 1},
D: observed event time.
Ω: censoring indicator Ωi = I (Ti ≤ Ci ).

I D = min(T ,C ) : T survival time, C censoring time.

I Randomized study with known randomization probability of
the treatment.
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Survival Outcomes with Censoring

I Two possible objectives

I Maximize expected survival time

I Maximize the probability of surviving beyond a landmark time.
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Cox Regression

I Classic approach: Cox proportional hazard regression

I Cox regression: cox proportional hazards model with
treatment-by-covariate interactions

I Estimates for d∗(x) can be derived based on the predicted
outcomes.

Cox (JRSSB, 1972)
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Regression Modeling Approach
I Inverse probability of censoring weighted (IPW) Q-learning:

solve for

argmin
θ

n∑
i=1

{Di − Φ(Xi ,Ai )θ}2
Ωi

ŜC (Di |Ai ,Xi )
,

where ŜC (D|A,X ) is the estimated conditional survival
function of C given (A,X ).

I E (T |A,X ) is modeled using Φ(X ,A)θ, where Φ(X ,A) is the
basis, e.g., Φ(X ,A) = (1,X ,A,XA).

I The estimated optimal decision rule is

d̂(x) = argmin
a∈{0,1}

Φ(x , a)θ̂.

I Regularization can be applied.

Goldberg & Kosorok (Annals of Stat., 2012)
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Outcome Weighted Learning Approach

I Modification of outcome weighted learning

I Minimize

n−1
n∑

i=1

ΩiDi

ŜC (Di |Ai ,Xi )

φ{Af (Xi )}
P{d(X )|X}

+ λn‖f ‖2,

I Replace Di by ΩiDi/ŜC (Di |Ai ,Xi ) in the outcome weighted
learning for uncensored data.

Zhao et al (Biometrika, 2015)
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Accommodating a Time-to-event Outcome

Let T be the event time. Let D = I (T < t0) be an indicator that
the event occurs before a landmark time t0.

The methods above can be used to model D, with the following
modifications:

1. Estimate E (D|A,X ) using a regression method suitable for
time-to-event outcomes (e.g. Cox regression). This may need
to be paired with a baseline hazard estimate.

2. Estimate performance measures empirically using
inverse-probability-of-censoring weights. (Model-based
estimates require no modification.)

3. Consider performing analyses for different choices of t0;
typically X more weakly predicts treatment effect for larger t0.
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Multicategory Treatment
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Multicategory Treatment

I Multiple treatments of interest, A = 0, 1, . . . ,K , e.g., K = 2
in depression data

I d∗(x) = argmink=0,...,K µ(k, x).

I Posit a regression model

E (D|A,X ) = µ(A,X ;β)

and estimate β̂.

I The estimator for the optimal treatment regime

d̂n(x) = argmin
k=0,...,K

µ(k, x ; β̂n).

I Other methods under development.
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Observational Study
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Observational Study

I Suppose the data are observational: a random sample from
(X ,A,D) where X is a vector of pre-treatment covariates.

I Patients receiving treatment 1 may not be prognostically
similar to those receiving treatment 0.
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Observational Study

I The intuition behind no unmeasured confounder assumption
(NUCA, D(0),D(1)q A|X ): we have measured enough
covariates X , so that within levels of X , the data mimics a
randomized trial with the randomization probabilities now
allowed to depend on X .

I This can be achieved only if we are able to measure all
common predictors of A and D.

I Standard but unverifiable assumption for observational studies.
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Observational Study

I Regression modeling: Model E (D|X ,A,Z ), where Z is the
confounder.

I Estimate propensity scores P(A = 1|X ,Z ) and apply methods
introduced in Section 2.
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Dynamic Treatment Regimes
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Dynamic Treatment Regimes (DTRs)

I Motivation : treatment of chronic illness

I Some examples: HIV/AIDS, cancer, depression, schizophrenia,
drug and alcohol addiction, ADHD, etc.

I Multistage decision making problem

I Longer-term treatment requires consideration and tradeoff of
present versus longer term benefit.
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Dynamic Treatment Regimes

I Operationalize multistage decision making via as sequence of
decision rules

I One decision rule for each time (decision) point

I A decision rule is a function inputs patient history and outputs
a recommended treatment

I Aim to optimize some cumulative clinical outcome

I Survival time

I Depression test scores

I Indicator of no myocardial infarction within 30 days ...
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Dramatized Example

I Addiction management example inspired by the ExTENd and
COMBINE trials (Murphy et al, 2007)

I Devising two-time point treatment strategy for alcohol
dependent patients.

I Initial treatment choices Naltrexone (NTX) and Combined
Behavioral Intervention (CBI).

I At six-months responders classified as responders or
non-responders.

I For responders to initial treatment, followup treatment choices
are telephone monitoring (TEL) and telephone monitoring +
counseling (TEL+Counseling).

I For non-responders to initial treatment, followup treatment
choices are switch initial treatments (NTX ↔ CBI), or step-up
initial treatment CBI + NTX + Enhanced monitoring (CBI +
NTX +EM).
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Dramatized Example
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Dramatized Example

I Hj denote history at stage j .

I At presentation: Baseline variables x1; accrued information
h1 = x1

I Decision point 1: Two treatment options {NTX, CBI}; rule 1:
d1(h1)⇒ d1 : h1 → {NTX, CBI}

I Between decisions 1 and 2: Collect additional information x2,
including responder status

I Accrued information h2 = {x1, treatment at decision 1, x2}

I Decision point 2: Four options
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Optimal Dynamic Treatment Regimes

I Examples of treatment regimes: Prescribe NTX initially; then
assign TEL to responders; and assign step-up to
non-responders.

I Optimal DTR d∗ leads to the lowest expected outcome
among all possible regimes

5.21



Challenges in Estimating Optimal DTRs: Delayed Effects

I The therapy with the higher proportion of responders might
have other effects that render subsequent treatments less
effective in regard to the final response.

I The therapy with lower proportion of responders may not
appear best initially but may have enhanced long term
effectiveness when followed by a particular maintenance
treatment.

I Must consider the entire sequence of decisions

I Must accommodate intermediate information including prior
treatments into current treatment choice.
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Sequential Multiple Assignment Randomized Trial
(SMART)

I Due the the aforementioned challenges, we need to adopt a
particular design to best estimate the optimal DTRs

I SMART: designed for estimation of optimal DTRs

I Randomize subjects to the treatment options at each decision
point

I Collect both initial and intermediate information on possible
tailoring variables

Murphy (Stat in Med, 2005)
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SMART Trial
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Data

I (X1,A1,X2,A2,D) for each individual
Xk : Observations available at stage k
Ak : Treatment at stage k
D: Primary outcome
Hk : History at stage k , H1 = X1, H2 = (X1,A1,X2)

I The regime, d = {d1, d2}, dk : Hk → Ak , should have the
lowest Ed(D), the expected outcome if all patients are
assigned treatment according to d
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Dynamic Programming

I Optimal regime d∗ can be derived using dynamic
programming (Bellman, 1957)

I Define
I Q2(h2, a2) , E

(
D
∣∣H2 = h2,A2 = a2

)
I D̃ , mina2 Q2(H2, a2)

I Q1(h1, a1) , E
(
D̃
∣∣H1 = h1,A1 = a1

)
I d∗j (hj) = arg minaj∈{0,1}Qj(hj , aj)
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Constructing a DTR from Data: Q-learning

I When system dynamics are known dynamic programming
yields the optimal DTR, but we only have data

I Q-learning: data-driven analog of dynamic programming:
replaces conditional expectations with regression models

I Backwards and recursively estimates the Q-function.

I The estimated optimal sequence of decision rules

d̂j(hj) = argmin
aj∈{0,1}

Q̂j(hj , aj).

I An extension of regression to sequential treatments.
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Summary

I An extremely active area of research

I Data from SMART designs can be used to construct optimal
DTRs

I Q learning is a common method, though it has some
drawbacks, e.g., require correct specified models

I Many other methods have been developed.
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