Introduction to the Design and Evaluation of Group Sequential Clinical Trials

Session 3 - Evaluation of Group Sequential Designs

Presented July 27, 2016

Daniel L. Gillen Department of Statistics University of California, Irvine

John M. Kittelson Department of Biostatistics & Informatics University of Colorado Denver

©2016 Daniel L. Gillen, PhD and John M. Kittelson, PhD

Statistical basis for stopping criteria

Recall: reasons to monitor trial endpoints

- To maintain the validity of the informed consent for:
 - Subjects currently enrolled in the study.
 - New subjects entering the study.
- To ensure the ethics of randomization.
 - Randomization is only ethical under equipoise.
 - If there is not equipoise, then the trial should stop.
- To identify the best treatment as quickly as possible:
 - For the benefit of all patients (i.e., so that the best treatment becomes standard practice).
 - For the benefit of study participants (i.e., so that participants are not given inferior therapies for any longer than necessary).

SISCR UW - 2016

Design of Group

Sequential Trials Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundari *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape

*Four canonical classes Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

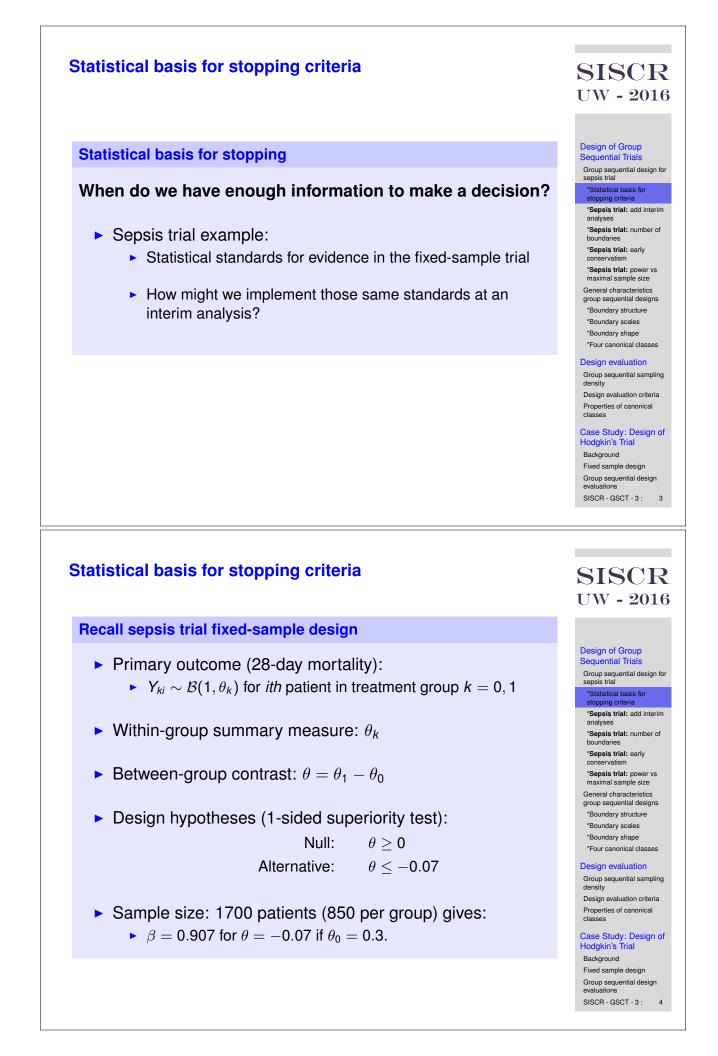
Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 1

SISCR UW - 2016

Design of Group Sequential Trials

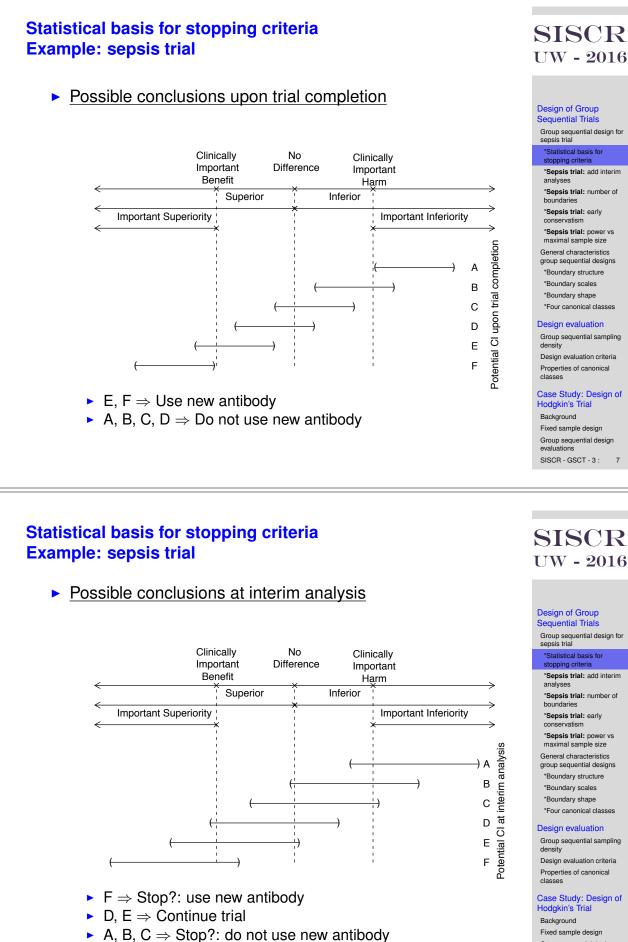
Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: add interim


analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape

*Four canonical classes

Design evaluation


Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Statistical basis for stopping criteria SISCR **Example: sepsis trial UW - 2016** Scientific/clinical structuring of parameter space Design of Group Sequential Trials Group sequential design for sepsis trial *Statistical basis for Clinically No Clinically stopping cr Important Difference Important *Sepsis trial: add interim Benefit analyses Harm *Sepsis trial: number of Superior Inferior boundari *Sepsis trial: early Important Superiority Important Inferiority conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape *Four canonical classes **Design evaluation** Group sequential sampling density Design evaluation criteria Properties of canonical classes Case Study: Design of Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 5 Statistical basis for stopping criteria SISCR **Example: sepsis trial** UW - 2016 Inference with an infinite sample size Design of Group Sequential Trials Group sequential design for sepsis trial Clinically No Clinically *Statistical basis for Important Difference stopping criter Important Benefit *Sepsis trial: add interim Harm analyses Superior Inferior *Sepsis trial: number of boundaries Important Superiority Important Inferiority *Sepsis trial: early conservatism *Sepsis trial: power vs size) maximal sample size General characteristics А × group sequential designs sample *Boundary structure В × *Boundary scales *Boundary shape (infinite s С × *Four canonical classes D Х Design evaluation effect Е Group sequential sampling Х density F Design evaluation criteria × True (Properties of canonical classes • E, F \Rightarrow Use new antibody Case Study: Design of Hodgkin's Trial • $D \Rightarrow$ Is it worthwhile if benefits are unimportant? Background

• A, B, C \Rightarrow Do not use new antibody

Fixed sample design

Group sequential design evaluations SISCR - GSCT - 3 :

SISCR **UW - 2016**

Fixed-sample design in RCTdesign

Sepsis design from session 2 (but using $\theta_{+} = -0.07$ instead of -0.05):

```
> SepsisFixed <- seqDesign( prob.model = "proportions", arms = 2,
         null.hypothesis = .3, alt.hypothesis = 0.23, alpha = 0.025,
+
         ratio = c(1., 1.), nbr.analyses = 1, test.type = "less",
+
+
                   sample.size=1700, power = "calculate",)
> SepsisFixed
Call:
seqDesign(prob.model = "proportions", arms = 2, null.hypothesis = 0.3,
    alt.hypothesis = 0.23, ratio = c(1, 1), nbr.analyses = 1,
    sample.size = 1700, test.type = "less", power = "calculate",
    alpha = 0.025)
PROBABILITY MODEL and HYPOTHESES:
   Theta is difference in probabilities (Treatment - Comparison)
   One-sided hypothesis test of a lesser alternative:
    Null hypothesis : Theta >= 0.00 (size = 0.0250)
Alternative hypothesis : Theta <= -0.07 (power = 0.9066)
   (Fixed sample test)
STOPPING BOUNDARIES: Sample Mean scale
                      Efficacy Futility
    Time 1 (N= 1700) -0.0418 -0.0418
```

Adding interim analyses in RCTdesign Sepsis trial: adding interim analyses • RCTdesgn will automatically add interim analyses • Defaults: • Equally-spaced analyses • Emerson-Fleming symmetric designs • O'Brien-Fleming boundary shape * symmOBF.2 <- update (binomFixed, nbr.analyses=2) * symmOBF.3 <- update (binomFixed, nbr.analyses=3) * symmOBF.4 <- update (binomFixed, nbr.analyses=4)

SISCR UW - 2016

Design of Group

Sequential Trials Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: add interim

analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism

"Sepsis trial: power vs maximal sample size General characteristics group sequential designs "Boundary structure "Boundary scales "Boundary shape "Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 9

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

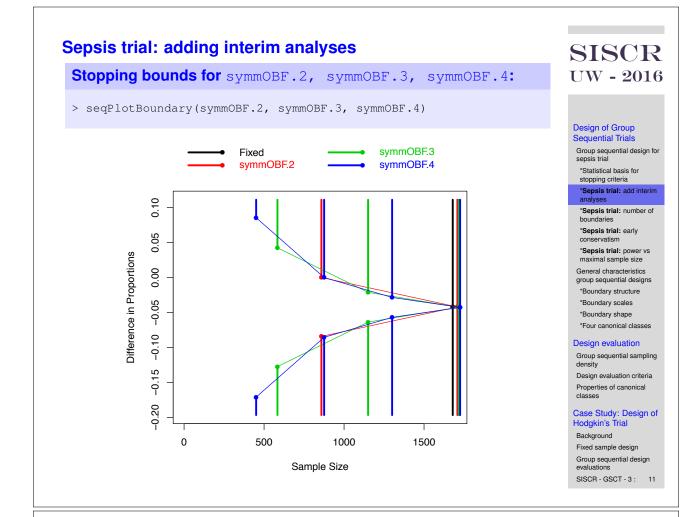
*Sepsis trial: add interim analyses *Sepsis trial: number of boundaries

*Sepsis trial: early

conservatism *Sepsis trial: power vs

maximal sample size

General characteristics group sequential designs *Boundary structure


*Boundary scales

*Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

Sepsis trial: adding interim analyses

Stopping bounds for symmOBF.2, symmOBF.3, symmOBF.4:

Interim	Stop for	Stop for
Analysis	Efficacy	Futility
symmOBF.2:		
N= 850	-0.0842	0.0000
N=1700	-0.0421	-0.0421
symmOBF.3:		
N= 567	-0.1274	0.0425
N= 850	-0.0637	-0.0212
N=1700	-0.0425	-0.0425
symmOBF.4:		
N= 425	-0.1710	0.0855
N= 567	-0.0855	0.0000
N= 850	-0.0570	-0.0285
N=1700	-0.0427	-0.0427

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial *Statistical basis for stopping criteria

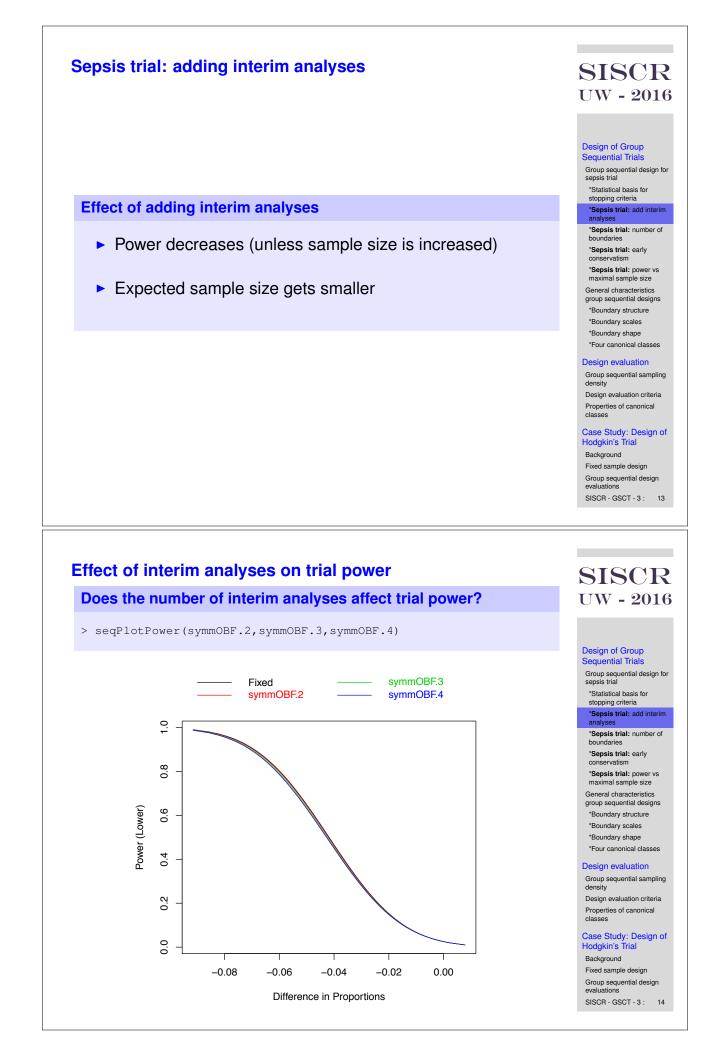
*Sepsis trial: add interim analyses *Sepsis trial: number of boundaries

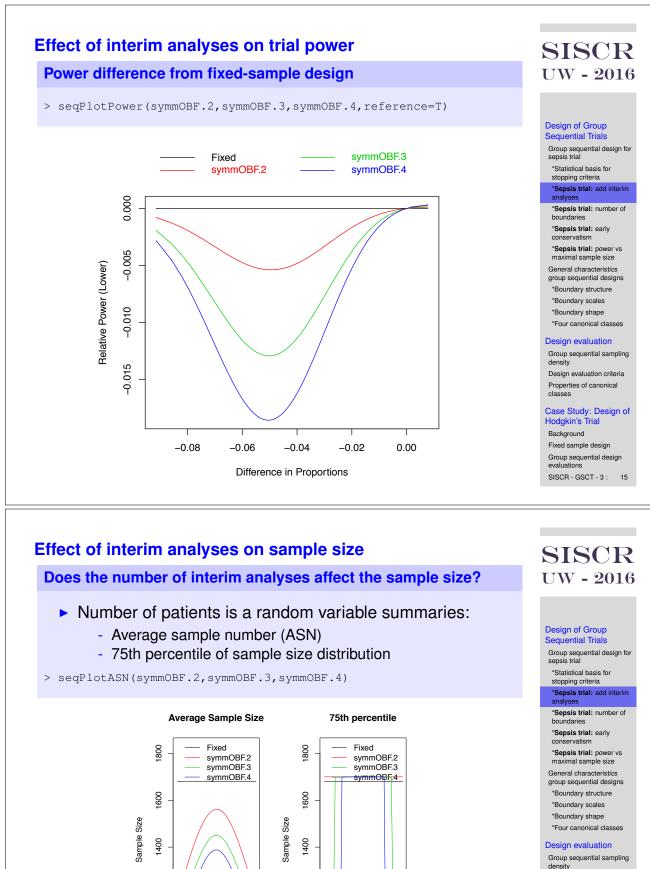
*Sepsis trial: early

conservatism *Sepsis trial: power vs

maximal sample size

General characteristics group sequential designs *Boundary structure


*Boundary scales *Boundary shape


*Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

1200

00

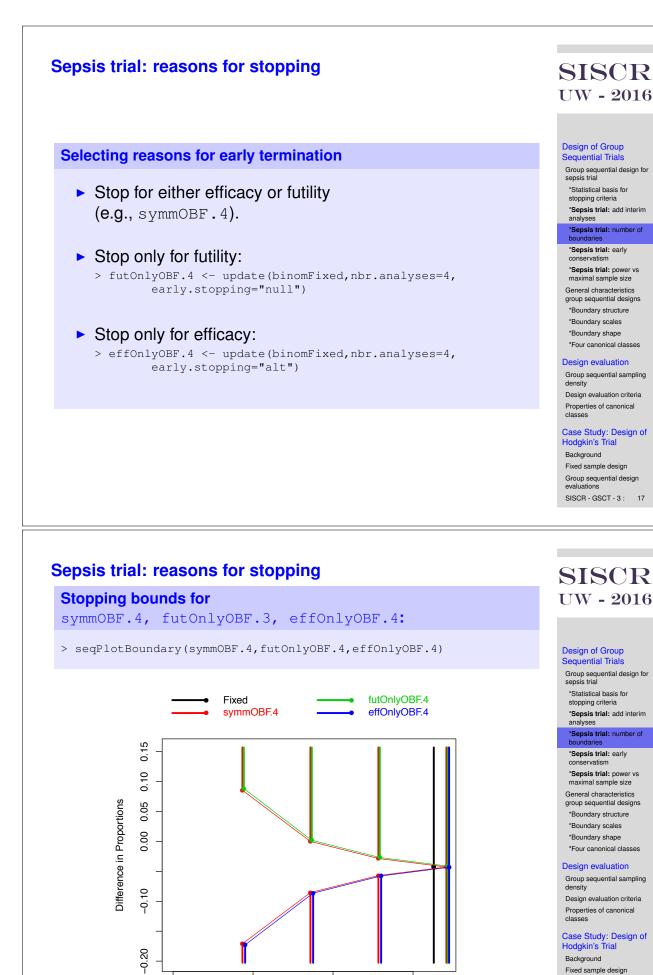
-0.08 -0.04 0.00

Difference in Proportions

1200

00

-0.08


-0.04

Difference in Proportions

0.00

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial Background

0

500

1000

Sample Size

1500

*Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs

*Boundary structure *Boundary scales *Boundary shape *Four canonical classes

Design of Group Sequential Trials Group sequential design for sepsis trial *Statistical basis for

stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of

Design evaluation Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 18

SISCR **UW - 2016**

Design of Group

Sequential Trials Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: add interim

analyses *Sepsis trial: number of boundaries *Sepsis trial: early

conservatisn *Sepsis trial: power vs

maximal sample size

General characteristics group sequential designs *Boundary structure *Boundary scales

*Boundary shape *Four canonical classes

Design evaluation

density

Group sequential sampling

Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3: 17

Sepsis trial: reasons for stopping

Stopping bounds for

symmOBF.4, futOnlyOBF.3, effOnlyOBF.4:

Interim	Stop for	Stop for
Analysis	Efficacy	Futility
symmOBF.4:		
N= 425	-0.1710	0.0855
N= 567	-0.0855	0.0000
N= 850	-0.0570	-0.0285
N=1700	-0.0427	-0.0427
futOnlyOBF.4:		
N= 425	-Inf	0.0883
N= 567	-Inf	0.0019
N= 850	-Inf	-0.0269
N=1700	-0.0413	-0.0413
effOnlyOBF.4:		
N= 425	-0.1728	Inf
N= 567	-0.0864	Inf
N= 850	-0.0576	Inf
N=1700	-0.0432	-0.0432

SISCR UW - 2016

Design of Group

Sequential Trials Group sequential design for sepsis trial *Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure

*Boundary scales *Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 19

Sepsis trial: reasons for stopping

Effect of stopping for one or more hypothesis

- Stopping for both null and alternative hypothesis:
 - Symmetric power for futility and efficacy decisions
 - Symmetric ASN for futility and efficacy decisions
- Stopping for futility (null hypothesis):
 - Power for efficacy may decrease
 - ASN reduced for futility, but not for efficacy
- Stopping for efficacy (alternative hypothesis):
 - Power for efficacy may decrease
 - ASN reduced for efficacy, but not for futility

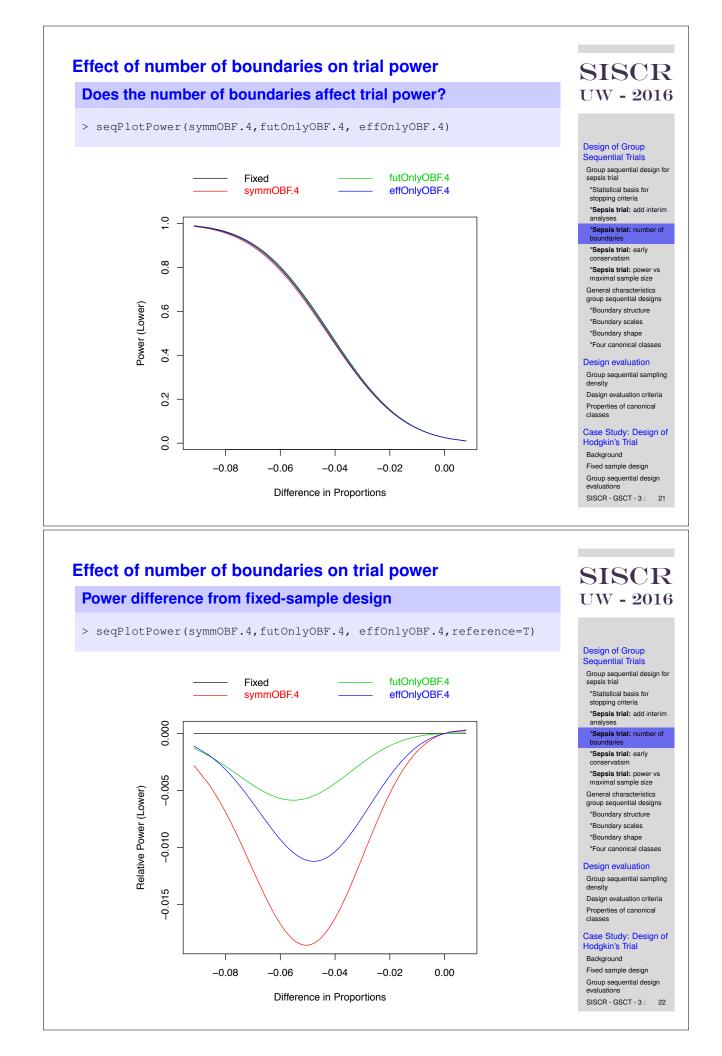
SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: add interim analyses

*Sepsis trial: number of

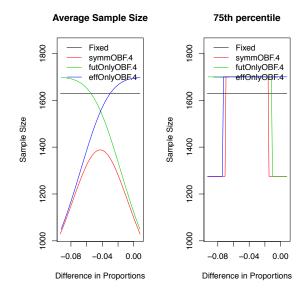

boundaries *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales

*Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial



Number of patients is a random variable summaries:

- Average sample number (ASN)
- 75th percentile of sample size distribution

> seqPlotASN(symmOBF.4,futOnlyOBF.4, effOnlyOBF.4)

Sepsis trial: early conservatism

Selecting degree of early conservatism

- An important design consideration is whether it should be relatively easy or hard to stop at an early interim analysis:
 - O'Brien-Fleming design shows early conservatism: (i.e., relatively difficult to stop at early interim analyses).

The following give identical designs (due to default settings):

 Pocock design is not conservative in early decisions. (i.e., relatively easy to stop at early interim analyses).

Degree of conservatism does not have to be symmetric.

SISCR UW - 2016

Design of Group

Sequential Trials Group sequential design for sepsis trial *Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

"Sepsis trial: early conservatism "Sepsis trial: power vs maximal sample size General characteristics group sequential designs "Boundary structure "Boundary scales "Boundary shape "Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 23

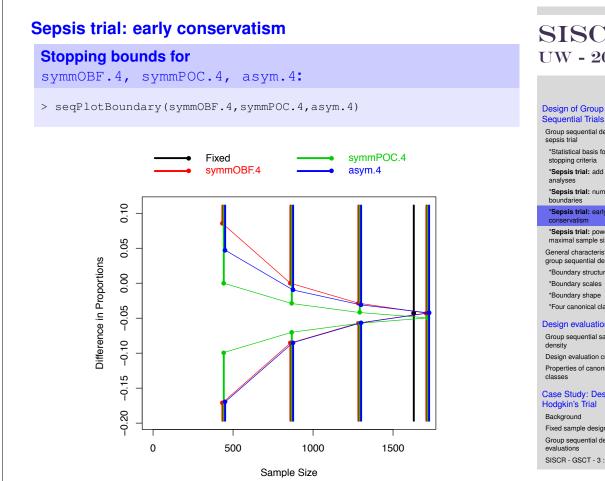
SISCR UW - 2016

Design of Group

Sequential Trials Group sequential design for

sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries


*Sepsis trial: early

*Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

Sepsis trial: early conservatism

Stopping bounds for

symmOBF.4, symmPOC.4,asym.4:

Interim	Stop for	Stop for
Analysis	Efficacy	Futility
symmOBF.4:		
N= 425	-0.1710	0.0855
N= 567	-0.0855	0.0000
N= 850	-0.0570	-0.0285
N=1700	-0.0427	-0.0427
symmPOC.4:		
N= 425	-0.0991	0.0000
N= 567	-0.0701	-0.0290
N= 850	-0.0572	-0.0419
N=1700	-0.0496	-0.0496
asym.4:		
N= 425	-0.1697	0.0473
N= 567	-0.0848	-0.0097
N= 850	-0.0566	-0.0310
N=1700	-0.0424	-0.0424

SISCR **UW - 2016**

Design of Group

Group sequential design for sepsis trial *Statistical basis for

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early

*Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 25

SISCR UW - 2016

Design of Group Sequential Trials

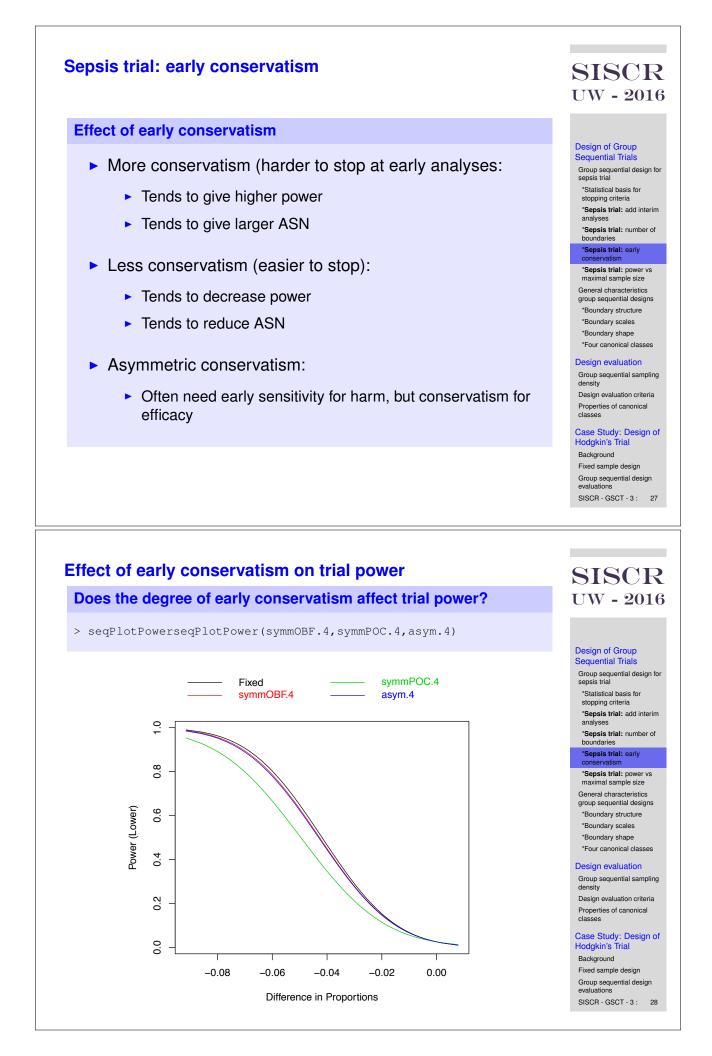
Group sequential design for sepsis trial

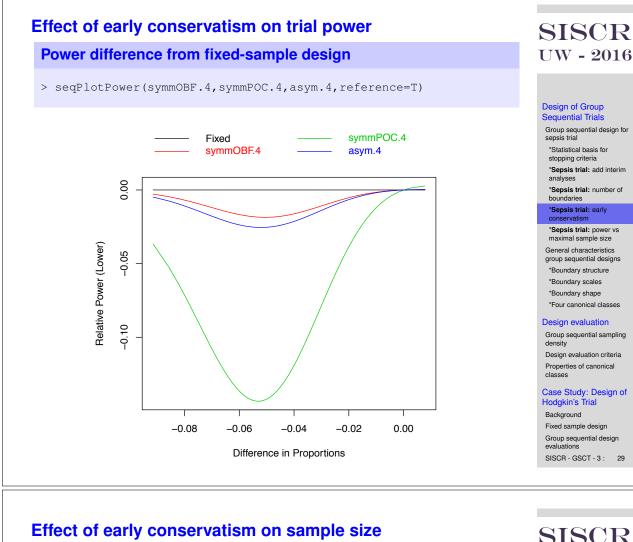
*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

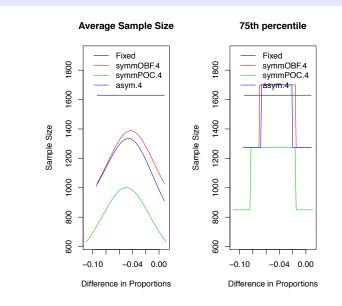
*Sepsis trial: early


*Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape


*Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes


Case Study: Design of

Does early conservatism affect the sample size?

- Number of patients is a random variable summaries:
 - Average sample number (ASN)
 - 75th percentile of sample size distribution
- > seqPlotASN(symmOBF.4,symmPOC.4,asym.4)

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: add interim

analyses *Sepsis trial: number of

boundaries
*Sepsis trial: early

conservatism *Sepsis trial: power vs

maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales

*Boundary shape *Four canonical classes

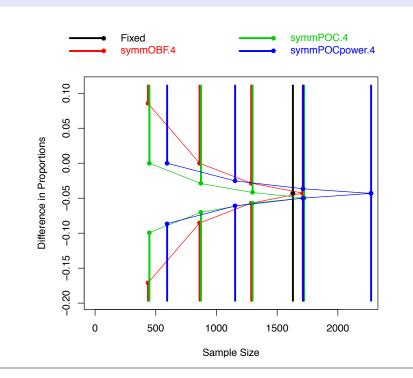
Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

Sepsis trial: power vs maximal sample size

Boundary shape


- Above designs use N = 1700:
 - Different group sequential designs have different power
- N can be chosen to give equal power
- For example, compare symmOBF.4, symmPOC.4, symmPOCpower.4:
 - > symmPOCpower.4 <- update(symmPOC.4,power=0.8945)</pre>

Sepsis trial: power vs maximal sample size

Stopping bounds for

symmOBF.4, symmPOC.4, symmPOCpower.4:

> seqPlotBoundary(symmOBF.4,symmPOC.4,symmPOCpower.4)

SISCR UW - 2016

Design of Group

Sequential Trials Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: add interim

analyses
*Sepsis trial: number of

boundaries *Sepsis trial: early

conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 31

SISCR UW - 2016

Design of Group Sequential Trials

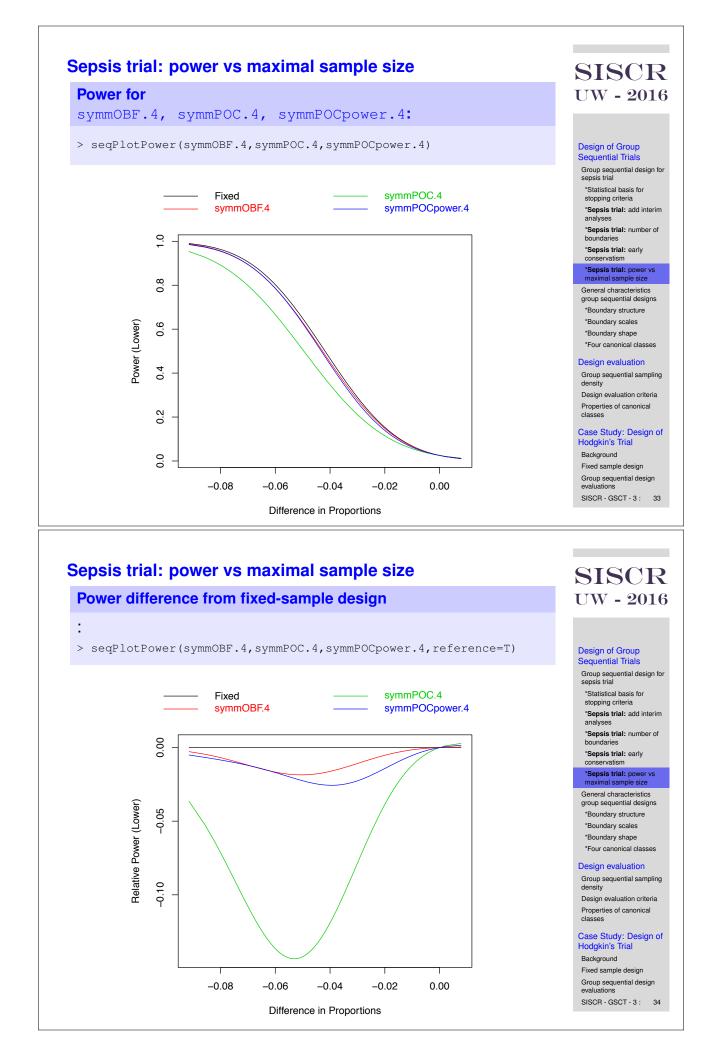
Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism


*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

General characteristics of group sequential designs

Specifying interim decision criteria

- Key considerations (illustrated in sepsis example):
 - Boundary structure
 - Boundary scale
 - Number and timing of interim analyses
 - Boundary shape
 - Number of boundaries: reasons for early termination
 - Statistical operating characteristics
 - Design properties (ASN, stopping probabilities)

Boundary structure

General structure for stopping rules

- Number and timing of analyses
 - N counts the sampling units accrued to the study (with outcome measurements)
 - Up to N analyses of the data to be performed
 - Analyses performed after accruing sample sizes of N₁ < N₂ < · · · N_J
 - (More generally, N measures statistical information)
- Boundaries (decision criteria) at the analyses
 - ► a_j ≤ b_j ≤ c_j ≤ d_j where the a, b, c and d are boundaries at the *i*-the analysis (when N_j observations)
 - ► At the final (*J*-th) analysis a_J = b_J and c_J = d_J to guarantee stopping

SISCR UW - 2016

Design of Group

Sequential Trials Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure *Boundary scales *Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 35

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: add interim

analyses *Sepsis trial: number of

boundaries *Sepsis trial: early

conservatism

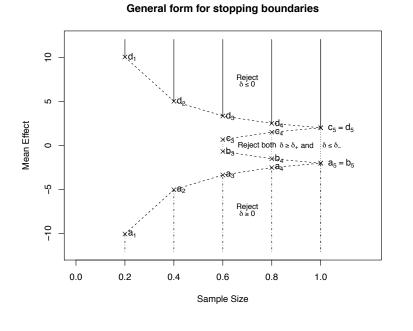
*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure *Boundary scales *Boundary shape

*Four canonical classes

Design evaluation


Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Boundary structure

General structure for stopping rules

Illustration of general structure:

General structure: boundary scales

Boundary scales

- Stopping boundaries can be defined on a variety of scales
 - Sum of observations
 - Point estimate of treatment effect
 - Normalized (Z) statistic
 - Fixed-sample P value
 - Error spending function
 - Conditional probability
 - Predictive probability
 - Bayesian posterior probability

SISCR UW - 2016

Design of Group Sequential Trials Group sequential design for sepsis trial *Statistical basis for

stopping criteria *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales *Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 37

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

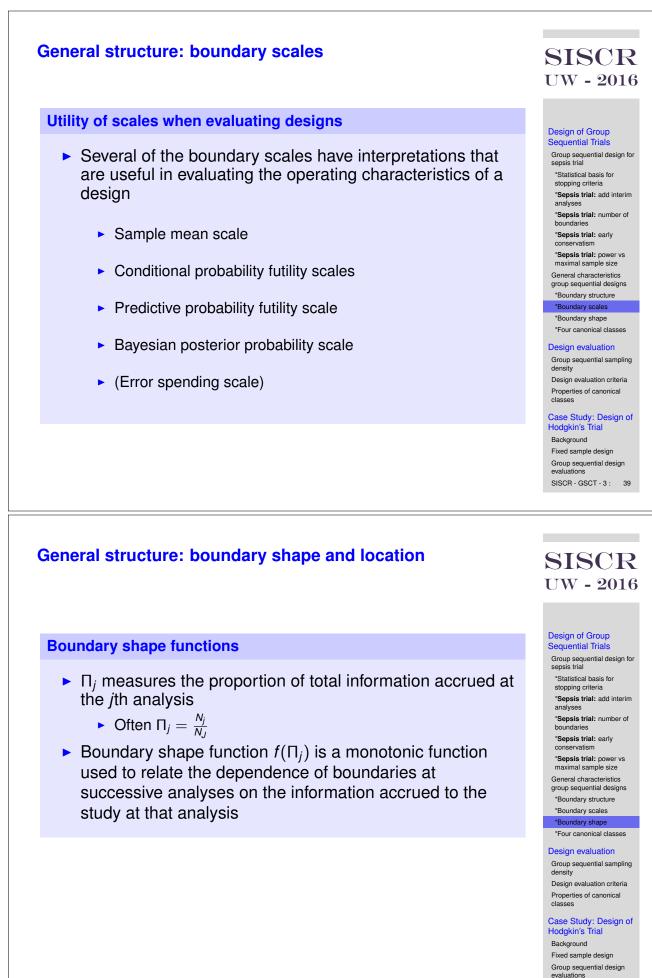
*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure


*Boundary scales *Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

SISCR - GSCT - 3 : 40

General structure: boundary shape and location

General structure of decision boundaries

- Stopping boundaries for the sample mean statistic:
 - $a_i = \theta_a f_a(\Pi_i)$
 - $\flat \ b_i = \theta_b + f_b(\Pi_i)$
 - $c_j = \theta_c f_c(\Pi_j)$
 - $\bullet \ d_j = \theta_d + f_d(\Pi_j)$

where θ_* represents the hypothesis rejected by the corresponding boundary:

$\hat{ heta}_j \leq oldsymbol{a}_j$	rejects	$ heta \geq heta_{a}$
$\hat{ heta}_{j} \geq b_{j}$	rejects	$\theta \leq heta_b$
$\hat{ heta}_j \leq m{c}_j$	rejects	$\theta \geq heta_{c}$
$\hat{ heta}_j \geq d_j$	rejects	$\theta \leq \theta_{\rm d}$

General structure: boundary shape and location

Boundary shape function (unified family)

i

Parameterization of boundary shape (unified family):

$$f_*(\Pi_j) = \left[A_* + \Pi_j^{-P_*} (1 - \Pi_j)^{-R_*}
ight] imes G_*$$

- Distinct parameters possible for each boundary
- Parameters A_{*}, P_{*}, and R_{*} are typically specified by trialist
- Critical value G_{*} usually calculated by computer search using sequential sampling density

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: add interim

analyses *Sepsis trial: number of

boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size General characteristics group sequential designs

*Boundary structure *Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 41

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

General structure: boundary shape and location

Unified design family

- Choice of *P* parameter ($P \ge 0$):
 - Larger values of P make early stopping more difficult (impossible when P infinite)
 - When A = R = 0:

$$f_*(\Pi_j) = G_*\Pi_j^{-P_*}$$

- P = 0.5 gives Pocock (1977) type boundary shapes (constant on Z scale)
- P = 1.0 gives O'Brien-Fleming (1979) type boundary shapes (constant on partial sum scale)
- 0.5 < P < 1 corresponds to power family (Δ) in Wang and Tsiatis (1987): P = 1 − Δ
- Reasonable range of values: 0 < P < 2.5</p>
- P = 0 with A = R = 0 possible for some (not all) boundaries, but not particularly useful
- Illustrations to follow...

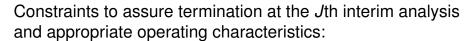
SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs

*Boundary scales

*Boundary shape *Four canonical classes


Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 43

General structure: finite termination constraint

Finite termination constraint:

$$\begin{array}{ll} a_J = b_J & \Rightarrow & \theta_a - \theta_b = f_a(1) + f_b(1) \\ c_J = d_J & \Rightarrow & \theta_c - \theta_d = f_c(1) + f_d(1) \\ a_J \leq d_J & \Rightarrow & \theta_a - \theta_d \leq f_a(1) + f_d(1) \end{array}$$

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

General structure: finite termination constraint

Constraints to assure termination at the *J*th interim analysis and appropriate operating characteristics:

► We then select G_a, G_b, G_c, G_d in a 4-parameter search to satisfy the following operating characteristics:

$$P[\hat{\theta}_{M} \leq a_{M} | \theta = \theta_{a}] = \beta_{\ell}$$

$$P[\hat{\theta}_{M} \geq b_{M} | \theta = \theta_{b}] = 1 - \alpha_{\ell}$$

$$P[\hat{\theta}_{M} \leq c_{M} | \theta = \theta_{c}] = 1 - \alpha_{u}$$

$$P[\hat{\theta}_{M} \geq d_{M} | \theta = \theta_{d}] = \beta_{u}$$

where:

- M denotes the random time at which the trial stopped
- $\alpha_{\ell}, \beta_{\ell}$ denote the size and power for the lower test
- α_u, β_u denote the size and power for the upper test

Stopping rules: Unified family

Example: symmetric tests (Emerson & Fleming (1989)

- Symmetric tests are an important class of designs with
 - * Symmetric operating characteristics:

$$\alpha_{\ell} = \alpha_{u} = (1 - \beta_{\ell}) = (1 - \beta_{u})$$

 Symmetric boundary shapes (less important, but useful for illustration)

$$f_a(\Pi_j) = f_b(\Pi_j) = f_c(\Pi_j) = f_d(\Pi_j) = f(\Pi_j)$$

* It then follows that

 $G_a = G_b = G_c = G_d = G$

* So that symmetric designs have the form:

$$a_{j} = -f(\Pi_{j})$$

$$b_{j} = -\theta_{*} + f(\Pi_{j})$$

$$c_{j} = \theta_{*} - f(\Pi_{j})$$

$$d_{j} = f(\Pi_{j})$$
where $\theta_{*} = 2G$

SISCR UW - 2016

Design of Group

Sequential Trials Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundari *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

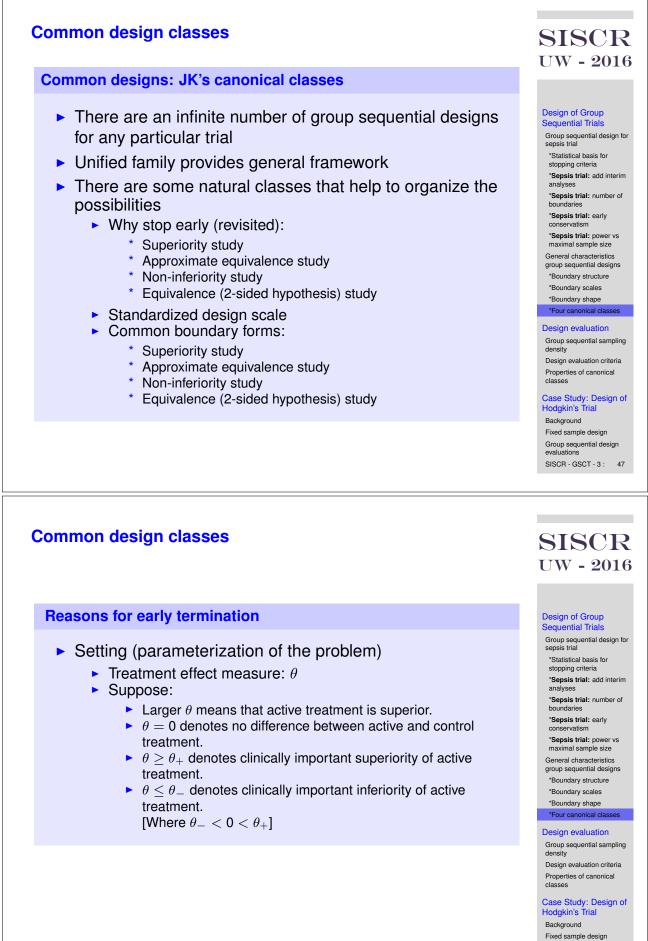
Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 45

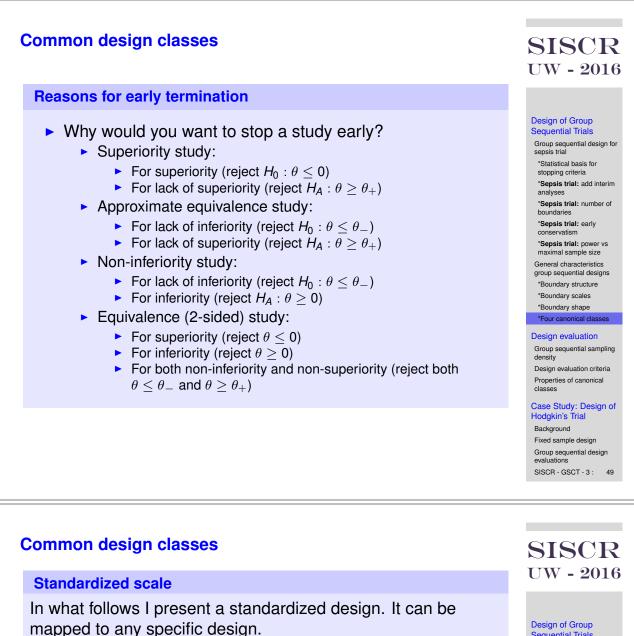
SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial "Statistical basis for stopping criteria "Sepsis trial: add interim analyses "Sepsis trial: number of boundaries "Sepsis trial: early conservatism "Sepsis trial: power vs maximal sample size General characteristics

group sequential designs *Boundary structure


*Boundary scales *Boundary shape


*Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

- Standardization:
 - Without interim stopping, but with sample sizes $N_1 < N_2, ..., < N_J$):

$$\hat{ heta}_{j} \dot{\sim} \mathcal{N}\left(heta, rac{m{V}}{m{N}_{j}}
ight)$$

where V is the variance (follows from probability model)

Let:

$$\hat{\delta}_j = \frac{\hat{\theta}_j - \theta_{\emptyset}}{\sqrt{V/N_s}}$$

Thus:

$$\hat{\delta}_j \dot{\sim} \mathcal{N}\left(\delta, \frac{1}{\Pi_j}\right)$$

where $\Pi_j = \frac{N_j}{N_j}$.

Sequential Trials

Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim

analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales

*Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

Common design classes

Boundary form in standardized scale

In general there are 4 potential boundaries in a group sequential design which I denote by $a_i \leq b_i \leq c_i \leq d_i$ (j = 1, ..., J):

$\hat{\delta}_j \geq d_j$	\rightarrow	Reject $\delta \leq \delta_d$	(usually $\delta_d = 0$)
$\hat{\delta}_j \leq c_j$	\rightarrow	Reject $\delta \geq \delta_c$	(usually $\delta_{c} = \delta_{+}$)
<u>^</u>			

- $\begin{array}{lll} \hat{\delta}_{j} \geq b_{j} & \rightarrow & \text{Reject } \delta \leq \delta_{b} & (\text{usually } \delta_{b} = \delta_{-}) \\ \hat{\delta}_{j} \leq a_{j} & \rightarrow & \text{Reject } \delta \geq \delta_{a} & (\text{usually } \delta_{a} = 0) \end{array}$

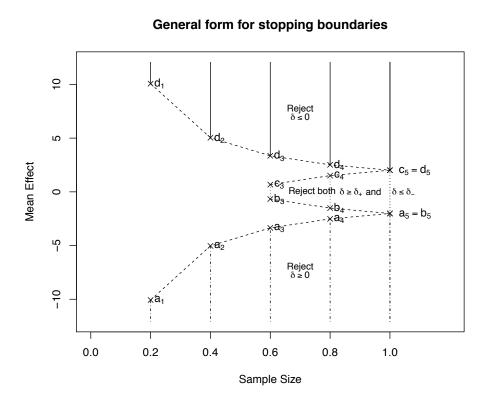
with $\delta_{-} < 0 < \delta_{+}$ (often $\delta_{-} = -\delta_{+}$).

Set $d_J = c_J$ and $a_J = b_J$ so that the trial has to terminate by analysis J.

SISCR **UW - 2016**

Design of Group

Sequential Trials Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundari *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape


*Four canonical class **Design evaluation**

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 51

Common design classes Boundary form (number and location)

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs

*Boundary structure *Boundary scales

*Boundary shape *Four canonical classes

Design evaluation Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Superiority study

Stop for superiority:

$$\hat{\delta}_j \geq d_j \rightarrow \text{ Reject } \delta \leq 0$$

Stop for non-superiority:

 $\hat{\delta}_i \leq a_i \rightarrow \text{Reject } \delta \geq \delta_+$

Stop for either superiority or non-superiority:

$$\begin{array}{lll} \delta_j \geq d_j & \to & \text{Reject } \delta \leq \mathbf{0} \\ \hat{\delta}_j \leq a_j & \to & \text{Reject } \delta \geq \delta_+ \end{array}$$

SISCR **UW - 2016**

Design of Group Sequential Trials

Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early

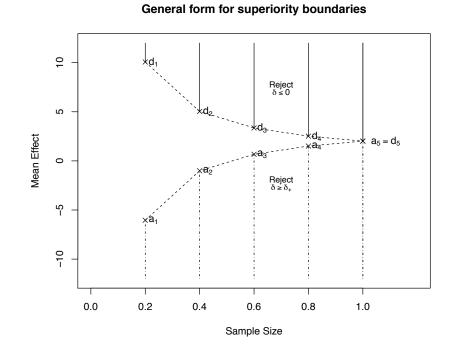
conservatism

*Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure

*Boundary scales *Boundary shape

*Four canonical classe

Design evaluation


Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 53

Boundary form (number and location)

A superiority design is obtained by an upward shift of the a- and b-boundaries.

SISCR **UW - 2016**

Design of Group Sequential Trials

Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs *Boundary structure

*Boundary scales *Boundary shape

*Four canonical classes

Design evaluation Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

Superiority study

RCTdesign:

```
> sup.D <- seqDesign(prob.model = "normal", arms = 1,
+ null.hypothesis = 0., alt.hypothesis = 3.92,
+ variance = 1., sample.size = 1, test.type = "greater",
+ nbr.analyses = 5, power = "calculate", alpha = 0.025,
+ epsilon = c(0., 1.), early.stopping = "alternative",
+ display.scale = seqScale(scaleType = "X"))
> sup.A <- update(sup.D, early.stopping="both")</pre>
```

*Boundary structure *Boundary scales *Boundary shape *Four canonical classes

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: power vs

maximal sample size

General characteristics group sequential designs

*Sepsis trial: early

conservatism

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

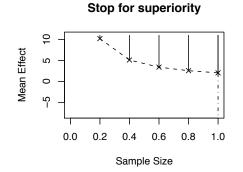
Case Study: Design of

Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 55

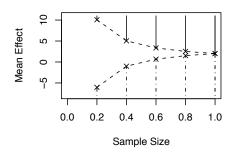
SISCR

UW - 2016

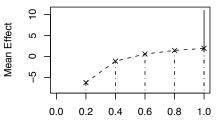
Design of Group Sequential Trials Group sequential design for sepsis trial


*Statistical basis for

*Sepsis trial: early conservatism


stopping criteria *Sepsis trial: add interim

analyses *Sepsis trial: number of boundaries


Boundary form (number and location) Superiority study designs

Stop for either decision

Stop for non-superiority

Sample Size

*Sepsis trial: power vs maximal sample size General characteristics group sequential designs

*Boundary structure *Boundary scales *Boundary shape

*Four canonical classes

Design evaluation Group sequential sampling density

density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 56

SISCR UW - 2016

Design of Group Sequential Trials Group sequential design for sepsis trial *Statistical basis for stopping criteria

Non-inferiority study

Stop for non-inferiority:

$$\hat{\delta}_j \geq d_j \rightarrow \text{ Reject } \delta \leq \delta_-$$

Stop for inferiority:

$$\hat{\delta}_j \leq a_j \rightarrow \text{ Reject } \delta \geq 0$$

Stop for either inferiority or non-inferiority:

$\hat{\delta}_j \geq d_j$	\rightarrow	Reject $\delta \leq \delta_{-}$
$\hat{\delta}_j \leq a_j$	\rightarrow	Reject $\delta \geq 0$

SISCR UW - 2016

Design of Group Sequential Trials

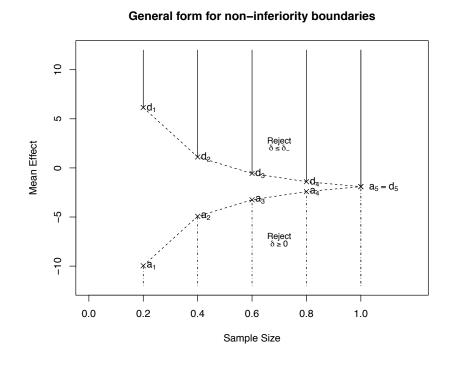
Group sequential design for sepsis trial "Statistical basis for stopping criteria "Sepsis trial: add interim analyses "Sepsis trial: number of boundaries "Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size General characteristics

group sequential designs *Boundary structure *Boundary scales

*Boundary shape *Four canonical classes

Design evaluation


Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 57

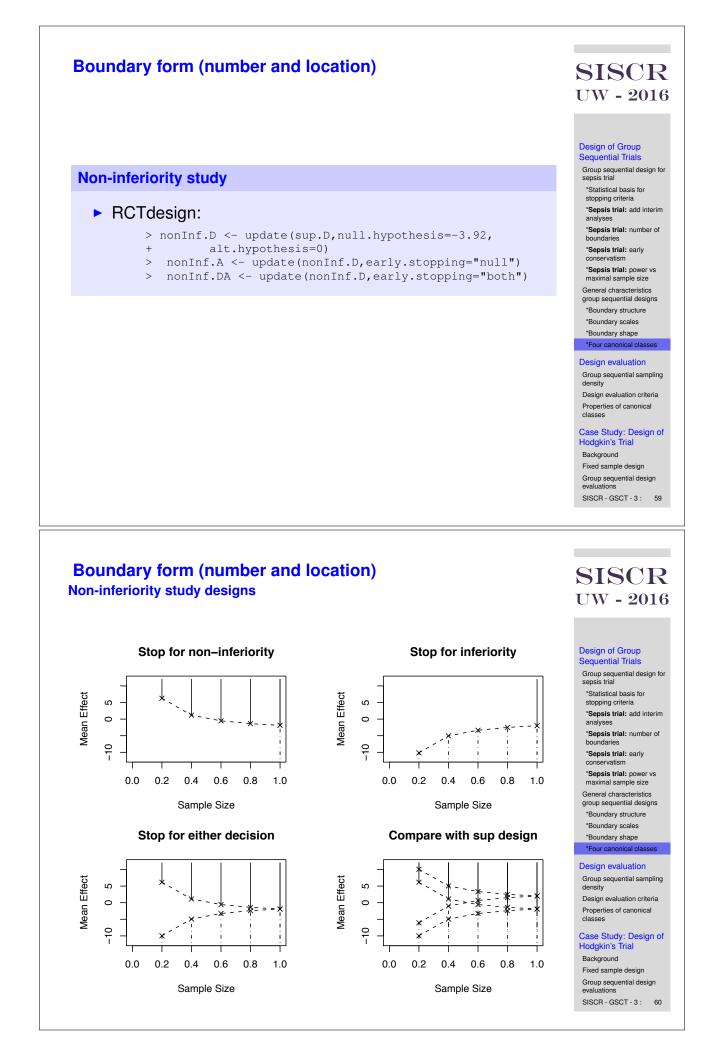
Boundary form (number and location)

A non-inferiority design is obtained by a downward shift of the *c*- and *d*-boundaries.

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial "Statistical basis for stopping criteria "Sepsis trial: add interim analyses "Sepsis trial: number of boundaries "Sepsis trial: number of boundaries "Sepsis trial: number of boundaries "Sepsis trial: number of maximal sample size General characteristics group sequential designs "Boundary structure


*Boundary structure *Boundary scales

*Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

Equivalence study

Stop for superiority (of A over B or B over A):

$$egin{array}{rcl} \hat{\delta}_j \geq m{d}_j & o & { extsf{Reject}} \ \delta \leq m{0} \ \hat{\delta}_j \leq m{a}_j & o & { extsf{Reject}} \ \delta \geq m{0} \end{array}$$

Stop for equivalence:

$$m{b}_{m{j}} \leq \hat{\delta}_{m{j}} \leq m{c}_{m{j}}
ightarrow \, {\sf Reject} \, \delta \leq \delta_{-} \, {
m and} \, \delta \geq \delta_{+}$$

Stop for either superiority or equivalence:

 $\begin{array}{ll} \hat{\delta}_{j} \geq \textit{d}_{j} & \rightarrow & \text{Reject } \delta \leq \textit{0} \\ \textit{b}_{j} \leq \hat{\delta}_{j} \leq \textit{c}_{j} & \rightarrow & \text{Reject } \delta \leq \delta_{-} \text{ and } \delta \geq \delta_{+} \\ \hat{\delta}_{j} \leq \textit{a}_{j} & \rightarrow & \text{Reject } \delta \geq \textit{0} \end{array}$

SISCR UW - 2016

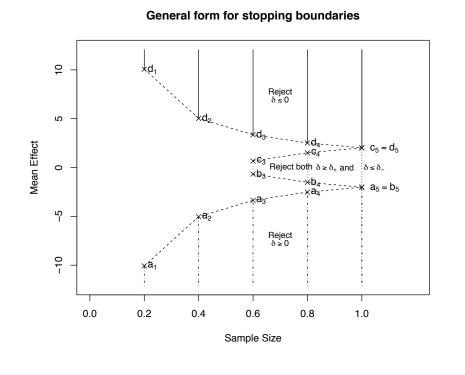
Design of Group

Sequential Trials Group sequential design for sepsis trial "Statistical basis for stopping criteria "Sepsis trial: add interim analyses "Sepsis trial: number of boundaries "Sepsis trial: early conservatism "Sepsis trial: power vs maximal sample size

General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape

*Four canonical classes

Design evaluation


Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 61

Boundary form (number and location)

(Illustrated earlier).

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim

analyses *Sepsis trial: number of boundaries *Sepsis trial: early

conservatism *Sepsis trial: power vs

maximal sample size General characteristics

group sequential designs *Boundary structure

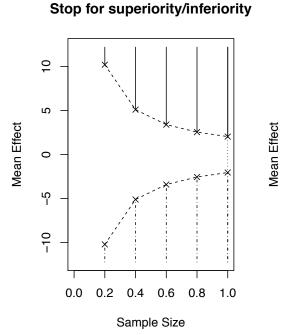
*Boundary scales *Boundary shape

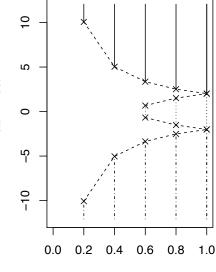
*Four canonical classes

Design evaluation Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

Equivalence study


RCTdesign:


Equivalence study designs

```
eq.Alt <- update(sup.D,test.type="two.sided",</pre>
   epsilon=c(1,1))
```

eq.Both <- update(eq.Alt,early.stopping="both")</pre>

Boundary form (number and location)

Sample Size

Stop for any decision

SISCR **UW - 2016**

Design of Group

Sequential Trials Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape

*Four canonical classes **Design evaluation**

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 63

SISCR

UW - 2016

Design of Group Sequential Trials Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs

*Boundary structure *Boundary scales *Boundary shape

*Four canonical classes Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial Background

Design evaluation

Design evaluation

- Interim analyses are used to address ethical and efficiency considerations
 - Scientific objectives are developed in the fixed-sample design
 - The monitoring plan (sequential design) should not alter the science
 - * Maintain design hypotheses
 - * Maintain design operating characteristics (PPV)
- Sequential sampling density Required to evaluate/maintain statistical properties
- Design characteristics and evaluation
- Examples

Sampling density for sequentially-sampled statistic

Historic context

- Wald (1947?): Sequential probability ratio test. Continuous monitoring; non-finite sample size.
- Armitage, McPherson, and Rao (1969): Recursive form for a sequentially sampled statistic
- Pocock (1977): Application in clinical trials; small sample consistency (t-statistic); decision criteria that are constant on Z-scale.
- O'Brien-Fleming (1979): Consistency for χ² statistic; decision criteria that are constant on partial sum scale; (early conservatism).
- Wang and Tsiatis (1987): Group sequential designs for 1-sided versus 2-sided hypothesis tests; parameterization of early conservatism.
- Emerson and Fleming (1989): Symmetric group sequential test designs.
- Kittelson and Emerson (1999): Unified family of group sequential test designs.

SISCR UW - 2016

Design of Group

Sequential Trials Group sequential design for

sepsis trial *Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early

conservatism

*Sepsis trial: power vs maximal sample size General characteristics group sequential designs

*Boundary structure *Boundary scales

*Boundary shape *Four canonical classes

sign evaluatior

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

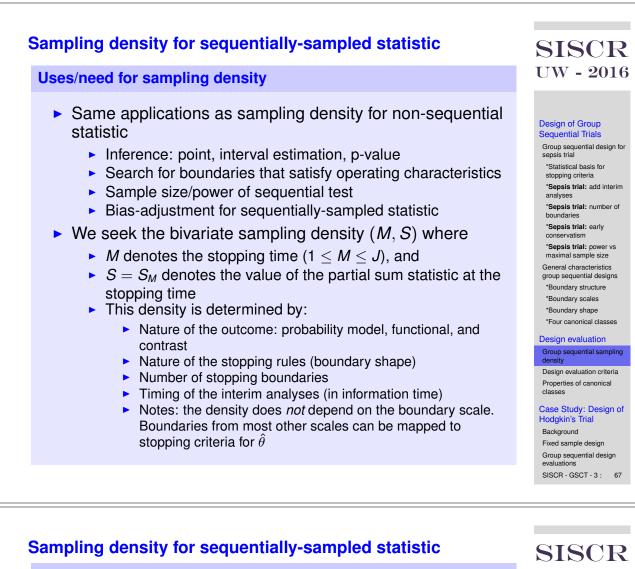
Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 65

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape


*Four canonical classes

Design evaluation Group sequential sampling

density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial Background Fixed sample design Group sequential design evaluations

SISCB - GSCT - 3 : 66

Group sequential sampling density

- Let S_j and $C_j = S_i^c$ denote, respectively, the stopping and continuation sets at the *j*th interim analysis.
- The sampling density for the observation (M = m, S = s)is:

$$p(m, s; heta) = egin{cases} f(m, s; heta) & s
ot\in \mathcal{C}_n \ 0 & else \end{cases}$$

where the (sub)density function $f(j, s; \theta)$ is recursively defined as

$$f(1, s; \theta) = \frac{1}{\sqrt{n_1 V}} \phi\left(\frac{s - n_1 \theta}{\sqrt{n_1 V}}\right)$$

$$f(j, s; \theta) = \int_{\mathcal{C}_{(j-1)}} \frac{1}{\sqrt{n_j V}} \phi\left(\frac{s - u - n_j \theta}{\sqrt{n_j V}}\right) f(j - 1, u; \theta) du,$$

$$j = 2, \dots, m$$

with $\phi(x) = e^{-x^2/2}/\sqrt{2\pi}$ denoting the density for the standard normal distribution.

UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape

*Four canonical classes

Design evaluation Group sequential sampling

Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCB - GSCT - 3 : 68

Design properties

- There is no uniformly most powerful group sequential test; thus,
 - The unified family (RCTdesign) contains the full complement of possibilities
 - General classes (JK canonical classes) help structure the possibilities
 - There are continuua between classes that enables design iterations to begin in one class and move to a more suitable design
 - But, what properties should we be considering as we iterate?

Design Evaluation: properties

Design properties

- Elements that are established in the fixed-sample design:
 - Endpoint, prob model, functional, contrast
 - Maximal information (sample size, N_J; design alternative hypothesis)
 - Statistical standard for evidence (α level)
- Evaluation of group sequential design:
 - Sample size is a random variable; characteristics of interest:
 - Mean (Average Sample Number ASN)
 - Quantiles (median, 25th, 75th percentiles)
 - power curve
 - Power for fixed N_J
 - \triangleright N_J for fixed power
 - Stopping probability at each interim analysis
 - Inference at the boundary: What is the statistical inference (point estimate, interval estimate, and p-value) that would be reported if the trial is stopped?
- Iterate: modify the stopping rules until an acceptable mix of properties is found.

SISCR UW - 2016

Design of Group

Sequential Trials Group sequential design for

sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early

conservatism *Sepsis trial: power vs

maximal sample size General characteristics group sequential designs

*Boundary structure *Boundary scales *Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical classes

Case Study: Design of

Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 69

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial

"Statistical basis for stopping criteria "Sepsis trial: add interim analyses "Sepsis trial: number of boundaries "Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs *Boundary structure

*Boundary scales

*Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCB - GSCT - 3 : 70

Illustration of general design properties

Four classes of designs

- One-sided test; One-sided stopping (allow stopping for efficacy or futility, but not both)
- One-sided test; Two-sided stopping

 (allow stopping for either efficacy or futility)
- Two-sided test; One-sided stopping

 (allow stopping only for the alternative(s))
- Two-sided test; Two-sided stopping

 (allow stopping for either the null or the alternative)

SISCR UW - 2016

Design of Group

Sequential Trials Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: add interim

analyses *Sepsis trial: number of boundaries

*Sepsis trial: early

conservatism

*Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical classes

Case Study: Design of

Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 71

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of

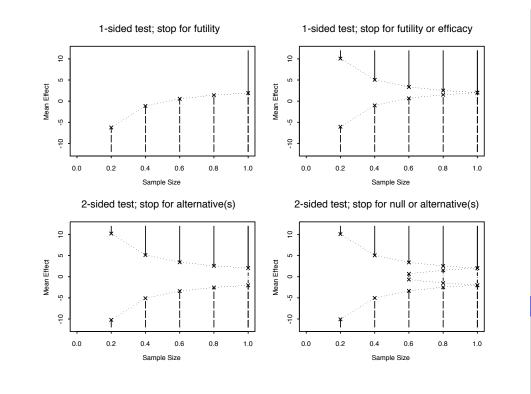
boundaries *Sepsis trial: early

conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs *Boundary structure *Boundary scales

*Boundary shape


*Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCB - GSCT - 3 : 72

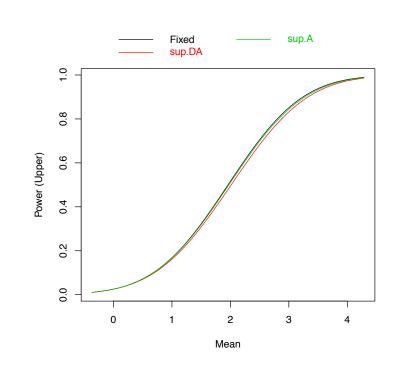
Illustration of general design properties Four design classes

SISCR UW - 2016

Design of Group Sequential Trials Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria


Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Hodgkin's frial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 73

Power of one-sided tests

> seqPlotPower(sup.DA, sup.A)

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses *Sepsis trial: number of

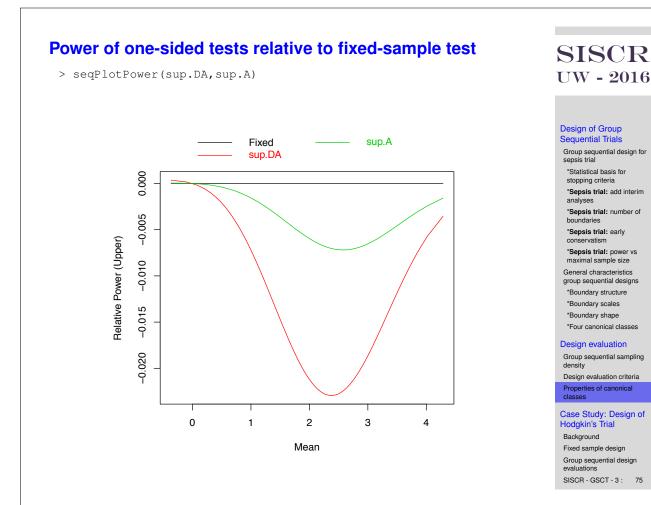
boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

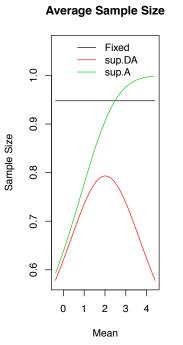
General characteristics group sequential designs

*Boundary structure *Boundary scales

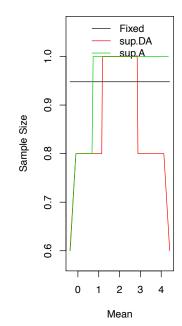

*Boundary shape

*Four canonical classes

Design evaluation


Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial Background Fixed sample design Group sequential design evaluations



ASN for one-sided tests

> seqPlotASN(sup.DA,sup.A)

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: add interim

analyses *Sepsis trial: number of boundaries

*Sepsis trial: early

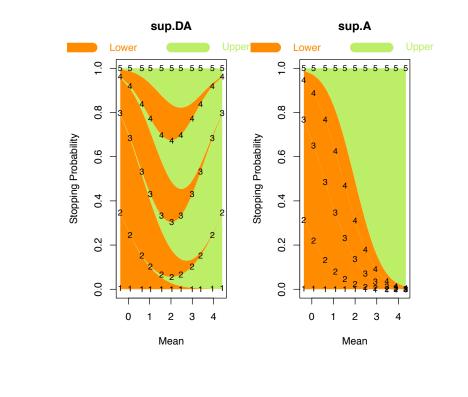
conservatism *Sepsis trial: power vs

maximal sample size

General characteristics group sequential designs *Boundary structure

*Boundary scales

*Boundary shape *Four canonical classes


Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 76

Stopping probabilities for one-sided tests

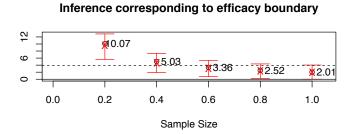
> seqPlotStopProb(sup.DA, sup.A)

SISCR UW - 2016

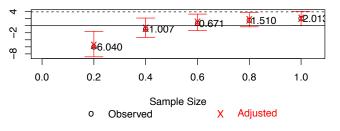
Design of Group Sequential Trials Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria


Properties of canonical classes

Case Study: Design of Hodgkin's Trial


Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 77

Inference at the boundary for sup.DA

> seqPlotInference(sup.DA)

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: add interim

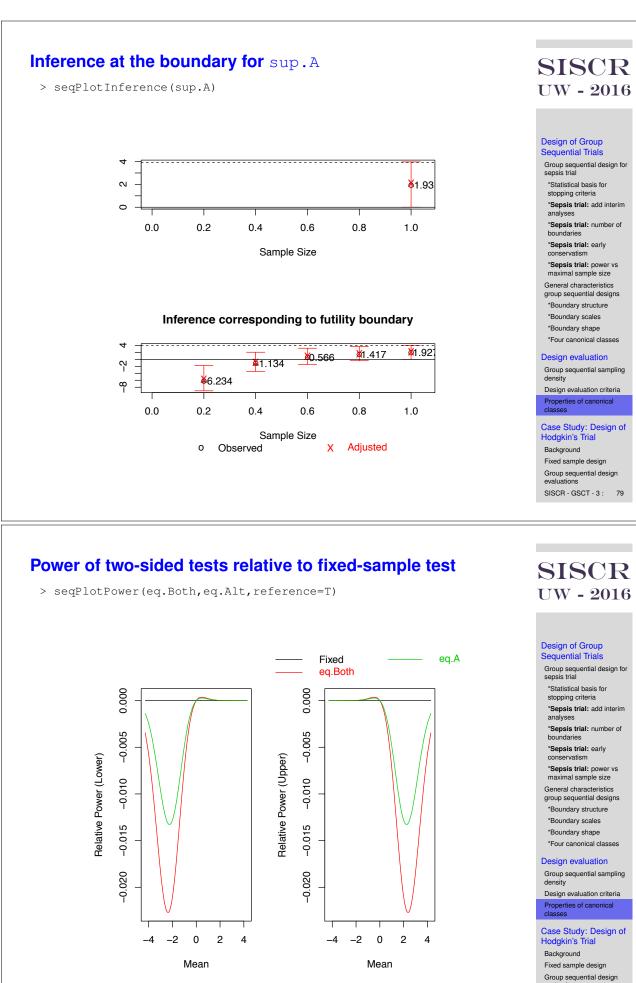
analyses *Sepsis trial: number of

boundaries *Sepsis trial: early

conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs *Boundary structure


*Boundary scales

*Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 78

evaluations SISCR - GSCT - 3 : 80

ASN for two-sided tests

> seqPlotASN(eq.Both,eq.Alt)

Average Sample Size 75th percentile Fixed Fixed eq.Both eq.Both eq.Alt 0.1 eq.Alt 0.1 0.9 0.9 Sample Size Sample Size 0.8 0.8 0.7 0.7 0.6 0.6 -4 -2 0 2 4 -4 -2 0 2 4 Mean Mean

SISCR UW - 2016

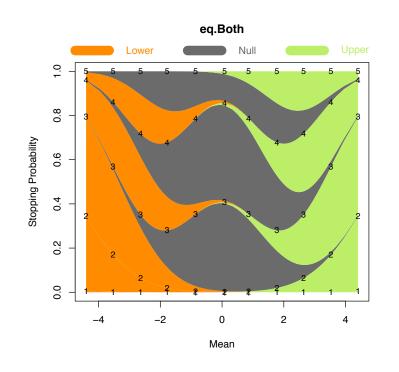
Design of Group Sequential Trials Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure

*Boundary structure *Boundary scales *Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria


Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 81

Stopping probabilities for ${\tt eq.Both}$

> seqPlotStopProb(eq.Both)

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria ***Sepsis trial:** add interim

analyses *Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

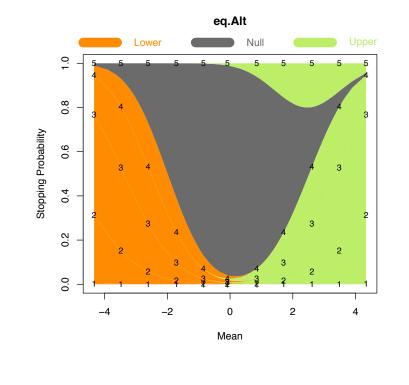
*Sepsis trial: power vs

maximal sample size General characteristics group sequential designs

group sequential designs *Boundary structure *Boundary scales

*Boundary shape

*Four canonical classes


Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial Background Fixed sample design Group sequential design evaluations

Stopping probabilities for eq.Alt

> seqPlotStopProb(eq.Alt)

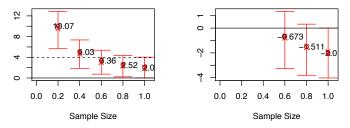
SISCR UW - 2016

Design of Group Sequential Trials Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundari *Sepsis trial: early conservatisn *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape *Four canonical classes

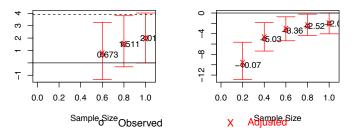
Design evaluation

Group sequential sampling density Design evaluation criteria

Properties of canonical classes


Case Study: Design of Hodgkin's Trial

Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 83


Inference at the boundary for eq.Both

> seqPlotInference(eq.Both)

ference corresponding to efficacy bouence corresponding to upper futility b

rence corresponding to lower futility bnference corresponding to harm boun

SISCR UW - 2016

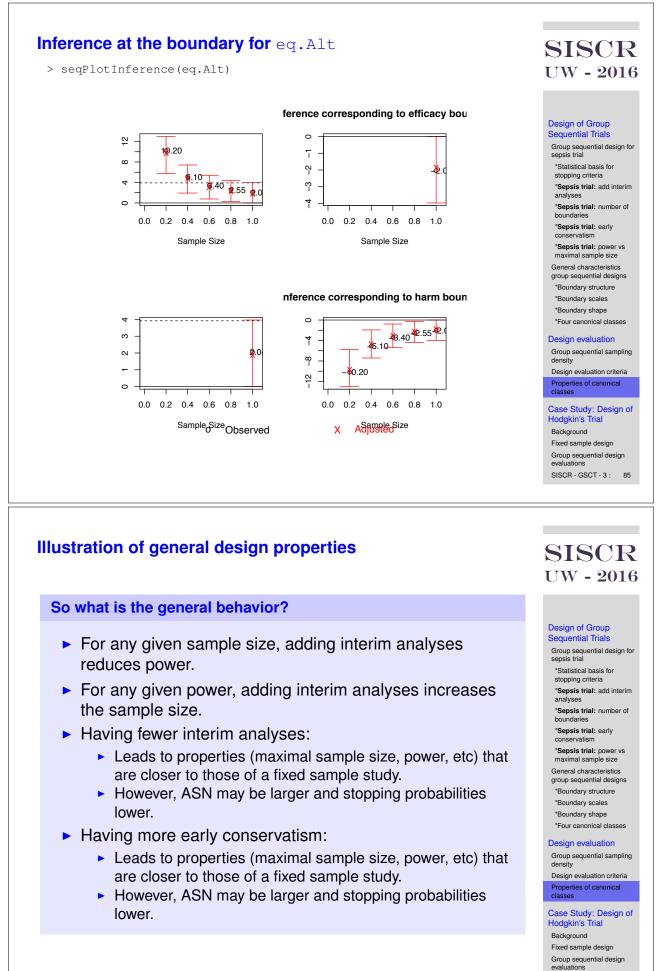
Design of Group Sequential Trials

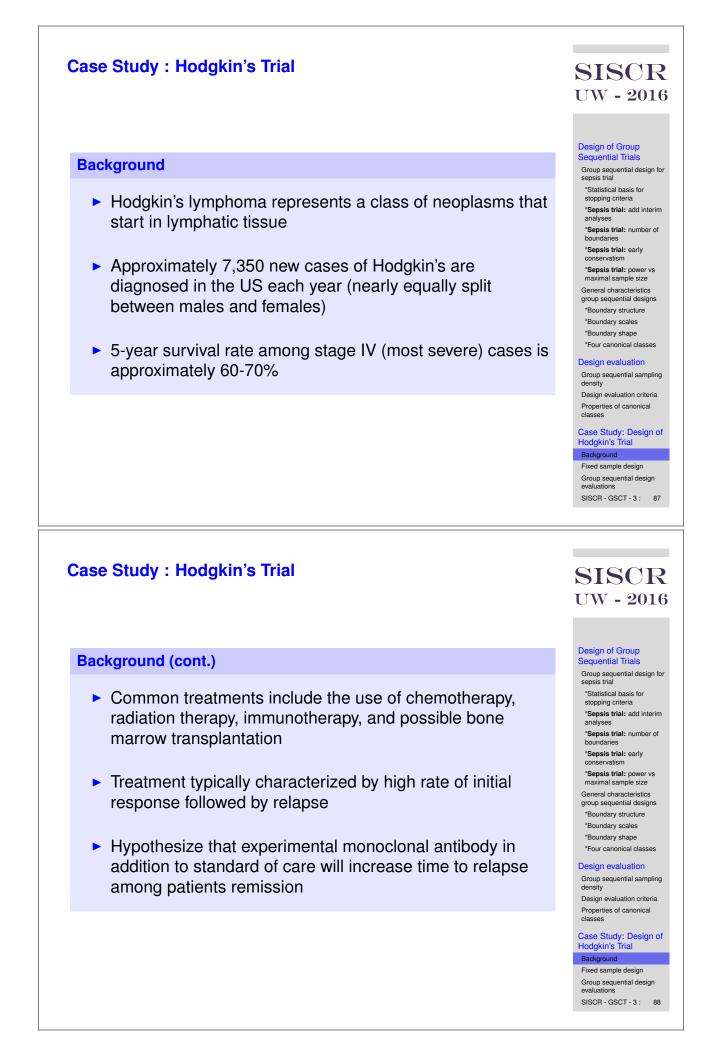
Group sequential design for sepsis trial

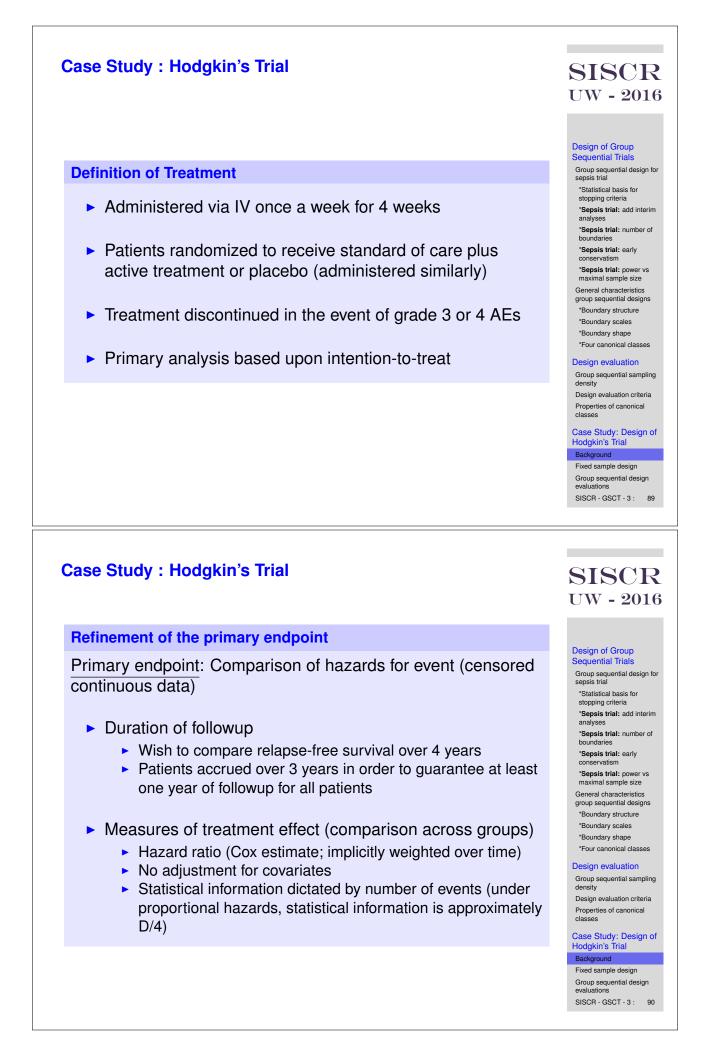
*Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs *Boundary structure


*Boundary scales


*Boundary shape *Four canonical classes


Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 84

Definition of statistical hypotheses

Null hypothesis

- Hazard ratio of 1 (no difference in hazards)
- Estimated baseline survival
 - Median progression-free survival approximately 9 months
 - (needed in this case to estimate variability)

Alternative hypothesis

- One-sided test for decreased hazard
 - Unethical to prove increased mortality relative to comparison group in placebo controlled study (always??)
- 33% decrease in hazard considered clinically meaningful
 - Corresponds to a difference in median survival of 4.4 months assuming exponential survival

Case Study : Hodgkin's Trial

Criteria for statistical evidence

- Type I error: Probability of falsely rejecting the null hypothesis Standards:
 - Two-sided hypothesis tests: 0.050
 - One-sided hypothesis test: 0.025
- <u>Power</u>: Probability of correctly rejecting the null hypothesis (1-type II error) Popular choice:
 - 80% power

SISCR UW - 2016

Design of Group

Sequential Trials Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: add interim

analyses *Sepsis trial: number of

boundaries *Sepsis trial: early

conservatism

*Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales

*Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design Group sequential design evaluations SISCR - GSCT - 3 : 91

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

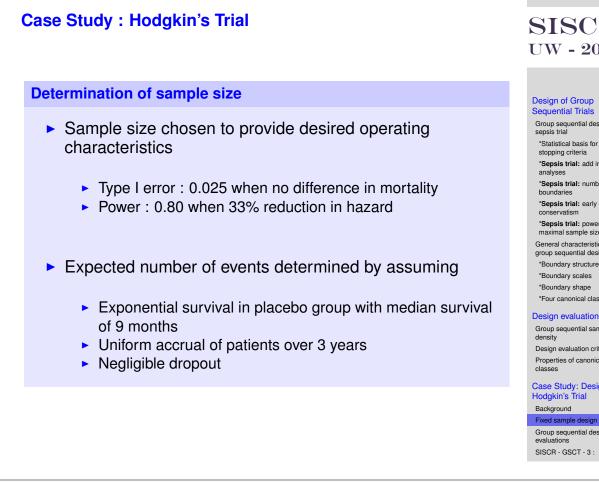
*Sepsis trial: early

conservatism *Sepsis trial: power vs

maximal sample size General characteristics

group sequential designs *Boundary structure

*Boundary scales *Boundary shape


*Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design Group sequential design evaluations SISCB - GSCT - 3 : 92

Specification of fixed sample design using RCTdesign

Definition of original design

```
> survFixed <- seqDesign( prob.model = "hazard", arms = 2,</pre>
                          null.hypothesis = 1, alt.hypothesis = 0.67,
                          ratio = c(1, 1), nbr.analyses = 1,
                          test.type = "less",
                          power = 0.80, alpha = 0.025 )
> survFixed
Call:
seqDesign(prob.model = "hazard", arms = 2, null.hypothesis = 1,
    alt.hypothesis = 0.67, ratio = c(1, 1), nbr.analyses = 1,
   test.type = "less", power = 0.8, alpha = 0.025)
PROBABILITY MODEL and HYPOTHESES:
  Theta is hazard ratio (Treatment : Comparison)
  One-sided hypothesis test of a lesser alternative:
         Null hypothesis : Theta >= 1.00 (size = 0.025)
   Alternative hypothesis : Theta <= 0.67 (power = 0.800)
   (Fixed sample test)
STOPPING BOUNDARIES: Sample Mean scale
                            а
   Time 1 (N= 195.75) 0.7557 0.7557
```

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial Background

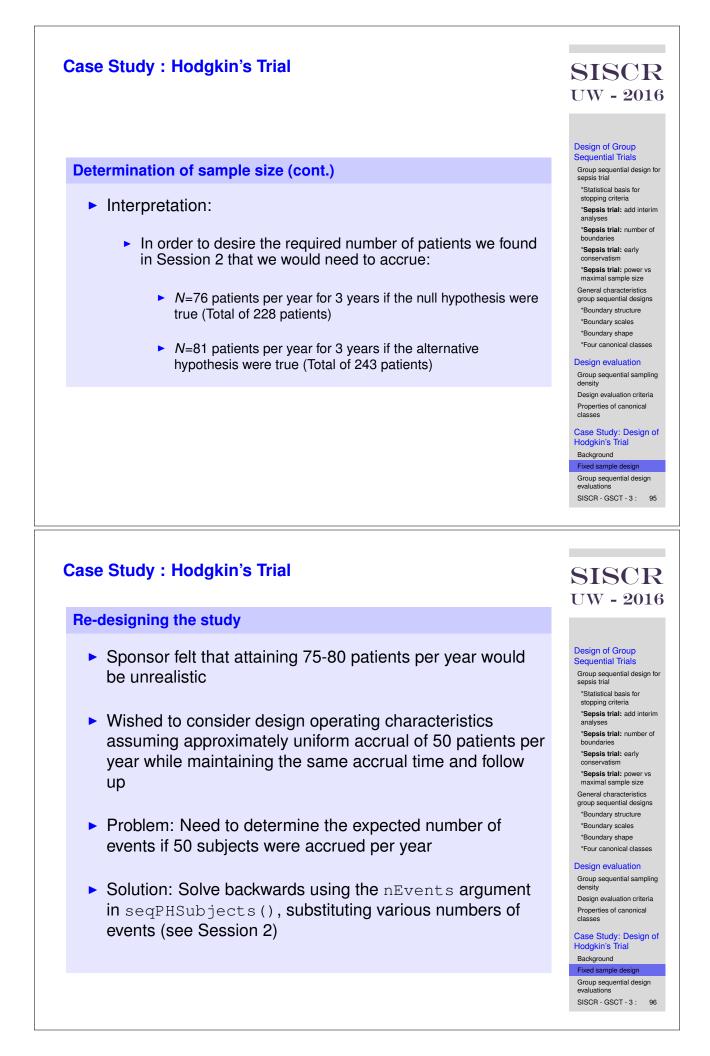
Fixed sample design Group sequential design evaluations SISCR - GSCT - 3: 94

SISCR **UW - 2016**

Design of Group

Sequential Trials Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim *Sepsis trial: number of *Sepsis trial: early

*Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales

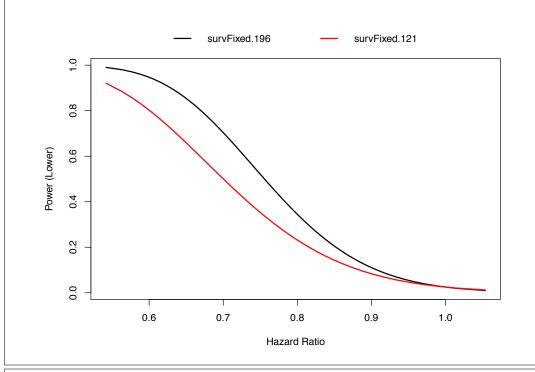

*Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling Design evaluation criteria Properties of canonical

Case Study: Design of

Group sequential design SISCR - GSCT - 3: 93



Case Study : Hodgkin's Trial	SISCI UW - 201
Re-designing the study	Design of Group Sequential Trials Group sequential design sepsis trial
 After a (manual) iterative search, we found that if roughly 50 patients are accrued yearly (under the alternative), 121 events would be expected 	*Statistical basis for stopping criteria *Sepsis trial: add inter analyses *Sepsis trial: number boundaries *Sepsis trial: early conservatism
<pre>> seqPHSubjects(survFixed, controlMedian = 0.75, accrualTime = 3,</pre>	5 7 7 7 7 7 7 7 7 7 7 7 7 7
	evaluations
Case Study : Hodgkin's Trial Re-designing the study	Group sequential design evaluations SISCR - GSCT - 3 : SISCR - GSCT - 3 : UW - 201
 Case Study : Hodgkin's Trial Re-designing the study Use the update() function in RCTdesign to update to the new sample size and compare operating characteristics 	evaluations SISCR - GSCT - 3 : SISCR - GSCT - 3 : SISCR - GSCT - 3 : UW - 2011 Design of Group Sequential Trials Group sequential design sepsis trial
 Re-designing the study Use the update() function in RCTdesign to update to the 	evaluations SISCR - GSCT - 3 : SISCR - GSCT - 3 : UW - 20] Design of Group Sequential Trials Group sequential desig

evaluations SISCR - GSCT - 3 : 98

Statistical power using RCTdesign

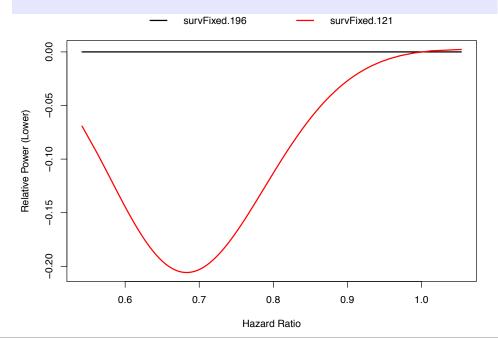
Compare power curves using seqPlotPower()

SISCR UW - 2016

Design of Group Sequential Trials Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundarie *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape *Four canonical classes **Design evaluation**

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial


Background Fixed sample design

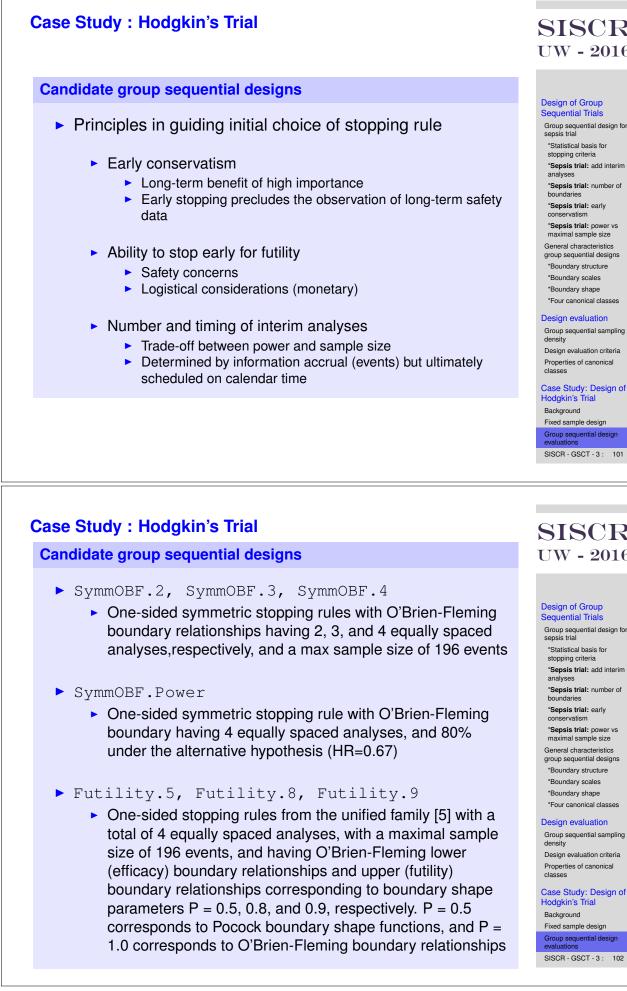
Group sequential design evaluations SISCR - GSCT - 3 : 99

Case Study : Hodgkin's Trial

Statistical power using RCTdesign

- Often more useful to compare differences between power curves
- Use the reference argument in seqPlotPower()

SISCR UW - 2016


Design of Group Sequential Trials

Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape *Four canonical classes Design evaluation Group sequential sampling

density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial Background

Fixed sample design Group sequential design evaluations

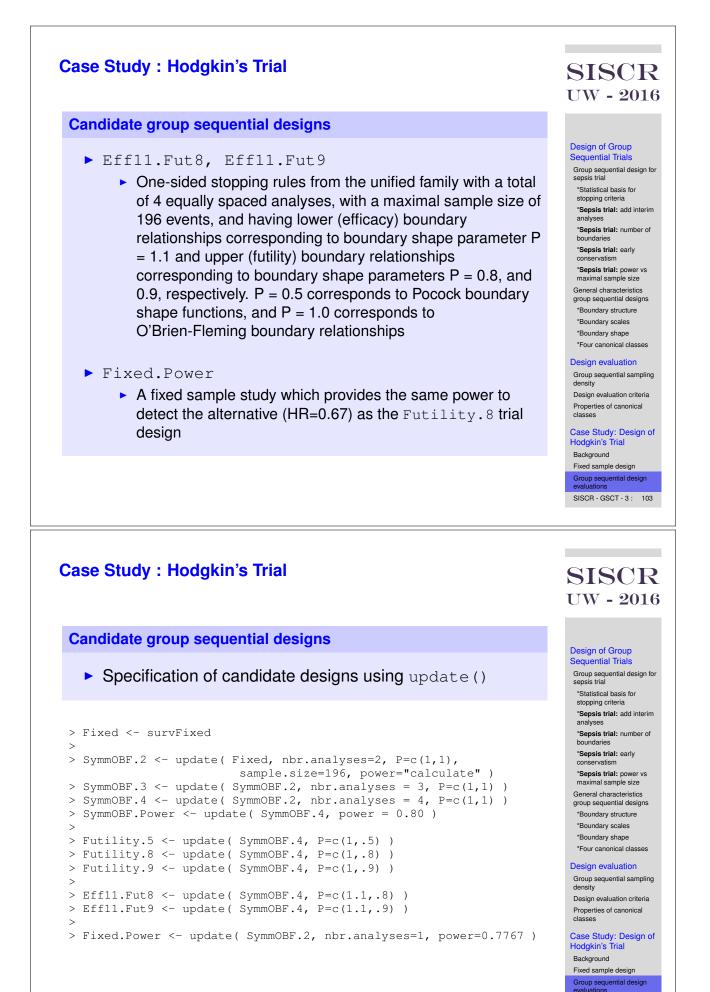
SISCR **UW - 2016**

Group sequential design for

maximal sample size General characteristics group sequential designs

*Four canonical classes

Design evaluation criteria Properties of canonical


Case Study: Design of

SISCR UW - 2016

Group sequential design for *Sepsis trial: add interim *Sepsis trial: number of *Sepsis trial: power vs maximal sample size group sequential designs

*Four canonical classes

Design evaluation criteria

Candidate group sequential designs

Stopping boundaries for SymmOBF.4

```
> SymmOBF.4
Call:
seqDesign(prob.model = "hazard", arms = 2, null.hypothesis = 1,
    alt.hypothesis = 0.67, ratio = c(1, 1), nbr.analyses = 4,
    sample.size = 196, test.type = "less", power = "calculate",
    alpha = 0.025, P = c(1, 1))
PROBABILITY MODEL and HYPOTHESES:
  Theta is hazard ratio (Treatment : Comparison)
  One-sided hypothesis test of a lesser alternative:
          Null hypothesis : Theta >= 1.00 (size = 0.0250)
   Alternative hypothesis : Theta <= 0.67 (power = 0.7837)
   (Emerson & Fleming (1989) symmetric test)
STOPPING BOUNDARIES: Sample Mean scale
                        a d
   Time 1 (N= 49) 0.3183 1.7724
    Time 2 (N= 98) 0.5642 1.0000
    Time 3 (N= 147) 0.6828 0.8263
    Time 4 (N= 196) 0.7511 0.7511
```

Case Study : Hodgkin's Trial Boundaries on various design scales • Normalized Z statistic: $Z_j = z_j = (\hat{\theta}_j - \theta_0)/se(\hat{\theta}_j)$ > seqBoundary (SymmOBF.4, scale="Z") STOPPING BOUNDARIES: Normalized Z-value scale a d Time 1 (N= 49) -4.0065 2.0032 Time 2 (N= 98) -2.8330 0.0000 Time 3 (N= 147) -2.3131 -1.1566 Time 4 (N= 196) -2.0032 -2.0032

SISCR UW - 2016

Design of Group Sequential Trials Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

Hodgkin's Trial Background Fixed sample design Group sequential design evaluations

SISCR - GSCT - 3 : 105

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs

group sequential designs *Boundary structure *Boundary scales *Boundary shape

*Four canonical classes


Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design

Group sequential design evaluations

Boundaries on various design scales

Error spending statistic:

$$\begin{split} \mathsf{E}_{aj} &= \frac{1}{\alpha_L} \left(\mathsf{Pr}\left[S_j \leq s_j, \, \bigcap_{k=1}^{j-1} S_k \in C_k \mid \theta = \theta_0 \right] \\ &+ \sum_{\ell=1}^{j-1} \mathsf{Pr}\left[S_\ell \leq a_\ell, \, \bigcap_{k=1}^{\ell-1} S_k \in C_k \mid \theta = \theta_0 \right] \right), \end{split}$$

where α_L is the lower type I error of the stopping rule defined by

$$\alpha_L = \sum_{\ell=1}^J \Pr\left[S_\ell \le a_\ell, \bigcap_{k=1}^{\ell-1} S_k \in C_k | \theta = \theta_0\right].$$

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales *Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial Background

Fixed sample design Group sequential design evaluations

Boundaries on various design scales

Error spending statistic:

$$\begin{split} E_{aj} &= \frac{1}{\alpha_L} \left(\mathsf{Pr}\left[S_j \leq s_j, \, \bigcap_{k=1}^{j-1} S_k \in C_k \mid \theta = \theta_0 \right] \\ &+ \sum_{\ell=1}^{j-1} \mathsf{Pr}\left[S_\ell \leq a_\ell, \, \bigcap_{k=1}^{\ell-1} S_k \in C_k \mid \theta = \theta_0 \right] \right), \end{split}$$

where α_L is the lower type I error of the stopping rule defined by

$$\alpha_L = \sum_{\ell=1}^J \Pr\left[S_\ell \le a_\ell, \bigcap_{k=1}^{\ell-1} S_k \in C_k | \theta = \theta_0\right].$$

Case Study : Hodgkin's Trial Boundaries on various design scales RCTdesign also has the ability to incorporate prior distributions for treatment effects in order to evaluate: Bayesian posterior probabilities Bayesian predictive probabilities More to come later...

SISCR UW - 2016

Design of Group

Sequential Trials Group sequential design for sepsis trial *Statistical basis for

stopping criteria *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early

conservatism *Sepsis trial: power vs

maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales

*Boundary shape *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of

Hodgkin's Trial Background Fixed sample design

Group sequential design evaluations

SISCR - GSCT - 3: 109

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: add interim

analyses *Sepsis trial: number of boundaries

*Sepsis trial: early

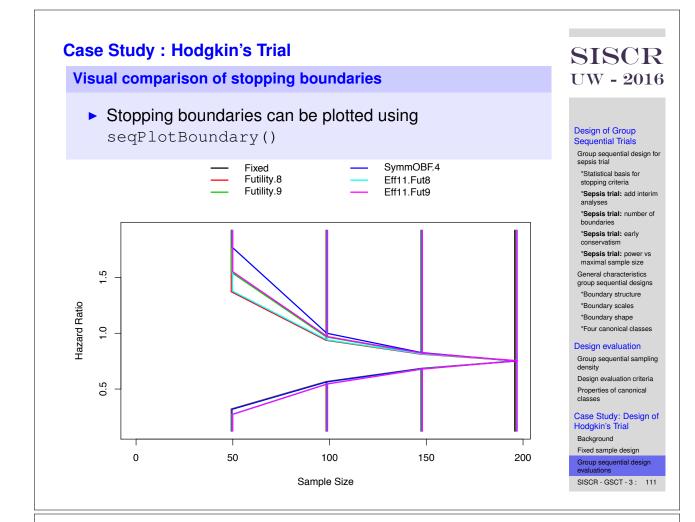
conservatism *Sepsis trial: power vs

maximal sample size General characteristics

group sequential designs *Boundary structure

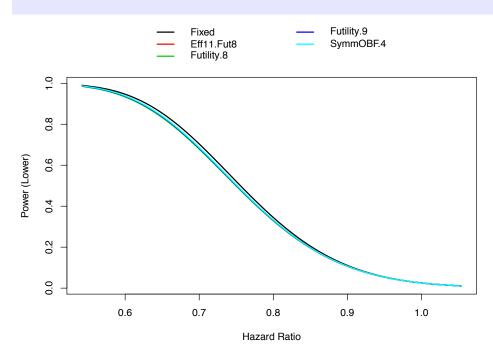
*Boundary scales *Boundary shape

*Four canonical classes


Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial


Background Fixed sample design

Group sequential design evaluations

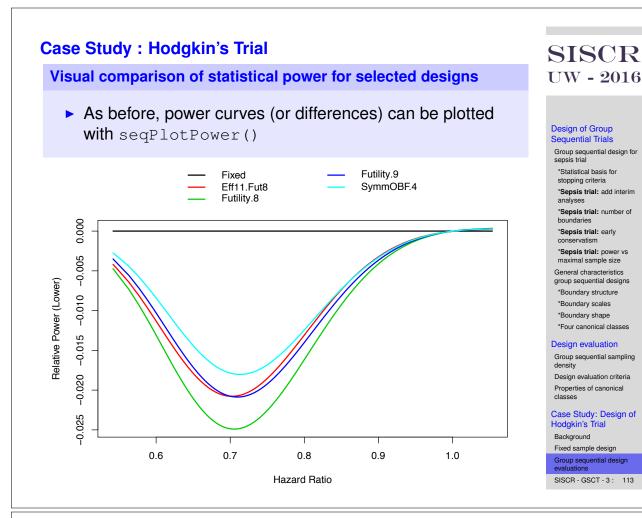
Visual comparison of statistical power for selected designs

 Power curves (or differences) can be plotted with seqPlotPower()

SISCR UW - 2016

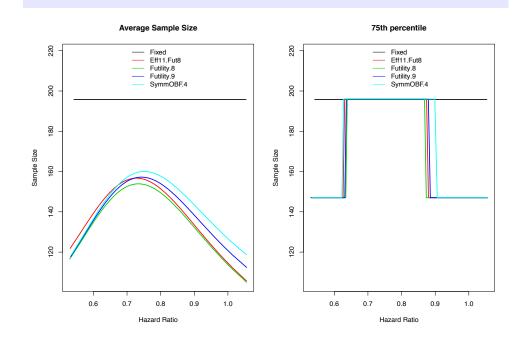
Design of Group Sequential Trials

Group sequential design for sepsis trial "Statistical basis for stopping criteria "Sepsis trial: add interim analyses "Sepsis trial: number of boundaries "Sepsis trial: early conservatism "Sepsis trial: power vs maximal sample size General characteristics group sequential designs


*Boundary structure *Boundary scales

*Boundary shape *Four canonical classes

Design evaluation


Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial Background Fixed sample design Group sequential design

Comparison of sample size distributions

Mean and quantiles of the sample size distribution can be plotted with seqPlotASN()

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early

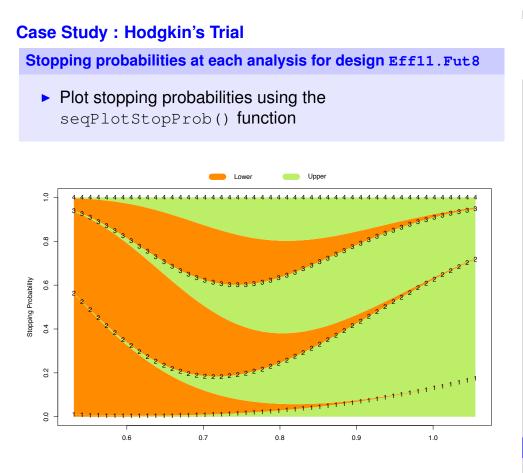
conservatism *Sepsis trial: power vs

maximal sample size

General characteristics group sequential designs *Boundary structure

*Boundary scales

*Boundary shape *Four canonical classes


Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design

Group sequential design evaluations

SISCR UW - 2016

Design of Group

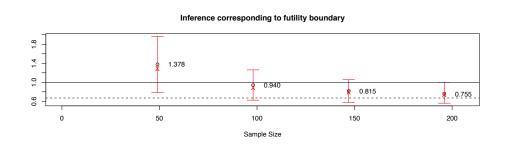
Sequential Trials Group sequential design for sepsis trial *Statistical basis for stopping criteria *Sepsis trial: add interim analyses *Sepsis trial: number of boundaries *Sepsis trial: early conservatism *Sepsis trial: power vs maximal sample size General characteristics group sequential designs *Boundary structure *Boundary scales

*Boundary shape *Four canonical classes

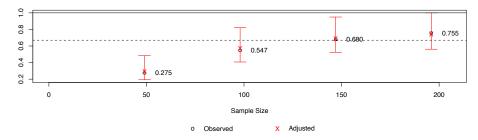
Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of


Hodgkin's Trial Background Fixed sample design Group sequential design

SISCR - GSCT - 3: 115


Case Study : Hodgkin's Trial

Inference at each analysis for design Eff11.Fut8

Plot inference on the boundaries using the seqPlotStopProb() function

Inference corresponding to efficacy boundary

SISCR UW - 2016

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

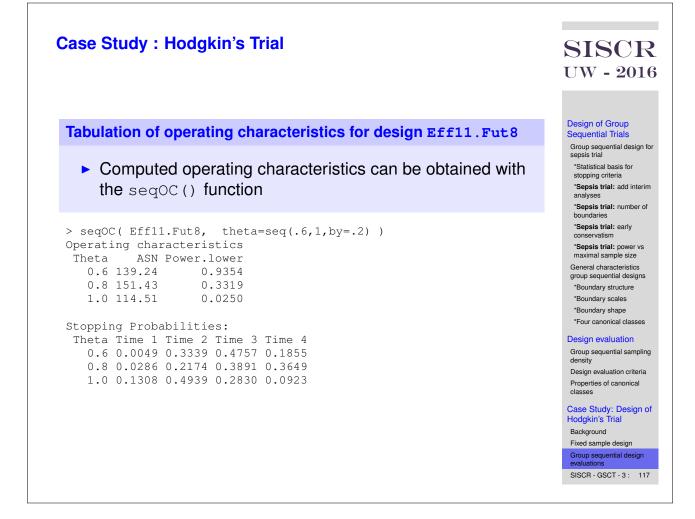
*Sepsis trial: early conservatism

*Sepsis trial: power vs

maximal sample size General characteristics group sequential designs

*Boundary structure *Boundary scales

*Boundary shape *Four canonical classes


Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design

Group sequential design

