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1 Introduction to weight-of-evidence theory

1.1 Warm-up examples

1.1.1 People v. Collins (California, 1968)

An apparently reliable witness testified that the crime was committed by two individuals
with the characteristics given in the table below. A couple fitting the description was
charged with the offence. An instructor in mathematics was called as expert witness and
suggested the probabilities shown.

Trait Probability
Yellow car 1/10

Man with moustache 1/4
Woman with pony tail 1/10

Woman with blond hair 1/3
Black man with beard 1/10

Inter-racial couple 1/1000

The mathematics instructor multiplied these probabilities together and obtained a
very small number. The defendants were found guilty.

The conviction was overturned by the California Supreme Court, but it made errors
in its analysis.

Many criticisms can be raised about the prosecution evidence in Collins and many
pages of academic literature have been devoted to raising them. Much of this literature
is flawed in crucial respects. We won’t analyse this in any detail here, but the example
raises fundamental issues such as:

• What numbers should be presented to a court to help jurors evaluate evidential
weight?

• How should they be interpreted?

• What possible errors should jurors be warned against?
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1.1.2 Disease testing (Positive Predictive Value, PPV)

Suppose that, although showing no symptoms, you decide to take a diagnostic test for a
rare disease that can exist in a latent state before showing symptoms. Let’s assume the
following facts:

• about 1 person in 1 000 has the latent form of the disease;

• the false positive rate is 0.01 (this is the proportion of positive outcomes among
those taking the test who do not have the disease);

• the false negative rate is 0.05 (this is the proportion of negative outcomes among
those taking the test who do have the disease);

The test result comes back positive. How worried should you be? What is the probability
that you have the disease?

100,000 individuals

100 affected 99,900 unaffected

95  +  999   test positive

95% true
positives

1% false
positives

total = 1,094
The rare disease problem is closely connected with the weight-of-evidence problem:

there are two possible “states of nature”, disease and no disease (compare with guilty and
not guilty), and there is a diagnostic test that is reliable but can occasionally fail (cf. a
DNA profile test, that can occasionally result in a match by “chance”, or by a laboratory
or handling error). The correct method of reasoning for rare diseases leads to results that
at first are counter-intuitive for many people: it can do more harm than good to screen
the general population for a rare disease, even when an accurate test is available.

The logic of the probability analysis is compelling, and its implications are now univer-
sally accepted for public health policy. The analogous reasoning for DNA profile evidence
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also leads to some surprising conclusions, and after a struggle during the 1990s, they are
slowly becoming accepted in the courts.

In public health, the probability of having the disease given a positive test result is
called the “positive predictive value” (PPV) of the test. It is a difficult quantity because
it depends on the disease prevalence – and this will vary, for example according to ethnic
group and occupation. In contrast, the false positive and false negative rates are easier to
work with because they can be measured in the laboratory – so many focus on these even
though they do not answer the relevant question, for which the PPV is needed. Similarly
in forensic identification, it is not the “match probability” for the DNA profile test that
ultimately matters, but the equivalent of the PPV, and this is a difficult quantity because
it depends, for example, on the other evidence in the case.

Before tackling these problems, let’s consider one more example and to see if you have
got the hang of these problems.

1.1.3 Coloured taxis

Suppose that 90% of the taxis in the town are green and the rest are blue. According to
an eyewitness, the perpetrator of a “hit-and-run” traffic offence was driving a blue taxi.
We assume that the eyewitness testifies honestly, but may have made a mistake about the
colour of the taxi: it was dark at the time, and tests indicate that eyewitnesses mistake
blue taxis for green, and vice versa, about 1 time in 10 under these conditions.

What is the probability that the taxi really was blue?

100 taxis

10 blue 90 green

10% false
blues

9  +  9   reported blue
total = 18

90% true
blues
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1.2 Rare trait identification evidence

One of the methods scientists use to try to understand complex phenomena is to investi-
gate simple models. Seeing what happens when simple models are tweaked can suggest
insights into how the real world works. The models can be elaborated to bring them a
little closer to reality, but it is often the simplest models that give the most profound
insights.

We will take this approach to assessing the weight of DNA evidence. An actual case
involves many complications:

• how many previous suspects were typed and excluded?

• what were the possibilities for a contamination error?

• are any of Q’s close relatives possible culprits?

and many more. We can’t cope with all these complications at once. Instead, we will
start with an imaginary crime on an imaginary island where life, and crime, is much
simpler than in our world. Although unrealistic, analysis of the “island problem” leads to
profound insights. We will gradually add more features to bring the island closer to the
real world. In so doing we will learn new lessons about evidential weight.

1.2.1 The “island” problem

Consider a rare, latent trait: it could be a DNA profile but there is no need to be
specific at this stage. Let’s use the symbol Υ to denote the trait. A crime is committed on
a remote island with a population of, say, 101. At first, there are no clues, and everyone
on the island is equally under suspicion. Then it is learned that the culprit possesses Υ,
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and a suspect is identified who is found to have Υ. How convinced should we be that the
suspect is guilty?

The answer to this question depends on, among other factors, how rare Υ is. Suppose
that the suspect and the culprit (who may or may not be the same person) are the
only people on the island whose Υ-status is known. A recent survey on the nearest
continent, however, indicated that 1 person in 100 has Υ and we assume that people on
the neighbouring islands have Υ independently, with probability 0.01.

The island problem: facts summary

• All 101 islanders are initially equally under suspicion;

• The culprit has Υ;

• The suspect has Υ;

• The Υ-states of the other islanders are unknown;

• We expect on average about 1 person in 100 to have Υ.

What is the probability that the suspect is guilty?

The island problem: solution

101 islanders

1 guilty 100 innocent

100% true
match

1% false
match

1  +  1   match
total = 2
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In addition to the one individual known to match (the suspect), we expect one other
individual on the island to match. In the absence of any further evidence pointing to, or
away from, the suspect, the probability that the suspect is guilty is 1/2.

1.2.2 A first lesson from the island problem

It is the probability that the defendant is guilty given a match of Υ-states – the analogue
of the PPV for disease testing – that is directly relevant to the juror’s decision. Like the
PPV, this probability is, in reality, a slippery quantity to work with, but in the simplified
island setting we can calculate the probability of guilt. Here, we are given that there is
no other evidence and that all islanders are initially equally under suspicion, so we are
permitted to ignore factors like age, state-of-health, and distance from the crime scene
that complicate real-world crimes.

In general, if there are N people on the island other than the suspect Q, and the
probability that any one of them has Υ is p, then the formula for the probability that Q
is guilty, given the Υ evidence, is

P(G|E) ≡ P(Q guilty given evidence) =
1

1 +N × p
. (1)

We will see how to derive this equation in Section 2.4 below. If N = 100 and p = 1/100
then

P(G|E) =
1

1 + 100× 1/100
=

1

2
,

Although it follows from (1) that the rarer is Υ, the higher is the probability that Q is
guilty, the strength of the overall case against Q depends on both the rarity of Υ (i.e. on
p) and on the number of alternative possible culprits N .

Lesson 1 The fact that Υ is rare (i.e. p is small) does not, taken alone, imply
that Q is likely to be guilty.

The unrealistic aspects of the island problem are immediately apparent. Nevertheless,
Lesson 1 is “robust”: when we change the problem to make it more realistic, Lesson 1
still applies (see Section 2.2.1).

1.3 Making the island problem more realistic

Let’s change some aspects of the island problem to investigate how different factors affect
weight of evidence. To avoid getting too bogged down in complications, we will investigate
different factors one at a time.
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1.3.1 The effect of uncertainty about p

In practice, we will not know p exactly. Let’s modify the island problem by attaching
some uncertainty to p, measured by a variance σ2. The island problem formula (1) now
becomes

P(G|E) =
1

1 +N × (p+ σ2/p)
, (2)

which is always less than (1). We therefore have immediately the following important
conclusion, that, like Lesson 1, turns out to be robust.

Lesson 2 Uncertainty about p does not “cancel out”. Ignoring uncertainty is un-
favourable to defendants.

Numerical illustration
In the original island problem of Section 1.2.1, N = 100 and p = 0·01, and the

probability of guilt is

P(G|E) =
1

1 +N × p
=

1

1 + 100× 0·01
= 50%.

If, now, we suppose that there is some uncertainty about p, say p = 0·01± 0·005 (i.e. σ =
0·005), then the modified formula for the probability of guilt is

P(G|E) =
1

1 +N × (p+ σ2/p)

=
1

1 + 100× (0·01 + (0·005)2/0·01)

=
1

1 + 1 + 0·25
=

4

9
≈ 44%.

So failing to acknowledge the uncertainty about p overstates the probability of guilt; here,
50% instead of the correct 44%.

Uncertainty about p can arise for a number of reasons. If knowledge about p comes
from a survey, then there is uncertainty due to sampling: a different sample would have led
to somewhat different results. Moreover, there is always uncertainty due to the possibility
that the sample is unrepresentative (the islanders may differ from the population of the
continent).

We will see in Section 4 that uncertainty about p is crucial to the correct interpretation
of DNA evidence: uncertainty enters because of sampling error but also because DNA
profile frequencies vary among ethnic/religious/social groups, and we never know exactly
which is the correct reference group in a particular case, or what are the profile frequencies
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in the relevant groups. The rarity of a DNA profile is assessed in part on the basis of
data, from “convenience” samples rather than scientific random samples, and in part on
the basis of population genetics theory, that holds at best only approximately in actual
human populations. In practice, then, the σ2/p in (2) is often much larger than the p, so
that ignoring the former can be much more important than in the illustration above.

1.3.2 The effect of possible typing errors

Now forget uncertainty, and assume again that we know p exactly. Suppose, however,
that there is a probability ε1 that an individual who does not have Υ will be wrongly
recorded as having it (i.e. a false positive), and probability ε2 for the other, false negative,
error. We assume that these probabilities apply for typing both Q and the culprit, and
that errors occur independently.

These assumptions are still unrealistically simple, but they allow a first insight into
how the possibility of error affects evidential weight. The exact formula is a little complex,
but an approximation appropriate here is given by

P(G|E) =
1

1 +N × (p+ ε1)2/p
. (3)

We will discuss the derivation of (3) in Section 2.4.2 below. This simple formula suffices
for another important, robust, lesson.

Lesson 3 The overall weight of evidence against Q involves adding together the
probability of a “chance match” and the probability of a match due to a typing
error.

Laboratory and handling errors for DNA profile evidence are discussed further in Section
2.2.4. In general, the value of ε1 is difficult to assess, usually more difficult than p since it
depends strongly on the circumstances of a particular case. Ultimately, it is for the jury
in criminal trials to assess the probability that some error has occurred, on the basis of
the evidence presented to it. It is important that courts be given some idea of what errors
are possible, how likely they are in the present case, and what effect possible errors have
on evidential weight.

1.3.3 The effect of searches

Forget, for the moment, uncertainty and errors, and focus on a new issue. In the island
problem, the question of how Q came to the attention of the crime investigators was
ignored. This is not as unrealistic as it may first appear: in practice, suspects are often
identified on the basis of a combination of factors such as previous convictions, suspicious
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behaviour, criminal associates and so forth. Such reasons may not form part of the evi-
dence presented in court, in which case, as far as a juror is concerned, Q “just happened”
to come to the attention of the authorities. Further, the legal maxim “innocent until
proven guilty” is usually interpreted to mean that, before the evidence is presented in
court, Q should be regarded as being just as likely to be guilty as anybody else in the
population.

Suppose now that Q was identified on the basis of a search for Υ-bearers. That is, the
islanders are examined in random order until the first one is found who has Υ. This indi-
vidual is then accused of the crime. As well as the facts listed in the summary on page 7,
we now have the additional information that, say, k islanders have been investigated and
found not to have Υ. In the original island problem, the reasons for first identifying Q
were not based on Υ-possession.

Is P(G|E), the probability that Q is guilty, higher or lower following
a search, compared with the original setting?

There seem to be two reasons for believing that it should be lower:

1. the fact that Q was initially just one person in a random sequence of individuals
searched means that he/she is less likely to be the culprit;

2. if you set out to find a suspect who has Υ, then the fact that Q has Υ is unsurprising
and therefore of little or no evidential value.

It turns out that the probability that Q is guilty is higher following a search than in
the original island problem. In fact,

P(G|E) =
1

1 + (N−k)× p
, (4)

which is greater than (1). Many people, particularly scientists, find this result counter-
intuitive, perhaps because of the two “reasons” given on page 11.

• The first “reason” is easily dismissed: “innocent until proven guilty” implies that
every defendant should be treated, before the evidence is presented, as just another
member of the population. This view is incorporated into the island problem by
initially regarding every islander as equally under suspicion. So there is nothing
special about a suspect identified on the basis of a search.

• To see that the second “reason” is wrong, think about the case that Q was the last
person searched: everyone else was inspected and found not to have Υ. Then the
fact that Q has Υ is overwhelmingly strong evidence against him/her, as is reflected
by the value P(G|E) = 1 that is obtained in (4) when N = k. The key is to keep
attention fixed on the relevant question, which is not “how likely is it that I will
find a Υ-bearer if I look for one?”, but “given that a Υ-bearer has been found, how
strong is the evidence against this individual?”.
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The reason behind the correct formula is that each individual found not to have Υ is
excluded from suspicion (remember that we are ignoring error here). The removal of this
individual leaves a smaller pool of possible culprits and hence each remaining person in
the pool becomes (slightly) more likely to be guilty. Notice that if the first person is found
to have Υ, so that k = 0, then the original island problem formula is recovered. The fact
that a search was intended then makes no difference to the strength of the evidence.

Lesson 4 In the case of a search of possible culprits to find a “match” with crime
scene evidence, the longer the search (i.e. the more individuals found not to match)
the stronger the case against the one who is found to match.

The important, related issue of suspects identified through searches of DNA profile databases
is discussed below in Section 2.3.

1.3.4 The effect of other evidence

In the island problem, we assumed in effect that there was no evidence other than the
Υ-evidence. In practice, of course, even if there is no further evidence that is directly
incriminating, there will be background information presented to the jury, such as the
location, time and nature of the crime, that makes some individuals more plausible culprits
than others.

Definition 1 We write wX for the weight of the non-Υ evidence against person
X, relative to its weight against Q.

In the original island problem, each wX was equal to one. A value wX > 1 indicates that,
ignoring the Υ-evidence, individual X is more likely to be the culprit than is Q. As an
example, suppose that, other than the information about Υ, the evidence consists of the
location of the crime and the locations of the homes of all the islanders. A juror may
reason that individuals who live near to the crime scene are more likely to be the culprit
than, say, individuals who live on the other side of the island. Such an assessment can be
reflected by values of wX greater than one for those who live nearer to the crime scene
than Q, and less than one for those who live further away.

When other evidence is taken into account, the island problem formula (1) becomes

P(G|E) =
1

1 + p×∑N
X=1wX

, (5)
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in which we introduce the mathematical symbol
∑

to denote summation. If all the wX are
equal to one then

∑N
X=1wX = N , and the formula reduces to the original island problem

formula.
The role of the wX in connection with assessing DNA evidence is discussed further

below in Section 2.2.2.

1.3.5 The effects of relatives and population subdivision

Even though we are initially ignorant about who on the island has Υ, the observation
that Q has it can be informative about whether or not other individuals, such as relatives
and associates, also have Υ. For example, if the population of the island is divided into
“easties” and “westies”, then the fact that Q, an eastie, has Υ may make it more likely
that other easties also have Υ.

In the island problem, we assumed that Υ possession for different individuals was inde-
pendent, so that one person’s Υ-status carries no information about the Υ-states of other
individuals. In practice, however, this “learning” effect can be important, particularly for
DNA profile evidence. Any particular DNA profile is very rare, but once that profile is
observed, it becomes much more likely that other people, among the individual’s relatives
or ethnic group, also have it. It follows that what matters in practical cases involving
DNA evidence is not p, the overall frequency of the profile, but the probabilities of the
other possible culprits having the profile given that Q has it.

Definition 2 We write rX for the match probability for possible culprit X, which
is the probability that X has Υ, given that Q has Υ.

Some writers on DNA evidence use “match probability” to denote the relative frequency
of Υ in some population. This is incorrect because the concept of “match” involves two
individuals, not one. In the original island problem we assumed independence of Υ-states
so that rX does equal p on the island. For DNA profile evidence in real populations,
however, relatedness and population subdivision mean that the match probability rX
exceeds the profile relative frequency p, often substantially. Thus confusing rX with p is
detrimental to defendants (see Section 4).

When these effects are taken into account, the island problem formula (1) becomes

P(G|E) =
1

1 +
∑N

X=1 rX
. (6)

If all the rX are equal to p, then
∑N

X=1 rX = Np, and (1) is recovered.
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2 Assessing evidence using likelihood ratios

There are many other factors that could be introduced into the island problem in order
to investigate their effect on evidential strength:

• what if the culprit is not, after all, the source of the DNA obtained from the crime
scene?

• what about the fact that Q failed to produce a convincing alibi?

• what if the police accuse Q of every crime that occurs on the island?

• what if only a few individuals could have visited the crime scene during the time of
the offence?

We will now introduce a general formula for quantitatively assessing evidence in the light
of such factors.

2.1 The weight-of-evidence formula

Although we have given some intuitive explanation of (1) through (6), we have not yet
explained how to derive such formulas. The match probability rX , defined on page 13, is
a special case of a likelihood ratio (LR).

Definition 3 Let Ed stand for some evidence and X for the name of a possible
perpetrator of the crime (other than the defendant, Q). Let HX denote the hypoth-
esis that X was the perpetrator. The likelihood ratio for comparing HX with HQ

on the basis of evidence Ed is the ratio of how likely it is to have observed Ed under
HX to how likely Ed is under HQ:

RX =
P(Ed|HX)

P(Ed|HQ)
. (7)

We have introduced here the notation “|”, which is mathematical shorthand for “given
that”. Most authors define the LR the other way around (i.e. with the top and bottom
lines interchanged). Either definition is acceptable given the obvious adjustments to for-
mulas. For us, RX is small when Ed provides strong evidence in favour of guilt (HQ). Our
definition has the advantage that RX can often be interpreted as a conditional probability
(see Section 4).
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Definition 4 The other evidence ratio wX , introduced informally on page 12, is
the probability of HX divided by the probability of HQ, both evaluated in the light of
Eo, all the evidence other than Ed. That is,

wX(Eo) =
P(HX |Eo)

P(HQ|Eo)
.

Putting together the factors discussed in Sections 1.3.4 and 1.3.5, with the more general
RX replacing the rX , we obtain:

The weight-of-evidence formula

P(G|Ed, Eo) =
1

1 +
∑

X∈P wXRX

, (8)

Formula (8) is a special case of a result in probability theory known as Bayes Theorem,
in honour of the c18 clergyman Thomas Bayes.

The population P
The summation in (8) is over some population P of unprofiled individuals, assumed

to include all the possible sources of the crime stain other than Q. Although P should
include all realistic alternative suspects, there is some flexibility as to how many extra
individuals are included. Often it might be appropriate to include in P all individuals
aged, say, between 16 and 65 living within, say, one hour driving time of the crime scene.
Alternatively, P might include all adult male residents of the nation in which the crime
occurred. However, P could include everyone on earth except Q, if desired: for a crime
committed in Marrakesh, the value of wX will be very close to zero when X is a resident
of Pyongyang. This individual can be included in P , but the error resulting from simply
ignoring all the residents of Pyongyang will usually be negligible.

Grouping the RX

Although there is, in principle, a separate RX for every person not excluded from
being a possible culprit, in practice there will be large groups of individuals for whom
the evidence Ed bears the same weight, and thus for whom RX will take the same value.
By grouping together members of P having approximately the same value of RX , it will
typically be satisfactory in practice to consider just a few distinct terms in the summation
of (8).
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2.1.1 Application to the island problem

In the island problem setting, the evidence Ed can be summarised by

Ed = “both Q (suspect/defendant) and culprit are observed to have Υ”.

Since typing error is assumed impossible, Ed implies that suspect and culprit do both have
Υ, in which case each LR RX is equivalent to the match probability rX . The principle
distinction between the two is that RX in principle allows the possibility for the evidence
to have arisen by other means, such as handling error or fraud.

If Q is not guilty, then we have observed two Υ-bearers on the island: the culprit and
Q. Under the assumptions introduced on page 8, the probability that any two individuals
both have Υ is p× p = p2. On the other hand, if Q is guilty, then we have observed only
one Υ-bearer and this observation has probability p. The LR for any possible culprit X
is thus

RX =
p2

p
= p. (9)

Substituting this value into (8) we recover (5), and in the case that all the wX are equal
to one, we once again obtain the original island problem formula (1).

2.1.2 Two pieces of evidence

When the evidence to be assessed, Ed, consists of two items, say E1 and E2, the LR can
be calculated in two equivalent ways, corresponding to the two possible orderings of E1

and E2, but these give the same result. Thus, applying the weight-of-evidence formula to
E1 and E2 together, given background information Eo, gives the same result as applying
it to E2 when E1 is included with Eo or to E1 when E2 is included with Eo.

Apparently strong evidence may be of little value if it merely replicates previous
evidence. If E1 and E2 are highly correlated (e.g. matches at tightly linked genetic loci, or
statements from two friends who witnessed the crime together and discussed it afterwards),
then RX(E1|E2, Eo) and RX(E2|E1, Eo) may both be close to one (i.e. little evidential
weight) even though both RX(E1|Eo) and RX(E2|Eo) indicate strong evidence. In this
case the joint weight of the two pieces of evidence is about the same as the weight of either
piece of evidence taken alone. On the other hand, if the items of evidence are independent
given Eo then

RX(E1, E2|Eo) = RX(E1|Eo)RX(E2|Eo).

2.1.3 Application of the formula

The weight-of-evidence formula (8) can be used to assess all the evidence in a case.
Suppose that the evidence can be allocated into four categories:

1. E1 is information about the nature and location of the crime;
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2. E2 is an eyewitness description of the crime;

3. E3 is the defendant’s testimony;

4. Ed is the DNA evidence.

Initially, the jurors might assign values to the wX based only on E1. After hearing E2, the
juror can calculate RX(E2|E1)wX(E1). The probability of guilt P(G|E2, E1) can be eval-
uated at this point, if desired. If E3 is now taken into account, a new probability of guilt
P(G|E3, E2, E1) can be calculated based on the values of RX(E3|E2, E1)RX(E2|E1)wX(E1)
for all X. As noted above, these values can be regarded as wX(Eo) for the purposes of
assessing the DNA evidence Ed, where Eo stands for all the non-DNA evidence, E1, E2,
and E3.

This logical analysis of evidence is particularly useful when some items of evidence
are strongly incriminating while others are exculpatory. The fact that the order in which
different items of evidence is assessed does not affect the final answer is crucial. Moreover,
how the evidence is categorised into “items” is also irrelevant: since

RX(E3, E2|E1) = RX(E3|E2, E1)RX(E2|E1),

so the same answer is obtained whether E3 and E2 are analysed together, or separately.
We will focus on applications of the formula to DNA evidence. We will assume that

Ed refers to the DNA evidence, and that Eo includes all other evidence, so that we
regard the DNA evidence as being assessed last. This is for convenience and is not
necessary; assessing the DNA evidence first has some advantages, in particular it may
then be reasonable to assume wX = 1 for all X in P .

Typically, most of the background information Eo, for example information about ali-
bis or eye-witness reports, has no effect on the likelihood ratio RX(Ed|Eo). Note, however,
that background information about the ethnic groups of X and Q, or the relatedness of
X with Q, can be very important in calculating LRs for DNA evidence.

The weight-of-evidence formula requires modifications in some settings, such as when
the crime sample has more than one source (Section 5.2). Nevertheless the formula is
very general, and embodies the “in principle” solution to the problem of interpreting
DNA profile evidence, including the role of the non-DNA evidence, the effect of relatives,
population variability, and laboratory error. By “in principle” we mean that it points out
the quantities that need to be assessed and how they should be combined.

One important feature of (8) in connection with DNA evidence is that it provides a
demarcation of the roles of jurors and expert witnesses. Ultimately, it is for jurors to
assess evidential weight, but (8) indicates that a DNA expert can be most helpful to
clear-thinking jurors by guiding them with reasonable values for the RX . The wX reflect
jurors’ assessments of the non-DNA evidence, and will not usually be a matter for the
(DNA expert) forensic scientist.

In the next section we consider various consequences of the weight-of-evidence formula
for assessing DNA evidence. We continue to assume that the RX are given; we defer
computing LRs until Section 4.
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2.2 Consequences for DNA evidence

2.2.1 Many possible culprits

Because DNA evidence is widely, and correctly, perceived as being very strong, cases often
arise in which there is little or no evidence against the defendant other than the DNA
evidence. In such cases, there may be large numbers of individuals who, if not for that
evidence, would be just as likely to be the culprit as the defendant (in other words, many
individuals X for whom wX is not small).

The weight-of-evidence fallacy: examples

Many commentators, seem to take the view that the fact that the profile is rare
(i.e. p is small) alone establishes guilt. Some examples of statements that seem to
be based on this fallacy are:

• “There is absolutely no need to come in with figures like ‘one in a billion’,
‘one in ten thousand’ is just as good”.

• “population frequencies ... 10−5 or 10−7. The distinction is irrelevant for
courtroom use”

These statements are misleading because in the presence of many possible culprits,
or strong exculpatory evidence, very small LRs may be consistent with acquittal,
and differences of one or two orders of magnitude may be crucial.

Even if all the LRs are very small, this may not suffice to imply a high probability for
the defendant’s guilt since the bottom line of the weight-of-evidence formula (8) involves
a summation, and the total of many small quantities may not be small. A juror told only
that 1 in 1 million persons has this profile may incorrectly conclude that this amounts to
overwhelming proof of the defendant’s guilt. This error can be extremely detrimental to
defendants when there are many alternative possible culprits, or substantial exculpatory
evidence.

2.2.2 Incorporating the non-DNA evidence

The overall cases against the defendant, Q, in the two assault cases (see box) differ
dramatically: in the first case the evidence against Q seems overwhelming; in the second,
a jury would have to make careful judgements about the validity of the alibi, the possibility
of travelling such a distance, and the strength of the DNA evidence. In the weight-of-
evidence formula, the difference between these two cases is encapsulated in different values
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Two assault cases

Case 1 – victim recognises alleged assailant and reports his name, Q, to police;

– Q is found to have injuries consistent with the victim’s allegation and
cannot give a convincing alibi for his whereabouts at the time of the
alleged offence;

– Q is profiled and found to match the crime profile.

Case 2 – victim does not see assailant and can give no useful information about
him;

– the crime profile is compared with DNA profiles from many other in-
dividuals until a matching individual Q is found.

– Q lives in another part of the country, has a good alibi for the time of
the crime and no additional evidence can be found linking him to the
alleged offence.

for the wX . A plausible allegation by the victim in Case 1 may lead a juror to assign small
values of wX to each alternative possible culprit X. Lacking such an allegation, and faced
with strong alibi evidence, jurors may assign values greater than one to many of the wX .

A juror may be reluctant to assign precise values to the wX , but can make broad
distinctions between the moderately large and extremely small values that may be appro-
priate in these two examples.

2.2.3 Relatives

Because DNA profiles are inherited, closely related individuals are more likely to share a
DNA profile than are unrelated individuals. Many commentators have taken the view that
close relatives of the defendant need not be considered unless there is specific evidence to
cast suspicion on them.

The weight-of-evidence formula shows this view to be mistaken. Consider the case
outlined in the box below. It may be helpful to profile brothers in such cases, if possible.
The brother may, however, be missing, or refuse to co-operate. It may not even be known
whether or not the defendant has any brothers.

The probability of the defendant’s innocence in this case is about 1%. A juror may
or may not choose to convict on the basis of this calculation: the pertinent point is that
ignoring the brother would give a very misleading view of evidential strength, leading to
probability of innocence of only 0·01%. It is easy to think of similar situations, involv-
ing additional unexcluded brothers or other close relatives, in which the probability of
innocence is substantial, even after apparently strong DNA evidence has been taken into
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account.

Relatives calculation: an example

There is direct DNA profile evidence against a defendant Q, but the DNA profiles
of the other possible culprits – a brother of Q named B and 100 unrelated men
– are not available. The non-DNA evidence does not distinguish between these
102 individuals, so that the “other evidence” ratios wX are all equal to one. We
will defer consideration of methods for calculating LRs until Section 4. Here, we
will take the following values: for the brother, RB = 1/100, for all other possible
culprits RX = 1/1 000 000. Then

P(G|E) =
1

1 + 1/100 + 100/1 000 000
≈ 99%, (10)

Although still more simple than realistic cases, the example serves to illustrate the
general point that consideration of unexcluded close relatives may be enough to raise
reasonable doubt about the defendant’s guilt even when there is no direct evidence to cast
suspicion on the relatives.

2.2.4 Laboratory and handling errors

If crime and defendant profiles originate from the same individual, the observation of
matching profiles is not surprising. Non-matching profiles could nevertheless have arisen
through an error in the laboratory or at the crime scene, such as an incorrect sample
label or laboratory record, a contaminated sample, a software error in a computer-driven
laboratory procedure or, possibly, tampering with evidence. The common practice of
ignoring this possibility favours the defendant, although the effect is typically small.

On the other hand, when the defendant is not guilty, ignoring the possibility of error
is always detrimental to the defendant, sometimes substantially so. The observed match
could have arisen in two ways:

(a) suspect and culprit happen to have matching DNA profiles and no typing error
occurred;

(b) suspect and culprit have distinct DNA profiles, and the observation of matching
profiles is due to an error in one or both recorded profiles.

Both (a) and (b) are typically unlikely. In many cases (b) may be important, but (a) may
be the focus of more attention, in part because error probabilities are difficult to assess.
Even if error rates from external, blind trials are available, there will usually be specific
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details of the case at hand that differ from the circumstances under which the trials were
conducted, and that make it more or less likely that an error has occurred.

We saw in Sections 1.3.2 and 2.4.2 the role of error probabilities under very simple
assumptions. Some broad conclusions of these analyses are:

• In order to achieve a satisfactory conviction based primarily on DNA evidence, the
prosecution needs to persuade the jury that the relevant error probabilities are small.

• If the probability of error (b) is much greater than the probability of matching
profiles (a), then the LR corresponding to (a) is effectively irrelevant to evidential
weight.

• What matters are not the probabilities of any profiling or handling errors, but only
the probabilities of errors that could have led to the observed DNA profile match.

2.3 Database searches

The UK has a national database of the DNA profiles of named individuals for criminal
intelligence purposes. At 31/03/16, over 5 million people in the UK had their profiles
recorded in the UK NDNAD (80% men, 20% women; 78% white, 7% black, 5% South
Asian, 8% unknown), while the number of profiles from unsolved crimes was 0.5 million.
In 2014/15, the NDNAD produced 220 subject to crime scene matches from an urgent
search of the NDNAD, including to 43 homicides and 72 rapes. It also produced 29,315
routine subject to crime scene matches, including to 438 homicides and 635 rapes. It also
provided 1,015 crime scene to crime scene matches and 2,011 partial matches.1

The question thus arises as to the appropriate method for assessing the DNA profile
evidence when the defendant was identified following a search through this database. The
number of individuals involved in such a search, and even the fact that there was a search,
may not be reported to the court. This is because intelligence databases consist primarily
of the DNA profiles of previous offenders, and admitting that such a search has been
conducted is thus tantamount to admitting previous convictions. It is important to know
whether or not omitting this information tends to favour the prosecution.

In Section 1.3.3, we considered the related problem of a sequential search in the popu-
lation of possible offenders in the setting of the island problem. As we discussed there, it
is widely – but wrongly – believed that the fact that a DNA profile match is more likely
when it results from a search means that the evidence is weakened by the search.

The correct analysis shows that Lesson 4 (page 12) still holds, and DNA evidence is
usually slightly stronger in the database search setting than when no search has occurred.
Omitting information about the search tends to favour the defendant, although usually
the effect is small. This analysis requires a modification of the weight-of-evidence formula,

1NDNAD annual report 2012 to 2013, available at https://www.gov.uk/government/publications/
national-dna-database-annual-report-2014-to-2015
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to take into account the fact that individuals have been observed not to match the crime
DNA profile. The intuition behind the database search result is two-fold:

(a) the other individuals in the database were found not to match and hence are effec-
tively excluded from suspicion, reducing the number of possible culprits;

(b) the observation of many non-matches strengthens the belief that the profile is rare.

As an illustration of (a), consider an enormous database that records the DNA profiles of
everyone on earth. If the defendant’s profile were the only one in this database to match
the crime profile, then the evidence against him would clearly be overwhelming.

Although the DNA evidence may be slightly stronger in the context of a database
search, the overall case against the defendant may tend to be weaker because there may
often be little or no non-DNA evidence against the defendant.

2.4 Derivation of the weight-of-evidence formula

So far I have stated many results without derivation. In this section I fill in some of the
missing details.

2.4.1 Bayes Theorem

Given evidence E and the two hypotheses confronting a criminal juror:

HQ: Q is guilty, and

I: Q is not guilty,

Bayes Theorem describes how to update prior probabilities of HQ and I to take into
account of the information conveyed by E. Since exactly one of HQ and I is true, we
must have P(HQ) + P(I) = 1. Bayes Theorem is

P(HQ|E) =
P(E|HQ)P(HQ)

P(E|HQ)P(HQ) + P(E|I)P(I)
. (11)

All the probabilities in (11) are conditional on background information Eo.
Although valid, (11) is not immediately useful for DNA evidence because the likelihood

P(E|I) cannot be directly calculated. If Q is the source of the crime scene DNA (which for
now we assume is equivalent to guilt), then the probability P(E|HQ) of observing the DNA
evidence is relatively straightforward. If Q isn’t the source, however, we cannot evaluate
the probability of the DNA evidence without knowing something about the person who
was the source.

To overcome this problem it is convenient to partition the event X into a union of
events HX , where X denotes an individual other than Q. Then P(I) =

∑
X P(HX) and
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P(E|I)P(I) =
∑

X P(E|HX)P(HX). Substitution in (11), leads to the weight-of-evidence
formula, (8).

Replacing I with ∪X{HX} is convenient, but is not appropriate in every forensic
identification setting. One exception arises when there are multiple contributors to the
crime scene DNA profile (Section 5.2) in which case the alternative hypotheses must each
specify all of the contributors of DNA.

2.4.2 Typing errors

Consider again the modification to the island problem discussed in Section 1.3.2, in which
typing errors occur independently with probabilities ε1 and ε2. Here, if suspect and culprit
are not the same person, then the evidence must have arisen in one of three ways:

• Both suspect and culprit have Υ, and no typing error occurred; this has probability
p2(1−ε2)2.

• One of the two has Υ, the other does not but a false positive error occurred; this
has probability 2p(1−p)ε1(1−ε2).

• Neither suspect nor culprit have Υ, and both were incorrectly typed; this has prob-
ability (1−p)2ε21.

If suspect and culprit are the same person, then there are two ways to have observed the
evidence:

• The suspect/culprit has Υ and was correctly typed twice; this has probability
p(1−ε2)2.

• The suspect/culprit does not have Υ and was incorrectly typed twice; this has
probability (1−p)ε21.

Combining all these probabilities we obtain

RX =
p2(1−ε2)2 + 2pε1(1−p)(1−ε2) + (1−p)2ε21

p(1−ε2)2 + (1−p)ε21

=
(p+ ε1 − p(ε1+ε2))2

p(1−ε2)2 + (1−p)ε21

≈ (p+ ε1)
2

p
,

The final approximation holds if p, ε1 and ε2 are all small.
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3 Other approaches to weight of evidence

We have seen that the likelihood ratio approach is very powerful. No matter what unusual
circumstances arise in a new case: identical twins, inbreeding, fraud or missing bands, the
LR provides us with a framework for assessing the evidence. For every piece of evidence,
a juror should ask two questions

• How likely is the evidence if the defendant Q is guilty?

• How likely is the evidence if another individual X is guilty?

Consequently, expert witnesses should provide as much information as possible to help
jurors to answer these questions.

Although elegant and powerful, the weight-of-evidence theory based on LRs is often
viewed as complicated and unfamiliar. Real crime cases are complicated, so to some extent
it is inevitable that a satisfactory theory of evidential weight cannot be very simple. We
briefly introduce alternative approaches that seem simpler but that have difficulties.

3.1 Uniqueness

Match probabilities for alternative possible culprits unrelated to the defendant Q are often
extremely small: for the 10-locus STR system widely used in the UK, calculated match
probabilities are usually substantially less than 1 in 1 billion. When a forensic scientist
reports match probabilities this small, it seems effectively equivalent to saying that he
or she is reasonably certain that Q’s DNA profile is unique in the population of possible
sources of the crime stain. If so, wouldn’t jurors be better assisted by the expert giving
a “plain English” statement of this, rather than a match probability whose unfamiliar
magnitude may overwhelm or confuse? For example, perhaps an expert witness could
assert that, excluding identical twins and laboratory/handling errors, in his/her opinion
Q’s DNA profile is almost certainly unique in the UK.

Although attractive in some respects, a practice of declaring uniqueness in court does
lead to difficulties. One of these is: how to deal with the minority of cases in which
uniqueness cannot reasonably be asserted? These often arise for low-template (LTDNA)
and/or mixed profiles. Perhaps the most important barrier to declaring uniqueness is the
problem of the non-DNA evidence in a case. The event that a particular DNA profile is
unique is either true or false, no “objective” probability can be assigned to it. Nevertheless,
since this truth or falsity cannot be established in practice, a probability of uniqueness
based on the information available to an expert witness, such as that obtained from DNA
profile databases, together with population genetics theory, may potentially be useful to
a court. The problem then arises as to what data and theory the expert should take into
account. Specifically, the non-DNA evidence in a case may be directly relevant, yet it
may not be appropriate for the DNA expert to assess this evidence.

Consider a crime scene DNA profile that is thought to be so rare that an expert might
be prepared to assert that it is unique. Suppose that, for reasons unrelated to the crime, it
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is subsequently noticed that the crime scene profile (CSP) matches that of the Archbishop
of Canterbury. On further investigation, it is found to be a matter of public record that
the Archbishop was taking tea with the Queen at the time of the offence in another part
of the country. A reasonable expert would, in the light of these facts, revise downwards
any previous assessment of the probability that the CSP was unique. However, this is
just an extreme case of the more general phenomenon that any evidence in favour of a
defendant’s claim that he is not the source of the crime stain is evidence against the
uniqueness of his DNA profile.

Under certain assumptions, including allowing for an FST value of 2%, simulations
indicate that 10 STR loci usually suffice to achieve a 99·9% probability of uniqueness,
and 11 loci suffice almost always (Balding, 1999). However, these calculations are based
on the crucial assumption that wX ≤ 1, which effectively implies that there is no evidence
in favour of Q. There is sometimes evidence favouring the defendant, and it is not ap-
propriate for the forensic scientist to pre-empt the jurors’ assessment of the non-scientific
evidence.

Focussing on the directly relevant issue, whether or not Q is the source of the crime
stain, rather than uniqueness, makes more efficient use of the evidence and, properly
presented and explained to the court, can suffice as a basis for satisfactory prosecutions.
A calculation of the probability of “uniqueness” may also provide useful information for
courts, provided that a satisfactory way is found to explain the underlying assumptions.

3.2 Random Man Not Excluded (RMNE) probabilities

The concept of a “random man” has at least two meanings:

• informally, it means something like “nobody in particular” or “it could be anyone”;

• in scientific usage, it means chosen according to a randomising device, such as a
computer random-number generator.

Use of the idea of “random man” in the first sense is generally harmless, though may
cause some confusion. Serious errors can arise in the weight-of-evidence setting when
the term is used in the second sense. It is important to remember that “random man”
doesn’t exist in real crime cases: nobody is actually chosen at random, and so probabilities
calculated under an assumption of randomly sampled suspects can have no direct bearing
on evidential weight.

One example of the errors that “random man” can cause concerns the argument over
which population the man is supposed to have been randomly drawn from, that was
pervasive in the forensic DNA scientific literature during the early 1990s. These arguments
can never be resolved. More importantly, the “random man” concept ignores the differing
levels of relatedness between defendant and other possible culprits, and often leads people
to ignore the role of the number of possible culprits in evidential assessments. Clear
thinking about typing errors and the effect of searches can also be undermined.
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The concept of “random man” underlies the inclusion probability, also called the
RMNE probability, for the profiling tests that were performed. This probability may
be reported to a court instead of an LR. For example, consider a paternity testing sce-
nario in which a child’s paternal allele at a locus has population relative frequency p, and
we wish to compare the hypothesis “X is the father” with “ Q is the father”, where the
genotype of Q at the locus is available but that of X is not. In simplified settings (see
Section 5.1), the LR is 2p if Q has just one copy of the child’s paternal allele, and p if Q
is homozygous for that allele. Under simple assumptions, the probability that a random
man would not have a copy of the child’s paternal allele is (1−p)2, and so the RMNE
probability is 2p− p2, irrespective of the genotype of Q.

The RMNE probability seems attractive as a measure of evidential weight, but there
is no theory linking it with the question of the defendant’s guilt. This, in itself, may not
be troubling if it satisfied some informal notion of fairness, and this is the case in many
settings but, unfortunately, the RMNE probability does lead astray in some cases. Their
key weakness is that it does not involve the profile of the defendant. Consequently:

• All evidence decreases the RMNE probability and hence counts against the defen-
dant. This means that test results that actually favour the defendant (i.e. that
decrease the probability of guilt) will wrongly count against him/her in the RMNE
approach. In the paternity testing scenario outlined above, if Q is found to have
only one copy of the child’s paternal allele then if p > 0·5 he thereby has a reduced
probability of being the father (see Section 5.1). The RMNE approach wrongly
counts this as evidence against Q, just the same as if he had two copies of the
child’s paternal allele. Although p > 0·5 is rarely realistic for today’s DNA profiling
systems, this scenario highlights the logical problems associated with not answering
the relevant question.

• In a case involving two co-defendants both of whom are said to have contributed
DNA to the sample, the evidence can weigh more heavily against one defendant than
the other, whereas the RMNE probability will be the same for both defendants.

In single-contributor identification cases “inclusion” corresponds to having the CSP,
and hence the RMNE approach is similar to the LR approach except that the effect of
shared ancestry between Q and X cannot readily be taken into account. For LTDNA
profiles, the RMNE probability faces severe difficulties. In general, it may have some uses
in measuring and conveying evidential weight, but it should not be used without checking
that it does not conflict with the logical analysis based on LRs.

3.3 Hypothesis Testing

In science, weight-of-evidence is often assessed via significance levels and/or p-values. The
jury in a criminal case must reason from the evidence presented to it, to a decision between
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the hypotheses:

HQ : Q is guilty;

I : Q is not guilty.

Within the hypothesis-testing framework, the legal maxim “innocent until proven guilty”
would imply that I should be the null hypothesis, and so the probability of a match under
I can be interpreted as a p-value.

But how do we calculate a p-value taking into account the possibility that the true
culprit could be a relative of the defendant? The usual answer is to invoke “random
man”, and assume that hypothesis I implies that Q has been chosen randomly in some
population of innocent suspects. But since no random sampling really took place, it is
impossible to specify the population. Too broad a definition of the population leads to
overstatement of the evidence, because a large population must contains many people
sharing little ancestry with Q. If we try to avoid this overstatement by specifying the
narrowest possible population, we are led to the population consisting of Q only, in which
the match probability is one.

The hypothesis testing framework faces further difficulties with complications that we
have seen are readily handled using the weight-of-evidence formula (8):

• How can the p-value, assessing the DNA evidence, be incorporated with the other
evidence? What if the defendant produces an apparently watertight alibi? What if
more incriminating evidence is found?

• How should the possibility of laboratory or handling error be taken into account?

• What if the defendant was identified only after a number of other possible culprits
were investigated and found not to match?

Perhaps the most important weakness is the first: the problem of incorporating the DNA
evidence with the other evidence. Hypothesis tests are designed to make accept/reject
decisions on the basis of the scientific evidence only, irrespective of the other evidence.
Legal decision makers must synthesise all the evidence, much of it unscientific and difficult
to quantify, in order to arrive at a verdict.

4 Calculating LRs allowing for coancestry

4.1 Some population genetics

4.1.1 Population genotype probabilities

An individual’s genotype at an STR locus usually consists of two alleles, one paternal
and one maternal in origin. Alleles are conventionally labelled according to the number
of repeat units, so that a genotype might be represented by the unordered allele pair 7,9
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(unordered because we cannot usually say which allele is paternal and which is maternal).
If the individual has the same allele, say the 11, from both parents, the genotype would
be represented as 11,11. Below we will use A, B, and C for arbitrary STR alleles, and we
will write their population allele fractions as pA, pB, and pC .

These fractions are unknown, and indeed unknowable because the relevant population
is not well defined. However, population allele fractions are routinely estimated in several
loosely-defined population groups, usually based on ethnic appearance as assessed by a
police officer. In the UK, the most important ethnic groups for forensic DNA profiles
are: Caucasians (which can include people of West Asian or North African origin), Afro-
Caribbeans (which can include sub-Saharan Africans), and South Asians (also called Indo-
Pakistani). Clearly, the classification of the UK population into these groups is arbitrary,
many individuals do not fit well into any of them, and in particular the Afro-Caribbean
group is genetically heterogeneous.

Allele fractions in these groups are estimated from samples whose size is typically a
few hundreds (Figure 1). Allowance for the effects of sampling error is briefly discussed
below in Section 4.3.1. However, in addition to the problem of defining the ethnic groups,
the samples used to estimate allele fractions in them are not scientific, random samples,
but are “convenience” samples whose representativeness is unknown. Figure 1 shows that
the allele frequencies do not differ dramatically over these groups, which is encouraging
that the effects of ethnic misclassification and non-representative samples will typically
not be great, and that use of a sufficiently large FST value (Section 4.3.2) can compensate
for these effects.

A common assumption in human population genetics is that an individual’s maternal
and paternal alleles can be regarded as independent. This is known as “Hardy-Weinberg
equilibrium”, but this is a misleading term as the relevant issue is independence and
not equilibrium. Possible reasons for non-independence include inbreeding, selection, and
genotyping error, but independence appears to hold to a good approximation at most
genomic loci in most human populations. Under independence, and given the population
allele fractions, the genotype fractions in the heterozygote (AB) and homozygote (AA)
case, conditional on the allele fractions, are:

genotype: AB AA
population fraction: 2pApB p2A

4.1.2 A sampling formula for alleles

Each of the major ethnic groups can be regarded as being composed of many subpopu-
lations, based for example on geographical boundaries, recent migration, or religious or
other social groupings. If an allele has average fraction p over the subpopulations, its vari-
ance can be written in the form FSTp(1−p), where FST is a population genetics parameter
between 0 and 1, called the coancestry coefficient. FST measures the relatedness among
individuals within sub-populations relative to the total population (Figure 2). More relat-
edness within subpopulations, relative to that in the total population, means higher FST
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Figure 1: Allele frequencies in samples from three UK population groups at two STR loci.
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and a greater variation in allele fractions across subpopulations. This has implications
for the LR associated with a DNA profile match, since if Q has some relatedness with an
alternative possible source of the DNA, a match becomes more likely.

There is a sampling formula for DNA alleles that can take this effect into account.
Suppose that n alleles have been sampled in the subpopulation, of which nA are A. Then
the probability that the next allele sampled is also A can be written as:

nAFST + (1−FST )pA
1 + (n−1)FST

. (12)

When nA = n = 0, we obtain probability pA that the first allele drawn is A. The
probability that the first two alleles drawn are both A is

pA(FST + (1−FST )pA) = p2A + FSTpA(1−pA). (13)

Roughly speaking, increasing FST increases the probability of observing two A alleles,
because the first observation of an A allele suggests that they are relatively common
in the subpopulation, and so drawing another A is less surprising. If there were no
subpopulation variation, the second A allele would have the same probability as the first,
and so the probability of two A alleles is p2A, obtained by substituting FST = 0 in (13).
Increasing FST also increases the probability of two B alleles, but decreases the probability
of an A allele followed by a B, which is:

(1−FST )pApB. (14)

Formula (12) can be used to build up probabilities for larger samples of alleles from a
subpopulation. Samples of size four have a special importance in forensic identification
problems, because of the two alleles at each locus from each of Q and X. Using (12), the
probability of observing ABAB (in that order) in a sample of size four is:

pApB(1−FST )(FST+(1−FST )pA)(FST+(1−FST )pB)

(1 + FST )(1 + 2FST )
, (15)

while the probability of AAAA is

pA(FST+(1−FST )pA)(2FST+(1−FST )pA)(3FST+(1−FST )pA)

(1 + FST )(1 + 2FST )
. (16)

As FST increases, the probability of AAAA rises up to pA.

4.2 Identification: single contributor

We need to compute RX , the ratio of the probability of the evidence E if X is the source
of the DNA, to its probability if the defendant Q was the source. We will assume that E
consists of the information that both CSP = G and GQ = G, for some genotype G, where
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CSP = Crime Scene Profile and we introduce the notation Gy for the genotype of person
y. Then

RX =
P(CSP=GQ=G|HX)

P(CSP=GQ=G|HQ)
. (17)

Ignoring the possibility of error, CSP and GQ are equivalent under HQ, whereas under
HX the CSP informs us about GQ. So (17) can be simplified further to

RX =
P(GX=GQ=G)

P(GQ=G)
= P(GX=G|GQ=G). (18)

Thus, RX is the conditional probability, called the “match probability”, that X has
genotype G given that Q has it. Population genetic effects arise, and can be dealt with,
via this conditioning. The important feature of the match probability is that it takes
account of both the observed profiles that form the match. Some authors misleadingly
refer to the population relative frequency of the profile as a “match probability” which is
inappropriate since the concept of “match” involves two profiles, rather than just one.

4.2.1 Single-locus match probabilities

Suppose that both X and Q are homozygous for allele A. If we assume that they are
unrelated, both come from the same subpopulation, and neither is inbred, then the nu-
merator of (18) corresponds to the probability (16) that a sample of four alleles from the
subpopulation is AAAA. Dividing by the probability (13) that a sample of two alleles is
AA, we obtain:

Single locus match probability: CSP = GQ = AA

(2FST+(1−FST )pA)(3FST+(1−FST )pA)

(1 + FST )(1 + 2FST )
(19)

In the heterozygous case, under the same assumptions, we need the probability that,
in a sample of size four, the first and second pairs of alleles are both AB, divided by the
probability that a sample of size two is AB. These probabilities are given at ((15) and
(14), except that we have to multiply by 2 for each pair of alleles (because of the two
possible allele orderings), which gives:

These match probabilities are shown in Figure 3 for FST ranging from 0 to 1. Notice
that increasing FST does not necessarily increase the match probability in the heterozygous
case, although this almost always occurs in practice. Whatever the values of pA and pB,
as FST approaches 1, the homozygous and heterozygous match probabilities approach 1
and 1/3, respectively.
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Single locus match probability: CSP = GQ = AB

2
(FST+(1−FST )pA)(FST+(1−FST )pB)

(1 + FST )(1 + 2FST )
(20)

Although FST cannot encapsulate all population genetics phenomena, it does capture
the essentials relevant to forensic match probabilities. Selection and other phenomena
can distort population profile frequencies away from estimates based on assuming inde-
pendence across loci, but there is no reason to expect these to systematically favour or
disfavour defendants. The only population genetics phenomenon that, if ignored, sys-
tematically disfavours defendants is shared ancestry between defendant and alternative
possible culprits – which is what FST accounts for. Human population genetics is com-
plicated, and inevitably FST is an imperfect measure, but by choosing a sufficiently large
value defendants will not be systematically disfavoured, while match probabilities remain
small enough to form the basis of satisfactory prosecutions in most cases.

4.2.2 Multiple loci: the “product rule”

Match probabilities at multiple loci can be obtained by multiplying together the match
probabilities at the individual loci calculated using (19) and (20). This implies an as-
sumption of independence across loci, which is reasonable when the main source of de-
pendence, which is coancestry, has been accounted for by a sufficiently large value of FST .
The product rule was for a long time controversial, and like many controversies the debate
was marred by confusion over definitions. Whether or not the alleles at different loci are
independent is not an absolute state of nature, but depends on what information has been
taken into account. If relatedness and coancestry have not been taken into account, then
an assumption of independence is clearly unfair to defendants, but this problem can be
eliminated by adjusting for FST . In both cases match probabilities are multiplied over
loci and so both may be described as applications of the “product rule”.

4.2.3 Relatives of Q

Let Z denote the number of alleles at a locus that X and Q share directly from a known,
recent common ancestor (e.g. parent or grandparent). We assume here that only the
DNA profile of Q is available to the court. The probability distribution for Z under some
common, regular relationships (i.e. no inbreeding) are shown in Table 1.

If Z = 0, we are in the situation of Section 4.2.1 above (Q and X unrelated) and we
write M2 for the appropriate match probability, either (19) or (20). If Z = 2, a match is
certain. For Z = 1, consider first the case of an AA homozygote match. Although there is
a total of four alleles at the locus, two of these are shared from the recent common ancestor
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Figure 3: Heterozygote and homozygote single-locus match probabilities as a function of
FST for two values of p. In the heterozygote case, the fractions of the two alleles are both
equal to p.

and so effectively we have observed three matching alleles. The match probability is the
probability of this observation given that the first two alleles match, which using (12) is

M1 =
2FST + (1−FST )pA

1 + FST

.

In the heterozygous case, there are two equally-likely possibilities (A or B) for the al-
lele that is shared from the recent common ancestor, and the match probability is the
probability that the third allele sampled is the other one of A and B. Thus

M1 =
FST + (1−FST )(pA+pB)/2

1 + FST

.

The overall match probability for relatives is then

P(Z=2) +M1P(Z=1) +M2P(Z=0).
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Relationship P(Z=0) P(Z=1) P(Z=2)
Sibling 1/4 1/2 1/4
Parent 0 1 0

Half-sib 1/2 1/2 0
Cousin 3/4 1/4 0

Unrelated 1 0 0

Table 1: Relatedness coefficients for some regular relatives. The coefficients for aunt/uncle
– niece/nephew and grandparent – grandchild are the same as those for a half-sib.

4.3 Issues for casework

According to the weight-of-evidence formula (8), a rational juror should to assess the
LR (or match probability) for every alternative possible culprit X. In the preceding
subsections we have derived formulas for match probabilities, in terms of population
allele fractions (the pj) and FST . It remains then to choose appropriate values for these
parameters for the alternative suspects in a particular case.

Recall that the LR for DNA evidence is the probability of the evidence under HX

divided by its probability under HQ. It follows that in principle the database to be used
to estimate the pj should be that most appropriate for X, the alternative possible culprit
under consideration. The relevant value of FST is that which describes the coancestry of
X with the defendant Q, relative to the population in which the pj have been estimated.
If X is not from the same ethnic group as Q, then they have little coancestry and so a
small value of FST can be justified. Larger values are appropriate if X and Q share the
same ethnic background.

In practice it may be satisfactory to use some “conservative” values for the pj and FST

(tending not to overstate the evidence against Q), giving a single LR for all X except the
direct relatives of Q.

4.3.1 Values for the pj

In applying (19) and (20) to actual cases, it seems natural to estimate pj, the population
proportion of allele j, by its relative frequency in the database most relevant to the alter-
native possible culprit X. The database closest to Q will in general provide a conservative
alternative for all X, and the difference should be small given an appropriate value for
FST (see below).

The sampling uncertainty in the estimate of pj still needs to be taken into account
(Section 1.3.1). One approach to this is to estimate p at a heterozygous locus by (nj +
2)/(n+ 4), where nj is the database count of allele j, and n is the number of alleles in the
database. This can be thought of as adding both the crime scene and defendant profiles
to the database. In the homozygous case, the analogous estimate is (nj + 4)/(n+ 4).
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4.3.2 The value of FST

Published estimates of FST at STR loci, for subpopulations of the Caucasian population
are often small, and typically less than 1%. There are nevertheless several arguments for
using larger values in forensic practice:

• The appropriate value of FST is never available, and we are reduced to using an
educated guess. Among the sources of uncertainty is that subpopulations are never
well defined and “Caucasian” is also not well defined. In order to avoid unfairness
to the defendant, we should prefer to over-estimate rather than under-estimate FST .

• Strictly, we should integrate the match probability over a distribution of values for
FST , and because the integration is a product over many terms the integral will be
dominated by the upper tail of the distribution.

• Published estimates of FST usually relate to the variation of allele fractions around
the observed mean value. However in forensic applications, what is needed is the
variation of subpopulation values away from the forensic database value, and this
may well be substantially larger. In particular, minority ethnic groups may be
heterogeneous and the database allele frequency may not be representative of the
specific ethnic group relevant to a particular crime.

For these reasons I suggest that a relatively large value, such as 2%, be used in UK forensic
practice when both suspect and alternative possible culprit are Caucasians, and perhaps
3% could be used if both are drawn from one of the large minority groups (Afro-Caribbeans
or South Asians). In some small minority groups, FST = 5% may be appropriate.

4.3.3 The hypotheses

The hypotheses of direct interest to the court are

Q is guilty and Q is not guilty.

However, it is usually not appropriate for a forensic scientist expert witness to comment
directly on these hypotheses. Instead, he or she might reasonably compute LRs comparing
hypotheses of the form

HQ : Q is the source of the crime-scene DNA sample;

HX : X is the source of the crime-scene DNA sample.

More complex hypotheses may be appropriate in some settings, such as those involving
multiple contributors to the crime sample, discussed below in Section 5.2. In some cases
the nature of the tissue from which the DNA is obtained (e.g. blood or semen) is relevant
to the hypotheses.

In principal, the question of which hypotheses should be compared is one for the
courts and not the forensic scientist. However, the work of the forensic scientist is usually
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performed in advance of the court sitting. Thus s/he needs to consider all reasonable
possibilities for the hypotheses of interest to the court. In particular, choice of defence
hypothesis can be problematic, since the defence is not required to propose any specific
alternative to the prosecution allegation. One criterion for choosing among a range of
possible defence hypotheses is to select that which is most favourable to the defence (gives
an LR closest to one). However, it is not reasonable to adhere strictly to this criterion,
since for DNA evidence a hypothesis that the source of the DNA was an identical twin of
Q would always give LR = 1.

5 More complex scenarios

5.1 Paternity and relatedness

The general issues for paternity and other relatedness testing are similar to those for
identification. In the case that a man Q is alleged to be the father of a child, the relevant
quantities to assess are the LRs:

RX =
P(E|X is the father)

P(E| Q is the father)
, (21)

for each alternative possible father, X. In (21), E denotes all the evidence, but we will
here ignore the non-DNA evidence (the principles are the same as in Section 2.2.2) and
assume that E consists only of (GQ,Gc,Gm): the genotypes of Q, the child c and its mother
m. We will also assume that X is not directly related to either m or Q, and we will ignore
the possibility of genotyping error or mutation.

5.1.1 Single locus: paternal allele known

Assume first that c has exactly one allele in common with m, and so c’s other allele is
paternal in origin and Q is excluded as a possible father if this allele is not included in
his genotype. Otherwise, (21) can be expressed as:

P(c’s paternal allele|GQ,Gm, X is father)

P(c’s paternal allele|GQ,Gm, Q is father)
. (22)

Notice that GQ and Gm are now conditioned on (they are to the right of the | in (22)),
whereas in the initial formulation (21) they are part of E and hence are to the left of the |.
This is similar to GQ in the identification setting, and requires a mathematical argument
that is omitted here, but broadly speaking any data that are equally likely under both
competing hypotheses can be treated in this way, which simplifies calcuations.

The denominator of (22) is 1 if Q is homozygous, and 1/2 otherwise. The numerator
is the probability that an allele drawn from X matches c’s paternal allele. Ignoring
coancestry (FST = 0), this would equal the population fraction of the allele irrespective
of GQ and Gm, but potential coancestry of X with Q and/or m can alter this value.
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If X, Q, and m are all assumed to have a common level of shared ancestry measured
by FST , then we can use the sampling formula (12) to compute (22). Under the hypothesis
that X is the father, we have observed five alleles, those of Q and m, plus c’s paternal
allele. If Q is the true father, we have observed four alleles at the locus: those of Q and m
(c’s alleles aren’t counted because they are replicates of observed parental alleles). Thus
(22) involves a ratio of two instances of (12), one for a sample of size five and one for a
sample of size four.

Alternatively, if X and Q might share ancestry, but m is completely unrelated (for
example, from a different ethnic group), then Gm is uninformative and we should only use
GQ. Thus (22) involves a ratio of two instances of (12), one for a sample of size three and
one for a sample of size two.

Example
If Gc = AC, Gm = AB, and GQ = AC, then c’s maternal and paternal alleles are,

respectively, A and C, and (22) becomes:

2× P(c has paternal allele C|Gm = AB,GQ = AC,X is father).

Since X, m and Q are not directly related, this is the probability that a fifth allele is C,
given that four alleles have been sampled and found to be AABC. If all three individuals
are assumed to have a common level of shared ancestry FST , then the sampling formula
(12) gives

RX = 2
P(AABCC)

P(AABC)
= 2

(
FST + (1−FST )pC

1 + 3FST

)
. (23)

If instead only the shared ancestry of Q and X is taken into account, then

RX = 2
P(ACC)

P(AC)
= 2

(
FST + (1−FST )pC

1 + FST

)
. (24)

If GQ = CD instead of AC, the LRs (23) and (24) are unchanged. If GQ = CC, then the
factor of two vanishes from both expressions.

Both (23) and (24) reduce to 2pC if shared ancestry is ignored. The effect of shared
ancestry is usually to lessen the evidential strength against Q, the exceptions arising when
pC is very large (i.e. C is very common).

5.1.2 Single locus: paternal allele unknown

Consider for example the LR

P(Gc = AB|Gm = AB,GQ = AC,X is father)

P(Gc = AB|Gm = AB,GQ = AC,Q is father)
. (25)

The denominator is 1/4, since under the hypothesis that Q is the father the paternal
and maternal alleles can be identified, and each has probability 1/2 given the parental
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genotypes. If, however, X is the father, two equally likely possibilities must be considered
for the maternal allele, and hence RX becomes

2× (P(c’s paternal allele is A|Gm = AB,GQ = AC,X is father) +

P(c’s paternal allele is B|Gm = AB,GQ = AC,X is father)).

Assuming a common level of shared ancestry for X and Q only gives:

RX = 2
P(AAC)

P(AC)
+ 2

P(ABC)

P(AC)
= 2

(
FST + (1−FST )pA

1 + FST

+
(1−FST )pB

1 + FST

)

= 2

(
FST + (1−FST )(pA + pB)

1 + FST

)
.

5.2 Identification: mixed profiles

5.2.1 Visual interpretation of mixed profiles

A mixed profile arises when two or more individuals contribute DNA to a sample. Torres
et al. (2003) give a survey of mixtures that have arisen in their own casework. An example
of an epg corresponding to a mixed STR profile is shown in Figure 4. The profile at the
Amelogenin sex-distinguishing locus (leftmost on the second, “Green”, panel) shows a
predominance of X, but some trace of Y, suggesting that the mixture stain may have
come predominantly from a female, with a minor contribution from a male. This mixture
was created in the laboratory, with known contributors, and the above interpretation is
indeed correct, but let’s proceed for the moment as if we did not know this.

The recorded signals at other loci are consistent with there being two contributors, one
“major” and one “minor”. For example, at locus VWA (second locus from the left in the
top “Blue” panel) the epg indicates the presence of four alleles, two of which (labelled 15
and 18) produce a strong signal, while the remaining two signals (corresponding to alleles
14 and 19) are much weaker, though still clearly distinguishable from the background
noise.

Two other loci show similar four-allele patterns in the epg. However, at most of the
loci only two or three alleles appear in the epg, which can arise if one or both contributors
is homozygous, or if they have alleles in common. At locus D2S1338 (rightmost in the
“Blue” panel), there is a strong signal at allele 17, a slightly weaker signal at allele 19,
and a much weaker signal at allele 18, suggesting that the major contributor has genotype
17,19 at this locus, while the minor contributor is 17,18. An alternative possibility is that
the peak corresponding to allele 18 corresponds to a stutter peak, and only alleles 17 and
19 are actually present in the sample but this is unlikely because the peak, although low, is
higher than normal for a stutter peak at this position on the epg. Although the 17,19 and
17,18 seem the most plausible genotype designations for major and minor respectively, it
is difficult to assign any measure of confidence to this call.

Interpretation at the TH01 locus (third from left in the “Black” panel) is even more
difficult: the two observed alleles, 6 and 9.3, display allele signals of noticeably different
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heights, yet they are not extremely asymmetric. Perhaps the major contributor is 6,9.2
and the minor is a 6,6 homozygote, but other possibilities seem to exist, such as that
both contributors are 6,9.3 and the apparent peak imbalance results from a fluctuation
in the experimental conditions: here the ratio of peak heights is ∼ 2/3, which may be
regarded as within the normal range of variation of peak heights for a single, heterozygous
contributor.

As the above discussion suggests, inferring the profiles of major and minor contributors
to a sample can sometimes be done with reasonable confidence, but often it is problematic
at least for some loci. The presence of good-quality DNA, and a strong imbalance in the
proportions of the DNA from each source individual, facilitate the task. However, in the
presence of degraded samples, low DNA copy-number, an unknown number of contrib-
utors, or an equal contribution from two contributors, the task can be challenging, and
assigning a measure of confidence to any particular genotype designation is problematic.

5.2.2 Likelihood ratios under qualitative interpretation

One approach to overcoming the problems with visual interpretation of mixtures, at the
cost of discarding the quantitative information from the epg, for example about peak
heights and shapes, is to limit interpretation to qualitative allele calling only, without any
attempt to infer the underlying genotypes. Thus, the interpretation of locus VWA in the
epg of Figure 4 would be limited to the conclusion that alleles 14, 15, and 16 are observed
in the mixture. Then, all combinations of underlying genotypes that include at least one
copy of each of these alleles are regarded as equally plausible.

We consider here the single-locus case; LRs can be combined across loci via multi-
plication. These approaches were initially developed by Evett et al. (1991) for non-STR
profiles, but they remain applicable to STR profiles. Mortera et al. (2003) describe a
probabilistic expert system for the qualitative analysis of DNA mixtures, and the qualita-
tive approach has been extended to take account of the coancestry of all the contributors
to a mixture (Curran et al., 1999; Fung and Hu, 2000, 2002) and alternative suspects
related to the accused (Fung and Hu, 2004). These authors also offer software for mixture
interpretation (Hu and Fung, 2003).

5.2.3 The number of unknown contributors

For STR profiles, a minimum number of contributors to a sample of DNA is provided by
half the number of distinct alleles observed at any one locus. Even in the case that no
more than two alleles are observed at any locus, it is possible that there is more than
one contributor although this is typically very unlikely. It is not possible to put an upper
bound on the number of contributors, although it may be possible to estimate the number
of contributors (Haned et al., 2011; Perez et al., 2011).

In principle, prior to the DNA evidence, judgements about the number of possible
sources should lie in the domain of the court, not the DNA expert. However, there
will inevitably be occasions when experts make such prior judgements, when they seem
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uncontroversial, and when the alternative may be to overly complicate their evidence (e.g.
by working out LRs under many different scenarios, most of which are implausible).

We distinguish three classes of contributors to a mixture:

• the contributor of interest, or “contested contributor”, who is either Q or X (we
will write Q/X),

• known contributors, who will be denoted K, K1, K2, . . . ,

• and unknown contributors denoted U, U1, U2, . . . .

Although “known” and “unknown” provide a convenient shorthand, the key point is not
whether the person is known but whether their reference DNA profile is available for the
evaluation. In some mixture CSPs there may be multiple contested contributors, but we
propose that those cases be tackled by computing a sequence of LRs each involving only
one contested contributor.

5.2.4 Two contributors: Q/X and K

The easiest case arises when all the contributors to a mixture other than the contested
contributor are known (DNA profiles available). Here we consider the common scenario
of one known contributor (K) in addition to Q/X. Then the evidence is the CSP and
the reference profiles of Q and K, denoted GQ and GK . It is reasonable to assume that
GQ and GK are equally likely under both hypotheses, and so the LR takes the form

RX =
P(CSP |GQ,GK , X and K are the sources of the DNA)

P(CSP |GQ,GK , Q and K are the sources of the DNA)
. (26)

At some loci, one or both alleles of X may be masked by the alleles of K. In general, the
numerator of RX is computed by summing over the possible genotypes of X given the
CSP and GK . Each term in the sum involves the conditional probability of a particular
value of GX , given GQ and GK (the conditioning is irrelevant if FST = 0).

Example
Consider a single locus, and suppose that the following are observed:

GQ = AB GK = AC CSP = ABC.

Then (26) becomes:

RX =
P(ABC | GQ = AB,GK = AC; sources: X,K)

P(ABC | GQ = AB,GK = AC; sources: Q,K)
. (27)

The denominator equals one. For the numerator, given that GK = AC, the CSP implies
that GX :
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• includes a B allele, and

• does not include any allele other than A, B, and C.

The possible genotypes consistent with these two requirements are AB, BB, and BC.
Thus, the numerator of (27) is the probability that X has one of these three genotypes,
given that GQ = AB and GK = AC. Here, we assume:

• that Q, K, and X are mutually unrelated;

• no coancestry (i.e. FST = 0);

• that the allele proportions pA, pB, and pC are known; and

• genotypes are in Hardy-Weinberg proportions.

Then (27) becomes:

RX = P(GX = AB) + P(GX = BB) + P(GX = BC)

= 2pApB + p2B + 2pBpC = pB(2pA + pB + 2pC)

Since FST = 0, possible coancestry between X and one or both of Q and K is ignored.
If X, Q, and K are all assumed to have a common level of coancestry measured by FST ,
then we need to take into account the four alleles (AABC) already observed in Q and K,
so that

RX = 2P(AB | AABC) + P(BB | AABC) + 2P(BC | AABC), (28)

where each probability is for an ordered sequence of two alleles. Just as for the derivations
of (19) and (20), the conditional probabilities of (28) can be evaluated using the sampling
formula, (12). For example P(AB |AABC) is the probability of observing A then B in two
further draws from a population, when a sample of size four has already been observed
to be AABC. This probability can be computed as the product of instances of (12) with
m = 2 and n = 4, and with m = 1 and n = 5. Working similarly for the other two terms
we obtain

RX = 2
(2FST + (1−FST )pA)(FST + (1−FST )pB)

(1 + 3FST )(1 + 4FST )

+
(2FST + (1−FST )pB)(FST + (1−FST )pB)

(1 + 3FST )(1 + 4FST )

+2
(FST + (1−FST )pB)(FST + (1−FST )pC)

(1 + 3FST )(1 + 4FST )

=
(FST + (1−FST )pB)(8FST + (1−FST )(2pA+pB+2pC))

(1 + 3FST )(1 + 4FST )
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All three possibilities for GX involve alleles that have already been observed in the geno-
types of either Q or K. Thus, possible coancestry has the effect of increasing2 the prob-
ability of all possible GX over the FST = 0 case.

In the above example, the CSP includes one allele not shared with K, and hence which
must have come from Q/X. There are essentially only two other cases: that zero and two
alleles from Q/X can be determined by subtracting K’s alleles from the CSP. An example
of the former situation arises when both the CSP = GQ = AB. Then GX can be any of
AA, AB, or BB. If instead, CSP = ABC and GK = AA, then GX = BC.

5.2.5 Two contributors: Q/X and U

Here, difficulties arise because of the number of scenarios to explain the components of
the mixture. The relevant LR may be

RX =
P(CSP|GQ, X and U are the sources)

P(CSP|GQ, Q and U are the sources)
. (29)

The numerator requires summation over the conditional genotype probabilities, given GQ,
of all GX and GU consistent with the CSP. The denominator requires summation over GU
only. Both summations need to take into account any relatedness among X, Q and U .

If two co-defendants, Q1 and Q2, are both alleged to have contributed DNA to the
crime sample, then a court may be interested in the strength of evidence for, say, Q1 to
be a contributor of DNA to the crime sample both with and without assuming that Q2
is also a contributor, which could be addressed using the following two LRs:

RX2 =
P(CSP|GQ1,GQ2, X and Q2 are the sources)

P(CSP|GQ1,GQ2, Q1 and Q2 are the sources)

RXU =
P(CSP|GQ1,GQ2, X and U are the sources)

P(CSP|GQ1,GQ2, Q1 and U are the sources)
.

Computing each numerator and denominator of these LRs requires summing over all
possible genotypes for whichever of X and U is included. Both observed genotypes GQ1

and GQ2 are potentially informative in both LRs due to possible coancestry with X.3

The two LRs can differ greatly in value. Intuitively, if Q2 is a source of the crime-scene
DNA then he can explain many of the observed alleles, thus narrowing the possibilities for
GX . In that case RX2 would be larger than RXU . However, if both deny being a source of
the DNA, a court trying both men jointly may take the view that only RXU can be used,
since the presence of DNA from Q2 cannot be assumed when assessing the case against
Q1, and vice-versa. These are decisions for the court; the forensic scientist should try to

2The probability could decrease if one of pA, pB , or pC were much larger than 0·5.
3U may also have coancestry with Q1 or Q2, but the effect on numerator and denominator are similar,

so the effect on the LR is typically negligible.
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foresee the reasonable possibilities for the pairs of hypotheses that the court may wish to
compare.

Example
Suppose that, at a particular locus, the following are observed:

GQ1 = AB GQ2 = CC CSP = ABC

The CSP is consistent with Q1 and Q2 being the sources of the DNA, and with any other
pair of individuals whose genotypes include alleles A, B and C only. Then

RXU =
P(ABC | GQ1 = AB,GQ2 = CC, X and U are the sources)

P(ABC | GQ1 = AB,GQ2 = CC, Q1 and U are the sources)
. (30)

Its evaluation will depend on the relationships among Q1, Q2, and X. Here, for simplicity
we will assume that all are unrelated, and initially we will also set FST = 0, so that GQ2

is irrelevant to RXU .
The numerator of (30) is 12pApBpC(pA +pB +pC). To see this, consider the event that

it is the C allele that arises twice in the genotypes of X and U : this could result from a
CC homozygote and an AB heterozygote (probability 4pApBp

2
C ; one factor of two comes

from the heterozygote, the other from the orderings of the two genotypes), or from an AC
heterozygote and a BC heterozygote (probability 8pApBp

2
C), giving a total probability of

12pApBp
2
C . The expression for the numerator comes from combining this with the two

terms corresponding to the A and the B alleles being represented twice.
The denominator of (30) is the probability that GU ∈ {AC, BC, CC}, which is pC(2pA+

2pB + pC), and so

RX =
12pApB(pA + pB + pC)

2pA + 2pB + pC
.

If pA = pB = pC = p then RX reduces to 36p2/5, which takes minimum value 1.25 when
p = 1/3: in this case the evidence is of little value; however, if p is small the evidence is
stronger: RX = 13.9 if p = 0·1, and RX = 55.6 if p = 0·05.

Now assume that Q1, Q2, X, and U are all unrelated, but are drawn from the same
subpopulation for which the level of coancestry, relative to the population allele frequen-
cies, can be characterised by a given value of FST . Now, the probability that it is the C
allele that arises twice in the genotypes of X and U , given the observed genotypes of Q1
and Q2, is 12 times the probability that an ordered sample of size four is ABCC, given
that a sample of size four has already been observed to be ABCC. Using the sampling
formula (12) four times leads to

12
(FST + (1−FST )pA)(FST + (1−FST )pB)(2FST + (1−FST )pC)(3FST + (1−FST )pC)

(1 + 3FST )(1 + 4FST )(1 + 5FST )(1 + 6FST )

and the remaining two terms of the numerator may be computed similarly. The denomi-
nator of RX becomes

2
(2FST + (1−FST )(pA + pB))(FST + (1−FST )pC)

(1 + 3FST )(1 + 4FST )
+

(2FST + (1−FST )pC)(3FST + (1−FST )pC)

(1 + 3FST )(1 + 4FST )
.
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The final result for RX is tedious to write down but easy to compute. For example, when
pA = pB = pC = 1/3, the value of 0·8 at FST = 0 increases only slightly to a maximum of
0·8007 at FST ≈ 1%, and then declines as FST increases. Thus the assumption of a large
level of coancestry among Q1, Q2, and X in this setting strengthens the case against Q1.
However, if pA = pB = pC = 0·1 then increasing FST weakens the case against Q1: RX

increases from 0·072 at FST = 0 to 0·094 at FST = 1% and 0·17 at FST = 5%.

5.2.6 Quantitative interpretation of mixtures

Gill et al. (2006) describe a set of procedures, based on that proposed by Clayton et al.
(1998) for interpreting two-contributor mixtures that involves using peak heights from
the epg to estimate the heterozygote balance for each pair of alleles. Possible genotype
configurations with extreme heterozygote imbalance are then excluded from consideration.
For example, for the epg of Figure 4 we noted above in Section 5.2.1 that the peak heights
at several loci indicated four distinct alleles, of which two, say alleles A and B, gave strong
signals (with approximately equal peak heights), and two, say C and D, gave weak signals
(also with approximately equal peak heights). The qualitative approach discussed above
would count all three genotype pairs consistent with these alleles (AB,CD; AC,BD; and
AD,BC) as equally plausible. The semi-quantitative approach of Clayton et al. (1998)
would regard only the AB,CD genotype pair as plausible, because it pairs up the alleles
with the two strong and the two weak signals. Congruent genotype combinations across
loci are determined through estimating mixture proportion for each contributor.

This semi-quantitative approach seems to be widely-employed in practice, but it is
not without difficulties. Estimating mixture proportion relies on an assumption that this
proportion is approximately the same across loci. This seems a reasonable assumption
prior to the PCR step in the STR typing procedure, and indeed Gill et al. (1998) examined
the estimation of mixture contribution proportions and found that consistency across loci
is the norm. However, Bill et al. (2005) cite internal FSS data suggesting that single
locus mixture proportion estimates can vary by a factor of 0.35 compared to a global
estimate, which can result in invalid inferences about plausible genotype pairs at these
loci. Further, deciding which genotype configurations are consistent with the mixture
proportions is difficult in some borderline cases. For further description and criticisms,
see Buckleton et al. (2005).

As a result Gill et al. (1998) went on to suggest a more quantitative approach in which
a weight was given to each possible genotype allocation according to its plausibility given
the estimated mixture proportion. The ideal, fully-quantitative approach to assessing
weight-of-evidence for STR mixtures would involve all the information contained in the
epg. Evett et al. (1998) set out a framework for analyses taking peak areas into account.
The approach has been expanded on, with software in development or available from
multiple authors utilising peak heights (Cowell et al., 2014; Bright et al., 2013; Puch-Solis
et al., 2013; Perlin et al., 2011). A consensus on the modelling assumptions for such
analysis has yet to be reached, although progress has been made.
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5.3 LRs for low template DNA profiles

Consider first a single profiling run in which the CSP showed two alleles, A and B. The
LR (20) comparing HQ and HX (page 36) when GQ = AB and FST = 0 is

P (CSP = AB|GQ = AB,HX)

P (CSP = AB|GQ = AB,HQ)
= 2pApB.

Dropout refers to any allele of a hypothesized contributor that is not observed in the
CSP. If CSP = A, and low epg peak heights suggest that dropout is possible, then under
a standard model (Balding and Buckleton, 2009; Gill et al., 2012) the LR can be written
as

P (CSP = A|GQ = AB,HX)

P (CSP = A|GQ = AB,HQ)
=
p2A(1−D2) + 2pA(1−pA)D(1−D)

D(1−D)
(31)

where D denotes the probability of dropout for a heterozygote allele, while D2 denotes
the probability of a homozygote dropout. The denominator is the probability that the B
allele of Q has dropped out (D), while the A has not (1−D). In the numerator, either
X is AA and there has been no dropout (1st term), or (2nd term) X is heterozygous but
the non-A allele has dropped out.

Logically, D in the denominator of the LR is different from D in the numerator.
However, typically a similar range for D is supported under both hypotheses and they
are often taken to be equal for illustrative calculations (Gill et al., 2007). The value of D
may vary over alleles because of the effects of degradation, with longer STR alleles having
higher D (Tvedebrink et al., 2012).

Dropin refers to an allele in the CSP that is not included in the genotype of any hy-
pothesized contributor. Dropins can be modelled as independent events with probability
C (Curran et al., 2005). When both dropout and dropin are possible, all genotypes are
consistent with every CSP, and the likelihood under HX requires summation over every
possible genotype for X.

6 Some legal issues

The weight-of-evidence formula (8) has important implications for the careful reporting
of DNA profile evidence. We briefly discuss some of these issues here.

6.1 The role of the expert witness

Any individual can make their own assessment of the probability P(HQ|Ed, Eo) that the
defendant is guilty, based on the DNA evidence Ed and any background information Eo

that they feel appropriate. A juror’s reasoning is, however, constrained by legal rules. For
example, although it may be reasonable to believe that the fact that a person is on trial
makes it more likely that they are guilty, a juror is prohibited from reasoning in this way
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(to avoid double-counting of evidence). It is therefore usually regarded as inappropriate
for an expert witness to report to the court their own assessment of the probability either
that the defendant is guilty or, what is often effectively equivalent, that the defendant is
the source of the crime profile. A legal rule prohibiting this practice is sometimes called
the “ultimate issue rule” (for a discussion see Robertson & Vignaux 1995).

The expert witnesses’ primary role is to advise the court on appropriate values for
the LRs RX for various X, leaving the jurors to weigh these values together with the
other evidence. Although jurors are not required to reason within the logical framework
provided by probability theory, it may be helpful for an expert witness to give some expla-
nation of this framework so that the option is fully available to them. The endorsement of
any particular values for the wX should usually be avoided, since this involves the juror’s
assessment of the non-DNA evidence and is thus usually outside the domain of the expert
witness.

Although there are in principle many different LRs, in practice it may suffice to report
only a few important values. These might include the values corresponding to a brother of
the defendant, another close relative such as a cousin, a person apparently unrelated to the
defendant but with a very similar ethnic background and a person completely unrelated
to the defendant. Methods for calculating LRs were discussed above in Section 4.

6.2 The prosecutor’s fallacy

The prosecutor’s fallacy is a logical error that can arise when reasoning about DNA profile
evidence. You may be aware of the error in elementary logic of confusing “A implies B”
with “B implies A”. For example, if A denotes “is a cow” and B denotes “has 4 legs”, then
(ignoring rare anomalies) A implies B, but the converse doesn’t hold. The prosecutor’s
fallacy is similar to this logical error, but is in terms of probabilities.

The fallacy consists of confusing P(A|B) with P(B|A). If it is accepted that the prob-
ability that the criminal is very tall is 90%, it doesn’t follow that the next very tall
man you meet has 90% probability of being the criminal. The correct way of obtaining
P(A|B) from P(B|A) is given by the appropriate version of Bayes Theorem, for example
the weight-of-evidence formula (8).

Transcripts of actual court cases have in the past very often recorded statements
that indicate that the match probability is being confused with the probability that the
defendant is innocent (see box below). This error, which can be extremely detrimental to
defendants, has led to successful appeals in the UK.

6.3 The defendant’s fallacy

Another error of logic that can arise in connection with DNA evidence usually favours the
defendant and is consequently dubbed the “defendant’s fallacy”. Suppose that a crime
occurs in a nation of 100 million people and a profile frequency is reported as 1 in 1
million. The fallacy consists of arguing that, since the expected number of people in the
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The prosecutor’s fallacy: examples

In the quotations below, an expert witness has made a statement about the prob-
ability that the defendant is not the source of the crime profile, which is outside
the domain of an expert witness.

• “I can estimate the chances of this semen having come from a man other
than the provider of the blood sample ... less than 1 in 27 million”.

• “The FBI concluded that there was a 1 in 2,600 probability that the semen
... came from somebody other than Martinez”.

nation with a matching profile is 100, the probability that the defendant is guilty is at
most only 1 in 100, or 1%.

This conclusion would be valid only if, ignoring the DNA evidence, every person in
the nation is equally likely to be the culprit. In the notation of the weight-of-evidence
formula, each wX is equal to one. In practice, such an assumption is rarely reasonable.
Even if there is little or no directly incriminating evidence beyond the DNA profile match,
there is always background information presented in evidence, such as the location and
nature of the alleged offence, that will make some individuals more plausible suspects
than others.

A closely related fallacy consists of arguing that, since it is expected that many people
in the nation share the profile, the DNA evidence is almost worthless and should be
ignored. Correct use of the DNA evidence formula avoids these, and other, fallacies.
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