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Schedule of Sessions

Monday

8:30-10:00am Session 1: Intro, Basic Theory, and
the Bayesian Perspective

10:00-10:30am BREAK
10:30-12noon Session 2: Monte Carlo and Markov Chains
12:00-1:30pm LUNCH
1:30-3:00pm Session 3: Simple MCMC Examples Using R
3:00-3:30pm BREAK
3:30-5:00pm Session 4: More Complex MCMC Examples

Tuesday

8:30-10:00am Session 5: Case Study I: Inference of Population
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10:00-10:30am BREAK
10:30-12noon Session 6: Practical on structure
12:00-1:30pm LUNCH
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Tuesday (cont’d)
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3:00-3:30pm BREAK
3:30-5:00pm Session 8: Practical on PHASE

Wednesday

8:30-10:00am Session 9: Bayes Factors and Model Selection
10:00-10:30am BREAK
10:30-12noon Session 10: Importance Sampling, MCMC Likelihood,

Pedigrees, Metropolis-coupled MCMC
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Personal Probability

If I take a shuffled pack of cards, what is the probability that the top
card is the Ace of Spades?

Are you sure?

What would change your mind?
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Personal Probability

If I toss a coin 10 times, and see 0 heads, what is your estimate for
the long-run probability of a head?

What if I toss a coin once, and see 0 heads?
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Personal Probability

In Classical statistics, probability is treated as a way of stating limiting
long-run frequencies of independent events occuring.

In Bayesian statistics, probability is treated as a way (the way) of
expressing uncertainty about unknown quantities.

This view is more flexible, since it allows one to use probability in
treating uncertain events of many different kinds. For example, what
is the probability that it will rain tomorrow? That Donald Trump will win
the general election this fall? That Monrovia is the capital of Liberia?

Uncertainty is, intrinsically, personal. Individuals may differ in their
uncertainty, and therefore in their personal probabilities. For this rea-
son personal probabilities are also referred to as “subjective proba-
bilities.”
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Personal Probability: Underlying Theory

The theory underlying personal probability is too vast for us to do
justice here.

Fortunately you don’t need to know it to apply or understand much of
Bayesian statistics (although it helps).

Here’s a one-line summary: “In the face of uncertainty, a logical
person should act as if they are assigning probabilities to uncertain
events, losses to outcomes, and act so as to minimize their expected
loss.”

And if I’m allowed another line: “Probabilities of uncertain events
should be updated in the light of new information, using Bayes Theo-
rem”.

For more info (non-math): Lindley, “Understanding Uncertainty”.
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Classical Inference

Probability model p (y| ✓) for data y = (y1, . . . , yn).

✓ a vector of parameters assumed fixed but unknown.

Statistical inference is concerned with estimating the value of ✓ from
the data y.

Statistical procedure such as maximum likelihood estimation (MLE)
provides estimate ✓̂ of ✓ as a function of y.

MLE is the value of ✓ which maximises p (y| ✓), regarded as a func-
tion of ✓ (the likelihood function).
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Example: Estimating population allele frequency

Suppose n diploid individuals sampled from a population, typed at a
locus with two alleles (A,a). y = number of A alleles observed. Want
to estimate ✓, frequency of A allele.

Model the alleles as being independent draws from Pr(A) = ✓
(Hardy Weinberg Equilibrium).

L(✓) = p (y| ✓) =

✓
2n
y

◆
✓y (1� ✓)2n�y , y = 0,1, . . . ,2n

✓̂ = y/2n

Uncertainty (eg confidence intervals) estimated from sampling distri-
bution of ✓̂.
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Bayesian Inference

In Bayesian inference, unknown parameters ✓ are regarded as ran-
dom variables rather than fixed but unknown quantities.

Prior knowledge about ✓ expressed by a “prior” probability distribution
p (✓).

Information in observed data y expressed via the Likelihood function
L(✓) = p (y| ✓).

Two sources of information are combined using Bayes Theorem (or
“Bayes Rule”):

p (✓| y) =
p (y| ✓) p (✓)

p (y)

p (✓| y) called the “posterior distribution” of ✓.
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Bayes Rule: Derivation

The joint probability of y and ✓ can be expressed as either

p (y, ✓) = p (y| ✓) p (✓)

or
p (✓, y) = p (✓| y) p (y) .

Equating these gives Bayes rule.
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Bayes Rule: Convenient Form

p (✓| y) =
p (y| ✓) p (✓)

p (y)

posterior / likelihood ⇥ prior.
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Example: Estimating allele frequency

n diploid individuals sampled from a population, typed at a locus with
two alleles (A,a). y = number of A alleles. Want to estimate ✓, fre-
quency of A allele.

posterior / likelihood ⇥ prior.

Likelihood: as before (Hardy–Weinberg Equilibrium).

Prior: For parameters like an allele frequency, constrained to lie in
[0,1), a convenient prior is the beta distribution: ✓ ⇠ Beta (↵,�),
with density

p (✓;↵,�) =
� (↵+ �)

� (↵)� (�)
✓↵�1 (1� ✓)��1 , 0 < ✓ < 1;↵ > 0;� > 0

Dr Eric C. Anderson and Dr Matthew Stephens UW - Summer Institute, July 2016



MCMC in Statistical Genetics Session 1 - 11

Beta Distribution: summary

p(✓;↵,�) / ✓↵�1(1� ✓)��1

E (✓) = ↵
↵+�

.

var (✓) = ↵�
(↵+�)2(↵+�+1)

.

Large values of ↵,� give small variance: ✓ becomes peaked about
its expectation.

Small values of ↵,� (< 1) give peaks at 0,1.

↵ = � = 1 gives uniform distribution on [0,1).

Dr Eric C. Anderson and Dr Matthew Stephens UW - Summer Institute, July 2016



MCMC in Statistical Genetics Session 1 - 12
 Practical Bayesian Data Analysis  (May 2004) 

INTRODUCTION AND BASIC THEORY 
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Continuing with our example:

posterior / likelihood ⇥ prior.

p (y| ✓) / ✓y (1� ✓)2n�y

p (✓) / ✓↵�1 (1� ✓)��1 .

The posterior is

p (✓| y) / ✓↵+y�1 (1� ✓)�+2n�y�1 ,

the beta distribution with parameters ↵+ y and � +2n� y.

✓|y ⇠ Be(↵+ y,� +2n� y).

Dr Eric C. Anderson and Dr Matthew Stephens UW - Summer Institute, July 2016



MCMC in Statistical Genetics Session 1 - 14

Summarizing posteriors: Point Estimates

The posterior distribution of ✓ encapsulates our beliefs about ✓ after
seeing the data (and in light of our prior beliefs).

It can be helpful to produce point estimates of ✓.

The Bayesian approach to this involves specifying a “loss” function
L(✓, ✓̂) that says how much you “lose” by guessing ✓̂ if the truth is ✓.
Then choose the value of ✓̂ that minimizes the (posterior) expected
loss:

E[L(✓, ✓̂)] =
X

t

L(t, ✓̂)p(✓ = t|y).

[Note, for continuous parameters the sum is replaced by an integral].

The estimate that minimizes this expected loss is called the Bayes

Estimate.
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Example: Posterior mean

If the loss function is “squared loss”: L(✓, ✓̂) = (✓ � ✓̂)2 then the
Bayes Estimate is the posterior mean:

E(✓|y) =
X

t

tp(✓ = t|y).

In our allele frequency example, the posterior mean is

E (✓| y) =
↵+ y

↵+ � +2n

Compare with the prior mean ↵
↵+�

and the mle y
2n.
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Example: Posterior mode

If the loss function is “0-1 loss”:

L(✓, ✓̂) = 0 if ✓ = ✓̂; 1 otherwise

then the Bayes Estimate is the posterior mode (the “most likely” pos-
terior value).

The mode of the Beta (↵,�) distribution is ↵�1
↵+��2.

Example

In our example the posterior mode is ↵+y�1
↵+�+2n�2.

So if ↵ = � = 1, posterior mode is y
2n.

So, with a uniform prior, the posterior mode = MLE. (Follows from
posterior / likelihood ⇥ prior.)
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A note about nuisance parameters

Consider an inference problem where you are interested in ✓, and
there is a nuisance parameter ⌘. (e.g. estimating a normal mean,
with an unknown variance).

The classical maximum likelihood approach maximizes the likelihood
over both ✓ and ⌘.

The Bayesian approach is to compute the posterior p(✓, ⌘|y), and
then to compute the posterior for ✓ by integrating out ⌘:

p(✓|y) =
Z

p(✓, ⌘|y)d⌘.

You then use this “marginal distribution” to get a point estimate of ✓
(e.g. posterior mean or mode.) Note that here a uniform prior on
(✓, ⌘) does not necessarily give posterior mode(✓) = mle.
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Summarizing Posterior: interval estimates

A 95% “credible interval” for ✓ is an interval I with the property that
Pr(✓ 2 I|y) = 0.95.

Such intervals are most easily formed by taking the 2.5% and 97.5%
percentiles of the posterior density. This yields a “symmetric” or “cen-
tral” CI.

An alternative (usually considered superior, but harder to do) is to the
highest posterior density (HPD) region:

The set of values of ✓ that contains 95% of the posterior proba-
bility, and such that the density within the region is always higher
than the density outside.
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Bayesian vs frequentist intervals

Strict interpretation of classical (frequentist) confidence interval is
awkward:

For fixed (unknown) parameter ✓, 95% confidence limits are func-
tions of the data y, say a(y) and b(y), satisfying

P (a (y) < ✓ < b (y)| ✓) = 0.95.

Here y is the random variable and we have to imagine infinite
repetitions of the experiment to give meaning to the probability
statement.

For the corresponding Bayesian credible interval, ✓ satisfies

P (a (y) < ✓ < b (y)| y) = 0.95

where ✓ is now the random variable.
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Conjugate Priors

In our example, both the prior and posterior for ✓ were Beta distribu-
tions.

This made for a particularly simple analysis.

This property of a prior has a special name: the Beta distribution is
the “conjugate” prior for this problem (binomial sampling).

Conjugate priors are often used, because of the simplicity they intro-
duce. However, it is not necessary to restrict oneself to a conjugate
prior.
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Considerations for choice of Prior

Prior for ✓ should capture our knowledge before observing data. Pos-
sible sources:

• background scientific knowledge;

• previous studies;

• expert judgements (see e.g. O’Hagan, 1998, and other papers in
the same issue).
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When “testing” a large number of hypotheses, it can be helpful to
think about how many total positive findings one might expect when
trying to assess the prior probability that any one is true.

Example: in ongoing genome-wide association studies, a million ge-
netic variants (SNPs) across the genome may be tested for associa-
tion with a complex disease (eg diabetes).

Perhaps tens or hundreds of them will actually be causally linked to
the disease.

Therefore a reasonable prior might be in the range 10/106 to 100/106.
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Example: in a candidate gene study one might select, say, 10 genes
to study in detail, to assess whether genetic variation in these genes
are associated with disease.

Presumably the study would not have been done had it not been
considered at least reasonably likely that one of the genes would be
associated with the disease.

Based on this, a prior probability of 1/10 for each gene containing
genetic variation associated with the disease, might be reasonable.
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Example 2: Assignment Problem

Consider the problem of estimating the origin of an individual, based
on genetic data.

One bi-allelic locus with alleles A, a.

Allele frequencies of A in two populations are f1 and f2.

What is the probability that an individual with genotype AA came
from population 1 vs population 2?

That is, what is Pr(Pop 1|AA)?
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We need a prior probability that the individual came from population
1 vs 2.

Assume the two are equally likely a priori, so prior probability is 0.5.

Then apply Bayes Theorem:

Pr(Pop 1|AA) / Pr(AA|Pop 1)Pr(Pop 1) = f2
10.5

Pr(Pop 2|AA) / Pr(AA|Pop 2)Pr(Pop 2) = f2
20.5

These must sum to 1, so this gives us the constant of proportionality:

Pr(Pop 1|AA) = 0.5f2
1/(0.5f

2
1 + 0.5f2

2)

Pr(Pop 2|AA) = 0.5f2
2/(0.5f

2
1 + 0.5f2

2)
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Example: Assignment Problem with estimated allele fre-

quencies

Assume now that f1 and f2 are unknown, but are to be estimated
from 10 “reference” individuals sampled from each population.

Suppose that in 10 individuals, we see 1 copy of A in population 1,
and 0 copies of A in population 2.

What is the estimated probability that an AA individual came from
population 1?

Naive Frequentist Analysis: answer = ?

Naive Bayes Analysis: answer = ?
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Bayesian Inference: summary

Bayesian inference proceeds by

1. specifying what is known about ✓ before obtaining the data as the
prior p (✓);

2. collecting the data y and specifying its distribution p (y| ✓) (or the
likelihood function);

3. calculating the posterior p (✓| y) from Bayes rule.
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Monte Carlo
(No Markov Chains. . . Yet)

Goals of this lecture:

• Define the Monte Carlo method generally

• Explain why Monte Carlo is useful

• Understand variance of Monte Carlo estimators

all without talking about Markov chains. . .
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The origin of Monte Carlo:

First Reference:

METROPOLIS, N. AND S. ULAM. 1949. The Monte Carlo method.
Journal of the American Statistical Association. 44:335–341.

The name “Monte Carlo” was coined originally by John von Neu-
mann and Stanislaw Ulam who used the phrase as a code word at
Los Alamos for their simulation-based computational methods used
to solve the problem of initiating fusion in a thermonuclear bomb.

Earlier examples exist. (for example, the Comte de Buffon and his
needle in the mid-1700’s).

With computer power increasing all the time, Monte Carlo methods
are more widespread than ever, and are used in a wide range of
applications, most of them of a more humanitarian bent than bomb
design.
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In search of a definition for Monte Carlo:

There are few concise, yet general definitions in the literature. Some,
like Ripley (1987) reserve “Monte Carlo” only for “Monte Carlo Inte-
gration” and “Monte Carlo Tests,” and refer to all else as “stochastic
simulation.”

Others use Monte Carlo to refer specifically to the generation of pseudo-
random numbers:

“One way to increase our confidence in
the methods we use is to test models
and methods on sets of data in which
we know exactly what is happening. . . A
useful method for generating such data
is called the Monte Carlo method.. . . The
Monte Carlo method uses random num-
ber generators for the construction of
data.”
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A general definition of the Monte Carlo method:

DEFINITION: Monte Carlo is the art of approximating an expectation
by the sample mean of a function of simulated random variables.

This definition is general enough to encompass everything that has
been called “Monte Carlo,” yet also makes clear its essence in famil-
iar terms: Monte Carlo is about invoking laws of large numbers to
approximate expectations.

REVIEW: Expectations.

E[g(X)] =

Z

x2X
g(x)f

X

(x)dx or E[g(X)] =

X

x2X
g(x)f

X

(x)

REVIEW: Weak Law of Large Numbers.
Let X

1

, X

2

, . . . , X

n

be iid r.v.’s with E|X
i

| < 1, and ¯

X

n

=

1

n

P
n

1

X

i

.
Then

lim

n!1
P (| ¯X

n

� EX
i

| > ✏) = 0 for any ✏ > 0
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A Suggestion from the weak law of large numbers::

Any expectation may be approximated by the sample mean of n ran-
dom variables (and it will work better if n is large).

E[g(X)] ⇡
1

n

nX

i=1

g(x

(i)

) with X

(i) ⇠ f

X
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Why estimating expectations is useful:

Usually, any quantity of interest may be expressed as the expected
value of a function of some random variable. Importantly:

Probabilities:
P (X 2 A) = E[I{A}(X)]

where I{A}(X) is the indicator function taking the value 1 when
X 2 A and 0 otherwise.

Integrals: For a simple example, let U be a uniform r.v. on the inter-
val [a, b) with pdf f

U

(u) = 1/(b� a). Hence
Z

b

a

q(x)dx = (b� a)

Z
b

a

q(x)

1

b� a

dx = (b� a)E[q(U)]

We see here a case where Monte Carlo applies to a purely deter-
ministic problem.
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Discrete Sums: In the same vein as above, just as any integral can
be approximated by Monte Carlo, so can any sum. For another
simple, uniform example, let W be a discrete random variable that
takes all values w in the set A with equal probability p. Then, the
sum

P
x2A q(x) is easily approximated by Monte Carlo:

X

x2A
q(x) =

1

p

X

x2A
q(x)p =

1

p

E[q(W )].

This is particularly useful in statistical genetics, because many
probabilities of interest may be expressed as an intractable sum
over latent variables.

The bottom line is that, since you can cast any quantity as an expec-
tation; you can (in theory) approximate any quantity by Monte Carlo.
In the simplest case, when X is distributed according to f

X

.

E[g(X)] ⇡
1

n

nX

i=1

g(x

(i)

) with X

(i) ⇠ f

X

Dr Eric C. Anderson and Dr Matthew Stephens UW - Summer Institute, July 2016



MCMC in Statistical Genetics Session 2 - 9

Genetics example I: Estimating probabilities in the Wright-
Fisher model:

The Wright-Fisher model underlies most population genetics theory
that deals with the descent of genes in a finite population from one
generation to the next.

A schematic of its underlying assumptions:
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Genetics example I: Estimating probabilities in the Wright-
Fisher model:

Let X be the frequency of the A allele in a Wright-Fisher population
of size 2N = 200 after 14 generations of drift, having started from
a frequency of 60 out of 200.

The distribution of X can be approximated by simulating n = 50,000

instances:
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Each histogram column is an approximation of an expectation:

P (a  X < a+2) = E[I{x:ax<a+2}(X)]

⇡
1

n

nX

i=1

I{x:ax<a+2}(x
(i)

)

for a = 0,2, . . . ,200, where each x

(i) is an independent realization
of the number of A alleles at t = 14 in the Wright-Fisher model.
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Genetics example II: estimating a sum over latent variables:

Wright and McPhee (1925) estimating inbreeding of individuals within
cattle pedigrees.

Z
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In terms of latent variables:

• The maternal (m) and paternal (p) genes in individual z are di-
rect descendants from an unobserved lineage of ancestral gene
copies, i.e.,

• A

m

= {a
m,1

, a

m,2

, . . . , a

m,n

} and A

p

= {a
p,1

, a

p,2

, . . . , a

p,n

}
• The individual is inbred at a locus if the ancestors of the maternal

gene and the paternal gene are the same at any point in their
lineages, i.e., if A

m

\A

p

6= ;.

• The probability that an individual is inbred at a locus is then the
sum over latent variables:

P (inbred|pedigree) =

X

A

m

,A

p

[1� I{;}(Am

\A

p

)]P (A

m

,A

p

)

where P (A

m

,A

p

) follow from Mendel’s laws. Note that A
m

and
A

p

are independent up until they intersect, then follow the same
lineage back in time.
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• This sum is an expectation of the indicator function, with respect
to the joint distribution of A

m

and A

p

, given the pedigree:

P (inbred|pedigree) = E[1� I{;}(Am

\A

p

)]

so it may be estimated by Monte Carlo:

P (inbred|pedigree) = E[1� I{;}(Am

\A

p

)]

⇡
1

n

nX

i=1

[1� I{;}(A
(i)

m

\A

(i)

p

)]

where A

(i)

m

and A

(i)

p

are simulated from their respective distribu-
tions, which can be done by flipping a coin, until they intersect
(and hence add 1 to the sum) or reach pedigree founders without
intersecting (adding 0 to the sum).
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Variance of Monte Carlo estimators—iid case:

A Monte Carlo estimator is simply a random variable itself—a sum of
random variables:

G

n

=

1

n

nX

i=1

g(X

(i)

)

So, if the X

i

are independent1 the variance of G
n

is easily computed
as the variance of a sum of independent R.V.’s:

Var(G

n

) = Var

✓
1

n

nX

i=1

g(X

(i)

)

◆
=

1

n

2

nX

i=1

Var[g(X

(i)

)]

=

Var[g(X

(i)

)]

n

Var # when n " or if Var[g(X

(i)

)] can be reduced2.
1Note that throughout most of the remainder of the course, we will deal with samples of

correlated, non-independent X
i

’s. This is just a warm-up.
2We’ll take this up later in our discussion importance sampling
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Markov Chains
(With Some MCMC at the End)

Goals of this lecture:

• Introduce Markov chains

• Highlight the properties of Markov chains needed to understand
MCMC

• Discuss the weak law of large numbers for the number of pas-
sages through a recurrent state in an ergodic Markov chain

• Introduce the Metropolis-Hastings algorithm

• Explain why the M-H algorithm is useful
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Definition of a Markov chain:

X

t

, t = 0,1,2 . . ., having a joint distribution such that

P (X

t

|X
t�1

, X

t�2

, . . . , X

0

) = P (X

t

|X
t�1

) 8 t

Schematically:

And the variables X

t

can be scalars or vectors.

• For most of the examples in this lecture, X
t

will be univariate.

• When X

t

includes all the variables in an MCMC application, how-
ever, it is typically high-dimensional.
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A genetics example—the Wright-Fisher population:

Let X
t

denote the number of alleles of type A in a Wright-Fisher
population of size N diploids. Then:

P (X

t

= j|X
t�1

= i) =

2N !

(2N � j)!j!

✓
i

2N

◆
j

✓
2N�i

2N

◆
2N�j

• Important point: conditional independence 6= independence. If
you don’t know X

t�1

, then, of course X

t

depends on X

t�2

• NB: Do not think that MCMC is useful in genetics because the
problems in genetics involve Markov chains. The Markov chain
underlying Markov chain Monte Carlo and any Markov chains in-
volved in a statistical genetics model may be quite distinct entities.
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Transition Probability Matrices:

We can write down the transition probabilities from all values of X
t

to
all values of X

t+1

in a matrix:

0

BBB@

% 0 1 2 · · · 2N

0 P (0 ! 0) P (0 ! 1) P (0 ! 2) · · · P (0 ! 2N)

1 P (1 ! 0) P (1 ! 1) P (1 ! 2) · · · P (1 ! 2N)

2 P (2 ! 0) P (2 ! 1) P (2 ! 2) · · · P (1 ! 2N)

3 P (3 ! 0) P (3 ! 1) P (3 ! 2) · · · P (3 ! 2N)

... ... ... ... . . . ...
2N P (2N ! 0) P (2N ! 1) P (2N ! 2) · · · P (2N ! 2N)

1

CCCA

Here we use P (i ! j) as a shorthand for P (X

t+1

= j|X
t

= i).

Such transition probability matrices form the basis for much of the
classical analysis of Markov chains.

The above t.p.m. is a bit unwieldy for examples, so consider another
simple model. . .
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Random walk with scattering boundaries:

Imagine a random walk on the integers from 1 to 5. From 1 or 5, the
walk goes to any state with equal probability, and from the remaining
states, the walk may take steps of size 0 or 1, but they are biased
toward the center.

For example, consider the t.p.m:

P =

0

BBB@

% 1 2 3 4 5

1 .2 .2 .2 .2 .2

2 .2 .3 .5 0 0

3 0 .3 .4 .3 0

4 0 0 .5 .3 .2

5 .2 .2 .2 .2 .2

1

CCCA

Computer Demo: tpm
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Some things to note:

• The rows of P sum to one—they are probabilities that must sum
to one

• The columns need not sum to one

• Probabilities after one step can be computed by matrix multiplica-
tion. i.e., if: v0 = (0,1,0,0,0), then the probabilities of being in
states 1,2,. . . ,5 after one step of the chain are given by:

v0P = v1 = (.2, .3, .5,0,0)

• Probabilities after two steps are:

v1P = (v0P)P = v2

• and probabilities after n steps are

vn = v0P
n

Vectors vt are taken to be row vectors.
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Limiting Distributions:

A class of Markov chains called ergodic Markov chains3 have the
property that

lim

n!1
Pn

=

0

BB@

⇡

⇡

...
⇡

1

CCA

where ⇡ is (in this discrete case) a vector referred to as the limiting
distribution of the ergodic Markov chain.

Take our random walk example:

P1

=

0

B@

% 1 2 3 4 5

1 .2 .2 .2 .2 .2

2 .2 .3 .5 0 0

3 0 .3 .4 .3 0

4 0 0 .5 .3 .2

5 .2 .2 .2 .2 .2

1

CA, P2

=

0

B@

% 1 2 3 4 5

1 0.12 0.20 0.36 0.20 0.12

2 0.10 0.28 0.39 0.19 0.04

3 0.06 0.21 0.46 0.21 0.06

4 0.04 0.19 0.39 0.28 0.10

5 0.12 0.20 0.36 0.20 0.12

1

CA

3Conditions conferring ergodicity will be discussed a little later.
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P3

=

0

B@

% 1 2 3 4 5

1 0.088 0.216 0.392 0.216 0.088

2 0.084 0.229 0.419 0.202 0.066

3 0.066 0.225 0.418 0.225 0.066

4 0.066 0.202 0.419 0.229 0.084

5 0.088 0.216 0.392 0.216 0.088

1

CA

P5

=

0

B@

% 1 2 3 4 5

1 0.075 0.219 0.412 0.219 0.075

2 0.074 0.220 0.415 0.218 0.073

3 0.072 0.220 0.415 0.220 0.072

4 0.073 0.218 0.415 0.220 0.074

5 0.075 0.219 0.412 0.219 0.075

1

CA

P1
=

0

B@

% 1 2 3 4 5

1 0.07317 0.2195 0.4146 0.2195 0.07317

2 0.07317 0.2195 0.4146 0.2195 0.07317

3 0.07317 0.2195 0.4146 0.2195 0.07317

4 0.07317 0.2195 0.4146 0.2195 0.07317

5 0.07317 0.2195 0.4146 0.2195 0.07317

1

CA
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The limiting distribution in this case is

⇡ = (0.07317, 0.2195, 0.4146, 0.2195, 0.07317)

• This means that if you start the chain from any of the five states,
after a sufficient (and not very many in this case) number of steps,
the probability that it will be found in any of the five states is es-
sentially independent of its starting state.

• And, as we have already seen, it means that a “time-average”
over the chain converges to the limiting distribution.

• This second point is asserted by the weak law of large numbers
for ergodic Markov chains which states that as the number of tran-
sitions (or steps) in an ergodic chain tends to infinity, the propor-
tion of time the chain spends in a state tends to the limiting prob-
ability (i.e., the appropriate component of ⇡) of that state4.

• Thus, the states visited by an ergodic Markov chain may be used
to compute a Monte Carlo average. That is MCMC.

4See Feller (1957)
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The use of Markov Chains in Monte Carlo:

Monte Carlo with a Markov chain is pretty much the same as before:

E[g(X)] =

1

n

nX

i=1

g(x

(i)

)

except that now, the x

(i) are states visited by a Markov chain having
a limiting distribution that we wish to sample from.

To implement this we must be able to construct an appropriate Markov
chain. It must:

• be ergodic

• have the right limiting distribution

The remainder of the lecture shows how this is done.
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Important points to keep in mind:

1. If you can simulate independent samples, x(1)

, . . . , x

(n), then, by
all means, do so, and avoid MCMC if you can.

2. MCMC is most useful when the desired distribution to be sampled
from is “known only up to scale”—this means that the “shape” of
the distribution is known but its normalizing constant is not.
A germane example of a distribution known only up to scale is the
Bayesian posterior distribution of ✓ given data Y :

P (✓|Y ) =

P (Y |✓)P (✓)R
✓

P (Y |✓)P (✓)d✓

The denominator is a constant w.r.t. ✓. It is the (typically un-
known) normalizing constant. However, the numerator is the joint
density of the data Y and the parameters ✓, which is often easy
to compute. This is why MCMC is so useful to Bayesians.
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Conditions ensuring a chain is ergodic:

A Markov chain is ergodic if:

1. It has no transient states, i.e., there are no states with an expected
time to recurrence of 1. (This is not an issue with a finite state
space).

2. It is irreducible, i.e., any state in the state space is reachable from
any other state in the state space in a finite number of steps.

3. It is aperiodic, i.e., there exists no pair of states i and j such that
the probability of reaching j from i is non-zero only if the number
of steps is an integer multiple of some period ⌧ .

In discrete “tree-like” state spaces, like pedigrees, reducibility can be
an issue. We take this up briefly in Session 10.
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General balance and the stationary distribution of a Markov
chain:

Recall that we wish to construct an ergodic Markov chain with limiting
distribution ⇡ equal to some distribution that we wish to sample from.
How might we do that?

One possibility is via a theorem which tells us about a property of ⇡:

If ⇡ is the limiting distribution of the ergodic Markov chain with t.p.m.
P, then ⇡ is the unique stationary distribution that satisfies the gen-
eral balance equation

⇡P = ⇡

So, if we can find P such that its unique stationary distribution is ⇡,
and ⇡ is the distribution we wish to sample from, then we can use the
chain defined by P in MCMC.
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This is, however, not a tractable approach in any problem of conse-
quence. In general it will be harder to (or just as difficult to) solve
the general balance equation for ⇡ as it will be to draw independent
samples from ⇡.

The main problem with solving the general balance equation is that
all possible states in the distribution ⇡ must be considered simulta-
neously. In most interesting problems, that number of states can be
astronomically huge.

The solution to this conundrum is to not try to solve the general bal-
ance equation directly, but, instead satisfy a “locally-defined” balance
condition (so that only two states in the state space need be consid-
ered simultaneously—rather than all of the states, simultaneously),
AND do this in a way that ensures that general balance is satisfied.

This is quite a lovely thing.
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Time-reversible Markov chains and detailed balance:

A special class of Markov chains are called “time-reversible” Markov
chains, because if you were to watch them running “backward in time”
they would look just the same as the chain running “forward in time.”

The salient feature of such chains is that they satisfy the detailed
balance (also called the local balance) condition.

Detailed balance with respect to ⇡ between a pair of states i and j,
is satisfied by a Markov chain with a stationary distribution ⇡, and a
t.p.m P having elements P (x ! y) if

⇡(i)P (i ! j) = ⇡(j)P (j ! i).

It is easy to show (by summing over all states i) that if detailed bal-
ance holds for every pair of states, then general balance is also sat-
isfied.
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The Metropolis-Hastings Algorithm5:

The M-H algorithm provides a way to perform steps in a Markov chain
that satisfy detailed balance.

Imagine you wish to simulate a dependent sample from a target dis-
tribution f , and you are currently in state i. The recipe is:

• Propose changing the state from state i to a new state j. Draw
the state j from a proposal distribution, q(j|i) which may be con-
ditional on i.

• Accept and move to the new state j with probability R equal to
the lesser of 1 or the Hastings ratio:

R(i ! j) = min

⇢
1,

f(j)

f(i)

⇥
q(i|j)
q(j|i)

�

If you don’t accept the move to state j, then stay where you are.
5Metropolis et al. (1953) and Hastings (1970).
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M-H algorithm satisfies detailed balance:
To show the M-H algorithm satisfies detailed balance w.r.t. f , we
write down P (i ! j) and P (j ! i), for any i and j, under the M-H
algorithm.

P (i ! j) is the product of the probabilities that we:

1. Propose going from i to j. Prob = q(j|i)
2. Accept that proposal. Prob = R(i ! j) = min{1, f(j)

f(i)

q(i|j)
q(j|i)}

And P (j ! i) can be found similarly [using R(j ! i)].

Now, there are two possible cases:

Case I: f(j)q(i|j) > f(i)q(j|i), in which case
R(i ! j) = 1 and R(j ! i) =

f(i)

f(j)

q(j|i)
q(i|j)

Case II: f(j)q(i|j)  f(i)q(j|i), in which case
R(i ! j) =

f(j)

f(i)

q(i|j)
q(j|i) and R(j ! i) = 1.
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M-H algorithm satisfies detailed balance (cont’d):

So, P (i ! j) and P (j ! i) in those cases are:

Case I:

P (i ! j) = q(j|i) P (j ! i) = q(i|j)⇥
f(i)

f(j)

q(j|i)
q(i|j)

Case II:

P (i ! j) = q(j|i)⇥
f(j)

f(i)

q(i|j)
q(j|i)

P (j ! i) = q(i|j)

Both of which, with a little rearranging, yield:

f(i)P (i ! j) = f(j)P (j ! i)

which is the detailed balance equation.
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M-H algorithm example—beta distribution6:

Let ✓ be a variable with probability density function

f(✓) ⌘ Beta(74,128) =

�(74 + 128)

�(74)�(128)

✓

73

(1� ✓)

127

Note that this is the posterior distribution of the frequency ✓ of allele
A at a locus, given a uniform prior, and a sample of 100 diploids in
which are found 73 copies of allele A.

This distribution is known exactly, but for illustration, we will construct
a Markov chain that has limiting distribution f , and sample from it.

6Up to this point we have been dealing with discrete Markov chains. The extension to
continuous state spaces is straightforward. In such cases, ⇡, P , q, and f may be taken
as probability density functions, rather than as probability mass functions, and the general
balance equation is expressed by a collection of integrals rather than in terms of matrix
multiplication:

R
x

⇡(x)P (x ! y)dx = ⇡(y) 8y
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Step one: Choose a proposal distribution:

One is free to choose any proposal distribution q. The only property
that it should satisfy is that if q(i|j) > 0, then q(j|i) should also be
positive7. Otherwise you end up wasting some time.

We will choose a uniform density for q with width w, centered on the
current state i. It looks like:

Thus, q(i|j) = 1/w for all i and j. (Note that if j � 1 or j  0 then
f(j) = 0 and we reject the proposal immediately.)

7And the proposal distributions used should fulfill irreducibility, etc.. Clearly, also, some
proposal distributions will work better than others.
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Step two: Compute the Hastings Ratio:

f(j)

f(i)

q(i|j)
q(j|i)

=

�(74 + 128)

�(74)�(128)

⇥
�(74)�(128)

�(74 + 128)

⇥
j

73

(1� j)

127

i

73

(1� i)

127

⇥
1/w

1/w

=

✓
j

i

◆
73

✓
1� j

1� i

◆
127

Notice that the normalizing constant cancels out. (That always hap-
pens). And, in this case, q cancels out (only because q is symmetri-
cal).

Computer Demo: beta sim
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Conclusions:

1. MCMC is just Monte Carlo with samples drawn from a Markov
chain

2. The Markov chain in MCMC is constructed by concatenating moves
together, each of which satisfies detailed balance

3. The rest of the module will explore methods for implementing
MCMC in problems relevant to statistical genetics
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# Session 3: Introduction to MCMC in R (Computing Practical)

#

# Note: anything following a # sign is a comment, and will be ignored by R

# (this should make it easier to cut and paste things)

#

#

# Example 1: sampling from an exponential distribution using MCMC

#

#

# first: a few example lines of R

R

x = seq(from = 0, to = 10, length=20)

?seq # to get help on any command in R you can type ?command

x # to see what an object looks like, just type its name

y = exp(-x)

y # note that y is a vector, because x is a vector

plot(x,y)

lines(x,y) #lines adds lines to an existing plot

#

# We will learn more R as we go along: ask questions if there is

# something you don’t understand!
#
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# Now: set up a target function we want to sample from

# In this case we are going to use the density of the exponential distribution

# (What follows is not the best way to do things, but I have tried

# to make it easy to follow for novice users)

#

target = function(x){

if(x<0){

return(0)}

else {

return( exp(-x))

}

}

#Try computing a couple of values

target(1)

target(-1)
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# Next, we will program a Metropolis--Hastings scheme to sample

# from a distribution proportional to the target

x = rep(0,1000)

x[1] = 3 #this is just a starting value, which I’ve set arbitrarily to 3

for(i in 2:1000){

currentx = x[i-1]

proposedx = currentx + rnorm(1,mean=0,sd=1)

A = target(proposedx)/target(currentx)

if(runif(1)<A){

x[i] = proposedx # accept move with probabily min(1,A)

} else {

x[i] = currentx # otherwise "reject" move, and stay where we are

}

}

# note that x is a realisation of a Markov Chain

# we can make a few plots of x:

plot(x)

hist(x)

Dr Eric C. Anderson and Dr Matthew Stephens UW - Summer Institute, July 2016



MCMC in Statistical Genetics Session 3 - 4

# We can wrap this up in a function to make things a bit neater,

# and make it easy to try changing starting values and proposal distributions

easyMCMC = function(niter, startval, proposalsd){

x = rep(0,niter)

x[1] = startval

for(i in 2:niter){

currentx = x[i-1]

proposedx = rnorm(1,mean=currentx,sd=proposalsd)

A = target(proposedx)/target(currentx)

if(runif(1)<A){

x[i] = proposedx # accept move with probabily min(1,A)

} else {

x[i] = currentx # otherwise "reject" move, and stay where we are

}

}

return(x)

}
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#Now we’ll run the MCMC scheme 3 times,

#and look to see how similar the results are

z1=easyMCMC(1000,3,1)

z2=easyMCMC(1000,3,1)

z3=easyMCMC(1000,3,1)

plot(z1,type="l")

lines(z2,col=2)

lines(z3,col=3)

par(mfcol=c(3,1)) #rather odd command tells R to put 3 graphs on a single page

hist(z1)

hist(z2)

hist(z3)
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# Exercises: use the function easyMCMC to explore the following:

#

# 1a) how do different starting values affect the MCMC scheme?

#

# 1b) what is the effect of having a bigger/smaller proposal standard deviation?

#

# 1c) try changing the target function to the following

#

target = function(x){

return((x>0 & x <1) + (x>2 & x<3))

}

# What does this target look like?

# What happens if the proposal sd is too small here? (try eg 1 and 0.1)
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MCMC Convergence

Markov chain Monte Carlo relies on the fact that, asymptotically (i.e. after infinite
iterations), simulated values from the Markov chain behave as if they were sampled
from the joint posterior distribution we are interested in.

In practice we can’t perform infinitely many iterations before we regard the simulated
values as coming from the posterior distribution. Thus we hope that provided we do
enough iterations our simulated values will be sufficiently close to coming from the
posterior distribution. But how do we know when we are sufficiently close?
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Assessing Convergence

Although “formal” methods exist for assessing convergence, I tend to prefer less for-
mal methods.

Here are some guidelines for assessing problems:

• Always run the MCMC sampler multiple times from different starting points.

• Compare results from different starting points: do they differ enough to change
your conclusions?

• Plot trace plots of different parameters against iteration number: do they look
“sticky?”
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Improving Convergence

If convergence appears to be a problem, you can try:

• Running the sampler longer!

• Changing the model (convergence problems tend to occur more often when the
model is wrong).

• Tuning the MH proposal standard deviation.

• Redesigning the sampler.

In some difficult problems, getting a sampler to converge is very difficult. In these
cases MCMC can sometimes still provide useful output, if started from a “good” start-
ing point. Think of it as a local exploration of a “good” solution.
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Example: A bimodal target
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SD = 1 gives satisfactory results
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SD = 1: different starting points agree well
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SD = 1: different starting points agree well
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SD = 0.1 gives unsatisfactory results
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SD = 0.1: different starting points disagree

0 200 400 600 800 1000

−2
0

2
4

Trace from starting point 2.5, sd=0.1

Index

z4

Histogram of z4

z4

Fr
eq
ue
nc
y

−2 −1 0 1 2 3 4 5

0
50

15
0

Dr Eric C. Anderson and Dr Matthew Stephens UW - Summer Institute, July 2016



MCMC in Statistical Genetics Session 3 - 16

SD = 0.1: different starting points disagree
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“Stickiness” of chain depends on SD
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# Example 2: Estimating an allele frequency

#

# A standard assumption when modelling genotypes of

# bi-allelic loci (eg loci with alleles A and a) is

# that the population is "randomly mating". From this assumption

# it follows that the population will be in

# "Hardy Weinberg Equilibrium" (HWE), which means that

# if p is the frequency of the allele A then the

# genotypes AA, Aa and aa will have frequencies

# p*p, 2p(1-p) and (1-p)*(1-p)

#

# A simple prior for p is to assume it is uniform on [0,1].

# Suppose that we sample n individuals, and observe nAA with genotype AA,

# nAa with genotype Aa and naa with genotype aa.

# The following R code gives a short MCMC routine to sample from the posterior

# distribution of p. Try to go through the code to see how it works.

prior = function(p){

if((p<0) || (p>1)){ # || here means "or"

return(0)}

else{

return(1)}
}
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likelihood = function(p, nAA, nAa, naa){

return(p^(2*nAA) * (2*p*(1-p))^nAa * (1-p)^(2*naa))

}

psampler = function(nAA, nAa, naa, niter, pstartval, pproposalsd){

p = rep(0,niter)

p[1] = pstartval

for(i in 2:niter){

currentp = p[i-1]

newp = currentp + rnorm(1,0,pproposalsd)

A = prior(newp)*likelihood(newp,nAA,nAa,naa)/(prior(currentp) * likelihood(currentp,nAA,nAa,naa))

if(runif(1)<A){

p[i] = newp # accept move with probabily min(1,A)

} else {

p[i] = currentp # otherwise "reject" move, and stay where we are

}

}

return(p)

}

# running this sample for nAA = 50, nAa = 21, naa=29.

z=psampler(50,21,29,10000,0.5,0.01)
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# Now some R code to compare the sample from the posterior

# with the theoretical posterior (which in this case is available analytically;

# from lecture 1, since we observed 121 As, and 79 as, out of 200, the posterior

# for p is beta(121+1,79+1). See notes from Session 1.

x=seq(0,1,length=1000)

hist(z,prob=T)

lines(x,dbeta(x,122, 80)) # overlays beta density on histogram

# You might also like to discard the first 5000 z’s as "burnin"

# here’s one way in R to select only the last 5000 zs

hist(z[5001:10000])

#

#

# Some things to try: how do the starting point and proposal sd affect things?

#

#
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# Example 3: Estimating an allele frequency and inbreeding coefficient

# (If time allows!)

#

# A slightly more complex alternative than HWE is to assume that

# there is a tendency for people to mate with others who are

# slightly more closely-related than "random" (as might

# happen in a geographically-structured population, for example).

# This will result in an excess of homozygotes compared with

# HWE. A simple way to capture this is to introduce an extra parameter,

# the "inbreeding coefficient" f, and assume that the genotypes

# AA, Aa and aa have frequencies fp + (1-f)p*p, (1-f) 2p(1-p)

# and f(1-p) + (1-f)(1-p)(1-p)

#

# In most cases it would be natural to treat f as a feature of

# the population, and therefore assume f is constant across loci.

# For simplicity we will consider just a single locus.

# Note that both f and p are constrained to lie between 0 and 1

# (inclusive). A simple prior for each of these two parameters is to assume

# that they are independent, uniform on [0,1]. Suppose

# that we sample n individuals, and observe nAA with genotype AA,

# nAa with genotype Aa and naa with genotype aa.

#
# Exercise: write a short MCMC routine to sample from the joint

# distribution of f and p.
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#

# Hint: here is a start; you’ll need to fill in the ...

#

fpsampler = function(nAA, nAa, naa, niter, fstartval, pstartval,

fproposalsd, pproposalsd){

f = rep(0,niter)

p = rep(0,niter)

f[1] = fstartval

p[1] = pstartval

for(i in 2:niter){

currentf = f[i-1]

currentp = p[i-1]

newf = ...

newp = ...

...

...

}

return(list(f=f,p=p)) # return a "list" with two elements named f and p

}
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Markov Chain Monte Carlo:
more complex examples

Goals of this lecture:

• Consider MCMC in more than a single dimension

• Describe component-wise Metropolis-Hastings sampling

• Introduce the idea of latent variables and show how they lend
themselves to Gibbs sampling—a special case of component-
wise M-H sampling
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Genotype Frequencies and Inbreeding:

Starting with the last exercise of Session 3: one locus with two alleles,
A and a, at frequencies p and 1 � p, respectively, and “inbreeding
coefficient” f .

Probabilities of the three genotypes are:

• P (AA) = fp+ (1� f)p2

• P (Aa or aA) = (1� f)2p(1� p)

• P (aa) = f(1� p) + (1� f)(1� p)2

Since “inbreeding” is used to describe a lot of (related) things, let’s
briefly review what this model is saying. . .
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Inbreeding model:

Not-inbred with probability
1� f

A

A

A
A

a

a a

a a a
a

a

aa

• P (AA) = p2

• P (Aa or aA) = 2p(1� p)

• P (aa) = (1� p)2

Inbred with probability
f

A

A

A
A

a

a a

a a a
a

a

aa

• P (AA) = p

• P (Aa or aA) = 0

• P (aa) = (1� p)

P (nAA, nAa, naa|p, f) = C ⇥ [fp+ (1� f)p2]nAA ⇥ [(1� f)2p(1� p)]nAa

⇥ [f(1� p) + (1� f)(1� p)2]naa
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What Our Data Would Look Like:

• We have a sample of n individuals total.

– nAA are homozygous for the A allele
– nAa are heterorozygous
– naa are homozygous for the a allele

• Clearly, n = nAA + nAa + naa

A concrete example we will use throughout this lecture is n = 50

with:
nAA = 30 nAa = 10 naa = 10

which are roughly the expected values if p = .7 and f = .5.
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Bayesian Model for Estimating f and p:

To go about estimating f and p in a Bayesian fashion, we must fully
specify the model. This means that we need

• Priors for f and p. We will choose uniform priors f ⇠ Beta(1,1)
and p ⇠ Beta(1,1)

• The data themselves. These are nAA, nAa, and naa.

• The likelihood: P (nAA, nAa, naa|p, f), which is given on the pre-
vious page

The posterior distribution is then prior ⇥ likelihood, divided by the
(“nasty”) normalizing constant

P (p, f |nAA, nAa, naa) =

P (f)P (p)P (nAA, nAa, naa|p, f)R
f,p P (f)P (p)P (nAA, nAa, naa|p, f)dfdp
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Computing the normalizing constant is difficult, but with MCMC, we

don’t have to!

Recall, to perform MCMC it suffices to know the target distribution up
to a constant of proportionality.

Our target distribution is

P (p, f |nAA, nAa, naa) / P (f)P (p)P (nAA, nAa, naa|p, f)

So long as 0 < f < 1 and 0 < p < 1.

Otherwise it is 0.
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Two-Dimensional M-H Sampler:

We can compute the target distribution (up to a constant) easily for
any f and p. So, to simulate from this posterior distribution we can
just implement a Metropolis-Hastings sampler.

Following the examples of Session 3, for p we will choose a normal
proposal distribution centered on the current value with standard de-
viation of sp:

q(p⇤|p) ⌘ Normal(p, sp)

And, we will use the same for f :

q(f⇤|f) ⌘ Normal(f, sf)

Applying these proposal distributions in sequence gives us a simple
way to simulate proposed values, (p⇤, f⇤

), from the current values
(p, f).
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A “sweep” of our MCMC algorithm would look like:

1. Propose a new value, (p⇤, f⇤
) for (p, f)

• propose p⇤ from Normal(p, sp)

• propose f⇤ from Normal(f, sf)

2. Accept or reject the proposed value (p⇤, f⇤
) with probability R

which is the minimum of 1 and the Hasting’s Ratio:

R = min

⇢
1,

q(p|p⇤)q(f |f⇤
)

q(p⇤|p)q(f⇤|f)
⇥
P (p⇤)P (f⇤

)P (nAA, nAa, naa|p⇤, f⇤
)

P (p)P (f)P (nAA, nAa, naa|p, f)

�

If you accept the proposed value, set the current value to the pro-
posed value. Otherwise leave the current values unchanged.

Computer Demo: inbred p -n 30 10 10 (starts on “Jointly” (j))
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Component-wise Metropolis Hastings Sampler :

• In any MCMC implementation, the proposal distribution need not

propose changes to every variable/parameter in the model.

• In fact, there are few “real-world” problems requiring MCMC in
which you would use a single proposal distribution in which changes
were proposed to all the variables in the model.

• Important Concept:

– Any proposal distribution, regardless of how many or how few
variables it proposes changes to, is valid, so long as the pro-
posal is accepted or rejected in a way that satisfies detailed
balance w.r.t. the target distribution.

– These different flavors of the “propose-reject/accept” step may
be combined in series in whatever manner is desired, so long
as they produce an irreducible, aperiodic chain1.

1Nonetheless, some ways are better than others and will lead to a better-mixing chain
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Simple Component-wise M-H Sampler for p and f :

Simplest scenario has a sweep as follows:

1. Do an update for p:
(a) propose p⇤ from Normal(p, sp)
(b) Accept or reject the proposed value p⇤ with probability min{1,↵},

where:

↵ =

q(p|p⇤)
q(p⇤|p)

⇥
P (p⇤)P (f)P (nAA, nAa, naa|p⇤, f)
P (p)P (f)P (nAA, nAa, naa|p, f)

2. Do an update for f :
(a) propose f⇤ from Normal(f, sf)
(b) Accept or reject the proposed value f⇤ with probability min{1,↵},

where:

↵ =

q(f |f⇤
)

q(f⇤|f)
⇥

P (p)P (f⇤
)P (nAA, nAa, naa|p, f⇤

)

P (p)P (f)P (nAA, nAa, naa|p, f)
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Simple Component-wise M-H Sampler for p and f , cont’d:

Some very important points:

• The proposals are each a little simpler (though just slightly. . . )
than jointly proposing changes to (p, f)

• Neither step 1 nor step 2 of the sweep creates an irreducible chain
(obviously, if you never update p, for example, your chain could
never reach every possible value of p).

• However, taken together, steps 1 and 2 create an irreducible chain.

Computer Demo: inbred p (Component-wise using (c) from info window)
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Simple Component-wise M-H Sampler for p and f , cont’d:

Two more important points

• The form of the Hastings ratio is a little simpler when we have
proposed changing just a subset of the variables.

• However, in this case the target density remains just as complex,
because it does not factorize into a separate part for f and a part
for p.

• Since we are changing just a small part of the model at a time, it
seems like we could spend some more energy on making each
separate proposal distribution more “intelligent.”

The final two points above get us to thinking about Gibbs sampling,
which we will return to after a brief discussion of latent variables. . .
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Formulating the Model with Latent Variables:

Just think how easy it would be to estimate f and p if we knew
whether every individual we sampled was inbred or not:

A A

a

A A

A

a a

a a

Not Inbred

  Inbred

Not Inbred

Not Inbred

  Inbred

• Now, f is just a binomial proportion
• To estimate p you count both the alleles from Non-inbred individ-

uals, and just one allele from Inbred individuals, and then it too is
simply a binomial proportion.
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In other words, if your data look like:

A A

a

A A

A

a a

a a

Not Inbred

  Inbred

Not Inbred

Not Inbred

  Inbred

A A

a

A A

A

a a

a a

Not Inbred

  Inbred

Not Inbred

Not Inbred

  Inbred

A A

a

A A

A

a a

a a

Not Inbred

  Inbred

Not Inbred

Not Inbred

  Inbred
A A

a

A A

A

a a

a a

Not Inbred

  Inbred

Not Inbred

Not Inbred

  Inbred

. . . then, to estimate f , you don’t even need to think about the alleles
carried by anyone. . .
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. . . you just have to “count the flags”:

Not Inbred

  Inbred

Not Inbred

  Inbred

  Inbred

  InbredNot Inbred

  Inbred

Not Inbred

Not Inbred   Inbred

Not Inbred

Not Inbred

  Inbred

Not Inbred

Not Inbred Not Inbred

Not Inbred

Not Inbred
  Inbred

12 8
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To estimate p you just have to count alleles. . .

a A

a a
A A

A A a a

a a

a a

Not Inbred

A A

A A

A A

A A

A A

A A

a
A A

A A

A

a A

a A

a a

a a

  Inbred
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Keeping in mind each inbred individual contributes just a single gene
copy. . .

a A

a a
A

A A a a

a a

a

Not Inbred

A

A A

A A

A A

A A

A

a
A

A

A

a A

a A

a

a

  Inbred

14 A's    10 a's 5 A's    3 a's
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Joint Density of p, f , and U :

• We denote the n latent variables as U = (U
1

, . . . , Un).

• ui = 0 indicates that i is Not Inbred. ui = 1 indicates i is Inbred.

• Let Y = (Y
1

, . . . , Yn) denote the genotypes

So, the joint density is:

P (p, f,U ,Y ) = P (p)P (f)P (U |f)P (Y |U , p)

and, so, the posterior is:

P (p, f,U |Y ) =

P (p, f,U ,Y )R
p

R
f

P
0U

1

1

· · ·
P

0Un1

P (p, f,U ,Y )dpdf

The normalizing constant is even nastier! It seems we have gained
little, until we remember that we don’t have to mess with the normal-
izing constant, . . . but even then it’s not immediately clear we have
gained anything.
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Generic MCMC for f and p with latent variables:

• Recall, we wish to simulate f and p from their posterior distribu-
tions and so learn about P (f, p|Y ).

• However, now, our chain is moving about the space of f , p, and

U . . .
– it visits a sequence of states of the form (f (1), p(1),U (1)

),
(f (2), p(2),U (2)

), (f (3), p(3),U (3)

), . . .

• Important Concept: Obtaining the Marginal Posterior Distribu-
tion from MCMC output is simple:
– From the sequence (f (1), p(1),U (1)

), (f (2), p(2),U (2)

), . . .
you can just focus on collecting the values (f (1), p(1)), (f (2)

), . . .,
discarding the U (·)’s if you are not interested in their posterior
distribution. (Note, though, that you might be interested in the
individual Ui’s!).
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Naive Metropolis-Hastings for f , p, and U :

1. Do an update for p:

(a) propose p⇤ from Normal(p, sp)

(b) accept or reject on the basis of

q(p|p⇤)
q(p⇤|p)

⇥
P (p⇤)P (f)P (U |f)P (Y |U , p⇤)

P (p)P (f)P (U |f)P (Y |U , p)

2. Do an update for f :

(a) propose f⇤ from Normal(f, sf)

(b) accept or reject on the basis of

q(f |f⇤
)

q(f⇤|f)
⇥

P (p)P (f⇤
)P (U |f⇤

)P (Y |U , p)

P (p)P (f)P (U |f)P (Y |U , p)
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3. Do an update for U (n separate updates, one for each Ui).
For i in 1, . . . , n:

(a) Propose a new U⇤
i by flipping a coin (heads=0, tails=1).

(b) Accept or reject on the basis of

q(Ui|U⇤
i )

q(U⇤
i |Ui)

⇥
P (p)P (f)P (U ⇤|f)P (Y |U ⇤, p)

P (p)P (f)P (U |f)P (Y |U , p)

=

q(Ui|U⇤
i )

q(U⇤
i |Ui)

⇥
P (p)P (f)P (U⇤

i |f)P (Y |U⇤
i , p)

P (p)P (f)P (Ui|f)P (Y |Ui, p)

Note the cancellations in all these Hastings Ratios.

Computer Demo: inbred p (“Silly” using (S), (f), and (p)) 2

2which will segue into Gibbs sampling
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Gibbs Sampling:

Gibbs sampling is a special case of the component-wise M-H sampler
in which the proposal distribution is the full conditional distribution.

Gibbs Sampling Step for f :

• Recall the generic component-wise M-H update:

q(f |f⇤
)

q(f⇤|f)
⇥

P (p)P (f⇤
)P (U |f⇤

)P (Y |U , p)

P (p)P (f)P (U |f)P (Y |U , p)

The full conditional distribution for f is the distribution of f condi-
tional upon the current values of all other variables in the model.
This must be proportional to the product of all the factors in the
joint density that have f in them: P (f)P (U |f)
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•
The P (U |f) portion of
the joint density pertains to
“counting up our flags”

Not Inbred

  Inbred

Not Inbred

  Inbred

  Inbred

  InbredNot Inbred

  Inbred

Not Inbred

Not Inbred   Inbred

Not Inbred

Not Inbred

  Inbred

Not Inbred

Not Inbred Not Inbred

Not Inbred

Not Inbred
  Inbred

12 8

• P (f) is the prior for f

• So the full conditional for f is a beta distribution—it’s the “poste-
rior” for f given the “data” U

• Letting the proposal q(·|·) be that full conditional gives us a Hast-
ings Ratio of

P (f)P (U |f)/C
P (f⇤

)P (U |f⇤
)/C

⇥
P (p)P (f⇤

)P (U |f⇤
)P (Y |U , p)

P (p)P (f)P (U |f)P (Y |U , p)

• Which is 1—This is always the case with Gibbs sampling—you
always accept the proposal from the full conditional distribution.
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A Directed Graphical View of The Model. . . :

a a

  Inbred

Values You
Might See

Priors

i : 1, . . . , n

Yi

Ui

f p f = 0.2 p = 0.6

. . . makes it fairly easy to envision how Gibbs updates for p and U
would proceed. Computer Demo: inbred p (“Gibbs” using (g))
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DAG notation and terminology:
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A reminder that all inference is conditional upon the under-
lying model. . . and a small step toward structure:

We could have attributed
the departure from Hardy-
Weinberg proportions to a
mixture (in the proportions of
⇡ = .5) of two populations
with allele frequencies p

1

and
p2, respectively.

a a

  Pop 1

Values You
Might See

Prior

i : 1, . . . , n

Yi

Zi

⇡ = .5

p1 p2

p1 = 0.6

p2 = .4

This is, in fact, the structure model with no admixture, K = 2, and a
single locus.

Gibbs sampling is straightforward. . . Computer Demo: newhybs via RunNewHybs.sh
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Wrap-Up:

Main Points:

• In problems where it is useful, MCMC almost always proceeds by
proposing changes to a small subset of the variables.

• There may be many different proposal types.
– Each proposal type must satisfy detailed balance.
– Each proposal type need not make an irreducible chain, BUT
– All proposals taken together should form an irreducible chain.

• Latent variables may help in factorizing complex joint densities
and lend themselves to Gibbs sampling.

• Simple proposals may be fast to implement, but may not lead to
good mixing of the chain.

• Designing good proposal distributions is where one gets to per-
form “art” in implementing MCMC.
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Case Study I: Inference
of Population Structure

Goals of this lecture:

• Introduce the statistical model underlying structure as an elabo-
ration of a simple finite mixture model.

• Introduce directed graphical model notation

• Present the two different “flavors” of structure’s underlying models—
with and without prior population information.

• Introduce several related methods—NewHybrids and BayesAss+
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Temporal and historical scales:
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Scottish wildcat:
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Model For genetic mixture:

Using a sample from the mixture the goals are to:

1. Estimate the allele frequencies in Populations 0 and 1
2. Estimate the mixing proportion ⇡
3. For each individual in the sample, compute the posterior proba-

bility that it is from Population 0 or 1
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Genetic mixture:

• ⇡ : the proportion of indi-
viduals from the K different
sources in the mixture

• Wi : the source of individ-
ual i

• Yi,`,1 , Yi,`,2 : the two alle-
les at locus ` in individual i

• ✓`,1, . . . , ✓`,K allele fre-
quencies at locus ` in the
K sources

• ⇣ and �` represent
Bayesian priors
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DAG notation and terminology:
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Factorization of the joint probability density:

P (⇡|⇣)P (⇣)⇥
MY

i=1

✓
P (Wi|⇡)⇥

LY

`=1

P (Yi,`,1|Wi, ✓`,1, . . . , ✓`,K)⇥

LY

`=1

P (Yi,`,2|Wi, ✓`,1, . . . , ✓`,K)

◆
⇥

LY

`=1

P (✓`,1, . . . , ✓`,K|�`)P (�`)
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Interbreeding complicates matters:

• This requires a different probability model
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Features of structure—the admixture model (Pritchard et al.
2000) :

• Omnibus model—flexible and few parameters

• Applies generically to:

– Hybrid zones
– Recent gene flow
– Population structure, cryptic or otherwise
– Estimating the unkown number of subpopulations

• Data Requirement:

– Multilocus genotypes
– Learning samples are helpful but not necessary

• Assumes no LD or HWD in component subpopulations
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The structure model:

� ��
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Genetic mixture vs. structure1:

1Note that my notation departs somewhat from that in Pritchard et al.’s paper.
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Other structure features:

There are several other bells and whistles that can be applied in struc-
ture.

A later version of structure (described in Falush et al. (2003)) in-
cludes a facility for modeling non-independence between the alleles
at different loci. This allows for linkage between markers that are near
to each other on the same chromosome.

The allele frequencies in the K subpopulations can also be modeled
as having some correlation parameterized in terms of Wright’s in-
breeding parameter F . Can you write down the DAG for that model?

Further elaborations include model for dominant markers and null al-
leles (Falush et al. 2007) and a new model for incorporating sampling
location information (Hubisz et al 2009).
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Findings of BEAUMONT ET AL. 2001:

• Evidence for two distinct gene pools

– One inferred “gene pool” had allele frequencies very close to
those in known domestic cats

• Some individuals had values of Qi near 0 or 1

• Others appeared to be quite admixed, Qi ⇡ .5

• Not possible to tell with structure whether there have been histor-
ical mixing events
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Features of structure (prior pop. info model):

• Specialized model—more realistic in some scenarios

• Applies specifically to:

– Detecting recent immigrants in populations

• Data Requirement:

– Distinct subpopulation/sampling locales
– Multilocus genotypes

• Assumptions:

– No LD or H-WD in component subpopulations
– Number of subpopulations is known
– Migration occurs infrequently
– Migration rate assumed known and equal in all directions
– Migrant ancestry limited to the last n generations
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Symmetrical immigrant probability ⌫:

The ith individual is known to reside in subpopulation Si.
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Immigrant ancestry with rare migration:

Each individual is assumed to have at most 1 migrant ancestor in the
last n years.

If the ith individual has a migrant ancestor, it occured Ti generations
ago, and was a migrant from population Oi.
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structure vs. structure with prior pop. info:

• Disadvantages: must assume ⌫, independence within loci, only one
migrant ancestor
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Two other methods similar to structure with prior population
information:

• NewHybrids (Anderson and Thompson 2002)

• BayesAss+ (Wilson and Rannala 2003)
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Features of NewHybrids:

1. Does not require sampling from known, separate locations

2. Allows more than one “migrant ancestor” (but only 2 sources)

3. Allows non-symmetrical migration/backcrossing

4. Dependence within loci is explicitly modeled

Dr Eric C. Anderson and Dr Matthew Stephens UW - Summer Institute, July 2016



MCMC in Statistical Genetics Session 5 - 20

2 Generations = 6 hybrid categories:
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structure with prior pop. info vs. NewHybrids :
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Features of BayesAss+:

• Specialized model—more realistic in some scenarios

• Applies specifically to:

– Detecting recent immigrants in populations
– Estimating separate migration rates between populations
– Can deal with multiple locales/subpopulations

• Data Requirement:

– Distinct subpopulation/sampling locales
– Multilocus genotypes

• Assumptions:

– No LD in component subpopulations (F for H-WD)
– Number of subpopulations is known
– Migration occurs infrequently
– Migrant ancestry limited to the last n generations
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BayesAss+ sampling scenario and model:
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structure with prior pop. info vs. BayesAss+ :
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Markov chain Monte Carlo in structure

Goals of this lecture:

• Discuss component-wise Metropolis-Hastings sampling

• Demonstrate how MCMC is carried out in the structure model

• Introduce Gibbs sampling as a special case of Metropolis-Hastings
sampling

• Visualize MCMC in structure in real time
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Inference in the structure model:

We might be interested in the
posterior mean of the admixture
proportions Qi for each individ-
ual in the sample, i.e.,

E(Qi|Y, A,�)

This is an expectation over the
posterior distribution of Qi.
For most real scenarios, this
can’t be computed exactly.
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However, if we could simulate values of ↵, Qi W, and ✓ from their
distribution conditional on Y and the priors, then we could use that
sample in Monte Carlo.

In other words, imagine we have a sample of all the latent variables
(↵,Q,W, ✓)(1), (↵,Q,W, ✓)(2), . . . , (↵,Q,W, ✓)(n). Then we
could focus only on the simulated Qi’s, for any individuals i, and es-
timate their posterior mean by

E(Qi|Y, A,�) ⇡
1

n

nX

j=1

Q(j)
i

where Q(j)
i is just one little component of the multidimensional ran-

dom variable (↵,Q,W, ✓)(j) which is simulated from its conditional
distriubution given the genotypic data Y.

Simulating this “mega-variable” can be done via a component-wise
Metropolis-Hastings algorithm.
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Component-wise Metropolis-Hastings sampling I:

Pretend that you knew the
values of all the latent vari-
ables (shaded purple here)
which we will collectively call
X = (↵,Q,W, ✓).

AND

the value of these latent vari-
ables was randomly drawn from
their conditional distribution
given Y and the priors.
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Component-wise Metropolis-Hastings sampling II:

Then, select a variable (↵
here), and update it using the
Metropolis-Hastings algorithm:

1. propose changing it to ↵0

2. accept or reject the proposal
according to the M-H ratio

We know by the properties of
the M-H algorithm, that the new
state of all the variables X0 can
also be considered a random
draw from P (X|Y,�, A).
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Performing this process repeatedly, focusing on all the different com-
ponents of X in series or in random order will lead to series of states
X that form a Markov chain X(0),X(1),X(2), . . . and those values
can be used to approximate any expectations of interest.

A happy consequence of the factorization:

The P (X0|Y,�, A)/P (X|Y,�, A) term in the Hastings ratio mostly
cancels out. For example, when X0 involves an altered state of ↵:

P (X0|Y, �, A)

P (X|Y, �, A)

=

P (↵0|A)

P (↵|A)

·
QM

i=1

P (Qi|↵0
)

QL

`=1

P (Wi,`,1,Wi,`,2|Qi) · · ·QM

i=1

P (Qi|↵)
QL

`=1

P (Wi,`,1,Wi,`,2|Qi) · · ·

=

P (↵0|A)

P (↵|A)

·
QM

i=1

P (Qi|↵0
)

QM

i=1

P (Qi|↵)

Thus, only a portion of the complete-data, joint distribution must be
considered for each update.
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The details for an update of ↵:

The conditional distributions with K subpopulations are as follows:

↵k ⇠ Uniform(0, A) , indep. for each k = 1, . . . ,K

Qi|↵ ⇠ Dirichlet(↵)

New values are proposed for a single component k of ↵ from a nor-
mal distribution with variance �2 centered at the current value ↵k:

q(↵0
k|↵k) ⌘ Normal(↵k,�

2

) Note : this is symmetrical

So the Hastings ratio for component k = 2 looks like:

MY

i=1

�(↵
1

+ ↵0
2

+ · · ·↵K)

�(↵
1

+ ↵
2

+ · · ·↵K)

�(↵
2

)

�(↵0
2

)

Q
↵0

2

i,2

Q↵
2

i,2
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How about updating Qi?:

Qi, the admixture proportion
for individual i is updated by a
special kind of componentwise
M-H algorithm called “Gibbs
Sampling.”

Gibbs sampling (Geman and
Geman 1984) is Metropolis-
Hastings sampling in which the
proposal distribution is the full
conditional distribution of the
variable being updated.

The full conditional distribution
is the distribution conditional on
all variables that are not being
changed in the update.
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First, focus only on the relevant variables:

The factorization of the joint
distribution, and the conditional
independencies thereof, again
ensure that we only have to
worry about variables in a
neighborhood around Qi

Also, we can focus on the Qi for
a single individual i at a time,
rather than dealing with all M
individuals at once.

The relevant variables appear in
the pruned graph to the right.
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The full conditional distribution is quite simple:

P (Qi|all other variables) = P (Q|↵,W )

Wi,`,1 is a multinomial variable (of only one trial) indicating which sub-
population the first gene copy, at the `th locus in the ith individual
came from.

Qi|↵ ⇠ Dirichlet(↵)

Wi,`,a|Qi ⇠ MultinomialK(1,Qi) iid 8` and a = 1,2

So, it is immediately apparent that the full conditional distribution
P (Q|↵,W ) is just the posterior distribution for the cell probabilities
of multinomial data—the multivariate generalization of the Beta distri-
bution discussed in Session 1.

If P (Q|↵,W ) is used as the proposal distribution q(Q0|Q), then it
is easy to show that the acceptance probability, computed using the
Hastings ratio, is always equal to 1—a convenient feature of Gibbs
sampling.
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How about the other variables—W and ✓?:

The updates for these variables proceed in a similar fashion using
Gibbs sampling.

Computer Demo: pritch run on ScottishKittiesForNewHybs.txt
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Computing Practical Session

with structure

The goals of this practical session—Allow students to:

• Familiarize themselves with structure’s data format

• Use the structure front end

• Understand how the structure front end prepares input files

• Analyze the Scottish cats data

• Examine the output from structure to gain familiarity with visually
assessing convergence of different MCMC chains.
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Structure data format:

• structure expects data in white-space delimited rows

• The genotypes of individuals can be recorded in a single row, or in
multiple rows. The cat data uses a single row for each individual.

• The first row holds the marker names (e.g., “fca8 fca23 . . . ”).

• Each individual’s row contains the individual’s ID (in the first column—
e.g., “Z12”), then an integer specifying its population or sampling
location information (in the second column—e.g., “3”). The re-
maining columns are the genotypes (two columns for each locus,
e.g., “123 143 . . . ”).

• These are microsatellite genotypes. Each diploid individual has
two gene copies, and the different alleles are different lengths of
simple repeat DNA segments between conserved primer regions.

• Such data are not used extensively in human genetics any longer,
but are still used in molecular ecology. In this case they provide a
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compact data set that structure can analyze quickly enough to do
multiple runs in the course of a short practical session.

• The first five lines of cats.dat are below:

fca8 fca23 fca35 fca43 fca45 fca77 fca90 fca96 fca126

Z12 3 123 143 136 140 144 144 120 122 157 158 144 144 107 107 210 212 142 144

Z13 3 135 135 134 140 144 144 120 122 161 161 144 144 93 105 210 220 144 144

Z14 3 115 121 132 150 144 152 118 122 152 158 144 144 107 113 214 220 142 142

Z15 3 121 123 140 140 144 152 122 128 152 152 144 144 93 107 212 210 136 142

• Sampling localities 1–6 refer to wild-living cats in Scotland, and
localities 7, 8, and 9 refer to house cats sampled from veterinary
centers in three regions in the southern UK.
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Making a new structure project file:

• The Java-based front end of structure organizes MCMC runs in
the form of projects.

• Each run in a project uses the same data set, but can use different
parameter settings for different runs.

• The front end accomplishes this by preparing appropriate input
files for structure then issuing the appropriate commands to run
structure with those input files. It is convenient for people who are
not very comfortable in a command line environment.

• The front end also has some useful data visualization capabilities.

• To make a new structure project to analyze the cats.dat data set:

1. Launch structure (usually by double-clicking its icon or its short-
cut). This launches the front end.

2. Go back to structure and choose [File]![New Project. . . ] to
launch the “Project Wizard”. Then give the project a name (I
would recommend not putting spaces in the name). In the rest
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of this, we will assume we have named the project “scot-cats”.
Select the directory you wish to put it in (I just put it on my
Desktop) and then select the data file cats.dat which is part of
the SISG module’s data. Or, if you wish to download it directly,
you can get it from http://tinyurl.com/scot-cats. Once
you download it, you have to direct structure to where the file
resides in your file system.

3. In Step 2 of the “Wizard” we have to report how many indi-
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viduals and loci there are in the files. Choose “Show data file
format” to get a little information about the file:

One can see there is one row with 9 locus names then 304
rows of individuals, with 20 columns (2 ⇥ 9 for the loci, plus
one for the ID, and one for the population label). So fill in these
values:
– Number of individuals: 304
– Ploidy of data: 2
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– Number of loci: 9
– Missing data value -9

(If you look through the file you see that missing data values
are coded as -9’s). Then hit next. . . .

4. Step 3 of the “Wizard”: More data file formatting setup. Check
the boxes for “Row of marker names” (because the file starts
with a row of locus names) and also for “Data file stores data
for individuals in a single line.”
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5. Step 4 of the “Wizard”: Here we have to alert structure to any
other columns that exist for each individual in a row. Recall that
we have an ID for each indiv, and also an integer expressing
sampling location. So check the boxes next to “Individual ID
for each individual” and “Putative population origin for each
individual.”
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Then hit Finish. Then Proceed.
6. That should work, and you should see the data in a spread-

sheet window. Now we must specify parameters for a run.
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Creating parameter sets:

1. Choose [Parameter Set]![New. . . ]

2. Note that there are tabs to set the Run Length, Ancestry Model,
Allele Frequency Model, and “Advanced” options.

3. Let’s do a simple parameter set with mostly default options. We
want to get things done pretty quickly, so we will do shorter runs
than are typically recommended. Set Burn In at 2000 and MCMC
reps after burn-in to 4000.

4. We will use the admixture model with correlated frequencies, etc.
These are all the default options.

5. Hit OK, and then name the parameter set. For this example I will
name it “PlainPars”. Hit OK. You should now see a summary of
the parameter set.

6. Try clicking around in the left hand panel to see the different views
of data and parameter sets that are now available.
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Doing a structure run:

• We can now do a run of structure using the parameters in Plain-
Pars. Do this by choosing [Parameter Set]![Run]. Set the num-
ber of assumed populations (K) to 2 and hit OK.

• While this is running, you can view traces of some of the important
parameters. For example, choose [Plotting]![Run-time]![Alpha]
to view a trace of values of ↵ inferred by structure.

• Be sure to kill the trace plot windows when you are done with
them because (at least on older versions I used) they slow down
the progress immensely.

• When the run has finished, click on “Results” under “PlainPars”
in the left panel, so it expands out and you can click on “Plain-
Pars run 1 (K=2)”. With that highlighted, the right panel should
give the text summary of the structure output, and the right panel
also has pull-down menus to plot the output in various ways:
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Plotting results using the front end:

From the right hand window when results of any run are selected you
can

• Make a Bar Plot that shows each individual’s Q (admixture pro-
portions). To get this plot, choose [Bar plot]![Show]. To see it up
closer, you can select the “Plot in multiple lines” radio button. The
result should look like:
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Scroll through this plot and note that the individuals from sampling
locales 7, 8, and 9, (the house cats) consistently have a large propor-
tion of ancestry from one of the subpopulations. That subpopulation
presumably represents domestic cat ancestry. Interestingly, some of
the wild-living cats have just as much “domestic cat ancestry” as do
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the cats from the vet clinics.

• You can also plot traces of variables like ↵, and the complete data
log likelihood. Choose [Data plot] for these. These can give you
some idea of how well the MCMC is mixing.

• Try creating some histogram plots, as well.
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The underlying parameter files:

When the front end executes a run of structure, it creates a main-

params and an extraparams file. These are the files that you would
use to execute the same run on the command line.

To see what these files look like, you can find these two files in the
PlainPars directory in your structure project folder, and open them up
with any suitable text editor
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Scheduling a series of runs:

One very useful feature of the front end is that it allows you to set up
a series of runs. This is especially useful for investigating different
values of K.

We will use this feature to investigate model selection for different
values of K:

1. Select [Project]![Start a Job]
2. Then select “PlainPars” from the Structure Scheduler
3. Set K from 1 to 4
4. Set the number of iterations to 2 (or more if your computer crunches

through each run in little time.)
5. Hit start.

That should finish in a few minutes. Once it is done, note that all the
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results are neatly stored in the Results directory of the left panel.

If you did more than one iteration for each K, compare the values
obtained for LnP (D) in the different runs at the same value of K.
Especially for K = 4 there may be marked disparities due to mixing
anomalies.

Look at trace plots of the Ln Likelihood values for runs that look like
they may be a little anomalous.

Remember that inference for K using structure is quite ad hoc.
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Assessing Convergence By Examining Traces:

One of the unfortunate deficiencies of the structure front end is that
it does not print out all the standard output of the program structure.
That output includes current values of a number of variables in the
MCMC every sweep. Instead, those data are stored within Java ob-
jects by the structure front end.

While that approach allows you to make trace plots for single runs in
the front end, it is hard to compare the results from multiple runs.

Since one of the themes of this course is that it is essential to com-
pare the results from multiple MCMC chains, we’ve prepared a little R
package that makes it easy to do multiple runs of structure and then
compare the runs using the R package ggplot2.

Instructions on using it can be followed along at:
http://rpubs.com/eriqande/scot-cats
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Taking it further:

That was an introductory analysis using structure. Here are some
suggestions for different analyses that you might want to experiment
with if you have more time:

1. Try analyzing the data using the model with prior population in-
formation and 9 different populations. (This is a little silly, but a
good exercise nonetheless). Do this by creating a new parameter
set in which the Ancestry Model is “Use population information”
and set the migration rate parameter, ⌫, at a value around .01 to
.05. Repeat the analysis with a ⌫ of about .15 or .25 and see how
sensitive the results are to the assumed migration rate.

2. Note that the first analysis we did was a little naive, because,
in terms of estimating ↵, it essentially assumes that all individ-
uals were randomly sampled from a big grab-bag of potentially-
admixed wild-living cats. In reality, the cats from the vet clinics
should not be used to estimate ↵. Rather we might desire that
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↵ would reflect the degree of admixture amongst wild-living cats.
This problem can be rectified by specifying that the cats from the
vet clinic are a “learning sample.” Do this in the following way:

(a) Create a new data set that has both a PopData and a PopFlag
column.

(b) Make the PopData column hold 1’s for all the wild-living cats,
and 2’s for all the vet-clinic cats (those that originally had 7, 8,
or 9). (This—and the next task—is probably most easily done
with a spreadsheet program).

(c) Make the next column the PopFlag column. Give all the vet-
clinic cats 1’s, and everything else 0’s.

(d) Make a new project using this data set, and run the analy-
sis with prior population information with a negligible migration
rate.

3. Finally, we may wonder how well structure would perform if it didn’t
have the learning sample of vet-clinic cats. So, make a new data
set in which you have deleted all cats with PopData of 7, 8, or 9.
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Then analyze the remaining cats using the admixture model with
no prior population information. Do this for K = 2 and compare
the allele frequencies estimated for the two subpopulations with
the results obtained from our original analysis. Investigate how
inference for K is affected.
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:

The Haplotyping Problem

A Bayesian Approach
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:

The Haplotype Problem

• Suppose we genotype individuals at a

number of tightly linked SNPs.

A C G C C T T T G C G C

G A A C C C C C A G G C
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:

The Haplotype Problem

• Suppose we genotype individuals at a

number of tightly linked SNPs.

A C G C C T T T G C G C

G A A C C C C C A G G C
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:

The Haplotype Problem

• Suppose we genotype individuals at a

number of tightly linked SNPs.
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:

The Haplotype Problem

• What do the types on the two chromosomes

look like?
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:

The Haplotype Problem

• What do the types on the two chromosomes

look like?
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:

The Haplotype Problem

• What do the types on the two chromosomes

look like?
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:

The Haplotype Problem

• What do the types on the two chromosomes

look like?
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:
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:

The Haplotype Problem –

potential solutions

• Molecular methods

• Collect family data

• Statistical methods
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:

The Simplest Case

• What do the types on the two chromosomes

look like?
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The Next Simplest Case

• What do the types on the two chromosomes

look like?
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:

The first difficult case…

• What do the types on the two chromosomes

look like?
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The first difficult case…

• What do the types on the two chromosomes

look like?
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:

Clark’s Method (1990)

• Idea: use information obtained from other

individuals in the population to determine

the most probable haplotype pair.

Dr Eric C. Anderson and Dr Matthew Stephens UW - Summer Institute, July 2016



MCMC in Statistical Genetics Session 7 - 17

:

Is it this configuration?

1

2

3
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:

…or this one?

1

2

3
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:

This one is more probable.

1

2

3
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:

Clark’s Method (Clark, 1990)

• Identify the unambiguous individuals.

• Make a list of “known” haplotypes.

• Go through list, and see whether ambiguous

individuals can be made up from a “known”

haplotype plus another “complementary”

haplotype. If so, add the complementary

haplotype to the list of “known” haplotypes.
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:

Clark’s Method

List of known haps.
1

2

3
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Clark’s Method

List of known haps.
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2

3
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:

Clark’s Method: Problem 1

3

1

2
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Clark’s Method: Problem 1

List of known haps.
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Clark’s Method: Problem 1

List of known haps.
1

2

3

Dr Eric C. Anderson and Dr Matthew Stephens UW - Summer Institute, July 2016



MCMC in Statistical Genetics Session 7 - 28

:

Clark’s Method: Problem 1

List of known haps.
1

2

3

Answer depends on order list is considered….

… and frequency information is ignored
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:

Clark’s Method: Problem 2

3

1

2
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:

Clark’s Method: Problem 2

3

1

2

List of known haps.

Algorithm can fail to resolve all haplotypes…

… because looks only for exact matches
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:

Clark’s Algorithm: Summary

• Results may depend on order individuals

are considered.

• Frequency information is ignored.

• Looks only for exact matches.

• May fail to resolve all haplotypes.

• Fails to assess uncertainty.
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:

Strategies for improvement

• Replace single pass through data, with

iterative scheme (MCMC).

• Use frequency information.

• Take into account “near misses”, as well as

exact matches.
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:

Example

List of known haps.
1

2

3
Matches 1 known

Differs by 2 from 3 known

3

1
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:

Example

List of known haps.
1

2

3
Matches 3 known

Differs by 2 from 1 known

3

1
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:

Example

List of known haps.
1

2

3
Differs by 1 from 3 known

Differs by 1 from 1 known

3

1

How to balance these possibilities?
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:

The key question

• What is the conditional distribution of the

next haplotype, given a set of known

haplotypes?

• Answer to this question allows a Gibbs

sampler to be implemented.
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:

Example

1

2

Given the above haplotypes, what would you

expect the next haplotype to look like?
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:

A Naïve Gibbs Sampler

• Put standard conjugate prior on the NH haplotype
frequencies:

                      Dirichlet(α,…, α)

• Gives simple conditional distribution:

α
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• Uses frequencies, but ignores near misses.
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:

Example

List of known haps.
1

2

3
Matches 1 known

Differs by 2 from 3 known

3

1

This would have probability proportional to (1+ α) α
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:

Example

List of known haps.
1

2

3
Matches 3 known

Differs by 2 from 1 known

3

1

This would have probability proportional to (3+ α) α
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:

Example

List of known haps.
1

2

3
Differs by 1 from 3 known

Differs by 1 from 1 known

3

1

This would have probability proportional to α α
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:

A Pseudo-Gibbs Sampler

• Want the conditional distribution to capture

idea that next haplotype will be same as or

similar to an existing haplotype.

• Do this by approximating the conditional

distribution directly (rather than specifying

prior).
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:

A Pseudo-Gibbs Sampler (cont)

• We assumed that next haplotype differs by M

mutations from a randomly-chosen existing

haplotype, where M has a geometric distribution.

• Motivated by population genetics theory (the

Ewens sampling formula) we choose

                   Pr(M=0) = n/(n+θ)

• Does not, in general, correspond to a prior.
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:

Comparisons on simulated data
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:
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:

MCMC scheme also estimates

missing genotypes

• SeattleSNP data; 48 genes, 48 individuals,

average ~80 SNPs per gene.

Error rates for imputing missing data:

18.3%6.3%4.2%2.8%3.1%

StrawHAPNaïve

Gibbs

PHASE

v2.0 (R)

PHASE

v2.0 (NR)
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:

Something to think about

• What if the data look like this: n individuals, typed
at two loci, all heterozygous at both loci. (ie all
01,01).

• What is the MLE for the haplotype frequencies?

• Conditional on this MLE, what are the diplotype
distributions for each individual?

• What is the Bayesian solution?

• What kinds of problems might we expect to come
across in MCMC? (especially for large n).
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Practical on haplotype inference

All input files are available at

http://stephenslab.uchicago.edu/sisg/

You will need to save the input files example1.txt, example2.txt and
example3.txt to your local computer in the same directory as PHASE
lives.

Then open an MSDOS window, and change to the directory where
PHASE lives.
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Example 1

The input file example1.txt contains an input file for the PHASE soft-
ware. Here is what it looks like, with some comments

3 (this is the number of individuals)
5 (number of SNPs)
P 100 200 300 400 500 (positions of SNPs)
SSSSS (types of loci: all 5 are SNPs)
#1 (individual label - this is data for individual 1)
11111 (5 columns, 2 rows, each column is 1 genotype)
11111 (this case is homozygous for 1 allele at all SNPs)
#2
00000
00000
#3
00000 (this one is heterozygous at all SNPs)
11111
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Before running PHASE on this file, here are some things to think
about:

• How many of the individuals have ambiguous haplotypes?

• What would you guess for the haplotypes of the ambiguous indi-
vidual(s)?

• How confident would you be? Very confident? Less confident?
(What might make you more confident?)
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• Try running PHASE on this file using
PHASE example1.txt example1.out

Take a look at the output files example1.out, and example1.out pairs,
and see if PHASE’s answers correspond to your intuition.
You might also like to look at the output file example1.out freqs
which contains estimates of the population haplotype frequencies.

• Try running PHASE again:
PHASE example1.txt example1.2.out

Do you get the same answers? You should, because by default
PHASE uses the same random numbers to simulate the Markov
chain.
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Changing the Seed

To change the random numbers used, you need to use the -S option
to set the ”seed”:

PHASE -S332554 example1.txt example1.3.out

The answers should look similar, but not identical.

Performing multiple runs with different seeds is a helpful way to check
that you are running the algorithm long enough to get reliable results.
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Example 2

The file example2.txt contains another small input file. This one was
created by putting together individuals by randomly pairing haplo-
types taken from a pool containing equal numbers of the 8 possible
3-SNP haplotypes.

• What would you expect to happen for this input file?

• Try running PHASE a few times, with different seeds, and com-
pare the results.

• As well as estimating the haplotypes for each individual (eg in
the pairs file) PHASE also estimates population haplotype fre-
quencies: see the freqs file. Compare these estimates with the
description of how the input file was created.

• One way to estimate haplotype frequencies is to first estimate the
haplotypes for each individual and then to count up how many
times each haplotype occurs in these estimates. But this is the
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kind of 2-stage procedure that should be avoided. Can you think
of another way?

• By default PHASE estimates recombination rates, and uses con-
ditional distributions based on these rates within a model known
as the coalescent. One can also specify, among other things, that
PHASE is to use a Dirichlet prior for the haplotype frequencies
(use the -ME option), or to assume a coalescent prior with no re-
combination (-MS). The main reason one might want to use these
options instead of the default is that for big problems they can run
appreciably quicker. Try running PHASE with these options on
this data set, and compare the results (eg the freqs file) with the
results from the default.
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Example 3

In addition to estimating haplotypes, PHASE can also be used to es-
timate recombination rates in a region, and to assess whether the
region contains a recombination ”hotspot”. By invoking the -MR1 1
option, PHASE assumes that the recombination rate in the region
is constant, with the possible exception of a single recombination
hotspot somewhere in the gene. PHASE makes various assump-
tions about the location, width and intensity of the hotspot by making
assumptions about the prior distributions of these quantities. It then
outputs a hotspot file, which contains a sample from the posterior
distribution for these quantities.

The input file example3.txt contains data from a gene CD36. Run
PHASE using the -MR1 1 option:

./PHASE -MR1 1 example3.txt example3.out

and examine the contents of the file example3.out hotspot.
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The following code can be used to read the hotspot file into R and
plot summaries. (Or you could use Excel if you prefer.) Try perform-
ing multiple runs of PHASE and comparing results (eg the posterior
distribution of the hotspot intensity) for different seeds.

h = read.table("example3.out_hotspot")
hist(h[,4]) # h[,4] contains samples from the posterior

# distribution of intensities
plot(h[,4])
mean(h[,4]>1) # returns the proportion of samples

# where the intensity is > 1
# (note that intensity 1 corresponds to
# "no hotspot")

hist(h[,3]-h[,2]) # h[,3] and h[,2] are samples from the
# limits of the hotspot

plot(h[,3]-h[,2])
hist(h[,1]) # h[,1] is an estimate of the recombination

# parameter outside the hotspot
sum(h[,4]>1)
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Bayesian Model Choice:

In Bayesian inference model choice is, in principle, no different from
other inferential procedures: put priors on the models and compute
their posterior probabilities.

Suppose, M
1

and M
2

are two models under consideration (not nec-
essarily nested). Suppose observe data Y . Then, by Bayes Theo-
rem, relative plausibility of M

1

and M
2

are given by

Pr(M
1

|Y )

Pr(M
2

|Y )

=

Pr(M
1

)

Pr(M
2

)

Pr(Y |M
1

)

Pr(Y |M
2

)

or

Posterior odds = Prior odds ⇥ Bayes Factor.
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Odds:

Note that, assuming M
1

and M
2

are the only possible models, then
the posterior odds determines their posterior probabilities, since
Pr(M

1

) + Pr(M
2

) = 1.

Eg: if posterior odds = 1, then posterior probability of each model is
0.5.

If posterior odds = 10 the posterior probability of model M
1

⇡ 0.91
(0.91/0.09 ⇡ 10).
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Bayes Factor:

The Bayes factor, is a convenient summary of the evidence in the
data for M

1

vs M
2

.

Note that it does not depend on the prior probabilities assigned to
models M

1

and M
2

. But does depend on priors on parameters in
the two models.

BF =

p(Y |M
1

)

p(Y |M
2

)

=

s p(Y |✓
1

,M
1

)p(✓
1

|M
1

)d✓
1

s p(Y |✓
2

,M
2

)p(✓
2

|M
2

)d✓
2

These integrals are sometimes referred to as the “marginal likeli-
hoods”.

Note: BF is somewhat similar to a likelihood ratio, but involves inte-
gration rather than maximisation.
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Example:

Consider throwing a six-sided die, with probability qi of throwing an i.

M
1

: qi = 1/6

M
2

: qi =

(
0 (i 6= 6)

1 (i = 6)

If we observe a single throw, of 1, BF = 1.

If we observe a single throw, of 6, BF = 1/6.
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Example:

Consider throwing a six-sided die, with probability qi of throwing an i.

M
1

: qi = 1/6

M
2

: q ⇠ Dir(q; 1,1,1,1,1,1)

If we observe a single throw, of 1, BF = 1.

If we observe a single throw, of 6, BF = 1.
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Interpretation of BF:

Note that BF cannot really be interpreted in isolation, without consid-
eration of the prior odds.

For example, in studies where M
1

and M
2

are both considered some-
what equally plausible a priori, a BF of 10 constitutes fairly strong
evidence for M

1

vs M
2

.

In a genome-wide association study, where very few variants are ex-
pected to be associated with disease, the prior odds is very small (eg
1/104), so a BF of 10 is worth hardly a mention.... unless it is for
a SNP near a gene that is a good candidate for influencing disease
susceptibility.
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Model Choice: general considerations:

In general, model choice is a difficult problem, best avoided unless
really necessary. Unfortunately it is often necessary.

The Bayes Factor for model M
1

vs M
2

depends, roughly, on the
amount of prior mass each model has on parameters consistent with
observed data. (This naturally penalises more complex models: no
need to do this explicitly.)

If you have a natural “null” hypothesis, against which to compare,
then the “alternative” should place moderate prior mass on parameter
values near to the null.

Eg: in a drug trial, a natural null hypothesis is that there is no differ-
ence between two treatments (✓ = 0).

Therefore, the alternative hypothesis should include moderate mass
on values of ✓ “close” to 0.
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Effects of Prior in structure on Bayes Factors:

The structure model implements two different priors on the allele fre-
quencies within each subpopulation.

The “correlated allele frequencies” prior assumes that the allele fre-
quencies in different subpopulations are correlated a priori.

The other (original) prior assumes that they are independent a priori.

The second model places much less prior mass on the allele frequen-
cies being very similar.

If the truth is that there are K = 2 subpopulations, but with very
similar allele frequencies, which prior will tend to give a larger BF for
K = 2 vs K = 1?
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Computing BFs:

Not only are BFs sensitive to prior assumptions, but they are also
difficult to compute!

Recall that BF = P (Y |M
1

)/P (Y |M
2

), where each term in this
ratio is an integral:

P (Y |M
1

) =

Z

✓
P (Y |✓)P (✓|M

1

)d✓

In high-dimensional problems this integral is difficult to compute (al-
though Importance Sampling or numerical integration methods are
sometimes used successfully). See also Gelman and Meng (1998)
for review of methods.
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Computing BFs via MCMC:

Note that the integral is the normalizing constant in Bayes Law:

P (✓|Y ) =

P (Y |✓)P (✓|M
1

)R
✓ P (Y |✓)P (✓|M

1

)d✓

One of the most helpful features of MCMC is that it allows one to
sample from this distribution without evaluating the normalizing con-
stant.

It turns out that it is also possible to compute BFs without evaluating
this integral. The idea is to use MCMC to sample not only parameters
within a model, but also to move between the two models.

This allows one to compute the posterior probability of the two mod-
els, and hence the posterior odds, from which one obtains the BF.
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Sampling across models via MCMC:

Approach 1: do standard MCMC on the space I, ✓
1

, ✓
2

, where I is
an indicator (1 or 2) for whether we are in model 1 or model 2, and
the likelihood is

Pr(Y |I, ✓
1

, ✓
2

) = Pr(Y |MI, ✓I).

Approach 2: do MCMC on the space (I, ✓I). This involves jumping
between spaces of different dimension, for which the standard MH
algorithm is not directly applicable, but a modified form (“reversible
jump MCMC”) exists (Green, 1995).

In both cases the challenge is to jump between the two models. In
approach 1 we just have to hope that it happens. In approach 2 one
can try to be clever to make it happen, but being clever enough is
difficult in high-dimensional problems.
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Example: Structure and the number of subpopulations:

In our discussion of structure up to this point, we have mostly as-
sumed that the number of subpopulations, K, is known.

However, sometimes (as in the case of “cryptic” population structure)
the number of subpopulations is not known.

Differing numbers of subpopulations correspond to different models,
(i.e., M

1

might be K = 2 and M
2

might be K = 3).

Ideally, we would like to compare models on the basis of their BF,
P (Y |K = 2)/P (Y |K = 3).
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Computing BFs by sampling over K?:

If K could be included
as another variable in
the DAG representing
the structure model,
then we could propose
Metropolis-Hastings
updates to K, and
estimate P (K = i|Y )

as the proportion of
time the chain spends
in states with K = i.
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Traversing state spaces of differing dimensions—reversible
jump MCMC:

• This is non-trivial because it involves jumping between spaces of
different dimensions.

• Requires the “reversible jump” algorithm of Green (1995).
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Unfortunately, in a model like that of structure, with numerous multial-
lelic loci, going from K = 2 to K = 3 increases the dimensionality
dramatically, and RJMCMC is very difficult to apply successfully in
such a situation.

The problem is that it is very hard to propose reasonable values of the
allele frequencies for the “new” subpopulations that get added when
K is increased.
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How structure tries to solve the problem of choosing K:

Instead of computing the BF, structure introduced a different approach
to model choice.

The approach is motivated by an attempt to “estimate” the normaliz-
ing constants that appear in the BF. As such the output of structure
includes quantities that are labelled as estimates of logPr(Y |K).

However, the authors note that these estimates are unlikely to be
accurate.

Selecting K by choosing K that maximises these estimates should
be viewed as an ad hoc and computationally convenient approach to
model choice, that performed well in simulations.
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How structure tries to solve the problem of choosing K:

For notational convenience let’s denote by ⌦ the latent variables W ,
Q, ↵ and ✓, and denote all the observed data by Y .

1. First notice that from the law of conditional probability:

P (⌦, Y |K) = P (Y |K,⌦)P (⌦|K)

it follows that:
P (⌦|K) =

P (⌦, Y |K)

P (Y |K,⌦)

2. Then because probability distributions integrate to one:

1 =

Z

⌦

P (⌦|K)d⌦ =

Z

⌦

P (⌦, Y |K)

P (Y |K,⌦)

d⌦
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3. Then, write the numerator of the right side above as a product of
densities, and rearrange:

1 =

Z

⌦

P (⌦|Y,K)P (Y |K)

P (Y |K,⌦)

d⌦

implies

1

P (Y |K)

=

Z

⌦

P (⌦|Y,K)

P (Y |K,⌦)

d⌦ =

Z

⌦

✓
1

P (Y |K,⌦)

◆
P (⌦|Y,K)

4. The above can be recognized as an expectation
Z

⌦

✓
1

P (Y |K,⌦)

◆
P (⌦|Y,K) = E


1

P (Y |K,⌦)

����Y,K
�

5. And so approximated by Monte Carlo:

⇡
1

n

nX

i=1

1

P (Y |K,⌦(i)
)
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where ⌦

(i) is simulated from its conditional distribution given Y
and K. This is precisely the sort of sample that doing MCMC in
structure at a fixed value of K gives you.

6. Unfortunately, this Monte Carlo estimator, known as the “harmonic
mean” estimator, is notoriously unstable and may have infinite
variance.

7. Instead, consider the random variable D = �2 logP (Y |⌦,K)

(the “deviance”) which is a function of the random variable ⌦.
Assume that D (conditional on the data) is normally distributed
(an “admittedly dubious” assumption).

8. Going back to our harmonic mean expectation, we can write it in
terms of D:

1

P (Y |K)

= E


1

P (Y |K,⌦)

����Y,K
�
= E[eD/2

]

9. If D really is normally distributed then the right hand side of the
above equation is just the moment generating function for a nor-
mal random variable (recall that E[etX] = eµt+�2t2/2).
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10. So:

1

P (Y |K)

= eµ/2+�2/8 ) � logP (Y |K) = µ/2+ �2/8

where µ = E[D|Y ] and �2

= Var[D|Y ].

11. Finally, it is easy to estimate µ and � by Monte Carlo from the
values of D(i) obtained when the chain samples from the values
of ⌦(i).
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Deviance Information Criterion (DIC):

Spiegelhalter et. al. (2002) have proposed an alternative method
for selecting models based on MCMC output, called the “Deviance
Information Criterion” (DIC).

In common with the structure approach, DIC also involves penalising
the mean deviance, but with a different penalty.

Unpublished simulations from Carlos Bustamante suggest that DIC
may perform better at selecting K than the current approach imple-
mented in structure, and this approach may be implemented in future
versions.
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Summary:

• Avoid drawing strong conclusions based solely on choice of K
indicated by a structure analysis.

• Whenever you come across a Bayes Factor, ask yourself whether
the priors used are sensible, and how they might influence the
result.
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The Bottom Drawer—A Variety of Topics

The goals of this lecture are:

• Introduce importance sampling—a Monte Carlo variance reduc-
tion technique

• Explain how MCMC can be used to compute likelihood ratios

• Demonstrate MCMC in simple pedigrees and discuss problems of
reducibility

• Discuss poor mixing more generally and describe
Metropolis-coupled MCMC
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The opposite of importance sampling—“minimal relevance”

sampling:

Let’s say you wanted to estimate the area under the curve g(x) below
by Monte Carlo:

Note that we are back to “vanilla” Monte Carlo (not MCMC) for the
next five slides or so. . .
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• We could simulate random variables U ⇠ Uniform(0,1)

Z
1

0

g(x)dx =

Z
1

0

g(x)1dx = E[g(U)] ⇡
1

n

nX

i=1

g(u

(i)

)

And that would work pretty well.

• We could also simulate random variables W ⇠ Uniform(0,5)

Z
1

0

g(x)dx = 5

Z
1

0

g(x)

1

5

dx = 5E[g(W )] ⇡
5

n

nX

i=1

g(w

(i)

)

• Each method is correct, but the second is clearly inefficient. Any
values of w(i) greater than 1 don’t provide us with any information
about the area under g(x)!!

• The second method has larger Monte Carlo variance.
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Importance sampling:

• Importance sampling is choosing a good distribution from which
to simulate one’s random variables for Monte Carlo.

• It involves multiplying the integrand by 1 (usually dressed up in
a “tricky fashion”) to yield an expectation of a quantity that varies
less than the original integrand over the region of integration.

• For example, say we wish to approximate
R
x2A g(x)dx and we

can “dream up” a distribution h(x).
Z

x2A
g(x)dx =

Z

x2A
g(x)

h(x)

h(x)

dx =

Z

x2A

g(x)

h(x)

h(x)dx

which is

E
h


g(X)

h(X)

�

where E
h

denotes the expectation with respect to the density h,
so long as h(x) > 0 for all values x for which g(x) 6= 0.
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So we could approximate
R
x2A g(x)dx by:

G

h

n

=

1

n

nX

i=1

g(x

(i)

)

h(x

(i)

)

where each x

(i) is simulated from the density h.

• Using the Cauchy-Schwarz inequality, it is not too difficult to show
that the Monte Carlo variance of Gh

n

is minimized when h(x) /
|g(x)|.

• Even more straightforward, if we consider only the case where
g(x) > 0, it is immediately apparent that the Monte Carlo vari-
ance is minimized (is zero, in fact) when h(x) / g(x).

• Of course, if you could simulate independent r.v.’s from a distribu-
tion exactly proportional to g(x), that implies you know the value
of the integral anyway. So this is a little circular—but it does em-
phasize that importance sampling works best when h(x) is close
to proportional to g(x).
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Choosing a good importance sampling distribution:

A good importance sampling function h(x) should have the following
properties:

1. h(x) > 0 whenever g(x) 6= 0

2. h(x) should be close to being proportional to |g(x)|
3. it should be easy to simulate values from h(x)

4. it should be easy to compute the density h(x) for any value x that
you might realize.

Fulfilling this wish-list in high dimensional space (where Monte Carlo
techniques are most useful) is quite often a tall task.
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Simple example: Estimating the area under a Normal(0,1)

curve with n = 1,000:

h(x) ⌘ Uniform h(x) ⌘ t

1

Dist. h(x) ⌘ t

30

Dist.
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Example of importance sampling in genetics:

• Griffiths and Tavare (1994) developed a “recursion” method for
simulating genealogies under the coalescent model conditional
on genetic data at the tips of the branches (but not exactly from
their distribution given the data).

• This method simulates independent genealogies that can be used
in Monte Carlo.

• It wasn’t until somewhat later that Joe Felsenstein and his col-
leagues were able to dissect the method and show that it is an
example of importance sampling.

• Viewing the method as an importance sampling task, Matt Stephens
and Peter Donnelly (2000) were able to improve upon the method
considerably.
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A common pitfall of importance sampling:

• Whatever is going on in the “tails” of the distribution is, unfortu-
nately, very important. . .

• If h(x) is thinner-tailed than g(x) there could be problems: if for
a rarely-realized value x

(i), h(x(i)

) is very small, but g(x(i)

) is
not terribly small, then g(x

(i)

)/h(x

(i)

) could be much larger than
typical ratios of g(x)/h(x), leading to an unstable estimator.

• Consequently, assessing the convergence of importance sam-
pling estimators can, at times, be quite difficult.
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An example of a problematic thin-tailed importance sam-

pling distribution:

Approximate the area under a thick-tailed Cauchy (t
1

) distribution us-
ing a thin-tailed Normal(0,1) density as the importance sampling
distribution, and n = 1,000:

The distribution of Monte
Carlo estimates appears to
the right. The correct area
is 1.0. Notice the number of
estimates that are greater
than 1.5.
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MCMC in a frequentist framework—not just for Bayesians

anymore:

Geyer and Thompson (1992) use an importance sampling method to
compute likelihood ratios using MCMC.

• The basic inference problem is to compute the relative likelihood
for different values of ✓ given data Y , but the likelihood P

✓

(Y ) is
an intractable sum over latent variables X :

P

✓

(Y ) =

X

X

P

✓

(Y ,X)

• We wish to be able to compute P

✓

(Y )/P

✓

0

(Y )—the ratio be-
tween the likelihood for some arbitrary ✓ and the likelihood for a
fixed ✓

0

.

• Geyer and Thompson found a tricky way of multiplying the above
equation by 1 to get a useful result:
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P

✓

(Y ) =

X

X

P

✓

(Y ,X)

P

✓

0

(Y ,X)

P

✓

0

(Y ,X)

=

X

X

P

✓

(Y ,X)

P

✓

0

(X|Y )P

✓

0

(Y )

P

✓

0

(Y ,X)

So,

P

✓

(Y )

P

✓

0

(Y )

=

X

X

P

✓

(Y ,X)

P

✓

0

(Y ,X)

P

✓

0

(X|Y ) = E
✓

0


P

✓

(Y ,X)

P

✓

0

(Y ,X)

����Y
�

P

✓

(Y )

P

✓

0

(Y )

⇡
1

n

nX

i=1

P

✓

(Y ,X(i)

)

P

✓

0

(Y ,X(i)

)

with X(i) ⇠ P

✓

0

(X|Y )

and P

✓

0

(X|Y ) is a distribution known only up to scale, so it may
be simulated from via MCMC.
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Switching gears—a simple example of MCMC on a pedigree

with “data at the bottom”:

The colored balls represent observed allelic types at a locus.
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Asking questions about the ancestors:

Simple questions:

• What is the probability that only n copies of the red allele occurred
in the founders?

• What is the probability that ancestor Z carried exactly one copy
of the purple allele?

More complex questions:

• What is the probability of the observed data at two loci, given that
the recombination fraction between those loci is ✓?

All such questions can be written as a sum over the unobserved (la-
tent) genotypes of the ancestors, and hence they can be expressed
as expectations and approximated by Monte Carlo.
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Simulating ancestral genotypes naively will fail:

You can’t just “flip-a-coin” your way up the pedigree the way that
Wright and McPhee (1925) could to estimate inbreeding:
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Another graph-like notation—pedigrees:

Males are squares. Females are circles. Black nodes mean they
have observed data (i.e.,they are part of Y ).
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The full conditional distribution for an individual’s genotype

at a locus. . . :

(Red nodes represent the elements that are conditioned on to deter-
mine the full conditional for the node labeled “X”.)

. . . depends only on its neighbors. . .
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These are the people in your neighborhood:

Parents, children, and spouses, (the red ones) are neighbors of node
“X”.

So assuming you can find a valid starting configuration, you can buzz
around and do Gibbs updates to each individual’s genotypes, and
thus simulate the latent ancestor genotypes (X) conditional on the
observed data Y .
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Irreducibility of single-site Gibbs sampler with two alleles:

Demonstrating this principle on an even simpler pedigree,

If the data look like:

AA AB
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Then there are only three possible configurations of genotypes in the
unshaded individuals, and these states are reachable from one an-
other in a finite number of steps of single-site Gibbs updating. Hence
this sampler is irreducible here.

Dr Eric C. Anderson and Dr Matthew Stephens UW - Summer Institute, July 2016



MCMC in Statistical Genetics Session 10 - 21

With multiple alleles, however, the single-site Gibbs sam-

pler is reducible:

For example, with data like. . .

AA BC
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. . . There are only two possible states for the genotypes of the un-
shaded individuals and they do not communicate:

So, the single-site Gibbs sampler is not irreducible for most pedigree
problems of consequence. It leads to a reducible Markov chain.
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Irreducibility ain’t the only thing:

While irreducibility is essential for MCMC, it is often possible to have
an irreducible sampler, but have poor mixing.

i.e., you may be able to show theoretically that your sampler is irre-
ducible, but practically it may not reach all areas of high probability.

Poor mixing means that the chain does not adequately sample all
regions of the space.

Consider the following one-dimensional example—a mixture of three
normal densities:
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Computer Demo
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Designing samplers to mix well:

This is often the hardest challenge in MCMC, especially in high di-
mensional space with bumpy or multimodal likelihood surfaces.

Obvious improvements could come from:

• Tweaking the proposal distribution (but note that if the variance of
the proposal distibution is very high, the acceptance rate may #)

• Updating several variables jointly. In Gibbs sampling, in particular,
this can be useful. (However, the computations necessary may
require considerable extra time).

One general method for improving mixing is now called Metropolis-

coupled MCMC (Geyer 1991).

This is used extensively in the Bayesian phylogenetic analysis pack-
age MR BAYES.
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Metropolis-coupled MCMC:

MCMCMC takes advantage of the fact that by raising a probability
density to a power � between zero and one, the relative heights of
peaks, and the relative depths of valleys, may be made less extreme:
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Recipe for Metropolis-coupled MCMC:

• Let X denote all the different variables being sampled in the MCMC

• Run one chain, labelled 1, as you normally would with limiting
distribution f(X) being the distribution you wish to sample from.
Note: �

1

= 1.

• Run n�1 other chains (chains 2, . . . , n) in the same way, except
run them so that the limiting distributions are “flattened out” ver-
sions of f . i.e., the i

th chain (i = 2, . . . , n) uses a Hastings ratio
that looks like:

q(X|X 0
)

q(X

0|X)

[f(X

0
)]

�

i

[f(X)]

�

i

where each �

i

is between 0 and 1. These chains are often called
the “hot” chains, because they move around more easily—much
like a heated molecule.

• In addition to the normal MCMC updates, also perform “chain-
swapping” updates:
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1. Choose a pair of chains i and j (1  i < j  n) at ran-
dom and propose swapping their current states (X

[i]

and X

[j]

,
respectively).

2. Accept or reject the proposed swap using the Hastings ratio:

↵ = min

⇢
1,

[f(X

[i]

)]

�

j

[f(X

[i]

)]

�

i

[f(X

[j]

)]

�

i

[f(X

[j]

)]

�

j

�

• The Monte Carlo sample itself is only drawn from chain 1!

• Derivation of the Hastings ratio is easy: given i and j and the cur-
rent states X

[i]

and X

[j]

, the proposal distribution is symmetrical,
so those terms cancel out. The bits that remain are just the ratio
of limiting distributions of the proposed vs. the original states.

• Computationally, you don’t have to swap the states (which could
mean copying a lot of memory around). Instead you just swap �’s.

Computer Demo: mc3demo
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Simulated Annealing:

• Simulated annealing is an optimization technique that relies on
“tricks” like those employed in Metropolis-coupled MCMC
• Consider what happens if � > 1. (Thick red line is � = 1. Dotted black
line is � = 6. Thin solid blue line is � = 16.)
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Recipe for simple simulated annealing:

Imagine f(x) is an objective function you wish to maximize. That is,
you want to find the value of x that maximizes f(x). To do so by
simulated annealing you. . .

• Imagine that f(x) is an unnormalized probability density or mass
function

• Design an M-H sampler to sample x’s from target distribution
f(x)

• Run a single chain using this M-H sampler while raising f(x) in
the M-H ratio to the power of �:

q(X|X 0
)

q(X

0|X)

[f(X

0
)]

�

[f(X)]

�

• Start with � small (less than 1, typically), then progressively make
� larger.
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• When � is quite large and the values of x are changing little each
step, or you’ve run out of computer time, call the current value of
x the optimum.

• This is not guaranteed to be a global maximum.

• In this simple case, there are not multiple chains being run.

• In simulated annealing, you are not approximating an expectation,
but you are using the machinery of MCMC to tackle an optimiza-
tion problem.
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