Introduction to the Design and Evaluation of Group Sequential Clinical Trials

Session 1 - Scientific Setting

Presented July 27, 2016

Daniel L. Gillen Department of Statistics University of California, Irvine

John M. Kittelson Department of Biostatistics & Informatics University of Colorado Denver

©2016 Daniel L. Gillen, PhD and John M. Kittelson, PhD

Overview

Module 9: Introduction to the Design and Evaluation of Group Sequential Clinical Trials

Session 1: Scientific setting
Session 2: Fixed-sample design
Session 3: Evaluation of group sequential clinical trial designs
Session 4: Bayesian evaluation of group sequential clinical trial designs

SISCR UW - 2016

SISCR - GSCT - 1 :

Clinical Trials

Definition and Motivation Public Health Objective Statistical foundations Trial Monitoring: Motivation and Implications

Clinical Trials Definition and Motivation

and Implications

Public Health Objective Statistical foundations Trial Monitoring: Motivation

Public Health Objective

- Evidence-based medicine requires:
 - Results in the sample reflect effects in standard practice.
 - Does the trial population reflect the target population?
 - Do diagnostic procedures reflect standard practice?
 - Does ancillary/rescue therapy reflect standard practice?
- (Reiterating) Our ultimate goal should be to:
 - Identify (and approve) new beneficial therapies.
 - Avoid approving ineffective or harmful treatments.

SISCR UW - 2016

Definition and Motivation Public Health Objective Statistical foundations Trial Monitoring: Motivation and Implications

Clinical Trials

SISCR - GSCT - 1 :

The Public Health Objective

Our objective is to have trials with high positive predictive value

- Positive predictive value (PPV):
 - Diagnostic testing: prevalence of diseased individuals among those with a positive diagnostic test.
 - Clinical trials: prevalence of truly beneficial therapies among those which are identified by a positive clinical trial.
 - PPV is calculated using Bayes rule:

$$PPV = rac{eta \pi}{eta \pi + lpha (1 - \pi)}$$

where :

 $\beta = sensitivity$ $1 - \alpha = specificity$ $\pi = prevalence$

SISCR UW - 2016

Clinical Trials

Definition and Motivation Public Health Objective Statistical foundations Trial Monitoring: Motivation and Implications

The Public Health Objective: How does the design determine PPV?

PPV is increased through good experimental practice

$$PPV = \frac{\beta \pi_0}{\beta \pi_0 + \alpha (1 - \pi_0)}$$

- * Increase π_0 :
 - Careful planning of preliminary studies
 - Avoid "novel" and "innovative" ideas
 - Careful specification of hypothesis-driven research
- * Increase β :
 - Good practice (no missing data, low variation in outcome assessment, good adherence, etc.)
 - Increase sample size.
- * Reduce α :
 - Pre-specify outcomes
 - Pre-specify all analyses
 - Avoid multiple comparisons
 - Avoid surrogate outcomes.
 - Avoid subgroups

SISCR UW - 2016

Clinical Trials

Definition and Motivation Public Health Objective Statistical foundations Trial Monitoring: Motivation and Implications

The Public Health Objective: How does the design determine PPV?

SISCR UW - 2016

Clinical Trials Definition and Motivation

Public Health Objective

Statistical foundations Trial Monitoring: Motivation and Implications

References: PPV as a function of π_0 , α , and β

** <u>EfficiencyForTargetedTX.pdf</u> discusses effect of power (sensitivity) and α -level (specificity) on the PPV of phase II/III clinical trials.

Scenario	Number of trials	π_0	$\frac{Phase}{\alpha_2}$	e II trials β_2	$\frac{Phase}{\alpha_3}$	e III trials β_3	Pos	Pos	PPV
1	1000	0.10	*	*	0.05	0.975	98	45	0.685
2	12500	0.10	0.05	0.15	0.05	0.800	150	28	0.842
3	11765	0.20	0.05	0.15	0.05	0.800	282	24	0.923
4	13245	0.01	0.05	0.15	0.05	0.800	16	33	0.327
5	9091	0.10	0.05	0.15	0.05	0.975	133	20	0.867
6	15385	0.10	0.05	0.15	0.05	0.500	115	35	0.769
7	6780	0.10	0.20	0.15	0.05	0.800	81	61	0.571
8	6780	0.10	0.20	0.15	0.10	0.800	81	122	0.400

** <u>Evaluation of Strategies for the Phase II to Phase III Progression in Treatment Discovery</u>: (Sanchez, 2014) http://rctdesign.org/TechReports/SanchezThesis201404.pdf

SISCR - GSCT - 1 : 11

The Public Health Objective How do clinical trials determine PPV?

Summary remarks

- A wide range of situations/therapies are studied in trials.
- Globally, clinical trials need to assure:
 - Scientific credibility
 - Ethical experiments
 - Efficient experiments:
 - Minimize time
 - Minimal number of extra subjects
 - Minimize cost
 - A high prevalence of truly beneficial therapies among all therapies used in routine care.

SISCR UW - 2016

Clinical Trials

Definition and Motivation Public Health Objective Statistical foundations Trial Monitoring: Motivation and Implications

- Treatment of patients not in the study.
- Failure to design for interim analyses can lead to hasty decisions subject to:
 - Inadequate consideration of trade-offs between competing endpoints (toxicity versus benefit).
 - External pressures from study investigators or sponsors.
 - Lack of objectivity by study monitors.

SISCR - GSCT - 1 : 18

Elements of trial monitoring SISCR Trial monitoring plan **UW - 2016** Trial monitoring plan is typically pre-specified in 2 documents: **Clinical Trials** DSMB charter: Definition and Motivation Public Health Objective Defines scope of trial monitoring Statistical foundations Trial Monitoring: Motivation and Implications Defines DSMB responsibilities Defines sponsor responsibilities Pre-specifies monitoring plans and decisions (reasons for stopping) Interim Statistical Analysis Plan (ISAP): Defines monitoring endpoint(s) Pre-specifies analysis timing, decision criteria, and rationale Pre-specifies methods for implementation (changes to analysis timing) Pre-specifies adjustments to statistical inference about treatment effects SISCR - GSCT - 1 : 21 Monitoring the primary endpoint: SISCR Illustration of statistical implications UW - 2016 Illustration setting (trial design): **Clinical Trials** Consider a clinical trial evaluating *superiority* of a new agent: Definition and Motivation Public Health Objective Statistical foundations • Measure of treatment effect ($\theta = \theta_1 - \theta_0$) defined based on Trial Monitoring: Motivation and Implications fixed-sample design: - Primary endpoint - Probability model - Functional - Contrast - Statistical hypotheses - Statistical standards for decisions (i..e., frequentist or Bayes) Suppose large values of θ denote superiority of the new agent.

SISCR - GSCT - 1 :

22

Illustration of statistical implications Example: O'Brien-Fleming (OBF) 2-sided design

SISCR UW - 2016

Effect of stopping boundaries on the sampling density

SISCR UW - 2016

Clinical Trials

Definition and Motivation Public Health Objective Statistical foundations Trial Monitoring: Motivation and Implications

[Simulated sample paths]

Illustration of statistical implications

Sampling density for OBF boundaries with $\theta = 0$ and $\theta = 3.92$ (corresponding Normal sampling density for comparison):

SISCR **UW - 2016**

Definition and Motivation Public Health Objective Statistical foundations Trial Monitoring: Motivation and Implications

SISCR - GSCT - 1 : 28

Illustration of statistical implications

Sampling density for OBF and Pocock 1-sided designs.

Illustration of statistical implications

Characteristics of the group sequential sampling density:

- Density is not shift invariant
- Jump discontinuities
- Requires numerical integration
- Sequential testing introduces bias:

	F (â)						
heta	OBF	Pocock					
0.00	-0.29	-0.48					
1.96	1.95	1.82					
3.92	4.21	4.38					

- (Recursive form of the sequential sampling density is computationally useful.)
- ► Fully discussed in sections 3 and 6 of this course.

Clinical Trials Definition and Motivation Public Health Objective Statistical foundations Trial Monitoring: Motivation and Implications

SISCR - GSCT - 1 : 31