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What	do	we	mean	by	resemble?	

Similar	values	of	quan.ta.ve	traits	
	
Measure	by	correla.on	
	

	 	=	Covariance(	yi,	yj)	/variance	(y)	



Why	do	rela.ves	resemble	each	
other?	



Why	do	rela.ves	resemble	each	
other?	

Similar	
	

Genes	
Family	environment	
Country	
School	



Model	phenotype	
Phenotype	=	gene.c	effect	

	 	 	+	country	
	 	 	+	year	of	birth	
	 	 	+	family	environment	

Fixed	effects	
Country,	year	of	birth	

	
Random	effects	

Gene.c	effect,	family	environment	
We	need	a	model	of	the	covariances	between	terms	



Model	phenotype	
Phenotype	=	gene.c	effect	

	 	 	+	country	
	 	 	+	year	of	birth	
	 	 	+	family	environment	
	 	 	+	individual	environment	

	
V(phenotype)	=	V(gene.c	effects)	+	V(family	environment)		

	 	 	 	+	V(individual	environment)	
	
Cov(	phenotypei,	phenotypej)	=	Cov(gene.c	effects)	

	 	 	 	 	+	Cov(family	environments)	



Model	phenotype	
Random	effects	

Gene.c	effect,	family	environment	
We	need	a	model	of	the	covariances	between	terms	

	
C(	family	environments)	=	 	0											if	different	families	

	 	 	 	1	*	VCE	if	same	family	



Covariance	between	gene.c	effects	of	
rela.ves	

Model	with	1	gene,	2	alleles	and	addi.ve	gene	ac.on	
We	need	gene.c	variances	and	covariances	
	
Genotype 	BB 	Bb 	bb	
Effect 	 	a 	0 	-a	
Frequency 	p2 	2pq 	q2 	 	(p+q=1)	
	
Mean	=	a	*p2 	+	0*2pq	–a*q2	=	(p-q)*a	
Variance	(gene.c	effect)	=	gene.c	variance	=	VG	

	=	E(effect2)	–	E(effect)2	

							VG 	=	a2	*p2	+	0*2pq	+a2*q2	–	[(p-q)*a]2	=	2pqa2	

	
	



Model	with	1	gene,	2	alleles	and	addi.ve	gene	
ac.on	

Covariance	between	parent	and	offspring	
	
Parent 	 	 	 	Offspring	
Genotype 	frequency 	BB 	Bb 	bb 	mean	
	
BB 	a 	p2 	 	p 	q 	 	pa	
Bb 	0 	2pq 	 	0.5p 	0.5 	0.5q 	0.5(p-q)a	
bb 	-a 	q2 	 	 	p 	q 	-qa	
	
Cov(parent	gene.c	value,	offspring	gene.c	value)	

	=	p2	*a*pa	+	q2	*	(-a)*(-qa)	–	[(p-q)a]*[(p-q)a]	=	pqa2	=	0.5	VG	

	



Model	with	1	gene,	2	alleles	and	addi.ve	gene	
ac.on	

Covariance	between	parent	and	offspring	(another	way)	
Model	gene.c	value	as	sum	of	game.c	effects	from	mother	and		
father	
g	=	xm	+xf	
V(g)	=	V(xm	)+	V(	xf)	=	2V(x)	
C(gp,	go)	=	C(	xmp	+	xfp,	xmo+	xfo)	

	=	C(xmp	,	xmo)	+	C(xmp,	xfo)	+	C(xfp,	xmo)	+	C(	xfp,	xfo)	
	=	0	 	 	+	? 	 	+	0 	+	?	

	C(xmp,	xfo)		 	=	V(x)	if		xmp	is	ibd	to	xfo	
	 	=0	otherwise			

C(xmp,	xfo)		=	C(xfp,	xfo)		=	0.5	V(x)		
C(gp,	go)	=	0	+	0.5V(x)	+	0	+	0.5V(x)	=	V(x)	=	0.5	VG 		
	



Probability	that	rela.ves	share	alleles	
IBD	

Covariance	between	rela.ves	depends	on	probability	that	their	alleles	are	IBD	
	
This	probability	can	be	calculated	from	pedigrees	
	
Assume	that	base	individuals	at	the	top	of	the	pedigree	(ie	those	without	a	
pedigree)	have	unrelated	alleles	ie	the	individuals	are	unrelated	
	
Recurrence	formulae	for	P(IBD)	
	
if	i	and	j	are	base	individuals,	P(x.i	≡	x.j)	=0	
Otherwise,	P(x.i	≡	x_)	=	0.5	[P(x.i	≡	x`)	+	P(x.i	≡	xmk)	]	where	k	is	the	father	of	j	
	
	



Probability	that	rela.ves	share	alleles	
IBD	

	 	k	(mk,	`)	
	
i	(mi,	fi) 	 	j(mj,	_)	



Rela.onships	between	individuals	
P(gametes	are	IBD)	can	be	stored	in	a	game.c	rela.onship	matrix	
G(wi,zj)	=	P(wi≡zj)	
	
But	usually	we	analyse	measurements	on	diploid	individuals	
	
C(gi,	gj)	=	A(i,j)	VG	=		[G(mi,	mj)	+	G(mi,_)	+	G(fi,mj)	+	G(fi,_)]	V(x)	

	=	[G(mi,	mj)	+	G(mi,_)	+	G(fi,mj)	+	G(fi,_)]	VG	/2	
	
A(i,j)	=	[G(mi,	mj)	+	G(mi,_)	+	G(fi,mj)	+	G(fi,_)]/2	
	
where	A	is	the	numerator	rela.onship	matrix	



Rela.onships	between	individuals	
Example:	Rela.onship	of	individual	with	herself	
Game.c	rela.onship	matrix	

	 	mi 	fi	
	
mi 	 	1 	0	
fi 	 	0 	1	
	
Numerator	rela.onship	A(i,i)	=	[1+0+0+1]/2	=	1	



Rela.onships	between	individuals	
Example:	Rela.onship	of	sisters	
Game.c	rela.onship	matrix	

	 	mi 	fi	
	
mj 	 	0.5 	0	
_ 	 	0 	0.5	
	
Numerator	rela.onship	A(i,j)	=	[0.5+0+0+0.5]/2	=	0.5	



Rela.onships	between	individuals	
i	=	(im,	if)	and	j	=	(jm,jf)	
	
Co-ancestry	of	i	and	j		

	=	Inbreeding	co-efficient	of	an	offspring	of	i	and	j	
	

	=	Prob(	offspring	gets	two	alleles	that	are	IBD)	
	=	(P(im≡jm)	+	P(im≡jf)	+	P(if≡jm)	+	P(if≡jf))/4	
	=	A(i,j)	/2	

	
Addi.ve	rela.onship	(NRM)	=	2	*	co-ancestry	

	 	 	 	=	2	*	kinship	



Es.ma.ng	gene.c	variance	

Data	on	phenotypes	(y)	of	related	subjects	
	
y	=	fixed	effects	+	g	+	e	
V(g)	=	A	VG	

V(e)	=	I	VE	

Use	ML	or	REML	to	es.mate	variances	



Es.ma.ng	gene.c	variance	
Use	ML	or	REML	to	es.mate	variances	

ML	finds	the	value	of	VG	that	maximises	the		probability	
of	observing	the	data	
ML	es.mates	all	parameters	together	

	=	es.mates	variances	assuming	that	fixed	effects		
	have	been	es.mated	without	error	

REML	allows	for	loss	of	df	in	es.ma.ng	fixed	effects	
ML	σ2	=	Σ(y-mean)2/N	
REML	σ2	=	Σ(y-mean)2/(N-1)	
Likle	difference	unless	many	fixed	effects	
Use	REML	computer	programs	such	as	ASREML	
	



Es.ma.ng	gene.c	variance	
Example:	Data	on	phenotypes	(y)	of	full	sibs	
	
y	=	fixed	effects	=	g	+	e	
Cov(gi,	gj)	=	A(i,j)	VG	=	0.5	VG	if	i	and	j	are	sibs	
	
Therefore	es.mate	VG	by	2cov(full-sibs)	

	 	 	h2	by	2	correla.on	between	full-sibs	
	
What	is	the	covariance	between	twins?	



Model	with	dominance	



Covariance	between	gene.c	effects	of	
rela.ves	

Model	with	1	gene,	2	alleles	and	addi.ve	and	dominant	gene	ac.on	
We	need	gene.c	variances	and	covariances	
	
Genotype 	BB 	Bb 	bb	
Effect 	 	a 	d 	-a	
Frequency 	p2 	2pq 	q2 	 	(p+q=1)	
	
Mean	=	a	*p2 	+	d*2pq	–a*q2 	=	(p-q)*a	+	2pqd	
Variance	(gene.c	effect)	=	gene.c	variance	=	VG	

	=	E(effect2)	–	E(effect)2	

							VG 	=	a2	*p2	+	d2*2pq	+a2*q2	–	[(p-q)*a	+	2pqd]2	=	2pqα2	+	(2pqd)2	

where	α	=	a	+(q-p)d	
	
	



Covariance	between	gene.c	effects	of	
rela.ves	

Model	with	1	gene,	2	alleles	and	addi.ve	and	dominant	gene	ac.on	
but	the	covariance	between	rela.ves	doesn’t	depend	directly	on	VG.	We	need	to	decompose	VG	into	
an	addi.ve	and	dominance	variance.	
	
Parameterise	the	gene.c	value	as	

	g	=	mean	+	addi.ve	effect	+	dominance	devia.on	
	g	=	mean	+	paternal	allele	effect	+	maternal	allele	effect	+	interac.on	of	alleles	
				

Genotype 	 	BB 	 	Bb 	 	bb	
Effect 	 	a 	 	d 	 	-a	
Frequency 	 	p2 	 	2pq 	 	q2 	 	(p+q=1)	
mean 	 	(p-q)a	+	2pqd 	(p-q)a	+	2pqd 	(p-q)a	+	2pqd	
addi.ve 	 	2qα	 	 	(q-p)α	 	 	-2pα 																		α=a+(q-p)d	
dominance	dev. 	-q2d 	 	2pqd 	 	-p2d	
	
Mean(addi.ve	effect)	=0,	mean(dominance	devia.on)=0,	cov(addi.ve	effect,	dominance	dev)	=0	
Gene.c	variance	=	VG	 	=	2pqα2	 	+	(2pqd)2	

	 	=	VA	 	+	VD	
	
	



Covariance	between	gene.c	effects	of	
rela.ves	

Model	with	1	gene,	2	alleles	and	addi.ve	and	dominant	gene	
ac.on	
	
Cov	(gi,	gj)	=	Cov(ai+di,	aj+dj)	=	Cov(ai,	aj)	+	cov(	di,dj)	

	 	 	 	=	A(i,j)	VA	+	D(i,j)	VD	

	
D(i,j)	=	prob(i	and	j	inherit	the	same	genotype	IBD)	
Eg	
D(i,j)	=	1	for	MZ	twins,	0.25	for	full-sibs,	0	for	parent	and	
offspring	



Covariance	between	gene.c	effects	of	
rela.ves	

Model	with	1	gene,	2	alleles	and	addi.ve	and	dominant	gene	
ac.on	
	
Rela.onships 	MZ	twins 	full-sibs 	1/2sibs	 	P-O	
A 	 	1 	 	0.5 	 	0.25 	 	0.5	
D 	 	1 	 	0.25 	 	0 	 	0	
	
Therefore	can	es.mate	both	VA	and	VD	by	using	mul.ple	
rela.onships	



Covariance	between	environmental	
effects	of	rela.ves	

y	=	mean	+	gene.c	effect	+	common	environment	effect	+	individual	
environment	effect	
y	=	mean	+	g	+	ec	+	e	
Model	with	a	common	environmental	effect	within	the	same	family	
Cov(eci,	ecj)	=	VC	if	i	and	j	in	same	family,	zero	otherwise	
	
Rela.onships 	MZ	twins 	full-sibs	 	1/2sibs 	 	P-O	
A 	 	1 	 	0.5 	 	0.25 	 	0.5	
D 	 	1 	 	0.25 	 	0 	 	0	
E	common 	1 	 	1 	 	? 	 	?	



Covariance	between	rela.ves	
Es.ma.ng	VA,	VD	and	VC	

Difficult!	
Assume	VD	=0	
	
VA	=	2(cov(MZ	twins)	–	cov(full-sibs))	
	
Rela.onships 	MZ	twins 	full-sibs 	1/2sibs	 	P-O	
A 	 	1 	 	0.5 	 	0.25 	 	0.5	
D 	 	1 	 	0.25 	 	0 	 	0	
E	common 	1 	 	1 	 	? 	 	?	



Covariance	between	rela.ves	
Can	add	epista.c	interac.ons	to	model	
	
g	=	mean	+	addi.ve	+	dominace	+	epistasis	
	
eg	g	=	mean	+	a	+	d	+	aa	
	
Cov	(gi,	gj)	=	A(i,j)	VA	+	D(i,j)	VD	+	A(i,j)2	VAA	

	
Rela.onships 	MZ	twins 	full-sibs	 	1/2sibs 	 	P-O	
A 	 	1 	 	0.5 	 	0.25 	 	0.5	
D 	 	1 	 	0.25 	 	0 	 	0	
AxA 	 	1 	 	0.25 	 	0.0625 	 	0.25	
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Resemblance	between	rela.ves	(height)	

29	

y	=	0.747x	+	0.107	
R²	=	0.965	
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More	data	on	height	

30	[Magnus	Johannesson,	David	Cesarini]	

Data	from	~172,000	18-year	old	brother	pairs		
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31	

Average	correla.ons	
MZ 	 	 	0.74	
DZ	(same	sex) 	 	0.36	
DZ	(opposite	sex) 	 	0.25	
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BMI	

33	[Magnus	Johannesson,	David	Cesarini]	
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Summary	
Resemblance	between	rela.ves	

Model	phenotypes	by	fixed	effects	and	random	effects	including	
gene.c	value	(addi.ve,	dominance,	epista.c)	
	
Model	covariance	of	gene.c	effects	by	rela.onship	es.mated	
from	pedigree	(or	SNP	genotypes)	
	
Es.mate	gene.c	variance	by	REML	



Estimating genetic variation 
within families 

Peter M. Visscher 
peter.visscher@uq.edu.au 
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Key concepts 

1. There is variation in realised relationships given 
the expected value from the pedigree; 

2. Variation in realised relationships can be 
captured with genetic markers; 

3. Variation in realised relationships can be 
exploited to estimate genetic variation 
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Genetic covariance between 
relatives 

covG(yi,yj) = aijσA
2 + dijσD

2  
 
a =  additive coefficient of relationship 

 =  2 * θ (= E(πa)) 
 
d =  coefficient of fraternity 

 =  Prob(2 alleles are IBD) = Δ = E(πd) 

3 



Examples (no inbreeding) 

Relatives    a   d 
 
MZ twins     1   1 
Parent-offspring   ½   0 
Fullsibs     ½   ¼ 
Double first cousins  ¼   1/16 

4 



Controversy/confounding: 
nature vs nurture 

•  Is observed resemblance between 
relatives genetic or environmental? 
– MZ & DZ twins (shared environment) 
– Fullsibs (dominance & shared environment) 

•  Estimation and statistical inference 
– Different models with many parameters may 

fit data equally well 

5 



Actual or realised genetic 
relationship  

= proportion of genome shared IBD (πa) 
 

•  Varies around the expectation 
– Apart from parent-offspring and MZ twins 

•  Can be estimated using marker data  

6 



x 

1/4 1/4 1/4 1/4 
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IDENTITY BY DESCENT 

Sib 1 

Sib 2 

4/16 = 1/4 sibs share BOTH parental alleles  IBD  =  2 

8/16 = 1/2 sibs share ONE parental allele  IBD  =  1 

4/16 = 1/4 sibs share NO parental alleles  IBD  =  0 
8 



Single locus 

Relatives    E(πa)  var(πa) 
 
Fullsibs     ½   1/8   
Halfsibs     ¼   1/16 
Double 1st cousins  ¼   3/32  

   

9 



Several notations 

IBD  Probability   Actual 
 
IBD0  k0   0 or 1 
IBD1  k1   0 or 1 
IBD2  k2   0 or 1 

   Σ=1   Σ=1 
 
πa = ½k1 + k2 = R = 2θ 
πd = k2 = Δxy

10 
[e.g., LW Chapter 7; Weir and Hill 2011, Genetics Research] 

Realisations 
k0  k1  k2 
 
1  0  0 
0   1  0 
0   0  1 



n multiple unlinked loci 

Relatives   E(πa)  var(πa) 
 
Fullsibs    ½   1/8n 

Halfsibs    ¼   1/16n 
Double 1st cousins  ¼   3/32n   
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Loci are on chromosomes 

•  Segregation of large chromosome 
segments within families 
–  increasing variance of IBD sharing 

•  Independent segregation of chromosomes 
– decreasing variance of IBD sharing 

12 



Theoretical SD of πa 
Relatives   1 chrom (1 M)  genome (35 M) 
 
Fullsibs   0.217    0.038 
Halfsibs   0.154    0.027 
Double 1st cousins  0.173    0.030 
 
 

[Stam 1980; Hill 1993; Guo 1996; Hill & Weir 2011] 
13 



Fullsibs: genome-wide  
(Total length L Morgan) 

var(πa) ≈ 1/(16L) – 1/(3L2) 
 
var(πd) ≈ 5/(64L) – 1/(3L2) 
 
 
var(πd)/ var(πa) ≈ 1.3 if L = 35  

[Stam 1980; Hill 1993; Guo 1996] 

Genome-wide variance depends more on total genome 
length than on the number of chromosomes 

14 



Fullsibs: Correlation additive and 
dominance relationships 

r(πa, πd) = σ(πa) /  σ(πd) ≈ [1/(16L) / (5/(64L))]0.5 = 0.89.  

Using β(πa on πd) = 1 
 
 
Difficult but not impossible to disentangle 
additive and dominance variance 
 
NB Practical 15 



Summary 
Additive and dominance (fullsibs) 

 
 
 

    
 
       SD(πa)  SD(πd) 

 
Single locus    0.354  0.433 
One chromsome (1M)   0.217  0.247 
Whole  genome (35M)  0.038  0.043 
 
Predicted correlation    0.89 
(genome-wide πa and πd) 
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Estimating IBD from marker data 
•  Elston-Stewart algorithm  
   Handles large pedigrees, but small nr of loci, exact IBD 

distributions (Elston and Stewart, 1971) 

•  Lander-Green algorithm  
   Handles small pedigrees, but large nr of loci, exact IBD 

distributions (Lander and Green, 1987). Software: Merlin 

•  MCMC methods 
    Calculates approximate IBD distributions (Heath, 1997). Software: 

Loki 
•  Average sharing methods. 
    Calculates approximate IBD distributions (Fulker et al., 1995; Almasy 

and Blangero, 1998). Software: SOLAR 

17 



Estimating π when marker is not fully 
informative 

•  Using: 
– Mendelian segregation rules 
– Marker allele frequencies in the population 

18 



IBD can be trivial… 

1 

1 1 

1 

/ 2 2 / 

2 / 2 / 

IBD=0 
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Two Other Simple Cases… 

1 

1 1 

1 

/ 

2 / 2 / 

1 1 / 

1 1 2 / 2 / 

IBD=2 

2 2 / 2 2 / 
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A little more complicated… 

1 2 / 

IBD=1 
(50% chance) 

2 2 / 

1 2 / 1 2 / 

IBD=2 
(50% chance) 
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And even more complicated… 

1 1 / IBD=? 1 1 / 22 



Bayes Theorem for IBD 
Probabilities 

∑ ==
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=
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=
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prior 

Prob(data) 
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P(Marker Genotype|IBD State) 

  IBD 
Sib CoSib 0 1 2 
(a,b) (c,d) papbpcpd 0 0 
(a,a) (b,c) pa

2pbpc 0 0 
(a,a) (b,b) pa

2pb
2 0 0 

(a,b) (a,c) pa
2pbpc papbpc 0 

(a,a) (a,b) pa
3pb pa

2pb 0 
(a,b) (a,b) pa

2pb
2 papb

2+pa
2pb papb 

(a,a) (a,a) pa
4 pa

3 pa
2 

     
Prior Probability ¼ ½ ¼ 
 
[Assumes Hardy-Weinberg proportions of genotypes in the population] 
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Worked Example 
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Application (1) 
Aim: estimate genetic variance from actual 

relationships between  fullsib pairs 

•  Two cohorts of Australian twin families 
 

     Adolescent   Adult 
Families     500   1512 
Individuals     1201   3804 
Sibpairs with genotypes   950   3451 
Markers per individual   211-791  201-1717 
Average marker spacing   6 cM   5 cM 
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Application (1) 

•  Phenotype = height 
 
Number of sibpairs with phenotypes 
and genotypes 

  
Adolescent cohort    931   
Adult cohort     2444 
Combined     3375 
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Mean IBD sharing across the genome for the jth sib pair 
was based on IBD estimated every centimorgan and 

averaged over 3500 points (L = 35) 

π̂ a( j ) = π̂ a(ij )
i=1

3500

∑ / 3500

π̂ d ( j ) = p2(ij )
i=1

3500

∑ / 3500

additive 

dominance 
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And for the cth chromosome of length lc cM 
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Mean and SD of genome-wide additive relationships  

30 



Mean and SD of genome-wide dominance relationships  
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Empirical and theoretical SD of additive relationships 
correlation = 0.98 (n = 4401) 
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Empirical and theoretical SD of dominance relationships 
correlation = 0.98 (n = 4401) 
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Additive and dominance relationships   
correlation = 0.91 (n= 4401) 
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Phenotypes 

After adjustment for sex and age: 
σp = 7.7 cm     σp = 6.9 cm   35 



Phenotypic correlation between 
siblings 

    Raw  After age & sex 
 
Adolescents  0.33  0.40  
Adults   0.24  0.39 

36 



Models 

C =  Family effect 
A =  Genome-wide additive genetic 
E =  Residual 
 
Full model   C + A + E 
Reduced model  C + E 
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yij = µ + ci + aij + eij
var(y) =σ c

2 +σ a
2 +σ e

2

cov(yij, yik ) =σ c
2 +π a( jk )σ a
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Estimation 

•  Maximum Likelihood variance components  

•  Likelihood-ratio-test (LRT) to calculate P-
values for hypotheses 
H0: A = 0 
H1: A > 0 

38 



Estimates: null model (CE) 

Cohort    Family effect (C)   
 
Adolescent   0.40 (0.34 – 0.45) 
Adult    0.39 (0.36 – 0.43) 
Combined   0.39 (0.36 – 0.42) 

39 



Estimates: full model (ACE) 

Cohort    C  A   P   
 
Adolescent   0  0.80  0.0869 
Adult    0  0.80  0.0009 
Combined   0  0.80  0.0003 
 
►All family resemblance due to 

additive genetic variation 
40 



Sampling variances are large 

Cohort    A (95% CI) 
 
Adolescent   0.80 (0.00 – 0.90) 
Adult    0.80 (0.43 – 0.86) 
Combined   0.80 (0.46 – 0.85) 
 

41 



Power and SE of estimates 

•  True parameter (t = intra-class correlation) 
•  Sample size (n pairs) 
•  Variance in genome-wide IBD sharing (var(π)) 
 

NCP = nh4var(π)(1+t2) / (1-t2)2 

[ ]))var()(1(/)1()ˆvar( 2222 πntth +−≈
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•  Aims 
– Estimate genetic variance from genome-wide 

IBD in larger sample 
– Partition genetic variance to individual 

chromosomes 
•  using chromosome-wide coefficients of relationship 

– Test hypotheses about the distribution of 
genetic variance in the genome 

Application (2) 
Genome partitioning of additive 

genetic variance for height 

43 



Sample  # Sibpairs  Sib Correlation 
 
AU   5952   0.43 
US   3996   0.50 
NL   1266   0.45 
 
Total  11,214   0.46 
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Realised relationships 
Mean  0.499 
Range  0.31 – 0.64 
SD   0.036 
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Application (3) 

•  Using SNP data to estimate IBD 
•  Data from ~20,000 fullsib pairs 
•  Height and BMI 

48 



IBD

π̂ = p(IBD1) 2 + p(IBD2)
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Heritability	es6mates	from	~20,000	
fullsib	pairs:	
	
Height		 	0.7	(SE	0.14)	
BMI 	 	0.4	(SE	0.17)	

Gene6c	varia6on	within	families	using	SNP	data	

n=1507 n=1819 n=2722 n=4607 n=9585 n=20240 Meta n=20240

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

GC = 1.13

●

●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

GC = 0.96

●

●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

GC = 1.12

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

GC = 1.14

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

GC = 0.97

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

GC = 1.29

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

GC = 0.93

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

GC = 1.58

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

GC = 1.42

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

GC = 1.76

●

●

●
●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

GC = 1.3

●

●

●
●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

GC = 2.14

●

●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

GC = 1.27

●

●

●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

GC = 2.08

0

2

4

6

0

2

4

6

BM
I

H
T

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Expected

O
bs

er
ve

d



Conclusions 

•  Empirical variation in genome-wide IBD sharing 
follows theoretical predictions 

•  Genetic variance can be estimated from 
genome-wide IBD within families 
–  results for height consistent with estimates from 

between-relative comparisons 
–  no assumptions about nature/nurture causes of family 

resemblance 
•  Genetic variance can be partitioned onto 

chromosomes 
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Key concepts 

1. There is variation in realised relationships given 
the expected value from the pedigree; 

2. Variation in realised relationships can be 
captured with genetic markers; 

3. Variation in realised relationships can be 
exploited to estimate genetic variation 
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Es#ma#ng	rela#onship	from	
marker	genotypes	

Mike	Goddard	



Rela#onships	

We	use	rela#onship	data	
to	es#mate	gene#c	variance	
to	es#mate	demographic	history	
…	

	



Rela#onships	

Addi#ve	gene#c	rela#onship	G(i,	j)	
	=	propor#on	of	the	genome	in	i	and	j	that	
	 	is	IBD	

	
Pedigree	rela#onship	A(i,j)	=	Prob	(IBD)	

	 	 	 	 	=	E(G(i,j))	
Actual	rela#onship	deviates	randomly	from	this	
expecta#on	



Rela#onships	
Single	locus	case,	full	sibs	
Parents	A1A2 	 	x 	A3A4	
	
offspring 	A1A3	

	 	A1A4 	 		
	 	A2A3	
	 	A2A4	

	Pairs	of	sibs	share	
	0	alleles 	25%	of	the	#me	
	1	allele 	 	50%	
	2	alleles 	25%	

E(G)	=	A	=	0.5	but	G	varies	from	0	to	1 		



Es#mate	rela#onship	from	markers	
G	is	a	more	accurate	descrip#on	of	rela#onship	than	A	
	

	G	captures	unknown	pedigree	informa#on	
	pedigree	can	be	incorrect	
	G	captures	devia#ons	from	A	

	
Therefore,	can	use	G	in	

	Random	sample	of	popula#on	(“unrelated	individuals”)	
	Individuals	with	same	pedigree	



Es#mate	rela#onship	from	markers	
1.  Well	defined	(recent)	base	
2.  No	well	defined	base	
	
3.  Well	defined,	recent	base	
	
Eg	Data	on	families	of	full-sibs	and	parents	of	sibs	are	the	base	



Es#mate	rela#onship	from	markers	
Eg	Data	on	families	of	full-sibs	and	parents	of	sibs	are	the	base	
	
Consider	a	single	SNP	
Full	sibs	can	be	IBD	at	either	maternal	or	paternal	allele	
	

	IBD	status 	 	P(IBD	status)	
Maternal 	Paternal	
yes 	 	yes 	 	0.25	
yes 	 	no 	 	0.25	
no 	 	yes 	 	0.25	
no 	 	no 	 	0.25	



Es#mate	rela#onship	from	markers	
Eg	Data	on	families	of	full-sibs	and	parents	of	sibs	are	the	base	
	
At	this	SNP,	one	sib	has	genotype	AA	and	the	other	is	AB,	mother	=	AB,	father	
=	AA	
P(IBD	status	|	SNP	genotypes)		

	=	P(SNP	genotypes	|	IBD	status)*	P(IBD	status)	
	 	P(SNP	genotypes)	

	
	=	P(SNP	genotypes	|	IBD	status)*	P(IBD	status)	
						Σ	P(SNP	genotypes	|	IBD	status)*	P(IBD	status)	

	



Es#mate	rela#onship	from	markers	
	=	P(SNP	genotypes	|	IBD	status)*	P(IBD	status)	
						Σ	P(SNP	genotypes	|	IBD	status)*	P(IBD	status)	

	
IBD	status 	 	P(IBD	status)		P(genotypes|IBD	status) 	P(IBD	status	|	genotypes)	
Maternal 	Paternal 	 	 	 	 	 	 	G	
yes 	yes 	0.25 	 	0 	 	0 	 	1	
yes 	no 	0.25 	 	0 	 	0 	 	0.5	
no 	yes 	0.25 	 	1 	 	0.5 	 	0.5	
no 	no 	0.25 	 	1 	 	0.5 	 	0	
	
Σ	P(SNP	genotypes	|	IBD	status)*	P(IBD	status)	=	0.5	
	
E(G)	=	0.25	compared	with	A=0.5	



Es#mate	rela#onship	from	markers	
1.  Well	defined,	recent	base	
	
Eg	Data	on	families	of	full-sibs	and	parents	of	sibs	are	the	base	
	
a)	Calculate	Bayesian	probability	of	IBD	status	at	each	SNP	

	à	E(G)	at	each	SNP	
	average	over	SNPs	

	
b)	Use	haplotypes	?	



Es#mate	rela#onship	from	markers	
2.	Less	well	defined,	less	recent	base	
	
Eg	Data	on	current	popula#on,	base	=	ancestors	1000	years	ago	
and	allele	frequencies	in	base	are	known	(p	and	q)	
	
Consider	haploid	gametes	of	SNP	alleles	instead	of	genotypes	
What	frac#on	of	the	gametes	are	IBD	(G)?	
At	a	single	SNP,	there	are	3	possible	data	sets	and	their	
probabili#es	are	
A	and	A 	A	and	B	 		B	and	B	
p2	+pqG 	2pq(1-G) 	q2+pqG	
	
	



Es#mate	rela#onship	from	markers	
SNP	genotypes 	A	and	A 	A	and	B	 		B	and	B	
Probability 	 	p2	+pqG 	2pq(1-G) 	q2+pqG	
score	(x) 	 	q/p 	 	-1 	 	p/q	
	
Es#mate	G(i,j)	from	the	mean	value	of	x	over	SNPs	
This	is	a	rela#onship	between	gametes.	Calculate	G	for	
individuals	from	the	4	game#c	rela#onships.	
See	Yang	et	al	(2010)	and	Powell	et	al	(2010)	for	the	diploid	
formulae.	



Es#mate	rela#onship	from	markers	
E.g.	Score	(x)	for	pairs	of	gametes	from	popula#on	in	H-W		
p(A)		=	0.9,	q(B)	=	0.1	

	 	A 	B	
	 	(0.9) 	(0.1)	

	
A	(0.9) 	 	0.11 	-1	
	
B	(0.1) 	 	-1 	9	
	
Mean	G	=		0.81	*	0.11	+	0.18	*(-1)	+	0.01	*9	=	0	



Es#mate	rela#onship	from	markers	
E.g.	Score	(x)	for	pairs	of	gametes	from	popula#on	in	H-W		
p(A)		=	0.9,	q(B)	=	0.1	
	
AAAAAAAAAAAAAAAAAABB	
	
A	and	A	or	A	and	A 	B	and	B	



Es#mate	rela#onship	from	markers	
E.g.	Score	(x)	for	pairs	of	gametes	from	same	parent		
p(A)		=	0.9,	q(B)	=	0.1	
	
Parent 	AA 	 	AB 	 	BB	
Freq. 	0.81 	 	0.18 	 	0.01	

	AA	(x	=	0.11) 	AA	(0.11) 	BB	(9)	
	 	 	AB	(-1)	
	 	 	BB	(9)	

	
Mean	G	=	0.81*0.11	+	0.18*(0.25*0.11+0.5*(-1)+0.25*9)	+	0.01	*9	

	=	0.5	



Es#mate	rela#onship	from	markers	
E.g.	Score	(x)	for	pairs	of	gametes	from	popula#on	in	H-W	but	
aier	allele	frequency	has	driied	to	p(A)		=	0.8,	q(B)	=	0.2	

	 	A 	B	
	 	(0.8) 	(0.2)	

	
A	(0.8) 	 	0.11 	-1	
	
B	(0.2) 	 	-1 	9	
	
Mean	G	=		0.64	*	0.11	+	0.32	*(-1)	+	0.04	*9	=	0.11	



Es#mate	rela#onship	from	markers	
2.	No	well	defined	base	
	
Eg	random	sample	from	popula#on	but	don’t	know	allele	frequency	in	
the	base.	
	
a)	Use	the	current	popula#on	as	the	base	
	
Problem:	Some	G	<0	
Cannot	interpret	as	probabili#es	but	s#ll	interpret	as	covariances	
If	g	=	gene#c	value,	V(g)	=	G	VA	

where	G	is	calculated	as	above	but	using	allele	frequencies	in	current	
popula#on.	
	



Es#mate	rela#onship	from	markers	
E.g.	Score	(x)	for	pairs	of	gametes	from	popula#on	in	H-W	but	
aier	allele	frequency	has	driied	to	p(A)		=	0.8,	q(B)	=	0.2	and	
using	allele	frequencies	in	modern	popula#on	

	 	A 	B	
	 	(0.8) 	(0.2)	

	
A	(0.8) 	 	0.25 	-1	
	
B	(0.2) 	 	-1 	4	
	
Mean	G	=		0.64	*	0.25	+	0.32	*(-1)	+	0.04	*4	=	0	



Es#mate	rela#onship	from	markers	
2.	No	well	defined	base	
b)	Assume	SNPs	are	a	random	sample	of	loci	as	are	QTL	
	
y	=	mean	+	g	+	e	
y	=	mean	+	Zu	+	e	
	
Zij	=	0	for	AA,	1	for	AB	or	2	for	BB	
u	~	N(0,Iσu2)	à	g	=	Zu	~	N(0,ZZ’σu2	),	ZZ’σu2	=	Gσg2,	if	σg2	=	Nσu2	
where	N=Σ2pq	across	SNPs	
Therefore,	G	=	ZZ’/N	



Es#mate	rela#onship	from	markers	
E.g.	Score	for	pairs	of	gametes	from	popula#on	in	H-W		
	p(A)		=	0.8,	q(B)	=	0.2	

	 	A 	B	
	 	(0.8) 	(0.2)	
	z	 	0 	1	

	
A	(0.8) 	0 	0 	0	
	
B	(0.2) 	1 	0 	1	
	
Mean	G	=		0.04	*1	=	0.04	



Es#mate	rela#onship	from	markers	
E.g.	Score	for	pairs	of	gametes	from	popula#on	in	H-W		
	p(A)		=	0.8,	q(B)	=	0.2	

	 	A 	B	
	 	(0.8) 	(0.2)	
	z	 	-0.2 	0.8 		

	
A	(0.8) 	-0.2 	0.04 	-0.16	
	
B	(0.2) 	0.8 	-0.16 	0.64	
	
Mean	G	=		0.64*0.04	+	0.32	*	(-0.16)	+	0.04	*0.64	=	0	



Comparing	2a	and	2b	
E.g.		p(A)		=	0.8,	q(B)	=	0.2	

	 	2b 	 	 	 	2a	
	 	A 	B 	 	 	A 	B	
	 	(0.8) 	(0.2)	
	z	 	-0.2 	0.8 		

	
A	(0.8) 	-0.2 	0.04 	-0.16 	 	A 	0.25 	-1 		
	
B	(0.2) 	0.8 	-0.16 	0.64 	 	B 	-1 	4	
	



Es#mate	rela#onship	from	markers	
2a	and	2b	compared	for	game#c	rela#onships	
	
SNP	data	 	A	and	A	 	A	and	B 	B	and	B	
score	(x) 	q/p 	 	-1 	 	p/q	
weight	(w) 	pq 	 	pq 	 	pq	
	
2a)	G	=	mean	of	x	
2b)	G	=	weighted	mean	of	x	=	Σwx/Σw	
	
This	could	be	described	as	using	the	IBS	status	of	SNPs	instead	of	
IBD 		
	



Es#mate	rela#onship	from	markers	
E.g.	Score	(x	i.e.	method	2a)	for	pairs	of	gametes	p(A)		=	0.8,	q(B)	
=	0.2	and	weigh#ng	by	pq	=	0.16	

	 	A 	 	B	
	 	(0.8) 	 	(0.2)	

	
A	(0.8) 	 	0.25*0.16 	-1*0.16	

	 	=0.04 	 	=	-0.16	
	
B	(0.2) 	 	-1*0.16 	4*0.16	

	 	=	-0.16	 	=	0.64	
Same	as	2b	



Es#mate	rela#onship	from	markers	
2a)	G	=	mean	of	x	

	gives	more	emphasis	to	sharing	rare	alleles	
	
Makes	sense	because	individuals	who	share	rare	alleles	are	
more	likely	to	be	closely	related	than	individuals	who	share	
common	alleles.	
	
Gives	minimum	error	variance	of	rela#onship	under	some	
condi#ons	



Es#mate	rela#onship	from	markers	
2.	No	well	defined	base	
c)	Assume	SNPs	are	a	random	sample	of	loci	as	are	QTL	but	effect	of	SNP	
decreases	as	heterozygosity	increases	
	
y	=	mean	+	g	+ 	e	
y	=	mean	+	Zu	+	e	
	
Zij	=	0	for	AA,	1	for	AB	or	2	for	BB	
u	~	N(0,Dσu2)	à	g	=	Zu	~	N(0,ZDZ’σu2	),	ZDZ’σu2	=	Gσg2,	if	σg2	=	Nσu2	
where	N=	Σ(piqi)	
Therefore,	G	=	ZDZ’/N	
Dii	=	1/(piqi)	
That	is,	assume	the	effect	of	SNPs	is	propor#onal	to	√(piqi)	
So	variance	explained	by	SNPs	is	not	affected	by	allele	frequency	
2c	=	2a	



Es#mate	rela#onship	from	markers	
Rela#onship	depends	on	the	markers	or	QTL	
	
Eg	QTL	are	due	to	recent	muta#ons	
						AQ	
	
AQ 	Aq	
	
Marker	is	the	same	but	QTL	is	different	
Rare	SNP	alleles	tend	to	be	a	recent	muta#on	
Therefore,	treat	SNPs	differently	according	to	MAF	



Es#mate	rela#onship	from	markers	
Rela#onship	depends	on	the	markers	or	QTL	
Therefore,	treat	SNPs	differently	according	to	MAF	
	
y	=	mean	+	g1	+	g2	+g3	+	g4	+g5	+e	
	
V(gi)	=	(ZZ’/N)σi2	for	SNPs	in	MAF	bin	i	



Es#mate	rela#onship	from	markers	
Use	haplotypes	of	markers	
	
New	defini#on	of	IBD	for	chromosome	segments	
	
Two	segments	are	IBD	if	they	coalesce	without	recombina#on	

	Avoids	defini#on	of	a	base	popula#on	
	
Chromosome	segment	homozygosity	(CSH)			

	=	P(2	segments	are	IBD)	
E(csh)	=	1/(1+4Nec)	



Es#mate	rela#onship	from	markers	
Problem:	cant	observe	CSH	directly	

	 	only	observe	haplotype	homozygosity	(HH)	
	 	 	 	or	runs	of	homozygosity	(ROH)	

	



Es#mate	rela#onship	from	markers	
Can	use	HH	or	ROH	in	QTL	mapping	
	
Addi#ve	effects	
Calculate	P(QTL	in	posi#on	x	is	IBD)	=	P(csh	for	surrounding	chr)	
	
Eg	P(QTL	IBD)	=	0.9	if	in	middle	of	10	iden#cal	markers	
	
Recessive	effects	
ROH	within	individual		à	homozygous	QTL	within	the	run	



Es#mate	rela#onship	from	markers	
Recessive	effects	
ROH	within	individual		à	homozygous	QTL	within	the	run	
	
Detect	embryonic	lethals	by	missing	ROH	



Es#mate	rela#onship	from	markers	
Summary	

1.  In	families	

2.  In	the	general	popula#on	
	Express	rela#onship	rela#ve	to	current	popula#on	
	 	G	can	be	nega#ve	
	 	G	is	not	a	probability	
	 	V(g)	=	G	σg2	

	two	formulae	(2a	and	2b)	
	Same	except	2a	gives	more	weight	to	rare	alleles	



(Genome-wide) association 
analysis 

Peter M. Visscher 
peter.visscher@uq.edu.au 

1 



Key concepts 

•  Mapping QTL by association relies on linkage 
disequilibrium in the population; 

•  LD can be caused by close linkage between a QTL and 
marker (= good) or by confounding between a marker and 
other effects (= usually bad); 

•  The power of QTL detection by LD depends on the 
proportion of phenotypic variance explained at a marker; 

•  Mixed models are good for performing GWAS 
•  Genetic (co)variance can be estimated from GWAS 

summary statistics 
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Outline 

•  Association vs linkage 
•  Linkage disequilibrium 
•  Analysis: single SNP 

•  GWAS: design, power 
•  GWAS: analysis 

3 



 Linkage      Association  

Families Populations 
4 



Linkage disequilibrium around an 
ancestral mutation 

[Ardlie et al. 2002] 
5 



LD 

•  Non-random association between alleles at 
different loci 

•  Many possible causes 
– mutation 
–  drift / inbreeding / founder effects 
–  population stratification 
–  selection 

•  Broken down by recombination 

6 



Definition of D 

•  2 bi-allelic loci 
– Locus 1, alleles A & a, with freq. p and (1-p) 
– Locus 2, alleles B & b with freq. q and (1-q) 
– Haplotype frequencies pAB, pAb, paB, pab 

D = pAB - pq 

7 



r2 

r2 = D2 / [pq(1-p)(1-q)] 

•  Squared correlation between presence and 
absence of the alleles in the population 

•  ‘Nice’ statistical properties 

[Hill and Robertson 1968] 
8 



Properties of r and r2 

•  Population in ‘equilibrium’ 
E(r) = 0 
E(r2) = var(r) ≈ 1/[1 + 4Nc] + 1/n 

 N = effective population size 
 n = sample size (haplotypes) 
 c = recombination rate 

•  nr2 ~ χ(1)2 
•  Human population is NOT in equilibrium 

[Sved 1971; Weir and Hill 1980] 

LD depends on 
population size and 
recombination 
distance 
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Analysis 

•  Single locus association 
•  GWAS 

•  Least squares 
•  ML 
•  Bayesian methods 

10 



Falconer model for single biallelic QTL 

Var (X) = Regression Variance + Residual Variance 
 = Additive Variance + Dominance Variance 

bb Bb BB 

m 

-a 

a 
d 
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Statistical power (linear regression) 

y = µ + β*x + e,  x = 0, 1, 2 
σy

2 = σq
2 + σe

2  regression + residual   
σx

2 = 2p(1-p)  p = allele frequency for indicator x 
   {HWE: note x is usually considered  
   fixed in regression} 

 
σq

2 = β2σx
2 = [a + d(1-2p)]2 * 2p(1-p) 

 
q2 = σq

2/ σy
2   {QTL heritability} 
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Statistical Power 
χ2 test with 1 df: 
 
E(X2) = 1 + n R2 / (1 – R2) 
 
= 1 + nq2/(1-q2)   
 
= 1 + NCP 
 
NCP = non-centrality parameter 

Power of association proportional to q2  
(Power of linkage proportional to q4) 14 



Statistical Power (R) 

alpha= 5e-8 
threshold= qchisq(1-alpha,1) 

q2= 0.005 

n= 10000 

ncp= n*q2/(1-q2) 

power= 1-pchisq(threshold,1,ncp) 

threshold 

ncp 

power 

> alpha= 5e-8 
> threshold= qchisq(1-alpha,1) 
> q2= 0.005 
> n= 10000 
> ncp= n*q2/(1-q2) 
> power= 1-pchisq(threshold,1,ncp) 
> threshold 
[1] 29.71679 
> ncp 
[1] 50.25126 
> power 
[1] 0.9492371 

15 



Power by association with SNP 

(small effect; HWE) 
 
NCP(SNP) = n r2 q2 
= r2 * NCP(causal variant) 
= n * {r2 q2} = n * (variance explained by SNP) 
 

Power of LD mapping depends on the 
experimental sample size, variance explained by 
the causal variant and LD with a genotyped SNP 16 



GWAS 
•  Same principle as single locus association, 

but additional information 
– QC 

•  Duplications, sample swaps, contamination 
– Power of multi-locus data 

•  Unbiased genome-wide association 
•  Relatedness 
•  Population structure 
•  Ancestry 
•  More powerful statistical analyses 

17 



The multiple testing burden 
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per test false positive  
rate 0.05 

per test false  
positive rate 
0.001 = 0.05/50 

P = 1 – (1-α)n 
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Population stratification 
(association unlinked genes) 

 Allele frequency Haplotype frequency 
 pA1 pB1 pA1B1 pA1B2 pA2B1 pA2B2 
Pop. 1 0.9 0.9 0.81 0.09 0.09 0.01 
Pop. 2 0.1 0.1 0.01 0.09 0.09 0.81 
Average 0.5 0.5 0.41 0.09 0.09 0.41 
 

Both populations are in linkage equilibrium; genes unlinked 

Combined population: D = 0.16 and r2 = 0.41  

19 



Population stratification  
(genes and phenotypes) 

[Hamer & Sirota 2010 Mol Psych] 
20 



Population stratification  
(genes and phenotypes) 

[Hamer & Sirota 2010 Mol Psych] 
21 



Population stratification  
(genes and phenotypes) 

[Vilhjalmsson & Nordborg 2013 Nature Reviews Genetics ] 
22 
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Stratification 

y = Σgi + Σei 
 
r(y,gi) due to 
•  causal association with gi 
•  correlation gi and gj and causal association with gj 

(LTC and height) 
•  correlation gi and environmental factor ej 

(chopsticks) 

24 



How to deal with structure? 

•  Detect and discard ‘outliers’ 
•  Detect, analysis and adjustment 

– E.g. genomic control 
•  Account for structure during analysis 

– Fit a few principal components as covariates 
– Fit GRM 

25 



GWAS using mixed linear models 

y = Xb + β*x + g + e   
 
var(g) = Gσg

2 
G = genetic relationship matrix (GRM) 
Model conditions on effects of all other variants 
 
Power depends on whether x is included (MLMi) or 
excluded (MLMe) from the construction of G. 
 
 [Yang et al. 2014 Nature Genetics] 

26 



GWAS using mixed linear models: 
statistical power 

[Yang et al. 2014 Nature Genetics] 
27 

r2 here is the squared 
correlation between g-hat 
and g 



How does LD shape association 
A set of markers along a chromosome region: 

Superimpose LD between markers 

Consider causal SNPs 

All markers correlated with a causal variant show 
association 

28 



How does LD shape association 
Consider causal SNPs 

All markers correlated with a causal variant show association. 
Lonely SNPs only show association if they are causal 
The more you tag the more likely you are to tag a causal variant 
 
 
Assuming all SNPs gave an equal probability of association given LD status, 
we expect to see more association for SNPs with more LD friends. 
This is a reasonable assumption under a polygenic genetic architecture  
 

29 



LD score regression 

[Yang 2011 EJHG; Bulik-Sullivan 2015] 

Quantifies local LD for SNP j  

à regression of test statistic on LD score provides an 
estimate of SNP heritability 
 
Use GWAS summary statistics and reference sample for 
LD score estimation 
 

Test statistic is linear in LD score 

30 



Same principle for genetic 
covariance 

31 
[Bulik-Sullivan 2015 Nature Genetics] 

z = test statistics from GWAS summary statistics 
N = sample size 
M = number of markers 
ρg = genetic covariance between traits 
ρ = phenotypic correlation between traits 

Ns is the number of 
overlapping samples 



Key concepts 

•  Mapping QTL by association relies on linkage 
disequilibrium in the population; 

•  LD can be caused by close linkage between a QTL and 
marker (= good) or by confounding between a marker and 
other effects (= usually bad); 

•  The power of QTL detection by LD depends on the 
proportion of phenotypic variance explained at a marker; 

•  Mixed models are good for performing GWAS 
•  Genetic (co)variance can be estimated from GWAS 

summary statistics 

32 



Es#ma#on	of	quan#ta#ve	
gene#c	parameters	from	distant	

rela#ves	using	marker	data	

Peter	M.	Visscher	
peter.visscher@uq.edu.au	
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Key	concepts	
•  Dense	SNP	panels	allow	the	es#ma#on	of	the	expected	

gene#c	covariance	between	distant	rela#ves	(‘unrelateds’)	
•  A	model	based	upon	es#mated	rela#onships	from	SNPs	is	

equivalent	to	a	model	fiLng	all	SNPs	simultaneously	
•  The	total	gene#c	variance	due	to	LD	between	common	SNPs	

and	(unknown)	causal	variants	can	be	es#mated	
•  Gene#c	variance	captured	by	common	SNPs	can	be	assigned	

to	chromosomes	and	chromosome	segments	

2	



1886	

3	
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100	years	later	
Heritability	of	human	height	

h2 ~ 80% 
5	



6	



 

Disease Number 
of loci 

Percent of Heritability 
Measure Explained 

Heritability  
Measure 

Age-related macular 
degeneration 

5 50% Sibling recurrence 
risk 

Crohn’s disease 32 20% Genetic risk 
(liability) 

Systemic lupus 
erythematosus 

6 15% Sibling recurrence 
risk 

Type 2 diabetes 18 6% Sibling recurrence 
risk 

HDL cholesterol 7 5.2%  Phenotypic 
variance 

Height 40 5% Phenotypic 
variance 

Early onset myocardial 
infarction 

9 2.8% Phenotypic 
variance 

Fasting glucose 4 1.5% Phenotypic 
variance 

Where	is	the	Dark	MaYer?	

7	



Hypothesis	tes#ng	vs.	Es#ma#on	

•  GWAS	=	hypothesis	tes#ng	
– Stringent	p-value	threshold	
– Es#mates	of	effects	biased	(“Winner’s	Curse”)	

•  E(bhat|	test(bhat)	>	T)	>	b	{b	fixed}	
•  var(bhat)	=	var(b)	+	var(bhat|b)	{b	random}		

•  Can	we	es#mate	the	total	propor#on	of	
varia#on	accounted	for	by	all	SNPs?	

8	



Are	very	distant	rela.ves	that	share	more	
of	their	genome	by	descent	phenotypically	
more	similar	than	those	that	share	less?	

9	



Basic	idea	
•  Es#mates	of	addi#ve	gene#c	variance	from	known	
pedigree	is	unbiased	
–  If	model	is	correct	
–  Despite	varia#on	in	iden#ty	given	the	pedigree	
–  Pedigree	gives	correct	expected	IBD	

•  Unknown	pedigree:	es#mate	genome-wide	IBD	from	
marker	data	
–  Es#mate	addi#ve	gene#c	variance	given	this	es#mate	of	
relatedness	

•  Idea	is	not	new	
–  (Evolu#onary)	gene#cs	literature	(Ritland,	Lynch,	Hill,	
others)	

10	



Close	vs	distant	rela#ves	

•  Detec#on	of	close	rela#ves	(fullsibs,	parent-
offspring,	halfsibs)	from	marker	data	is	rela#vely	
straighnorward	

•  But	close	rela#ves	may	share	environmental	factors	
–  Biased	es#mates	of	gene#c	variance	

•  Solu#on:	use	only	(very)	distant	rela#ves	

11	



A	model	for	a	single	causal	variant	
	 	 	 	AA 	 	AB 	 	BB	

frequency 	 	(1-p)2 	 	2p(1-p) 	 	p2	
x 	 	 	 	0 	 	1 	 	2	
effect 	 	 	0 	 	b 	 	2b	
z	=	[x-E(x)]/σx 	 	-2p/√{2p(1-p)} 	(1-p)/	√{2p(1-p)} 	2(1-p)/	√{2p(1-p)}	
	
	
yj 	= 	µ’		+	xijbi	+	ej 	 	x	=	0,	1,	2	{standard	associa#on	model}	
	
yj 	= 	µ	+	zijuj	+	ej	 	 	u	=	bσx;	µ	=	µ’	+	bσx	
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Mul#ple	(m)	causal	variants	

yj	= 	µ	+	Σzijuj	+	ej		
	
	= 	µ	+	gj	+	ej		

	
y 	= 	µ1	+	g	+	e	
	
	= 	µ1	+	Zu	+	e	

13	



Equivalence	

Let	u	be	a	random	variable,	u	~	N(0,	σu
2)	

Then	σg
2		=	mσu

2	and	
	
var(y)	 	=	ZZ’	σu

2	+	Iσe
2	

	 	 	=	ZZ’	(σg
2/m)	+	Iσe

2	
	 	 	=	G	σg

2	+	Iσe
2	

14	

Model with individual genome-wide additive values using relationships (G) at the 
causal variants is equivalent to a model fitting all causal variants 
 
We can estimate genetic variance just as if we would do using pedigree relationships 



But	we	don’t	have	the	causal	variants	
If	we	es#mate	G	from	SNPs:	

–  lose	informa#on	due	to	imperfect	LD	between	SNPs	and	
causal	variants	

–  how	much	we	lose	depends	on	
•  density	of	SNPs	
•  allele	frequency	spectrum	of	SNPs	vs.	causal	variants	

– es#mate	of	variance	à	missing	heritability	

15	

Let	A	be	the	es#mate	of	G	from	N	SNPs:	
	
Ajk	 	=	(1/N)	Σ	{	xij	–	2pi)(xik	–	2pi)	/	{2pi(1-pi)}	
	

	=	(1/N)	Σ	zijzik	



Data 
•  ~4000 ‘unrelated’ individuals 
•  Ancestry ~British Isles 
•  Measurement on height (self-report or clinically measured) 
•  GWAS on 300k (‘adults’) or 600k (16-year olds) SNPs 

16 



		

Lack of evidence for population 
stratification within the Australian sample 

17 



Methods 

•  Estimate realised relationship matrix from 
SNPs 

•  Estimate additive genetic variance 
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Statistical analysis 

	 22)var( eg σσ IAVy +==

y standardised ~N(0,1) 
 
No fixed effects other than mean 
 
A estimated from SNPs 
 
Residual maximum likelihood (REML) 
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h2 ~ 0.5 (SE 0.1) 

20 



Checking for population structure 

21 



Partitioning variation 

•  If we can estimate the variance captured by 
SNPs genome-wide, we should be able to 
partition it and attribute variance to regions of 
the genome 

•  “Population based linkage analysis” 

22 



Genome partitioning 

23 

•  Partition additive genetic variance according to groups of SNPs 
–  Chromosomes 
–  Chromosome segments 
–  MAF bins 
–  Genic vs non-genic regions 
–  Etc. 

•  Estimate genetic relationship matrix from SNP groups  

•  Analyse phenotypes by fitting multiple relationship matrices 

•  Linear model & REML (restricted maximum likelihood) 



Data from the GENEVA Consortium 
•  Investigators: Bruce Weir, Teri Manolio and many others 
•  Data 

–  ~14,000 European Americans 
•  ARIC 
•  NHS 
•  HPFS 

–  Affy 6.0 genotype data 
•  ~600,000 after stringent QC 

–  Phenotypes on height, BMI, vWF and QT Interval 

24 



QC of SNPs 
 

•  780,062 SNPs after QC steps listed in the table.  

•  Exclude 141,772 SNPs with MAF < 0.02 in European-
ancestry group. 

•  Exclude 36,949 SNPs with missingness > 2% in all samples.  

•  Include autosomal SNPs only. 

•  End up with 577,778 SNPs. 
25 



Results (genome-wide) 

26 
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Genome-partitioning:  
longer chromosomes explain more variation 
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Results are consistent 
with reported GWAS 
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Inference robust with respect to genetic architecture 
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Genic regions explain variation disproportionately 



Key concepts 
•  Dense SNP panels allow the estimation of the expected 

genetic covariance between distant relatives 
(‘unrelateds’) 

•  A model based upon estimated relationships from SNPs 
is equivalent to a model fitting all SNPs simultaneously 

•  The total genetic variance due to LD between common 
SNPs and (unknown) causal variants can be estimated 

•  Genetic variance captured by common SNPs can be 
assigned to chromosomes and chromosome segments 
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Prediction	of	quantitative	traits	
using	marker	data
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Key	concepts
• Prediction	of	phenotypic	values	is	limited	by	heritability
• Accuracy	of	prediction	depends	on

– how	well	marker	effects	are	estimated	(sample	size)
– how	well	marker	effects	are	correlated	with	causal	variants	(LD)

• Estimation	of	marker	effects	and	prediction	in	the	same	data	leads	to	
(severe)	bias
– winner’s	curse;	over-fitting

• Variance	explained	by	a	SNP-based	predictor	is	not	the	same	as	the	
variance	explained	by	those	SNPs

• Marker	data	captures	both	between	and	within	family	genetic		variation
• Best	prediction	methods	take	genetic	values	as	random	effects

2



3“Genomic	selection”	=	
individual	prediction	 in	a	commercial	setting



Take-home	from	animal	breeding

(1) Don’t	need	genome-wide	significant	effects
(2) Don’t	need	to	know	causal	variants
(3) Don’t	need	to	know	function
(4) Fit	all	SNPs	simultaneously

4
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A	quantitative	genetics	model

y	=	fixed	effects	+	G	+	E
G	=	A	+	D	+	I

Possible	predictions:
• Predict	y	from	fixed	effects	and	G
• Predict	G	from	A
• Predict	y	from	A
• Predict	y	from	A	using	markers

6



Prediction	using	linear	regression

y	=	β*x	+	e

• Usually,	β and	x	are	considered	‘fixed’

• For	SNPs,	x	is	random	with	variance	2p(1-p)	assuming	
HWE

• Later	we	will	consider	the	case	where	β is	random

7



Chance	association

m markers,	sample	size	N
All	β =	0
Multiple	linear	regression	of	y on	mmarkers

E(R2)	=	m/N {strictly	m/(N-1)}

à Variation	“explained”	by	chance

8[Wishart, 1931]



Selection	bias
• Select	m ‘best’	markers	out	of	M in	total
• ‘Prediction’	in	same	sample	(in-sample	prediction)

E(R2)	>>	m/N
à Lots	of	variation	explained	by	chance

9~15 best markers selected from 2.5 million markers



Least	squares	prediction

10

Rm
2 = var(a) / var(y) = h2

E(R̂y, ŷ
2 ) ≈ h2 / [1+m / {Nh2}]

Even if we knew all m causal variants but needed to 
estimate their effect sizes then the variance explained by the 
predictor is less than the variance explained by the causal 
variants in the population.

[Daetwyler et al. 2008, PLoS Genetics; Visscher, Yang, Goddard 2010, Twin Research Human Genetics 2010]



Take-home

(4)	Estimation	of	variance	contributed	by	(all)	
loci	is	not	the	same	as	prediction	accuracy

unless	the	effect	sizes	are	estimated	without	
error

11
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Measures	of	how	well	a	predictor	works

• “Accuracy”	(animal	breeding)
– Correlation	between	true	genome-wide	genetic	
value	and	its	predictor

• R2 from	a	regression	of	outcome	on	predictor	
(human	genetics)

• Area-under-curve	from	ROC	analyses	(disease	
classification)

13



Limits	of	prediction

• A	perfect	predictor	of	A	can	be	a	lousy	
predictor	of	a	phenotype

• The	regression	R2 has	a	maximum	that	
depends	on	heritability

• The	regression	R2 is	limited	by	unknown	(eg
future)	fixed	effects	and	covariates

14



Predictions	from	known	variants
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Prediction using genetic markers: using between and 
within-family genetic variation  

16



In	class	demo

• 180	height	variants	from	Lango-Allen	et	al.	
2010
– Estimation	of	b	from	data	(N	~	4000)

• Note	that	E(R2)	=	180/4000	=	0.045	by	chance!

– Using	b	from	Lango-Allen	paper
• Taking	the	top	180	SNPs	from	GWAS

17



Analysis	demonstration

18

• Data:
– Genotype data:	3,924	unrelated individuals and ~2.5M	SNPs.
– Phenotype data:	height z-scores (adjusted for age and sex)
– 180	SNPs	identified by the GIANT	meta-analysis	(MA)	of height (n =	~180,000)

• Analyses:
– Estimating effect sizes of the 180	height SNPs	in	the data.
– PLINK	scoring:	180	GIANT	SNPs,	using effect sizes estimated from GIANT	MA.
– GWAS	analysis in	the data,	selecting top	SNPs	at 180	loci	and predicting the

phenotypes in	the same	data.

• Results:
– Estimation:	R2 =	0.134	(R2 =	0.046	by chance),	adjusted R2 =	0.093
– Prediction:	R2 =	0.099	
– Prediction using the top	SNPs	selected in	the same	data:	R2 =	0.429



Identifying	people	at	high	risk:	T1D

Per 10,000 people

40 cases
Ratio 1:250

32 cases in 1800 at most 
risk Ratio 1:56

Most disease is due to 
people most at risk

Polychronakos & Li NRG 2011
Clayton PLoS Genetics 2009



Prediction	of	genetic	value	using	better	
predictors

Model	with	additive	inheritance

y	=	g	+	e

V(g)	=	Gσg2,	V(e)	=	Iσe2,	V(y)	=	V	=	Gσg2 +	Iσe2,

Aim	is	to	predict	g	for	individuals
Eg to	predict	future	risk	of	a	disease

20



Prediction	of	genetic	value

y	=	g	+	e

V(g)	=	Gσg2,	V(e)	=	Iσe2,	V(y)	=	V	=	Gσg2 +	Iσe2,

Best	prediction	is
g-hat	=	E(g	|	y)
If	y	and	g	are	bivariate	normal
E(g	|	y	)	=	b’y =	σg2 GV-1 y

21



Prediction	of	genetic	value

Eg Unrelated	individuals

V(g)	=	Ih2,	V(e)	=	I(1-h2),	V(y)	=	I,

Best	prediction	is
g-hat	=	E(g	|	y	)	=	b’y =	σg2 GV-1 y	=	h2 y

22



Prediction	of	genetic	value

y	=	g	+	e,	g	=	Zu

V(u)	=	Iσu2,	V(Zu)	=	ZZ’σu2,	

Best	prediction	is
u-hat	=	E(u	|	y)
If	y	and	u	are	multivariate	normal
E(u	|	y	)	=	b’y =	σu2Z’V-1 y

23



Prediction	of	genetic	value

y	=	g	+	e,	g	=	Zu

V(u)	=	Iσu2,	V(Zu)	=	ZZ’σu2,	

u-hat	=	E(u	|	y	)	=	b’y =	σu2Z’V-1 y
g-hat	=	Z	u-hat	=	σu2ZZ’V-1 y	=	σg2GV-1 y

24



Prediction	of	genetic	value

y	=	g	+	e,	g	=	Zu
If	y	and	u	are	multivariate	normal
E(u	|	y	)	=	b’y =	σu2Z’V-1 y

The	SNP	effects	are	unlikely	to	be	normally	
distributed	with	equal	variance

25



Best prediction

u-hat = E(u | y)

= ∫ u P(u | y) du

Bayes theorem
P(u | y) = P(y | u) P(u) / P(data)

Likelihood prior

Prediction	of	genetic	value	

26



Bayesian estimation

E(u | y) = ∫ u P(y | u) P(u) / P(y) du

Distribution of SNP effects

Normal à BLUP
t-distribution à Bayes A
Mixture à Bayes B (Meuwissen et al 2001)

Mixture of N à Bayes R (Erbe et al 2012)
u ~ N(0,σi

2) with probability πi
σi

2 = {0, 0.0001, 0.001,0.01} σg
2

Accuracy is greatest if assumed distribution matches
real distribution.

Prediction	of	genetic	value	

27



Prediction equations
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Prediction	of	genetic	value
Other	methods	of	prediction

Estimate	effect	of	each	SNP	one	at	a	time	and	add
g-hat	=	Z	u-hat
u-hat	estimated	from	single	SNP	regression

Biased	E(g	|	g-hat)		≠	g-hat
Less	accurate	because	ignores	LD	between	SNPs

and	treats	u	as	fixed	effects

29



Real data
4500 bulls and 12000 cows (Holstein and Jersey)
600,000 SNPs genotyped
Train using bulls born < 2005
Test using bulls born >= 2005

Correlation of EBV and daughter average
Protein Stature Milk Fat%

BLUP 0.66 0.52 0.65 0.72
Bayes R 0.66 0.54 0.68 0.82

Prediction of genetic value 

30



Genetic architecture

Proportion	of	SNPs	from	distribution	with	
variance

Trait 0.01% 0.1% 1% polygenic		(%)

RFI 7498 296 6 11
LDPF 1419 254 36 27

Mean4029 271 19 25
31



Integration	of	prediction	and	mapping	
of	causal	variants

Same	Bayesian	models	as	used	for	prediction	
can	be	used	for	mapping	causal	variants	of	
complex	traits

32



Prediction equations
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Mapping QTL – Milk on BTA5 

34



Mapping QTL 
– Milk on BTA5 



Application	to	human	disease	data
(WTCCC)

36



Model
• Assumes	true	SNP	effects	are	derived	from	a	series	of	normal	distributions
• Prior	assumptions

– Effects	size	of	SNP	k

– Mixing	proportion,	π
• Dirichlet distribution,	

– Genetic	variance
• hyper-parameter	estimated	from	data,	 !!!~!!! !! , !!! !
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Figure 4.  Comparison of performance of BayesR, BSLMM, LMM and GPRS in WTCCC data. (A) Estimates of 
SNP-based heritability on the observed scale. Antennas are standard deviations of posterior samples for BayesR and 
BSLMM or standard errors for LMM. GPRS does not provide estimates of heritability. (B) Distribution of the area under 
the curve (AUC).  The single boxplots display the variation in estimates among 20 replicates. In each replicate, the 
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Expected	proportion	of	total	SNP	
variance	explained	by	each	mixture
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Figure 6.  Proportion of genetic variance on each chromosome explained by SNPs with different effect sizes 
underlying seven traits in WTCCC. Proportion of additive genetic variation contributed by individual chromosomes and 
the proportion of variance on each chromosome explained by SNPs with different effect sizes. For each chromosome we 
calculated the proportion of variance in each mixture component as the sum of the square of the sampled effect sizes of 
the SNPs allocated to each component divided by the sum of the total variance explained by SNPs. The colored bars 
partition the genetic variance in contributions from each mixture class.



Posterior	mean	of	number	of	SNPs	
estimated	by	BayesR
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Prediction	of	genetic	value
Summary

Best	prediction	is	g-hat	=	E(g	|	y)
Genetic	values	treated	as	random	effects

Eg g	~	N(0,	Gσg2)

Equivalent	model	to	predict	SNP	effects	u
E(u	|	y)		depends	on	prior	distribution	of	u

à Bayesian	models
g-hat	=	Z	u-hat	gives	higher	accuracy	than	assuming	

g	~	N(0,	Gσg2)
Bayesian	models	integrate	prediction	and	mapping	of	
causal	variants
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Key	concepts
• Prediction	of	phenotypic	values	is	limited	by	heritability
• Accuracy	of	prediction	depends	on

– how	well	marker	effects	are	estimated	(sample	size)
– how	well	marker	effects	are	correlated	with	causal	variants	(LD)

• Estimation	of	marker	effects	and	prediction	in	the	same	data	leads	to	
(severe)	bias
– winner’s	curse;	over-fitting

• Variance	explained	by	a	SNP-based	predictor	is	not	the	same	as	the	
variance	explained	by	those	SNPs

• Marker	data	captures	both	between	and	within	family	genetic		variation
• Best	prediction	methods	take	genetic	values	as	random	effects
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Supplementary	derivations
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Theory	(additive	model)
m unlinked	causal	variants

45

yi = xijbj + ei
j=1

m

∑ = ai + ei

var(y) = var(x j )b
2
j + var(e)

j=1

m

∑ = var(a)+ var(e)

cov(yi, yk ) = cov(xij, xkj )b
2
j

j=1

m

∑ + cov(ei,ek )

= cov(ai,ak )+ cov(ei,ek )
= cov(ai,ak ) if cov(ei,ek ) = 0



Prediction

46

ŷi = xijb̂j
j=1

m

∑ = âi

var(ŷ) = var(x j )b̂
2
j

j=1

m

∑ = var(â)

cov(ŷi, ŷk ) = cov(xij, xkj )b̂
2
j

j=1

m

∑ = cov(âi, âk )



- theory	-

47

cov(ŷi, yi ) = cov{ (xijb̂j ), xijbj + ei
j=1

m

∑ }
j=1

m

∑

= var(xij )b̂jbj + xij cov(b̂j,
j=1

m

∑ ei )
j=1

m

∑

If b estimated from the same data in which prediction is 
made, then the second term is non-zero



Effect	of	errors	in	estimating	SNP	effects
(least	squares;	single	SNP)
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yi = xib+ ei
b̂ = b+ε

E(b̂) = b

var(b̂) = var(ε) =σ e
2 / Σx2 ≈ var(y) / {N var(x)}

var(x) = 2p(1− p) under HWE
Define RSNP

2 = var(x)b2 / var(y)

= contribution of single SNP to heritability



- effects	of	errors	-
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R̂y, ŷ
2 = cov(y, ŷ)2 / {var(y)var(ŷ)}

E[cov(y, ŷ)]= E[cov(xb, xb̂)]= var(xi )E(b̂)b
= var(x)b2

E[var(ŷ)]= E[var(xb̂)]= var(x)E[b̂2 ]

= var(x)[b2 + var(b̂)] ≈ var(x)b2 + var(x)var(y) / [N var(x)]
= var(x)b2 + var(y) / N

E(R̂y, ŷ
2 ) ≈ RSNP

2 / [1+1/ {NRSNP
2 }]
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