SISCR Module 7
Part I:
Introduction
Basic Concepts for Binary Classification Tools and Continuous Biomarkers

Kathleen Kerr, Ph.D
Associate Professor
Department of Biostatistics
University of Washington

## Part 1 Overview

- Some examples
- To start: 1 marker X is binary (a "test")
- We then move on: 1 marker $X$ is continuous
- Multiple markers $\mathrm{X}, \mathrm{Y}, \ldots$, and risk model $P($ bad outcome | $X, Y, \ldots)$


## Module Overview

- Part I: Introductory concepts
- Part II: Evaluating Risk Models
- Part III: Evaluating the Incremental Value of New Biomarkers
- Part IV: Some Guidance on Developing Risk Models
- also: R tutorial/demo


## What is a Marker?

- DEF: a quantitative or qualitative measure that is potentially useful to classify individuals for current or future status
- current $\rightarrow$ diagnostic marker
- future $\rightarrow$ prognostic marker
- Includes biomarkers measured in biological specimens
- Includes imaging tests, sensory tests, clinical signs and symptoms, risk factors


## What is the purpose of a classifier or risk prediction tool?

- To inform subjects about risk
- To help make medical decisions
- Most often: identify individuals with high risk the assumption is that these individuals have the greatest possibility to benefit from an intervention
- Sometimes: identify individuals with low risk not likely to benefit from an intervention
- To enrich a clinical trial with "high risk" patients


## Terminology and Notation

- $\mathrm{X}, \mathrm{Y}=$ potential predictors of D (demographic factors, clinical characteristics, biomarker measurements)
- Often: $X$ is "standard" predictors and $Y$ is a new biomarker under consideration
- $\operatorname{risk}(X)=r(X)=P(D=1 \mid X)$ $-\operatorname{risk}(X, Y)=r(X, Y)=P(D=1 \mid X, Y)$
- prevalence $=P(D=1)=\rho \quad$ ("rho")


## Terminology and Notation

- "case" or "event" is an individual with the (bad) outcome
- "control" or "nonevent" is an individual without the outcome

| case | control |
| :---: | :---: |
| $\mathrm{D}=1$ | $\mathrm{D}=0$ |
| D | $\bar{D}$ |
| D | N |

- $\operatorname{risk}(x) \equiv P(D=1 \mid X=x)$ is the frequency of events among the group with $X=x$
- "Personal risk" is not completely personal! - Will return to this at the end of Section 1


## Example: Coronary Artery Surgery Study (CASS)

- 1465 men undergoing coronary arteriography for suspected coronary heart disease
- Arteriography is the "gold standard" measure of coronary heart disease
- Evaluates the number and severity of blockages in arteries that supply blood to the heart
- Simple cohort study
- Possible predictor: Exercise stress test (EST)
- Possible predictor: chest pain history (CPH)


## Example: Pancreatic Cancer Biomarkers

- 141 patients with either pancreatitis ( $\mathrm{n}=51$ ) or pancreatic cancer ( $\mathrm{n}=90$ )
- Serum samples
- Two candidate markers:
- A cancer antigen CA-125
- A carbohydrate antigen CA19-9
- Which marker is better at identifying cancer?
- Is either marker good enough to be useful?

Wieand, Gail, James, and James Biometrika 1989

## Example: EDRN Breast Cancer Biomarkers

- Women with positive mammograms undergo biopsy, the majority turn out to be benign lesions
- Provides motivation to develop serum biomarker to reduce unnecessary biopsies


## Example: Cardiovascular Disease

- Framingham study
- D = CVD event
- $Y=$ high density lipoprotein
- $\mathrm{X}=$ demographics, smoking, diabetes, blood pressure, total cholesterol
- $\mathrm{n}=3264, \mathrm{n}_{\mathrm{D}}=183$


## Simulated Data

- Artificial data are useful for exploring/illustrating methodology
- Here I introduce simple but useful models that I will use to illustrate some methods
- Simulated data on DABS website
- Simulated data from $R$ packages DecisionCurve and BioPET
- Normal and MultiNormal biomarker model


## Example: Simulated data on DABS website

- $\mathrm{n}=10,000, \mathrm{n}_{\mathrm{D}}=1017$
- $\mathrm{Y}=$ continuous, 1-dimensional
- $X=$ continuous, 1 -dimensional
- http://labs.fhcrc.org/pepe/dabs/ or search "Pepe DABS"


## Example: Simulated data in R packages

- $\mathrm{n}=500, \mathrm{n}_{\mathrm{D}}=60$
- $\mathrm{X}=$ sex, smoking status, Marker1
- Y = Marker2
- These data will not appear in lecture notes, but will appears in software demo


## Normal Model with 1 Marker

- Biomarker X Normally distributed in controls and in cases

$$
\begin{gathered}
X \sim N(0,1) \text { in controls } \\
X \sim N(\mu, 1) \text { in cases }
\end{gathered}
$$



Distribution of $X$ when $\mu=1$

## Multivariate Normal Model with 2 Markers (Bivariate Normal)

- Biomarkers ( $\mathrm{X}_{1}, \mathrm{X}_{2}$ ) are bivariate Normally distributed in controls and in cases

$$
\begin{gathered}
\vec{X} \sim \operatorname{MVN}(\overrightarrow{0}, \Sigma) \text { in controls } \\
\vec{X} \sim \operatorname{MVN}(\vec{\mu}, \Sigma) \text { in cases } \\
\Sigma=\left[\begin{array}{ll}
1 & r \\
r & 1
\end{array}\right]
\end{gathered}
$$

In these examples X1 and X2 each have mean 0 in controls and mean 1 in cases

We can picture marker data in 2-dimensional space.


x 1

$r=0.6$

- Biomarkers ( $\mathrm{X}_{1}, \mathrm{X}_{2}$ ) are bivariate Normally
distributed in controls and in cases

$$
\begin{gathered}
\vec{X} \sim \operatorname{MVN}(\overrightarrow{0}, \Sigma) \text { in controls } \\
\vec{X} \sim \operatorname{MVN}(\vec{\mu}, \Sigma) \text { in cases }
\end{gathered}
$$

- This data model is useful in research because the logistic regression model holds for each marker and for both markers together.
logit $P\left(D=1 \mid X_{1}\right)$ is linear in $X_{1}$
logit $P\left(D=1 \mid X_{1}, X_{2}\right)$ is linear in $X_{1}$ and $X_{2}$



## Terminology

- $\mathrm{D}=$ outcome (disease, event)
- $\mathrm{Y}=$ marker (test result)


## QUANTIFYING CLASSIFICATION

 ACCURACY (BINARY MARKER OR "TEST")

## Terminology

```
TPR = true positive rate = P[Y=1 |D=1] = sensitivity
FPR = false positive rate = P[Y=1 |D=0] = 1-specificity
FNR = false negative rate = P[Y=0|D=1] = 1-TPR
TNR = true negative rate = P[Y=0|D=0] = 1-FPR
```

Ideal test: $\mathrm{FPR}=0$ and $\mathrm{TPR}=1$


Ideal test: $\mathrm{FPR}=0$ and $\mathrm{TPR}=1$

## Coronary Artery Surgery Study (CASS)

 TPR=815/1023=80\%

## What about Odds Ratios?

- Odds ratios are very popular:
- Because logistic regression is popular
- Odds Ratio estimable from case-control study
- OR $\approx$ relative risk for rare outcome
- $O R=\frac{T P R(1-F P R)}{F P R(1-T P R)}$
- Good classification (high TPR and low FPR) $\rightarrow$ large odds ratio
- However, large odds ratio does NOT imply good classification!


## Coronary Artery Surgery Study (CASS)

E.g., TPR=0.8, $F P R=0.10$

$$
O R=\frac{0.8 \times 0.9}{0.1 \times 0.2}=36
$$

Coronary Artery Disease

large odds ratio does NOT imply good classification!


FIGURE 1. Correspondence between the true-positive fraction (TPF) and the false-positive fraction (FPF) of a binary marker and the odds ratio. Values of (TPF, FPF) that yield the same odds ratio are
connected.

- Need to report both FPR and TPR
- Collapsing into one number (e.g., OR) is not sufficient
- important information is lost


## Misclassification Rate

$$
M R=\text { error rate }=P(Y \neq D)
$$

$$
=P(Y=0, D=1)+P(Y=1, D=0)
$$

$$
=\rho(1-\mathrm{TPR})+(1-\rho) \mathrm{FPR}
$$

- $\rho$ is the prevalence $P(D=1)$
- only appropriate if the cost of false positives equals the cost of false negatives
- seldom useful or appropriate


## Misclassification Rate

- There are two kinds of wrong decisions and the MR equates these. In order to be clinically relevant we must consider the cost of each kind of error
- ... later today


## Predictive Values

- FPR, TPR condition on true status (D)
- they address the question: "to what extent does the biomarker reflect true status?"


## Predictive Values

PPV and NPV are functions of TPR and FPR and the prevalence $\rho$

$$
\begin{gathered}
P P V=\frac{\rho T P R}{\rho T P R+(1-\rho) F P R} \\
N P V=\frac{(1-\rho)(1-F P R)}{(1-\rho)(1-F P R)+\rho(1-T P R)}
\end{gathered}
$$

- TPR, FPR are properties of a test, but PPV, NPV are properties of a test in a population
- For low prevalence conditions, PPV tends to be low, even with very sensitive tests


## False Discovery Rate

False Discovery Rate $F D R=P(D=0 \mid Y=1)$
=1 - PPV
"False Discovery Rate" and "False Positive Rate" sound similar, but they are not the same!
-FPR: among all those who are not diseased, how many were called positive -FDR: among all those you called positive, how many were not actually diseased. We will not use or further discuss FDR further today.

## Motivation

- Most biomarkers are continuous


## Convention

## CONTINUOUS MARKERS: ROC CURVES

## Receiver Operating Characteristic (ROC) Curve

- generalizes (FPR, TPR) to continuous markers
- considers rules based on thresholds " $\mathrm{Y} \geq \mathrm{C}$ " - makes sense if $P(D=1 \mid Y)$ increasing in $Y$
- $\operatorname{TPR}(c)=P(Y \geq c \mid D=1)$
- $\operatorname{FPR}(c)=P(Y \geq c \mid D=0)$
- ROC( $\cdot$ )=\{FPR(c), $\operatorname{TPR}(c) ; c$ in $(-\infty, \infty)\}$



41


42


## Pancreatic cancer biomarkers (Wieand et al 1989)


log(marker concentration)

## Properties of ROC curves

- non-decreasing from $(0,0)$ to $(1,1)$ as threshold decreases from $\mathrm{c}=\infty$ to $\mathrm{c}=-\infty$
- ideal marker has control distribution completely disjoint from case distribution; ROC through $(0,1)$
- useless marker has ROC equal to 45 degree line
- doesn't depend on scale of $Y$ : invariant to monotone increasing transformations of $Y$
- puts different markers on a common relevant scale
- shows entire range of possible performance


46

CA-19-9 appears to be the more accurate diagnostic biomarker for pancreatic cancer


- for most fixed FPR, CA-19-9 has the better corresponding TPR
- for most fixed TPR, CA-19-9 has the better corresponding FPR


## Comparing ROC Curves: AUC

- AUC is Area under ROC curve
- $\mathrm{AUC}={ }_{0} \int^{1} \mathrm{ROC}(\mathrm{t}) \mathrm{dt}=\operatorname{average}(\mathrm{TPR})$
- average is uniform over $(0,1)$
- commonly used summary of an ROC curve - also called the c-index or c-statistic
- ideal test: $\mathrm{AUC}=1.0$
- useless test: AUC=0.5
- A single number summary of a curve is necessarily a crude summary


## AUC: another interpretation

- $P\left(Y_{D}>Y_{N}\right)$ for a randomly selected case $D$ and a randomly selected control N
- Provides an interpretation for AUC beyond "area under ROC curve"
- The AUC is a summary of an ROC curve that is commonly used to compare ROC curves it is interpretable, but the interpretation shows that AUC is not clinically meaningful


## Risk model

- risk prediction model - gives a risk for a marker value or a combination of markers
- Predicted risks are in the interval $[0,1]$ and interpreted as probabilities
- E.g. STS risk score for dialysis following cardiac surgery is formed via:
- STS risk score $=f\left(\alpha+\beta_{1}\right.$ Age $+\beta_{2}$ Surgery Type
$+\beta_{3}$ Diabetes $+\beta_{4}$ MI Recent $+\beta_{5}$ Race +
$\beta_{6}$ Chronic Lung Disease $+\beta_{7}$ Reoperation +
$\beta_{8}$ NYHA Class $+\beta_{9}$ Cardiogenic Shock+ $\beta_{10}$ Last
Serum Creatinine)


## What is "personal risk"?

- Recall: $\operatorname{risk}(x) \equiv P(D=1 \mid X=x)$ is the frequency of events among the group with marker values $x$
- "Personal risk" is not completely personal! - (next example)


## What is "personal risk"?

- Suppose an individual in Population $A$ has $X$ measured as 1 .
- We can calculate his $\operatorname{risk}(X=1) \approx 1.6 \%$
- We can calculate the risk using Bayes' rule


Distribution of marker X in controls (blue) and cases (red)

## What is "personal risk"?

- Suppose the prevalence of $D$ in "Population $A$ " is $1 \%$
- Without any additional information, the only valid risk prediction instrument is to assign everyone in the population risk=1\%
- Suppose we have a marker $X$ that tends to be higher in the cases than controls


Distribution of marker X in controls (blue) and cases (red)

## What is "personal risk"?

- Suppose the marker acts exactly the same in Population B. The only difference between Populations $A$ and $B$ is that $B$ has prevalence $=10 \%$.
- An individual in Population $B$ has $X=1$. For that individual, his risk is $\approx 15.5 \%$


Distribution of marker X in controls (blue) and cases (red)

## What is "personal risk"?

- "Personal risk" is a term that is prone to be misconstrued
- Risk is personal when calculated based on personal characteristics
- However, personal risk is not completely divorced from population characteristics. For example, the previous example shows that the population (specifically, the population prevalence) affects "personal" risk.


## Summary

- Some example datasets
- FPR, TPR
- PPV, NPV
- function of FPR, TPR and disease prevalence
- ROC curves
- AUC
- geometric interpretation as area under curve
- probability interpretation
- risk model: $\operatorname{risk}(X)=P(D=1 \mid X)$

