# Introduction to the Design and Evaluation of Group Sequential Clinical Trials

Session 4 - Bayesian Evaluation of Group Sequential Designs

Presented July 27, 2016

Daniel L. Gillen Department of Statistics University of California, Irvine

John M. Kittelson Department of Biostatistics & Informatics University of Colorado Denver

©2016 Daniel L. Gillen, PhD and John M. Kittelson, PhD

# Bayesian paradigm

### **Bayesian Operating Characteristics**

- Thus far, we have primarily focused on the evaluation of a clinical trial design with respect to frequentist operating characteristics
  - type I error
  - statistical power
  - sample size requirements
  - estimates of treatment effect that correspond to early termination
  - precision of confidence intervals
- However, there has been much interest in the design and analysis of clinical trials under a Bayesian paradigm

# SISCR UW - 2016

SISCR - GSCT - 4 :

### Introduction

Bayesian operating characteristics Coarsened Bayes approach

Implementation in RCTdesign Posterior probability scale Bayesian contour plots in RCTdesign

Bayesian Predictive Probabilities

Generalization: Bayesian families

Introduction Bayesian operating

characteristics Coarsened Bayes approach Implementation in

RCTdesign Posterior probability scale Bayesian contour plots in

RCTdesign Bayesian Predictive Probabilities Generalization: Bayesian families



### **Bayesian Operating Characteristics**

- As with frequentist inference, we are interested in:
  - point and interval estimates of a treatment effect,
  - a measure of strength of evidence for or against particular hypotheses, and perhaps
  - a binary decision for or against some hypothesis.

Introduction Bayesian operating characteristics

RCTdesign Posterior probability scale Bayesian contour plots in RCTdesign

Coarsened Bayes approach

Bayesian Predictive Probabilities



- 2.1 the central  $100(1 \alpha)\%$  of the posterior distribution of  $\theta$  is defined by finding some  $\Delta$  such that  $\theta_L = \hat{\theta} \Delta$  and  $\theta_U = \hat{\theta} + \Delta$  provides the desired coverage probability, where  $\hat{\theta}$  is one of the Bayesian point estimates of  $\theta$
- 2.2 the interquantile interval is defined by defining  $\theta_L = \theta_{\alpha/2}$  and  $\theta_U = \theta_{1-\alpha/2}$ , where  $\theta_p$  is the *p*-th quantile of the posterior distribution, i.e.,  $Pr(\theta \le \theta_p | X = x) = p$
- 2.3 the highest posterior density (HPD) interval is defined by finding some threshold  $c_{\alpha}$  such that the choices

$$heta_L = \min\{ heta: p_{ heta \mid X}( heta \mid X = x) > c_{lpha}\}$$
 and

$$\theta_U = \max\{\theta : p_{\theta|X}(\theta|X=x) > c_{\alpha}\}$$

provide the desired coverage probability

SISCR - GSCT - 4 : 6

**Bayesian Predictive** 

Probabilities

Generalization:

**Bayesian families** 





#### **Bayesian paradigm** SISCR Bayesian posterior probability scale in RCTdesign **UW - 2016** Reliance on the asymptotic distribution of the estimator Introduction implies that a normal prior is conjugate and Bayesian operating characteristics computationally convenient Coarsened Bayes approa Implementation in $\theta \sim N(\zeta, \tau^2)$ RCTdesign Posterior probability scale Bayesian contour plots in RCTdesign **Bayesian Predictive** Probabilities Thus we can define a Bayesian posterior probability Generalization: statistic by computing the approximate posterior **Bayesian families** probability that the null hypothesis $H_0: \theta \ge \theta_0$ is false $B_i(\zeta, \tau^2, \theta_0) = Pr(\theta \leq \theta_0 | S_i = s_i)$ $= \Phi\left(\frac{\theta_0[N_j\tau^2+V]-\tau^2s_j-V\zeta}{\sqrt{V}\tau\sqrt{N_j\tau^2+V}}\right), \quad (1)$ where $V = p_0(1 - p_0) + p_1(1 - p_1)$ and $\Phi(z)$ is the cumulative distribution function for a standard normal random variable SISCR - GSCT - 4 : 11 Case Study : Sepsis Trial SISCR **Boundaries on various design scales** UW - 2016 In the context of the sepsis trial, consider a group Introduction sequential design with an O'Brien-Fleming efficacy Bayesian operating characteristics analysis (P = 1, R = 0, A = 0) and a futility bound Coarsened Bayes approach specified by P = 0.8, R = 0, A = 0, specifying 4 equally Implementation in RCTdesign spaced analyses with max sample size of 1700 patients Posterior probability scale Bayesian contour plots in RCTdesign **Bayesian Predictive** > Futility.8 <- seqDesign("prop",test="less",, Probabilities sample.size=c(.25,.5,.75,1)\*1700, null=0.30,alt=0.23, +Generalization: power="calculate", nbr.analyses=4, P=c(1,0.8)) $^+$ **Bavesian families** > Futility.8 PROBABILITY MODEL and HYPOTHESES: Theta is difference in probabilities (Treatment - Comparison) One-sided hypothesis test of a lesser alternative: Null hypothesis : Theta >= 0.00 (size = 0.0250) Alternative hypothesis : Theta <= -0.07 (power = 0.8888) STOPPING BOUNDARIES: Sample Mean scale Efficacy Futility

Time 1 (N= 425) -0.1697 0.0473 Time 2 (N= 850) -0.0848 -0.0097 Time 3 (N= 1275) -0.0566 -0.0310 Time 4 (N= 1700) -0.0424 -0.0424





| Case Study : Sepsis Trial                                                                                                                                                                                                                                                                                                                                                         | SISCR                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Boundaries on various design scales                                                                                                                                                                                                                                                                                                                                               | UW - 2016                                                                                                                                                                                                                                                                    |
| <ul> <li>Note 1: By default, seqScale() will compute the posterior probability of the hypothesis being tested for each boundary</li> <li>seqDesign() defaults to a symmetric test implying the futility boundary rejects the (1 - α) power point for a test with size α</li> <li>For the Futility.8 design, this is the 97.5% power point corresponding to θ = -0.0866</li> </ul> | Introduction<br>Bayesian operating<br>characteristics<br>Coarsened Bayes approach<br>Implementation in<br>RCTdesign<br>Posterior probability scale<br>Bayesian contour plots in<br>RCTdesign<br>Bayesian Predictive<br>Probabilities<br>Generalization:<br>Bayesian families |
| To see this, one can view the Futility.8\$hypothesis                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              |
| <pre>&gt; Futility.8\$hypothesis HYPOTHESES: Theta is difference in probabilities (Treatment - Comparison) One-sided hypothesis test of a lesser alternative:</pre>                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |
| Boundary hypotheses:<br>Boundary a rejects : Theta >= 0.0000 (lower size = 0.025)<br>Boundary b rejects : Theta <= -0.0866 (lower power = 0.975)<br>Boundary c rejects : Theta >= 0.0000 (upper power = 0.975)<br>Boundary d rejects : Theta <= -0.0866 (upper size = 0.025)                                                                                                      | SISCR - GSCT - 4 : 17                                                                                                                                                                                                                                                        |
| Case Study : Sepsis Trial                                                                                                                                                                                                                                                                                                                                                         | SISCR                                                                                                                                                                                                                                                                        |
| Boundaries on various design scales                                                                                                                                                                                                                                                                                                                                               | UW - 2016                                                                                                                                                                                                                                                                    |
| <ul> <li><u>Note 2</u>: An asymmetric boundary can be obtained by modifying the alpha option in seqDesign()</li> <li>As this changes the hypotheses being tested at each analysis, it will change the boundaries and operating characteristics of the stopping rule</li> </ul>                                                                                                    | Introduction<br>Bayesian operating<br>characteristics<br>Coarsened Bayes approach<br>Implementation in<br>RCTdesign<br>Posterior probability scale<br>Bayesian contour plots in<br>RCTdesign                                                                                 |
| Note 3: To simply compute a different posterior probability,<br>you can use the threshold option in seqScale()                                                                                                                                                                                                                                                                    | Bayesian Predictive<br>Probabilities                                                                                                                                                                                                                                         |

changeSeqScale(Futility.8,

STOPPING BOUNDARIES: Bayesian scale

Time 1 (N= 425) 0.0031 0.1461 Time 2 (N= 850) 0.0155 0.1471 Time 3 (N= 1275) 0.0509 0.1365 Time 4 (N= 1700) 0.1225 0.1225

seqScale("B", threshold=-0.06,

and variation parameter 0.000225)

а

priorTheta=-0.09, priorVariation=0.015^2))

(Posterior probability that treatment effect exceeds -0.06

based on prior distribution having median -0.09

d





# SISCR UW - 2016

### Sensitivity of posterior probabilities to prior

|                                      | Efficacy (lower) Boundary                                                   |                                                               |                                 |                                                                  | _                                                                              | Futility (upper) Boundary     |                                                               |                                 |                           |
|--------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------|---------------------------------|---------------------------|
|                                      | Posterior Probability of Beneficial Treatment Effect $\Pr(\theta \leq 0 X)$ |                                                               |                                 |                                                                  | Posterior Probability of<br>Insufficient Benefit<br>$\Pr(\theta \ge -0.087 X)$ |                               |                                                               |                                 |                           |
| Analysis<br>Time                     | Crude Est<br>of Trt<br>Effect                                               | $\begin{array}{c} \text{Optimistic} \\ \zeta =09 \end{array}$ | Sponsor's Consensus $\zeta =04$ | $\begin{array}{c} \text{Pessimistic} \\ \zeta = .02 \end{array}$ |                                                                                | Crude Est<br>of Trt<br>Effect | $\begin{array}{c} \text{Optimistic} \\ \zeta =09 \end{array}$ | Sponsor's Consensus $\zeta =04$ | Pessimistic $\zeta = .02$ |
|                                      | $D_{comparison} = -0.015$                                                   |                                                               |                                 |                                                                  |                                                                                |                               |                                                               |                                 |                           |
| 1:N=425                              | -0.170                                                                      | 1.000                                                         | 1.000                           | 0.524                                                            | - 0                                                                            | 0.047                         | 0.795                                                         | 1.000                           | 1.000                     |
| 2:N=850<br>2:N=1275                  | -0.085                                                                      | 1.000                                                         | 1.000                           | 0.523                                                            |                                                                                | -0.010                        | 0.824                                                         | 1.000                           | 1.000                     |
| 4:N=1700                             | -0.042                                                                      | 1.000                                                         | 1.000                           | 0.521                                                            |                                                                                | -0.031                        | 0.842                                                         | 1.000                           | 1.000                     |
| Consensus Prior: $\tau = 0.040$      |                                                                             |                                                               |                                 |                                                                  |                                                                                |                               |                                                               |                                 |                           |
| 1:N=425                              | -0.170                                                                      | 1.000                                                         | 1.000                           | 0.991                                                            |                                                                                | 0.047                         | 0.981                                                         | 0.999                           | 1.000                     |
| 2:N = 850                            | -0.085                                                                      | 1.000                                                         | 0.998                           | 0.974                                                            |                                                                                | -0.010                        | 0.976                                                         | 0.997                           | 1.000                     |
| 3:N=1275<br>4:N=1700                 | -0.057                                                                      | 0.999                                                         | 0.993                           | 0.955                                                            |                                                                                | -0.031                        | 0.970                                                         | 0.994                           | 1.000                     |
| 4.11-1700                            | -0.042                                                                      | 0.330                                                         | 0.301                           | 0.330                                                            |                                                                                | -0.042                        | 0.303                                                         | 0.331                           | 0.333                     |
| Noninformative Prior: $	au = \infty$ |                                                                             |                                                               |                                 |                                                                  |                                                                                |                               |                                                               |                                 |                           |
| 1:N = 425                            | -0.170                                                                      | 1.000                                                         | 1.000                           | 1.000                                                            |                                                                                | 0.047                         | 0.999                                                         | 0.999                           | 0.999                     |
| 2:N = 850                            | -0.085                                                                      | 0.998                                                         | 0.998                           | 0.998                                                            |                                                                                | -0.010                        | 0.995                                                         | 0.995                           | 0.995                     |
| 3:1N = 1275<br>4:N = 1700            | -0.057                                                                      | 0.989                                                         | 0.989                           | 0.989                                                            |                                                                                | -0.031                        | 0.988                                                         | 0.988                           | 0.988                     |
| 1111 11100                           | 0.042                                                                       | 0.011                                                         | 0.011                           | 0.011                                                            |                                                                                | 0.042                         | 0.001                                                         | 0.001                           | 0.001                     |

#### Introduction

Bayesian operating characteristics Coarsened Bayes approach

Implementation in RCTdesign Posterior probability scale Bayesian contour plots in RCTdesign

Bayesian Predictive Probabilities

Generalization: Bayesian families

SISCR - GSCT - 4 : 23

# **Case Study : Sepsis Trial**

### Sensitivity of posterior probabilities to prior

- As is often the case, the optimistic and pessimistic priors presented were chosen rather arbitrarily, and thus may not be relevant to some of the intended audience for the published results of a clinical trial
- As such, it may be beneficial to present contour plots of Bayesian point estimates (posterior means), lower and upper bounds of 95% credible intervals, and posterior probabilities of the null and alternative hypotheses for a spectrum of prior distributions
- In RCTdesign, such plots can be produced with seqBayesContour()

# SISCR UW - 2016

#### Introduction

Bayesian operating characteristics Coarsened Bayes approach

Implementation in

RCTdesign Posterior probability scale Bayesian contour plots in RCTdesign

Bayesian Predictive Probabilities

# Contour plot of posterior median conditional upon stopping at analysis 2 for futility (observed statistic on boundary)



# Case Study : Sepsis Trial

Contour plot of posterior median conditional upon stopping at analysis 2 for futility (user-defined contours)





# SISCR UW - 2016

SISCR

**UW - 2016** 

#### Introduction

Bayesian operating characteristics Coarsened Bayes approach

Implementation in RCTdesign Posterior probability scale

Bayesian contour plots in RCTdesign

Bayesian Predictive Probabilities

Generalization: Bayesian families

# Contour plot of credible interval bounds at analysis 2 futility bound (user-defined contours)



SISCR

**UW - 2016** 

#### **Case Study : Sepsis Trial** SISCR Contour plot of posterior probabilities for a 2 analysis design **UW - 2016** Prior Information <sup>2.00</sup> 0.10 0.05 of Information from Maximal Sample Size $Pr(\theta > -0.0849)$ (prior) $Pr(\theta > -0.0849 | M = 1, T = -0.01)$ $Pr(\theta > -0.0849 | M = 2, T = -0.042)$ $\underset{0.990}{\text{Power (lower) to detect }\theta} \underbrace{0.800}_{0.200} \underbrace{0.200}_{0.010} \underbrace{0.010}_{0.010}$ Power (lower) to detect θ 0.990 0.800 0.200 0.010 Introduction Power (lower) to detect $\boldsymbol{\theta}$ 0.990 0.800 0.200 0.010 Bayesian operating characteristics Coarsened Bayes approach 0.08 Prior SD for $\theta$ Implementation in 0.99 0.975 0.06 RCTdesign Posterior probability scale 0.04 0.975 0:95 Bayesian contour plots in RCTdesign 0.99 0.9 0.9 0.02 Bayesian Predictive Probabilities 11/ ð:5 0:5 -0.10 -0.10 0.02 -0.06 -0.02 0.02 -0.06 -0.02 0.02 -0.10 -0.06 -0.02 Generalization: Prior Median for θ Prior Median for θ Prior Median for θ **Bayesian families** tion About 0 as Proportion from Maximal Size $Pr(\theta < 0)$ (prior) $Pr(\theta < 0 \mid M = 1, T = -0.084)$ $Pr(\theta < 0 \mid M = 2, T = -0.042)$ Power (lower) to detect $\boldsymbol{\theta}$ Power (lower) to detect $\theta$ Power (lower) to detect $\boldsymbol{\theta}$ 0.990 0.800 0.200 0.010 0.990 0.800 0.200 0.010 0.990 0.800 0.200 0.010 0.08 Prior SD for $\theta$ 0.975 0.06 0.04 0,875 0.02 0.9 ion 0/ 0.5 0.5 Prior Informatic -0.10 -0.06 -0.02 0.02 -0.10 -0.06 -0.02 0.02 -0.10 -0.06 -0.02 0.02 Prior Median for θ Prior Median for 0 Prior Median for θ SISCR - GSCT - 4 : 28

### Contour plot of ASN for Futility. 8 design



### Introduction Bayesian operating characteristics Coarsened Bayes approach Implementation in RCTdesign Posterior probability scale Bayesian contour plots in RCTdesign Bayesian Predictive Probabilities Generalization: Bayesian families

SISCR

**UW - 2016** 

Case Study : Sepsis Trial

### The seqBayesContour() function

Important arguments to seqBayesContour() are:

| dsn :           | the seqDesign() object used for computing Bayesian operating characteristics                                     |
|-----------------|------------------------------------------------------------------------------------------------------------------|
| analysis.index: | the analysis time to condition on; if missing,<br>operating characteristics will be computed<br>for all analyses |
| observed:       | the observed statistic to condition on; if missing, boundary values are used                                     |
| priorTheta:     | mean of prior distribution                                                                                       |
| priorVariation: | variance of prior distribution                                                                                   |
| thetaThreshold: | threshold for computing posterior probabilities;                                                                 |

if missing, boundary hypotheses are used

# SISCR UW - 2016

SISCR - GSCT - 4 : 29

#### Introduction

Bayesian operating characteristics Coarsened Bayes approach

Implementation in RCTdesign Posterior probability scale Bayesian contour plots in RCTdesign

Bayesian Predictive Probabilities

| Case Study : Sepsis Trial         | SISCR                                                                                                                                                          |                                                                                                                                                        |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| The seqBayesContour() function    | UW - 2016                                                                                                                                                      |                                                                                                                                                        |
| Important arguments to see        | Introduction<br>Bayesian operating                                                                                                                             |                                                                                                                                                        |
| posteriorProbContours:            | specifies contour lines for which<br>posterior probabilities are to be drawn;<br>defaults to c(0.001, 0.01, 0.025, 0.05,<br>0.1, 0.5, 0.9, 0.975, 0.99, 0.999) | characteristics<br>Coarsened Bayes approach<br>Implementation in<br>RCTdesign<br>Posterior probability scale<br>Bayesian contour plots in<br>RCTdesign |
| <pre>posteriorMeanContours:</pre> | if missing, plot with posterior mean<br>contours will be drawn; if NULL, no<br>plot will be drawn                                                              | Bayesian Predictive<br>Probabilities<br>Generalization:<br>Bayesian families                                                                           |
| lowerCredibleBoundContours:       | if missing, plot with contours<br>representing lower limits of specified<br>credible interval will be drawn; if<br>NULL, no plot will be drawn                 |                                                                                                                                                        |
| upperCredibleBoundContours:       | same as above                                                                                                                                                  |                                                                                                                                                        |
| PlotASN:                          | ASN contours; defaults to TRUE                                                                                                                                 |                                                                                                                                                        |
| SampSizeQuantiles:                | quantiles of sample size distribution<br>for which contours are to be drawn;<br>defaults to 0.75                                                               | SISCR - GSCT - 4 : 31                                                                                                                                  |

# Bayesian paradigm

### Predictive probability scale in RCTdesign

- A Bayesian approach similar to the stochastic curtailment procedures would consider the Bayesian predictive probability that the test statistic would exceed some specified threshold at the final analysis
- This statistic uses a prior distribution and the observed data to compute a posterior distribution for the treatment effect parameter at the *j*-th analysis
- Using the sampling distribution for the as yet unobserved data and integrating over the posterior distribution, the predictive distribution of the test statistic at the final analysis can be computed

# SISCR UW - 2016

#### Introduction

Bayesian operating characteristics Coarsened Bayes approach

Implementation in RCTdesign

Posterior probability scale Bayesian contour plots in RCTdesign

Bayesian Predictive



SISCR **UW - 2016** 





Probability of observing an economically important estimates of treatment effect

- For a result corresponding to a crude estimate of treatment effect of -0.0566 at the third analysis, the predictive probability of obtaining a crude estimate of treatment effect less than -0.06 at the final analysis is 35.0% under the sponsor's consensus prior and 39.0% under a noninformative prior
- In either case, such high probabilities of obtaining a more economically viable estimate of treatment effect may be enough to warrant modifying the stopping rule to avoid early termination at the third analysis with a crude estimate between -0.0566 and -0.06.

# SISCR UW - 2016

#### Introduction

Bayesian operating characteristics Coarsened Bayes approach

Implementation in RCTdesign Posterior probability scale

Bayesian contour plots in RCTdesign

Bayesian Predictive

## **Generalization to Bayesian families**

### Designs can often be re-expressed as a general family:

 Consider the design based on Bayesian posterior tail probabilities (equation (1)):

$$\begin{aligned} \mathcal{B}_{j}(\zeta,\tau^{2},\theta_{0}) &= & \mathcal{P}r(\theta \leq \theta_{0} \,|\, \mathcal{S}_{j} = \mathcal{S}_{j}) \\ &= & \Phi\left(\frac{\theta_{0}[\mathcal{N}_{j}\tau^{2} + \mathcal{V}] - \tau^{2}\mathcal{S}_{j} - \mathcal{V}\zeta}{\sqrt{\mathcal{V}}\tau\sqrt{\mathcal{N}_{j}\tau^{2} + \mathcal{V}}}\right), \end{aligned}$$

Reparameterization shows similarity to unified family.
 Let τ<sup>2</sup> = V/N<sub>0</sub> and θ̂<sub>j</sub> = s<sub>j</sub>/N<sub>i</sub>, then you can show:

$$\begin{array}{lll} \mathcal{B}_{j}(\zeta,\tau^{2},\theta_{ref}) & = & \mathcal{P}r(\theta \leq \theta_{ref} \mid \hat{\theta}_{j}) = \Phi(z) \\ \text{where:} & z & = & \displaystyle \frac{\theta_{ref}(N_{j}+N_{0})-(N_{j}\hat{\theta}_{j}+N_{0}\zeta)}{\sqrt{V(N_{j}+N_{0})}} \\ & = & \displaystyle \frac{\theta_{j}(\Pi_{j}+\Pi_{0})-(\Pi_{j}\hat{\theta}_{j}+\Pi_{0}\zeta)}{\sqrt{\frac{V}{N_{j}}(\Pi_{j}+\Pi_{0})}} \end{array}$$

where 
$$\Pi_j = \frac{N_j}{N_J}$$
 and  $\Pi_0 = \frac{N_0}{N_J}$ .

## **Generalization to Bayesian families**

Designs can often be re-expressed as a general family:

Suppose that we want to choose d<sub>j</sub> to assure that a superiority decision corresponds to:

$${\it Pr}( heta \leq heta_{\sf 0} \,|\, \hat{ heta}_j = {\it d}_j) = lpha \quad ext{for all } j ext{ analyses }$$

thereby requiring:

$$z_{\alpha} = \frac{\theta_j \mathbf{0}(\Pi_j + \Pi_0) - (\Pi_j d_j + \Pi_0 \zeta)}{\sqrt{\frac{V}{N_l}(\Pi_j + \Pi_0)}}$$

which implies:

$$d_j = \theta_0 + \left[ \Pi_0(\theta_0 - \zeta) - Z_\alpha \sqrt{\frac{V}{N_J}(\Pi_j + \Pi_0)} \right] \Pi_j^{-1}$$

# SISCR UW - 2016

Introduction Bayesian operating characteristics Coarsened Bayes approach Implementation in RCTdesign Posterior probability scale Bayesian contour plots in RCTdesign Bayesian Predictive Probabilities Ceneralization: Bayesian families

SISCR - GSCT - 4 : 39

# SISCR UW - 2016

Introduction

Bayesian operating characteristics Coarsened Bayes approach

Implementation in

RCTdesign Posterior probability scale Bayesian contour plots in RCTdesign

Bayesian Predictive Probabilities

Bavesian families

