Resemblance between relatives



What do we mean by resemble?

Similar values of quantitative traits
Measure by correlation

= Covariance( y,, yj) /variance (y)



Why do relatives resemble each
other?



Why do relatives resemble each
other?

Similar

Genes

Family environment
Country

School



Model phenotype

Phenotype = genetic effect
+ country
+ year of birth
+ family environment
Fixed effects
Country, year of birth

Random effects
Genetic effect, family environment
We need a model of the covariances between terms



Model phenotype

Phenotype = genetic effect
+ country
+ year of birth
+ family environment
+ individual environment

V(phenotype) = V(genetic effects) + V(family environment)
+ V(individual environment)

Cov( phenotype, phenotype;) = Cov(genetic effects)
+ Cov(family environments)



Model phenotype

Random effects
Genetic effect, family environment
We need a model of the covariances between terms

C( family environments)= O if different families
1 * Vg if same family



Covariance between genetic effects of
relatives

Model with 1 gene, 2 alleles and additive gene action
We need genetic variances and covariances

Genotype BB Bb bb
Effect a 0 -a

Frequency p? 2pg g2 (p+g=1)

Mean = a *p? + 0*2pq—-a*qg?=(p-q)*a
Variance (genetic effect) = genetic variance =V
= E(effect?) — E(effect)?
Vg =a%*p?+0*2pq +a**q* - [(p-g)*a]* = 2pga’



Model with 1 gene, 2 alleles and additive gene
action

Covariance between parent and offspring

Parent Offspring

Genotype frequency BB Bb bb mean
BB a p p q pa

Bb 0 2pq 0.5p 0.5 0.5¢q 0.5(p-q)a
bb -a q° p q -qa

Cov(parent genetic value, offspring genetic value)
= p? *a*pa + g* * (-a)*(-qa) — [(p-q)al*[(p-a)a] = pga* = 0.5 Vg



Model with 1 gene, 2 alleles and additive gene
action

Covariance between parent and offspring (another way)

Model genetic value as sum of gametic effects from mother and
father

g =X, +X;
V(g) = V(x,, )+ V(%) = 2V(x)

C(gpl go) = C( me + Xfpl Xmo+ Xfo)

= C(me ’ Xmo) + C(me' Xfo) + C(Xfp' Xmo) + C( Xfp' Xfo)
=0 +? +0 +?
CXmps Xto) =V(x) if x,, is ibd to x,
=0 otherwise

CXmpr X0) = ClXgps Xg) =0.5V(x)
C(g,, 8,) =0+ 0.5V(x) + 0 + 0.5V(x) = V(x) = 0.5 V4



Probability that relatives share alleles
IBD

Covariance between relatives depends on probability that their alleles are IBD

This probability can be calculated from pedigrees

Assume that base individuals at the top of the pedigree (ie those without a
pedigree) have unrelated alleles ie the individuals are unrelated

Recurrence formulae for P(IBD)

if i and j are base individuals, P(x; = x;) =0
Otherwise, P(x; = x5) = 0.5 [P(x; = xq) + P(x; = x,,) ] where k is the father of |



Probability that relatives share alleles
IBD

k (mk, fk)

i (mi, fi) j(mj, fj)



Relationships between individuals

P(gametes are IBD) can be stored in a gametic relationship matrix
G(wi,zj) = P(wi=zj)

But usually we analyse measurements on diploid individuals

C(g;, 8;) = Ali,j) Vg = [G(mi, mj) + G(mi,fj) + G(fi,m]j) + G(fi,fj)] V(x)
= [G(mi, mj) + G(mi,fj) + G(fi,mj) + G(fi,fj)] Vs /2

A(i,j) = [G(mi, mj) + G(mi,fj) + G(fi,m]) + G(fi,fj)]/2

where A is the numerator relationship matrix



Relationships between individuals

Example: Relationship of individual with herself
Gametic relationship matrix

mi fi
mi 1 0
fi 0 1

Numerator relationship A(i,i) = [1+0+0+1]/2 =1



Relationships between individuals

Example: Relationship of sisters
Gametic relationship matrix

mi fi
m| 0.5 0
fj 0 0.5

Numerator relationship A(i,j) = [0.5+0+0+0.5]/2 = 0.5



Relationships between individuals
i = (im, if) and j = (jm,jf)

Co-ancestry of i and j
= Inbreeding co-efficient of an offspring of i and j

= Prob( offspring gets two alleles that are IBD)
= (P(im=jm) + P(imzjf) + P(ifzjm) + P(if=jf))/4
= Ali,j) /2

Additive relationship (NRM) = 2 * co-ancestry
=2 * kinship



Estimating genetic variance

Data on phenotypes (y) of related subjects

y = fixed effects + g + e

V(g) = A Ve

Vie) =1 Vi

Use ML or REML to estimate variances



Estimating genetic variance

Use ML or REML to estimate variances

ML finds the value of V; that maximises the probability
of observing the data

ML estimates all parameters together

= estimates variances assuming that fixed effects
have been estimated without error

REML allows for loss of df in estimating fixed effects
ML o? = Z(y-mean)?/N

REML o2 = 2(y-mean)?/(N-1)

Little difference unless many fixed effects

Use REML computer programs such as ASREML



Estimating genetic variance

Example: Data on phenotypes (y) of full sibs

y = fixed effects=g + e
Cov(g;, g;) = Ali,j) Vg=0.5 Vg ifiand jare sibs

Therefore estimate V. by 2cov(full-sibs)
h? by 2 correlation between full-sibs

What is the covariance between twins?



Model with dominance



Covariance between genetic effects of
relatives

Model with 1 gene, 2 alleles and additive and dominant gene action
We need genetic variances and covariances

Genotype BB Bb bb
Effect a d -a
Frequency p? 2pq g2 (p+q=1)

Mean =a *p? +d*2pg-a*g? =(p-q)*a+ 2pqd
Variance (genetic effect) = genetic variance = V;
= E(effect?) — E(effect)?
Vg =a®*p?+d**2pq +a?*q® - [(p-g)*a + 2pqd]* = 2pga’ + (2pqd)?
where a = a +(g-p)d



Covariance between genetic effects of
relatives

Model with 1 gene, 2 alleles and additive and dominant gene action

but the covariance between relatives doesn’t depend directly on VG. We need to decompose VG into
an additive and dominance variance.

Parameterise the genetic value as
g = mean + additive effect + dominance deviation
g = mean + paternal allele effect + maternal allele effect + interaction of alleles

Genotype BB Bb bb

Effect a d -a

Frequency p> 2pq q° (p+q=1)
mean (p-g)a + 2pqd (p-g)a + 2pqd (p-g)a + 2pqd

additive 2qa (g-p)a -2pa a=a+(q-p)d
dominance dev. -g%d 2pqd -p3d

Mean(additive effect) =0, mean(dominance deviation)=0, cov(additive effect, dominance dev) =0
Genetic variance =V =2pqa?  +(2pqd)?
=V, +Vp



Covariance between genetic effects of
relatives

Model with 1 gene, 2 alleles and additive and dominant gene
action

Cov (g, g) = Cov(a;+d; a;+d)) = Cov(a, a;) + cov( d,,d))
= A(i,j) Vo + D(i)j) Vp

D(i,j) = prob(i and j inherit the same genotype IBD)

Eg
D(i,j) = 1 for MZ twins, 0.25 for full-sibs, O for parent and
offspring



Covariance between genetic effects of
relatives

Model with 1 gene, 2 alleles and additive and dominant gene
action

Relationships MZ twins full-sibs 1/2sibs P-O
A 1 0.5 0.25 0.5
D 1 0.25 0 0

Therefore can estimate both V, and V, by using multiple
relationships



Covariance between environmental
effects of relatives

y = mean + genetic effect + common environment effect + individual
environment effect

y=mean+g+e_+e
Model with a common environmental effect within the same family

Cov(e, ey) =V ifiandjin same family, zero otherwise

Relationships MZ twins full-sibs 1/2sibs P-O
A 1 0.5 0.25 0.5
D 1 0.25 0 0

E common 1 1 ? ?



Covariance between relatives

Estimating V,, Vp and V.
Difficult!
Assume V, =0

VA = 2(cov(MZ twins) — cov(full-sibs))

Relationships MZ twins full-sibs
A 1 0.5
D 1 0.25

E common 1 1

1/2sibs
0.25

0
?

P-O
0.5



Covariance between relatives

Can add epistatic interactions to model
g = mean + additive + dominace + epistasis
egg=mean+a+d+aa

Cov (g;, 8;) = Ali,j) Va + D(i,j) Vp + A(0,j)? Vi

Relationships MZ twins full-sibs 1/2sibs
A 1 0.5 0.25
D 1 0.25 0

AxA 1 0.25 0.0625

P-O
0.5

0.25



Vorume II

NOVEMBER, 1903

No.

ON THE LAWS OF INHERITANCE IN MAN*.
I INHERITANCE OF PHYSICAL CHARACTERS,

Frequency.

By KARL PEARSON, F.R.S., assisted by ALICE LEE, D.Sec.

University College, London.

364 On the Laws of Inheritance in Man
Duacram IV. Distribution of Stature.
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Duacram I, Probable Stature of Son for given Father's Stature.
Regression Line: S=33-73+°'516 F. 1078 Cases.
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PAIR

Spouse
Son-Father
Daughter-Father
Son-Mother
Daughter-Mother
Brother-brother
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CORRELATION
0.28
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0.51
0.54
0.55
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SE
0.02
0.02
0.01
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Phenotypic correlation

Resemblance between relatives (height)
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Phenotypic correlation

More data on height

Data from ~172,000 18-year old brother pairs

Phenotypic correlation
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Sex Differences in Heritability of BMI:
A Comparative Study of Results from
Twin Studies in Eight Countries

Karoline Schousboe', Gonneke Willemsen?, Kirsten O. Kyvik!, Jakob Mortensen', Dorret |. Boomsma?,

Belinda K. Cornes?, Chayna . Davis*, Corrado Fagnani®, Jacob Hjelmborg', Jaakko Kaprio®, Marlies de
Lange’, Michelle Luciano?, Nicholas G. Martin®, Nancy Pedersen?, Kirsi H. Pietiliinen®®, Aila Rissanen®,
Suoma Saarni¢, Thorkild |.A. Serensen®, G. Caroline M. van Baal?, and Jennifer R. Harris'

Twin Research October 2003

Table 5a
Twin Correlations (R) for BMI and Number of Pairs (N) Assessed by Zygosity and Sex for Twins Aged 20-29 years

Australia Denmark Finland Italy Netherlands Norway Sweden UK

R (N) R(N) R(N) R (N) R(N) R (N) R(N R(N)
MZm 0.67 (390) 0.77 (824) 0.74 (247) 0.83 (66) 0.65 (299) 0.69 (563) 0.77 (887) n.a.
DZm 0.32 (260) 0.35 (897) 0.32(304) 0.52 (43) 0.31 (222) 0.41(479) 0.35 (1346) n.a.
Mzt 0.72 (768) 0.73 (1161) 0.78 (411) 0.83 (129) 0.79 (518) 0.74 (738) 0.73 (1054) 0.74 (89)
Dzf 0.33 (486) 0.35 (1046) 0.37 (358) 0.58 (76) 0.41 (336) 0.35 (643) 0.36 (1472) 0.52 (75)
Dz0S 0.18 (596) 0.30 (1620) 0.22 (668) 0.12 (96) 0.36 (473) 0.18(968) n.a. n.a.

Average correlations

MZ 0.74
DZ (same sex) 0.36
DZ (opposite sex) 0.25
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f A ORIGINAL RESEARCH ARTICLE
{FF@@{ED@F@ D[m published: 28 February 2012

EN DOCRINOLOGY doi: 10.3389/fendo.2012.00029

Variability in the heritability of body mass index: a
systematic review and meta-regression

Cathy E. Elks’, Marcel den Hoed', Jing Hua Zhao', Stephen J. Shamp’, Nicholas J. Wareham',
Ruth J. F Loos' and Ken K. Ong'?*
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FIGURE 1 | Histogram showing the wide distribution of reported
estimates of BMI heritability from twin studies (white bars) and family
studies (gray bars). 32
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Summary
Resemblance between relatives

Model phenotypes by fixed effects and random effects including
genetic value (additive, dominance, epistatic)

Model covariance of genetic effects by relationship estimated
from pedigree (or SNP genotypes)

Estimate genetic variance by REML



Estimating genetic variation
within families

Peter M. Visscher
peter.visscher@ug.edu.au



Key concepts

1. There is variation in realised relationships given
the expected value from the pedigree;

2. Variation in realised relationships can be
captured with genetic markers;

3. Variation in realised relationships can be
exploited to estimate genetic variation



Genetic covariance between
relatives

— 2 7
covg(yiy;) = @;0a° + d;op

a = additive coefficient of relationship
= 270 (= E(ny))

d = coefficient of fraternity
= Prob(2 alleles are IBD) = A = E(my)



Examples (no inbreeding)

Relatives a d
MZ twins 1 1
Parent-offspring i 0
Fullsibs Z Ya

Double first cousins Ya 1.6



Controversy/confounding:
nature vs nurture

* |s observed resemblance between
relatives genetic or environmental?

— MZ & DZ twins (shared environment)
— Fullsibs (dominance & shared environment)

 Estimation and statistical inference

— Different models with many parameters may
fit data equally well




Actual or realised genetic
relationship
= proportion of genome shared IBD (t,)

» Varies around the expectation
— Apart from parent-offspring and MZ twins

« Can be estimated using marker data



e | | I

Rl .
Q“ [ [ .




IDENTITY BY DESCENT
Sib 1

= R
Sib 2

= -
N

4/16 = 1/4 sibs share BOTH parental alleles IBD = 2

B 8/16 = 1/2 sibs share ONE parental allele IBD = 1

- 4/16 = 1/4 sibs share NO parental alleles IBD = 0




Single locus

Relatives

Fullsibs
Halfsibs

Double 1st cousins

E(r,)

2
Va
Va

var(,)

1/8
16
3/32



Several notations

IBD Probability Actual
Realisations
BDO Ko 0 or Ko ki Kk
BD1 K 0or” i 0 0
BD2 Ky 0 or 1 0 1 0
>=1 >=1 0 0 1

m, = 72K, + kK, =R =260

wy =K, = Ayy
10
[e.g., LW Chapter 7; Weir and Hill 2011, Genetics Research]



n multiple unlinked loci

Relatives

Fullsibs
lalfsibs
Double 1st cousins

E(r,)

2
Va
Va

var(r,)

1
/8n
1
/16n
3
/32n

11



Locl are on chromosomes

» Segregation of large chromosome
segments within families

— increasing variance of IBD sharing

* Independent segregation of chromosomes
— decreasing variance of IBD sharing

12



Theoretical SD of

Relatives 1 chrom (1 M)
Fullsibs 0.217
Halfsibs 0.154

Double 1st cousins 0.173

genome (35 M)

0.038
0.027
0.030

13
[Stam 1980; Hill 1993; Guo 1996; Hill & Weir 2011]



Fullsibs: genome-wide
(Total length L Morgan)

var(e,) = 1/(16L) — 1/(3L%) [Stam 1980; Hill 1993; Guo 1996]

var(my) = 5/(64L) — 1/(3L%)

var(my)/ var(z,) ~ 1.3 if L = 35

Genome-wide variance depends more on total genome

length than on the number of chromosomes i



Fullsibs: Correlation additive and
dominance relationships

1, ig) = 0(m)) / o(mtg) = [1/(16L) / (5/(641L))1%° = 0.89.

Using p(rt, on ty) = 1

Difficult but not impossible to disentangle
additive and dominance variance

NB Practical 15



Summary
Additive and dominance (fullsibs)

SD(,)  SD(y)

Single locus 0.354 0.433
One chromsome (1M) 0.217 0.247
Whole genome (35M) 0.038 0.043
Predicted correlation 0.89

(genome-wide nt, and )

16



Estimating IBD from marker data

 Elston-Stewart algorithm

Handles large pedigrees, but small nr of loci, exact IBD
distributions (Elston and Stewart, 1971)

e Lander-Green algorithm

Handles small pedigrees, but large nr of loci, exact IBD
distributions (Lander and Green, 1987). Software: Merlin

e MCMC methods

Caklculates approximate IBD distributions (Heath, 1997). Software:
Loki

» Average sharing methods.

Calculates approximate IBD distributions (Fulker et al., 1995; Almasy

and Blangero, 1998). Software: SOLAR

17



Estimating w when marker 1s not fully
informative
* Using:
— Mendelian segregation rules
— Marker allele frequencies in the population

18



IBD=0

IBD can be trivial...

1/ BB

19



Two Other Simple Cases...




A little more complicated...

1 /12 2B

IBD=1 IBD=2
(50% chance) (50% chance)

1|/12] 1|/12] N




And even more complicated...

IBD="? 1| /|1 1|/]1

22



Bayes Theorem for IBD

Probabilities
pos%
PBD=i|G) =2 UBD=L0)
P(G)
) P(G)

Prob(data)

MD = )P(G|IBD =)
B » P(IBD = j)P(G|IBD = j)

23



P(Marker Genotype|IBD State)

IBD
Sib CoSib 0 1 2
(aab) (Cad) PaPvPcPd 0 0
(aaa) (b,C) pazpbpc 0 0
(aaa) (bab) pazpb2 O O
@b)  (ac) Pa PbDe PaDbDe 0
(aa)  (ab) P Po Pa”Pb 0
(ab)  (ab) PaPb PaPb Pa Pb PaDb
(a,a) (a,a) pa4 pa3 pa2
Prior Probability Z /2 /a

[Assumes Hardy-Weinberg proportions of genotypes in the population]

24



Worked Example

p, =05

P(G IBD=O)=p14=%6
P(G IBD=1)=p13=A
P(G [BD=2)=p12=A

PG)= Y i+ Vopi+ Vol =2

P(IBD=0|G) = ?(gl)—%

P(IBD=1|G) = ?(G)— 5 A 2/
=173

P(IBD=2|G)= ?( (1;?1) -4 s




Application (1)

Aim: estimate genetic variance from actual
relationships between fullsib pairs

 Two cohorts of Australian twin families

Adolescent
Families 500
Individuals 1201
Sibpairs with genotypes 950
Markers per individual 211-791

Average marker spacing 6 cM

Adult
1512
3804
3451
201-1717
5 cM

26



Application (1)
* Phenotype = height

Number of sibpairs with phenotypes
and genotypes

Adolescent cohort 931
Adult cohort 2444
Combined 3375

27



Mean IBD sharing across the genome for the jth sib pair
was based on IBD estimated every centimorgan and
averaged over 3500 points (L = 35)

3500

additive jl’a(]) — E Jta(l]) /3500
=1

3500

dominance ~
Tagj) = E Do 3500
=1

28



And for the c* chromosome of length /. ¢cM

additive

dominance

lC
7 =Na /1
a(j) a(ij)
=1
—_— lC
Ac
er(j) pz(ij) /ZC

29



Mean and SD of genome-wide additive relationships

300 —

250 —

200 —

Frequency
o
o
|

100 —

Mean = 0.4984

50 —
Std. Dev. = 0.03598
N =4 401
0 e
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Mean and SD of genome-wide dominance relationships

Frequency

300+

[

o

o
|

100 —

Mean = 0.2479
Std. Dev. = 0.04001
N =4 401

0.20

0.30
ibd2_mean
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Empirical and theoretical SD of additive relationships
correlation = 0.98 (n = 4401)
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Q
=
Qo
£
T
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Theoretical SD




Empirical and theoretical SD of dominance relationships
correlation = 0.98 (n = 4401)

o
]
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©
o
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£
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0.2

0.22
Theoretical SD




Additive and dominance relationships
correlation = 0.91 (n= 4401)

0.4000

y = 0.9998x - 0.2506 .
R?=0.8225

0.3500

0.3000

0.2500

0.2000

Dominance relationship (mean IBD2 sharing)

*
*
0.1500 A
/

0.1000
0.3500 0.4000 0.4500 0.5000 0.5500 0.6000 0.6500

Additive relationship (mean IBD sharing) 34




Frequency

Phenotypes

Adolescent cohort

100~

80—

60—

40

20

I 1 I I I
13000 14000 15000 160.00 17000 180.00 19000 200.00
ht

Mean = 168.0115
Std. Dev. = 9.5468
N=17193

Frequency

Adult cohort

300 —

[~

(5]

o
1

200 — -

100 —

I I I
140.00 160.00 180.00 200.00 220.00
ht

After adjustment for sex and age:

Op = /.7 CmM

O, = 6.9 cm

Mean = 169.231
Std. Dev. = 10.03942
N=3332

35



Phenotypic correlation between
siblings

Raw After age & sex

Adolescents 0.33 0.40
Adults 0.24 0.39

36



Models AR A
var(y) =0, +0° +0,

cov(yl.j,yl.k) = Of +IT,, jk)aj
C= Family effect
A= Genome-wide additive genetic

E= Residual

Full model C+A+E
Reduced model C+E

37



Estimation

 Maximum Likelihood variance components

 Likelihood-ratio-test (LRT) to calculate P-

values for hypotheses
Hy: A=0
Hi:A>0

38



Estimates: null model (CE)

Cohort Family effect (C)
Adolescent 0.40 (0.34 — 0.45)
Adult 0.39 (0.36 — 0.43)

Combined 0.39 (0.36 — 0.42)

39



Estimates: full model (ACE)

Cohort C A P

Adolescent 0 0.80 0.0869
Adult 0 0.80 0.0009
Combined 0 0.80 0.0003

» All family resemblance due to
additive genetic variation

40



Sampling variances are large

Cohort A (95% CI)
Adolescent 0.80 (0.00 — 0.90)
Adult 0.80 (0.43 — 0.86)

Combined 0.80 (0.46 — 0.85)

41



Power and SE of estimates

* True parameter (t = intra-class correlation)
« Sample size (n pairs)
* Variance in genome-wide IBD sharing (var(s))

var(h?) = (1-1*)*/ [(1 +1°)(n VaI‘(JZ’))]

NCP = nh4var(n:)(1+t2) / (1—t2)2

42



Application (2)
Genome partitioning of additive
genetic variance for height

 Aims
— Estimate genetic variance from genome-wide
IBD in larger sample

— Partition genetic variance to individual
chromosomes

 using chromosome-wide coefficients of relationship

— Test hypotheses about the distribution of
genetic variance in the genome

43



Sample # Sibpairs Sib Correlation
AU 5952 0.43
US 3996 0.50
NL 1266 0.45
Total 11,214 0.46

44



Realised relationships

Mean 0.499
Range 0.31-0.64
SD 0.036

Mean = 0. 7
Std. Dev. = 0.0364999
=112

genome-wide coefficient of relationship



Chrom.

\O 00 ~]1 O\ W = W1 k=
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SUM

£&@
0.4285
0.4525
0.4023
0.4036
0.4458
0.4336
04284
04234
0.4482
0.4590
0.4590
0.4365
0.4545
0.4427
04241
0.4556
0.4023
04237
0.4437
0.4575
0.4590
0.4590

el (c)

0.5108
0.5344
0.4843
0.4840
0.5278
0.5158
0.5100
0.5058
0.5302
0.5410
0.5410
0.5184
0.5366
0.5250
0.5056
0.5375
0.4834
0.5060
0.5253
0.5395
0.5410
0.5410

romosome analyses

LRT?
1.201
0.065
5.704
5938
0319
1.294
2.019
2.778
0277
0.000
0.000
1.121
0.056
0.728
3.353
0.035
9.019
3.753
0.759
0.008
0.000
0.000

38.427

P-value
0.137
0.399
0.008
0.007
0.286
0.128
0.078
0.048
0.299
0.500
0.500
0.145
0.406
0.197
0.034
0426
0.001
0.026
0.192
0.464
0.500
0.500

hiz
0.0633
0.0097
0.1160
0.1082
0.0196
0.0508
0.0630
0.0856
0.0325
0.0000
0.0000
0.0489
0.0006
0.0185
0.0760
0.0180
0.1124
0.0622
0.0317
0.0037
0.0000
0.0000
0.9205

LRT®
1.418
0.037
6.269
5.705
0.191
1.370
2.230
4172
0.663
0.000
0.000
1.434
0.000
0.246
4.028
0.251
8.967
3.013
0.840
0.012
0.000
0.000

40.846

Combined chromosome analysis

P-value
0.117
0.424
0.006
0.008
0.500
0.500
0.068
0.021
0.500
0.500
0.500
0.500
0.500
0.500
0.022
0.308
0.001
0.041
0.500
0.456
0.500

0.500
46



Estimate of heritability

Longer chromosomes explain more additive
genetic variance: ~0.03 per 100 cM

0.14 . .
WLS analysis: P<0.001; intercept NS
0.12 17l @!
; :
0.10
0.08 @5!
0.06 *
0.04
0.02
? ’
| 50 100 150 200 250 300

Length of chromosome (cM) 47



Inference of the Genetic Architecture Underlying
BMI and Height with the Use of 20,240 Sibling Pairs

Gibran Hemani,'? Jian Yang,? Anna Vinkhuyzen,? Joseph E. Powell,"»? Gonneke Willemsen,>*
Jouke-Jan Hottenga,*> Abdel Abdellaoui,?* Massimo Mangino,® Ana M. Valdes,® Sarah E. Medland,”
Pamela A. Madden,® Andrew C. Heath,® Anjali K. Henders,” Dale R. Nyholt,” Eco J.C. de Geus, %5

[ ] | |
Patrik K.E. Magnusson,? Erik Ingelsson,?10 Grant W. Montgomery,” Timothy D. Spector,®
p p I ‘ a I O | l Dorret I. Boomsma,?#> Nancy L. Pedersen,” Nicholas G. Martin,” and Peter M. Visscher!.2*

» Using SNP data to estimate IBD
« Data from ~20,000 fullsib pairs
* Height and BMI

304

Frequency
N
o

{rontiers im ORIGINAL RESEARCH ARTICLE 10-
EN DOCRINOLOGY published: 28 February 2012

doi: 10.3389/fendo.2012.00029

Variability in the heritability of body mass index: a i " B
systematic review and meta-regression o :
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Cathy E. Elks', Marcel den Hoed', Jing Hua Zhao', Stephen J. Sharp’, Nicholas J. Wareham?, Family study estimates [ Twin study estimate4
Ruth J. F Loos' and Ken K. Ong'?*

FIGURE 1 | Histogram showing the wide distribution of reported
estimates of BMI heritability from twin studies (white bars) and family
studies (gray bars).




Genetic variation within families using SNP data

IBD

W =0.500

Heritability estimates from ~20,000
6 =0.037

fullsib pairs:

A«Mm M Height 0.7 (SE 0.14)

BMI 0.4 (SE 0.17)

#=p(IBD1)/2 +p(IBD2)

n=1507

n=1819 n=2722 n=4607 n=9585 n=20240
6 .
4 .
2 .
ge]
Q GC =0.97 GC =1.42
£0-
3
a6~
(@]

GC =1.58
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Conclusions

* Empirical variation in genome-wide IBD sharing
follows theoretical predictions

 (enetic variance can be estimated from
genome-wide IBD within families

— results for height consistent with estimates from
between-relative comparisons

— no assumptions about nature/nurture causes of family
resemblance

« Genetic variance can be partitioned onto
chromosomes
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Key concepts

1. There is variation in realised relationships given
the expected value from the pedigree;

2. Variation in realised relationships can be
captured with genetic markers;

3. Variation in realised relationships can be
exploited to estimate genetic variation

51



Estimating relationship from
marker genotypes



Relationships

We use relationship data
to estimate genetic variance
to estimate demographic history



Relationships

Additive genetic relationship G(i, j)

= proportion of the genome in i and j that
is IBD

Pedigree relationship A(i,j) = Prob (IBD)

= E(G(i,j))
Actual relationship deviates randomly from this
expectation




Relationships

Single locus case, full sibs

Parents A A, X AA,
offspring A A,
AA,
AA,
A,A,
Pairs of sibs share
0 alleles 25% of the time
1 allele 50%
2 alleles 25%

E(G) =A=0.5but GvariesfromOto1



Estimate relationship from markers

G is a more accurate description of relationship than A

G captures unknown pedigree information
pedigree can be incorrect
G captures deviations from A

Therefore, can use G in
Random sample of population (“unrelated individuals”)
Individuals with same pedigree



Estimate relationship from markers

1. Well defined (recent) base
2. No well defined base

3. Well defined, recent base

Eg Data on families of full-sibs and parents of sibs are the base



Estimate relationship from markers

Eg Data on families of full-sibs and parents of sibs are the base

Consider a single SNP
Full sibs can be IBD at either maternal or paternal allele

IBD status P(IBD status)
Maternal Paternal
yes yes 0.25
yes no 0.25
no yes 0.25

no no 0.25



Estimate relationship from markers

Eg Data on families of full-sibs and parents of sibs are the base

At this SNP, one sib has genotype AA and the other is AB, mother = AB, father
= AA
P(IBD status | SNP genotypes)

= P(SNP genotypes | IBD status)* P(IBD status)

P(SNP genotypes)

= P(SNP genotypes | IBD status)* P(IBD status)
> P(SNP genotypes | IBD status)* P(IBD status)



Estimate relationship from markers

= P(SNP genotypes | IBD status)* P(IBD status)
2 P(SNP genotypes | IBD status)* P(IBD status)

IBD status P(IBD status) P(genotypes|IBD status) P(IBD status | genotypes)
Maternal Paternal G
yes yes 0.25 0 0 1
yes no 0.25 0 0 0.5
no yes 0.25 1 0.5 0.5
no no 0.25 1 0.5 0

2 P(SNP genotypes | IBD status)™* P(IBD status) = 0.5

E(G) = 0.25 compared with A=0.5



Estimate relationship from markers

1. Well defined, recent base
Eg Data on families of full-sibs and parents of sibs are the base
a) Calculate Bayesian probability of IBD status at each SNP

- E(G) at each SNP

average over SNPs

b) Use haplotypes ?



Estimate relationship from markers

2. Less well defined, less recent base

Eg Data on current population, base = ancestors 1000 years ago
and allele frequencies in base are known (p and q)

Consider haploid gametes of SNP alleles instead of genotypes
What fraction of the gametes are IBD (G)?

At a single SNP, there are 3 possible data sets and their
probabilities are

A and A A and B BandB
p? +pqG 2pq(1-G) q%+pqG



Estimate relationship from markers

SNP genotypes A and A A and B BandB
Probability p? +pqG 2pq(1-G) q2+pgG
score (x) a/p -1 p/q

Estimate G(i,j) from the mean value of x over SNPs

This is a relationship between gametes. Calculate G for
individuals from the 4 gametic relationships.

See Yang et al (2010) and Powell et al (2010) for the diploid
formulae.



Estimate relationship from markers

E.g. Score (x) for pairs of gametes from population in H-W
p(A) =0.9, q(B)=0.1

A B
(0.9) (0.1)

A (0.9) 0.11 -1

B (0.1) 1 9

Mean G = 0.81 * 0.11 + 0.18 *(-1) + 0.01 *9 = 0



Estimate relationship from markers

E.g. Score (x) for pairs of gametes from population in H-W
p(A) =0.9, q(B)=0.1

AAAAAAAAAAAAAAAAAABB

Aand AorAand A BandB



Estimate relationship from markers

E.g. Score (x) for pairs of gametes from same parent
p(A) =0.9, q(B)=0.1

Parent AA AB BB
Freg. 0.81 0.18 0.01
AA (x=0.11) AA(0.11) BB (9)
AB (-1)
BB (9)

Mean G = 0.81*0.11 + 0.18*(0.25*0.11+0.5*(-1)+0.25*9) + 0.01 *9
=0.5



Estimate relationship from markers

E.g. Score (x) for pairs of gametes from population in H-W but
after allele frequency has drifted to p(A) =0.8, q(B) =0.2

A B
(0.8) (0.2)

A (0.8) 0.11 -1

B (0.2) 1 9

Mean G= 0.64 *0.11 +0.32 *(-1) + 0.04 *9=0.11



Estimate relationship from markers

2. No well defined base

Eg random sample from population but don’t know allele frequency in
the base.

a) Use the current population as the base

Problem: Some G <0
Cannot interpret as probabilities but still interpret as covariances
If g = genetic value, V(g) =G V,

where G is calculated as above but using allele frequencies in current
population.



Estimate relationship from markers

E.g. Score (x) for pairs of gametes from population in H-W but
after allele frequency has drifted to p(A) =0.8, q(B) =0.2 and
using allele frequencies in modern population

A B
(0.8) (0.2)

A (0.8) 025 -1

B (0.2) 1 4

Mean G= 0.64 *0.25+0.32 *(-1) + 0.04 *4 =0



Estimate relationship from markers

2. No well defined base
b) Assume SNPs are a random sample of loci as are QTL

y=mean+g+e

y=mean+/Zu+e

Z; =0 for AA, 1 for AB or 2 for BB

u~N(0,lo2) 2 g=2u~N(0,Z2Z'0,*), ZZ'0,* = Go?, if 6,> = No°
where N=22pq across SNPs

Therefore, G =7Z’/N



Estimate relationship from markers

E.g. Score for pairs of gametes from population in H-W
p(A) =0.8,q(B)=0.2

A B
(0.8) (0.2)
Z 0 1

A(0.8) 0 0 0
B(0.2) 1 0 1

Mean G = 0.04 *1 =0.04



Estimate relationship from markers

E.g. Score for pairs of gametes from population in H-W
p(A) =0.8,q(B)=0.2

A B
(0.8) (0.2)
Z -0.2 0.8

A(0.8) -0.2 0.04 -0.16

B(0.2) 0.8 -0.16 0.64

Mean G = 0.64*0.04 + 0.32 * (-0.16) + 0.04 *0.64 =0



Comparing 2a and 2b

E.g. p(A) =0.8,q(B)=0.2

2b 23
A B A
(0.8) (0.2)
Z -0.2 0.8
A (0.8) -0.2 0.04 -0.16 A 0.25

B(0.2) 0.8 -0.16 0.64 B 1



Estimate relationship from markers

2a and 2b compared for gametic relationships

SNP data A and A A and B B and B
score (x) a/p -1 p/q
weight (w)  pq Pq Pq

2a) G = mean of x
2b) G = weighted mean of x = Zwx/2w

This could be described as using the IBS status of SNPs instead of
IBD



Estimate relationship from markers

E.g. Score (x i.e. method 2a) for pairs of gametes p(A) =0.8, q(B)
= 0.2 and weighting by pq=0.16

A B
(0.8) (0.2)
A (0.8) 0.25%0.16  -1*0.16
=0.04 =-0.16
B (0.2) -1*0.16 4*0.16
=-0.16 = 0.64

Same as 2b



Estimate relationship from markers

2a) G = mean of x
gives more emphasis to sharing rare alleles

Makes sense because individuals who share rare alleles are
more likely to be closely related than individuals who share
common alleles.

Gives minimum error variance of relationship under some
conditions



Estimate relationship from markers

2. No well defined base

c) Assume SNPs are a random sample of loci as are QTL but effect of SNP
decreases as heterozygosity increases

y=mean+g+ e
y=mean+Zu+e

Z;=0for AA, 1 for AB or 2 for BB

u~N(0,Do,?) 2 g=2u~N(0,ZDZ'c,?), ZDZ'0 * = Go?, if 0,> = No 2
where N=Z(p,q;)

Therefore, G =ZDZ’/N

D; = 1/(pa)

That is, assume the effect of SNPs is proportional to V(p,q;)

So variance explained by SNPs is not affected by allele frequency
2c=2a



Estimate relationship from markers

Relationship depends on the markers or QTL

Eg QTL are due to recent mutations

AQ

AQ Aq

Marker is the same but QTL is different
Rare SNP alleles tend to be a recent mutation
Therefore, treat SNPs differently according to MAF



Estimate relationship from markers

Relationship depends on the markers or QTL
Therefore, treat SNPs differently according to MAF

y=mean + gl + g2 +g3 + g4 +g5 +e

V(g) = (22'/N)o.? for SNPs in MAF bin i



Estimate relationship from markers

Use haplotypes of markers
New definition of IBD for chromosome segments

Two segments are IBD if they coalesce without recombination
Avoids definition of a base population

Chromosome segment homozygosity (CSH)
= P(2 segments are IBD)
E(csh) = 1/(1+4N )



Estimate relationship from markers

Problem: cant observe CSH directly
only observe haplotype homozygosity (HH)
or runs of homozygosity (ROH)



Estimate relationship from markers

Can use HH or ROH in QTL mapping

Additive effects
Calculate P(QTL in position x is IBD) = P(csh for surrounding chr)

Eg P(QTL IBD) = 0.9 if in middle of 10 identical markers

Recessive effects
ROH within individual =2 homozygous QTL within the run




Estimate relationship from markers

Recessive effects
ROH within individual = homozygous QTL within the run

Detect embryonic lethals by missing ROH



Estimate relationship from markers
Summary

1. In families

2. Inthe general population
Express relationship relative to current population
G can be negative
G is not a probability
V(g) =G o,
two formulae (2a and 2b)
Same except 2a gives more weight to rare alleles



(Genome-wide) association
analysis

Peter M. Visscher
peter.visscher(@ug.edu.au



Key concepts

Mapping QTL by association relies on linkage
disequilibrium in the population;

LD can be caused by close linkage between a QTL and

marker (= good) or by confounding between a marker and
other effects (= usually bad);

The power of QTL detection by LD depends on the
proportion of phenotypic variance explained at a marker;

Mixed models are good for performing GWAS

Genetic (co)variance can be estimated from GWAS
summary statistics



Outline

Association vs linkage
Linkage disequilibrium
Analysis: single SNP

GWAS: design, power
GWAS: analysis



Association

Populations

Families



Linkage disequilibrium around an

ancestral mutation
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[Ardlie et al. 2002]



LD

 Non-random association between alleles at
different loci

* Many possible causes
— mutation
— drift / inbreeding / founder effects

— population stratification
— selection

* Broken down by recombination



Definition of D

e 2 bi-allelic |

— Locus 1, al

0C1

leles A & a, with freq. p and (1-p)

— Locus 2, a!

— Haplotype

D =psp-P9

leles B & b with freq. g and (1-q)

frequencies pag, Paps> Pap> Pa



2
r> =D/ [pq(1-p)(1-q)]

* Squared correlation between presence and
absence of the alleles 1n the population

* ‘Nice’ statistical properties

8
[Hill and Robertson 1968]



Properties of r and r?

* Population in ‘equilibrium’

E(r) =0 LD depends on
E(r?) = var(r) = 1/[1 + 4Nc] + 1/n population size and
N = effective population size recombination

n = sample size (haplotypes) distance
¢ = recombination rate
° 2 2
nr X(l)

 Human population 1s NOT in equilibrium

9
[Sved 1971; Weir and Hill 1980]



Analysis

Single locus association
GWAS

Least squares
ML
Bayesian methods

10



Falconer model for single biallelic QTL

oo

.

bb Bb BB

Var (X) = Regression Variance + Residual Variance
= Additive Variance + Dominance Variance

11



Trait Value

-3 =2 =1 0 1 & 3

Unrelated Samples

Vi=u+pX
+
+
+
*
I [ [
aa Aa A A

(aenotype

12



Statistical power (linear regression)

£4

y=u+p*x+e, x=0,1,2 é

Oyz = 0q2 + 0,2 regression + residual o 8b o5
o> = 2p(1-p) p = allele frequency for indicator x

{HWE: note x 1s usually considered
fixed in regression}

0,2 = p?0,* = [a + d(1-2p)]* * 2p(1-p)

q* =0, 07 {QTL heritability}

13



Statistical Power
v? test with 1 df:

E(X?)=1+nR?/(1-R?
=1+ ng’/(1-¢°)
=1+ NCP

NCP = non-centrality parameter

Power of association proportional to g2
(Power of linkage proportional to g*)

14



Statistical Power (R)

alpha= 5e-8

threshold= gchisg(l-alpha,l)

g2= 0.005

n= 10000

ncp= n*g2/(1-g2)

power= 1l-pchisqg(threshold, 1, ncp)
threshold

ncp

power

> alpha= 5e-8

> threshold= gchisqg(l-alpha,l)
> g2= 0.005

> n= 10000

> ncp= n*g2/(1-g2)

> power= l-pchisqg(threshold,1,ncp)
> threshold

[1] 29.71679

> ncp

[1] 50.25126

> power

[1] 0.9492371

100-/r
004
B0 — 1= 5,000
70 7= 10,000
F - 1= 20,000
E’ B0 — 1= 40,000
=
B
I 50
o
o
T 404
20
104
0 : : . .
04 0.2 0.3 0.4 0.5

Effect size (% variance explainad)

Figure 1 Statistical power of detection in GWAS
for variants that explain 0.1-0.5% of the variation
at a type | error rate of 5 x 10~/ (calculated using
the Genetic Power Calculator!®). Shown is the
power to detect a variant with a given effect size,

assuming this type | error rate, which is typical for
a GWAS with a sample size of n = 5,000-40,000.
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Power by association with SNP

(small effect; HWE)

NCP(SNP) =n r? ¢?
= r2 * NCP(causal variant)

=n * {r’ ¢’} =n * (variance explained by SNP)

Power of LD mapping depends on the
experimental sample size, variance explained by
the causal variant and LD with a genotyped SNP

16



GWAS

* Same principle as single locus association,
but additional information
- QC
 Duplications, sample swaps, contamination

— Power of multi-locus data
« Unbiased genome-wide association
« Relatedness
 Population structure
* Ancestry
* More powerful statistical analyses

17



P(at least 1 false positive)

0.9 A

0.8 A

0.7 -

0.6 A

0.5 A

0.4

0.3 -

0.2

0.1 -

The multiple testing burden

P=1-(1-a)"

per test false positive
rate 0.05

per test false
positive rate
0.001 =0.05/50

5 10 15 20 25 30 35 40 45 50
: 18
Number of independent tests performed



(association unlinked genes)

Population stratification

Both populations are in linkage equilibrium; genes unlinked

Allele frequency Haplotype frequency

PA1 PB1 PAIBI PA1B2 PA2BI1 PA2B2
Pop. 1 0.9 0.9 0.81 0.09 0.09 0.01
Pop. 2 0.1 0.1 0.01 0.09 0.09 0.81
Average 0.5 0.5 0.41 0.09 0.09 0.41

Combined population: D =0.16 and r> = 0.41

19



Population stratification
(genes and phenotypes)

Once upon a time, an ethnogeneticist decided to figure
out why some people eat with chopsticks and others
do not. His experiment was simple. He rounded up
several hundred students from a local university, asked
them how often they used chopsticks, then collected
buccal DNA samples and mapped them for a series of
anonymous and candidate genes.

The results were astounding. One of the markers,
located right in the middle of a region previously
linked to several behavioral traits, showed a huge cor-
relation to chopstick use, enough to account for nearly
half of the observed variance. When the experiment
was repeated with students from a different university,
precisely the same marker lit up. Eureka! The delighted
scientist popped a bottle of champagne and quickly
submitted an article to Molecular Psychiatry heralding
the discovery of the ‘successful-use-of-selected-hand-
instruments gene’ (SUSHI).

[Hamer & Sirota 2010 Mol Psych]

20



Population stratification
(genes and phenotypes)

It took another 2 years to discover that SUSHI is a
histocompatibility antigen gene that has nothing to do
with chopstick use but just happens to have different
allele frequencies in Asians and Caucasians, who of
course differ in chopstick use for purely cultural rather
than biological reasons. Even though the association
data were highly significant and readily replicated,
they were biologically meaningless.

[Hamer & Sirota 2010 Mol Psych]

21



Population stratification
(genes and phenotypes)

The source of confounding in the chopstick example
is better thought of as the environment. The problem
arises because different subgroups have different levels
of exposure to chopsticks. This type of confounding is
extremely familiar to genetic epidemiologists, but it
is unimportant in settings where the environment can be
experimentally controlled or randomized (as is routinely
done in plant breeding, for example).

There is another source of confounding, however,
and that is the genetic background. The estimate of the
effect of a particular locus can be confounded by
the other causal loci in the genome. This genetic back-
ground effect will always be present to some extent, even

[Vilhjalmsson & Nordborg 2013 Nature Reviews Genetics |
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Demonstrating stratification in a European
American population

Catarina D Campbell'?, Elizabeth L Ogburn!, Kathryn L Lunetta®®, Helen N Lyon!?, Matthew L Freedman*,
Leif C Groop7, David Altshuler®*?, Kristin G Ardlie’ & Joel N Hirschhorn’®*

Table 2 No evidence for stratification using standard methods

72 values? Estimates of stratification parameters?
SNPs Median Mean Amax I P
Random SNPs 111 0.37 0.96 3.21 1 0.61
AlMs 67 0.58 0.95 - - 0.61
Total 178 0.49 0.95 - - 0.66

Table 3 A strong association of LCT -13910C — T and height is reduced by rematching subjects on the basis of ancestry

Origin of grandparents®

All Four US-born Southeastern Northwestern Combined®

N Total 2,179 1,282 354 543 -

Tall 1,123 645 127 351 -

Short 1,056 637 227 192 -
LCT-13910 genotype counts® Total 392:918:869 142:543:596 182:141:31 68:233:243 -

Tall 161:474:489 66:265:314 54:55:18 41:154:157 -

Short 231:444:380 76:278:282 128:86:13 27:79:86 -
Hardy-Weinberg P Total 56 x 1077 0.57 0.89 0.89 -

Tall 0.03 0.66 0.81 0.92 -

Short 25 x 105 0.86 0.96 0.45 -
Association P 3.6 x 107 0.098 0.0016 0.71 0.0074
OR (95% c.i.)¢ 1.37 (1.22-1.54) 1.15 (0.97-1.36) 1.70 (1.22-2.38) 1.05 (0.81-1.37) 1.19 (1.05-1.36)

Table 4 No association of LCT -13910C/T and height in other European populations

Polish Scandinavian Combined
Genotypes (CC:CT:TT) Tall 166:251:86 - -
Short 174:235:96 - - 23
Transmissions of T allele (T:U)? Tall - 65:68 -
Short - 76:66 -
P 0.92 0.43 0.58

OR (95% c.i.)® 0.99 (0.83-1.18) 0.91 (0.72-1.15) 0.96 (0.83-1.11)




Stratification
y = 2g; t 2¢;

r(y,g;) due to
* causal association with g.

* correlation g; and g; and causal association with g,
(LTC and height)

» correlation g; and environmental factor e;
(chopsticks)

24



How to deal with structure?

* Detect and discard ‘outliers’
* Detect, analysis and adjustment

— E.g. genomic control

* Account for structure during analysis

— Fit a few principal components as covariates
— Fit GRM

25



GWAS using mixed linear models
y=Xb+p*x+g+e

var(g) = Go,’
G = genetic relationship matrix (GRM)
Model conditions on effects of all other variants

Power depends on whether x 1s included (MLM1) or
excluded (MLMe) from the construction of G.

26
[Yang et al. 2014 Nature Genetics|



GWAS using mixed linear models:
statistical power

For linear regression (LR), the expected mean of x? association sta-
tistics (Aean) 18
(LR) =1+ Nh3/M (1)

)\mean

regardless of the genetic architecture of the trait*%.

For MLMj, the A .,, Value at markers used to construct the GRM is
)\'mean (MLMi) =1 (2)

Equation (2) highlights the dangers of using A .., (0T Apedian) tO
assess the presence of population stratification or other artifacts. A
researcher who observeslower A ... (Or A . 4ian) Values for MLMi than
for linear regression might conclude that this difference is due to cor-
rection for confounding, but this result is in fact expected, even in the

absence of any confounding.

N g

Mpean MLMe) =1 +———  (3) correlation between g-hat
1-r*hy and g

27
[Yang et al. 2014 Nature Genetics|



How does LD shape association

A set of markers along a chromosome region:

—_—
Superimpose LD between markers
Lonely SNPs [no LD]

LD blocks

Consider causal SNPs

| Lonely SNPs [no LD]
[ ] LD blocks
* Causal variants

Association &

All markers correlated with a causal variant show
association

28



How does LD shape association

Consider causal SNPs

| Lonely SNPs [no LD]
[ LD blocks
* Causal variants

Association &

Association |

All markers correlated with a causal variant show association.
Lonely SNPs only show association if they are causal
The more you tag the more likely you are to tag a causal variant

Assuming all SNPs gave an equal probability of association given LD status,
we expect to see more association for SNPs with more LD friends.

This is a reasonable assumption under a polygenic genetic architecture

29



LD score regression

_ 2
. = z T)'k Quantifies local LD for SNP j
k+]j

E[xz |(‘J] = thf] /M + Na + 1 Test statistic is linear in LD score

—> regression of test statistic on LD score provides an
estimate of SNP heritability

Use GWAS summary statistics and reference sample for
LD score estimation

30
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Same principle for genetic

covariance
NN N, 1s the number of
P NiN3 g f:+ ONs overlapping samples
E[ZIJZQCJ] M ' \/W
1

z = test statistics from GWAS summary statistics
N = sample size

M = number of markers

p, = genetic covariance between traits

O = phenotypic correlation between traits

31
[Bulik-Sullivan 2015 Nature Genetics]



Key concepts

Mapping QTL by association relies on linkage
disequilibrium in the population;

LD can be caused by close linkage between a QTL and

marker (= good) or by confounding between a marker and
other effects (= usually bad);

The power of QTL detection by LD depends on the
proportion of phenotypic variance explained at a marker;

Mixed models are good for performing GWAS

Genetic (co)variance can be estimated from GWAS
summary statistics

32



Estimation of quantitative
genetic parameters from distant
relatives using marker data



Key concepts

Dense SNP panels allow the estimation of the expected
genetic covariance between distant relatives (‘unrelateds’)

A model based upon estimated relationships from SNPs is
equivalent to a model fitting all SNPs simultaneously

The total genetic variance due to LD between common SNPs
and (unknown) causal variants can be estimated

Genetic variance captured by common SNPs can be assigned
to chromosomes and chromosome segments



ANTHROPOLOGICAL MISCELLANEA.

1886

REGRESSION fowards MEDIOCRITY in HEREDITARY STATURE.
By Frawcis Garroxn, F.R.S., &c.

RATE oF REGRESSION IN HEREDITARY STATURE.
Fig.(a)
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Vorume II

NOVEMBER, 1903

No.

ON THE LAWS OF INHERITANCE IN MAN*.
I INHERITANCE OF PHYSICAL CHARACTERS,

Frequency.

By KARL PEARSON, F.R.S., assisted by ALICE LEE, D.Sec.

University College, London.

364 On the Laws of Inheritance in Man
Duacram IV. Distribution of Stature.
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Duacram I, Probable Stature of Son for given Father's Stature.
Regression Line: S=33-73+°'516 F. 1078 Cases.

n

64

69

el 62 63 64 65 (-] e7

es (] 70 n 72 73 74

Father’s Stature (=F) in inches.

PAIR

Spouse
Son-Father
Daughter-Father
Son-Mother
Daughter-Mother
Brother-brother
Sister-sister
Brother-sister

CORRELATION
0.28
0.51
0.51
0.49
0.51
0.51
0.54
0.55

78

SE
0.02
0.02
0.01
0.02
0.01
0.03
0.02
0.01




Twinl

100 years later
Heritability of human height

210 - 210 -

Identical twins (1170 pairs); r = 0.85 Non-identical twins (850 pairs); r = 0.45
200 4 200 -
190 4 190 -
180 | . _, 180 -
£
:
170 | = 170 -
]
L J
L ]
160 4 160 -
150 4 150 -
®
140 T T T T 1 140
140 150 160 170 180 190 200 210 140 150 160 170 180 190 200 210
Twin2 Twin2

h? ~ 80%



Phenotypic correlation

0.8 -

0.6 -

0.2

Based upon 1000s of twin families

& Virginia twin study
A QIMR twin study

——Linear (Virginia twin study)

——Linear (QIMR twin study)

y=0.6547x+0.1585

R*=0.9569

¢

y=0.6444x+0.1532

R*=0.9529

T T

0.25 0.50

Additive genetic relationship

0.75

1.00




Disease Number Percent of Heritability =~ Heritability

of loci Measure Explained Measure

Age-related macular 5 50% Sibling recurrence
degeneration risk
Crohn’s disease 32 20% Genetic risk e
(liability) \ ,&-\8*
Systemic lupus 6 15% Sibling recurrence (,o\&
erythematosus risk 66(\0 o.,\bq"
Type 2 diabetes 18 6% Sibling recurrence C a7
risk X o‘@""o
HDL cholesterol 7 5.2% Phenotypic 5\\(\ (\\,\8“
variance xS R
Height 40 5% Phenotypic «@® &
variance «°
Early onset myocardial 9 2.8% Phenot ‘\@\&
infarction vari o
Fasting glucose 4 1.5% Phenc
varianc.

Vol 461/8 October 2009|doi:10.1038/nature08494 nature

REVIEWS

Finding the missing heritability of complex
diseases

Teri A. Manolio', Francis S. Collins?, Nancy J. Cox’, David B. Goldstein®*, Lucia A. Hindorff’, David J. Hunter®,
Mark I. McCarthy’, Erin M. Ramos’, Lon R. Cardon®, Aravinda Chakravarti’, Judy H. Cho'’, Alan E. Guttmacher’,
Augustine Kong'', Leonid Kruglyak'?, Elaine Mardis'?, Charles N. Rotimi'*, Montgomery Slatkin'®, David Valle®,

Alice S. Whittemore'®, Michael Boehnke'”, Andrew G. Clark'®, Evan E. Eichler'?, Greg Gibson®’, Jonathan L. Haines*', The case of the missing heritabili;y

Trudy F. C. Mackay??, Steven A. McCarroll** & Peter M. Visscher®*
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Hypothesis testing vs. Estimation

* GWAS = hypothesis testing
— Stringent p-value threshold

— Estimates of effects biased (“Winner’s Curse”)
* E(bhat]| test(bhat) > T) > b {b fixed}
 var(bhat) = var(b) + var(bhat|b) {b random}

 Can we estimate the total proportion of
variation accounted for by all SNPs?



ANALYSIS
nature
genetlcs

Common SNPs explain a large proportion of the heritability
for human height

Jian Yang!, Beben Benyamin!, Brian P McEvoy!, Scott Gordon!, Anjali K Henders!, Dale R Nyholt!,

Pamela A Madden?, Andrew C Heath?, Nicholas G Martin!, Grant W Montgomery!, Michael E Goddard® &
Peter M Visscher!

Are very distant relatives that share more

of their genome by descent phenotypically
more similar than those that share less?
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Basic idea

Estimates of additive genetic variance from known
pedigree is unbiased

— If model is correct

— Despite variation in identity given the pedigree

— Pedigree gives correct expected IBD

Unknown pedigree: estimate genome-wide IBD from
marker data

— Estimate additive genetic variance given this estimate of
relatedness

ldea is not new

— (Evolutionary) genetics literature (Ritland, Lynch, Hill,
others)



Close vs distant relatives

Detection of close relatives (fullsibs, parent-
offspring, halfsibs) from marker data is relatively

straightforward
But close relatives may share environmental factors

— Biased estimates of genetic variance

Solution: use only (very) distant relatives



A model for a single causal variant

AA AB BB
frequency (1-p)? 2p(1-p) p?
X 0 1 2
effect 0 b 2b
z = [x-E(x)]/o, -2p/V{2p(1-p)}  (1-p)/V{2p(1-p)}  2(1-p)/ v{2p(1-p)}
y, = w +xb; + e x =0, 1, 2 {standard association model}

y, = W+ Z;u + e u=bo,u=w+bo,



<
I

Multiple (m) causal variants

M+Z%W+%
u+g +e
ul+g+e

ul+Zu+e



Equivalence

Let u be a random variable, u ~ N(0, c,?)
Then 0,° = mg,? and

var(y) =2Z' 6,2 + 10 ?
=22’ (ng/m) +10,°
=G o, + 1o,

Model with individual genome-wide additive values using relationships (G) at the
causal variants is equivalent to a model fitting all causal variants

We can estimate genetic variance just as if we would do using pedigree relationships



But we don’t have the causal variants

If we estimate G from SNPs:

— lose information due to imperfect LD between SNPs and
causal variants

— how much we lose depends on
* density of SNPs
 allele frequency spectrum of SNPs vs. causal variants

— estimate of variance = missing heritability

Let A be the estimate of G from N SNPs:
Ajk = (1/N) Z { Xjj — 2pi)(Xik — 2pi) / {Zpi(l'pi)}

= (1/N) Z z;z;,



Data

« ~4000 ‘unrelated’ individuals
* Ancestry ~British Isles
* Measurement on height (self-report or clinically measured)
« GWAS on 300k (‘adults’) or 600k (16-year olds) SNPs
§ 0.03
-0.0L - Jon i -
70.32-0.06 -0.'35 -0.04 -002 -0'02 -O.'Oi C') 0.01 16 0.I02



eigenvector 2

Ohbserved -logy(F)

0.1

0.08 |

0.06 -

0.04 |

002

002 -

-0.04

-0.06

eigenvector 1

0.06

Expected -logy(P)

; 0'12 T T T I T T DEIN ¥
DEN & o FIN  x
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SWE o

e 4 x UK
CEU * CEU
TSI » 0.08 s TSI » —
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_ +
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. 004 i
| 002 4
ok |
— ]
002 b 4
004 b 4

' 006 1

0.08 01 "~ 008 006 004 002 0 0.02 0.04 0.06 0.08

eigenvector 3

Lack of evidence for population
stratification within the Australian sample
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Methods

» Estimate realised relationship matrix from
SNPs y, =g +e, var(y) =V = Ao, +10,

« Estimate additive genetic variance

cov(x,a;, x,a,) cov(x,, x; ) Base population =

A, = _ |
' \/Var(xyai)Vaf(xikal-) 2p,(1-p)) current population

( x.=2p)x., —2p.

1 E( ij pz)(xlk pl)’j - k
y _LEA B N 2p;d-p,)

kN L <1 ]Ex;—(l+2pi)xij+2p"2 .

+ ; , ] =
\ N : 2pi(1_pi)

18



Statistical analysis

var(y) =V = A0g2 +10°

y standardised ~N(0,1)
No fixed effects other than mean
A estimated from SNPs

Residual maximum likelihood (REML)

19
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Checking for population structure

Table 1

Estimates of the Variance Explained by the SNPs on Even Chromosomes
from 10 Simulation Replicates

Replicate g SE

1 0.045 0.055
2 0.025 0.057
3 0.0 0.058
4 0.0 0.057
5 0.0 0.059
6 0.0 0.056
7 0.057 0.056
8 0.0 0.062
9 0.0 0.057
10 0.0 0.054

Note: A total of 1,000 causal variants were simulated on the odd chromosomes, with a
total heritability of 0.8. Genetic variance was estimated from a relationship
matrix constructed from all SNPs on the even chromosomes. The same geno-
types were used as in Yang et al. (2010). If there is population structure then
estimated relatedness on the even chromosomes is correlated with relatedness
on the odd chromosomes (where the causal variants are simulated) and there-
fore genetic variance will be associated with the even chromosomes.



Partitioning variation

 |If we can estimate the variance captured by
SNPs genome-wide, we should be able to
partition it and attribute variance to regions of

the genome
 "Population based linkage analysis”

22



Genome partitioning

« Partition additive genetic variance according to groups of SNPs
— Chromosomes
— Chromosome segments
— MAF bins
— Genic vs non-genic regions
— Etc.

» Estimate genetic relationship matrix from SNP groups
* Analyse phenotypes by fitting multiple relationship matrices

* Linear model & REML (restricted maximum likelihood)

REPORT

GCTA: A Tool for Genome-wide Complex Trait Analysis

Jian Yang,1.* S. Hong Lee,! Michael E. Goddard,23 and Peter M. Visscher!
8 8



Data from the GENEVA Consortium

* Investigators: Bruce Weir, Teri Manolio and many others
« Data
— ~14,000 European Americans
 ARIC
« NHS
« HPFS

— Affy 6.0 genotype data
« ~600,000 after stringent QC

— Phenotypes on height, BMI, vVWF and QT Interval

Genome partitioning of genetic variation for complex
traits using common SNPs

Jian Yang!*, Teri A Manolio?, Louis R Pasquale’, Eric Boerwinkle*, Neil Caporaso®, Julie M Cunningham®,
Mariza de Andrade’, Bjarke Feenstra®, Eleanor Feingold®, M Geoffrey Hayes!?, William G Hill'!,

Maria Teresa Landi'?, Alvaro Alonso'?, Guillaume Lettre!4, Peng Lin!®, Hua Ling'®, William Lowe!”,
Rasika A Mathias'8, Mads Melbye®, Elizabeth Pugh!®, Marilyn C Cornelis!®, Bruce S Weir?",

Michael E Goddard?!:22 & Peter M Visscher!



Table 9. Summary of recommended SNP filters. “Broad™ refers to SNPs failed by the
genotyping center and “CC™ refers to filters recommended by the GENEVA

[SHMPs kept  |SMPs lost remowve SHPs with:

808,822 0
E43 0a5) 65 837] Broad: call rate < 85%
B41,820 2,165 Broad: plate associations (=8 plates with p<1e-10}

CC: one member of each pair of duplicate probes (mostly AFFX

E38,046 2. 774probes)

838 715 33N CC: MAF =0 in all samples

B35 483 22 CC: call rate < 25%

B02,025 36,488) CC: =5 discordant calls in 307 pairs of duplicates

CC: sex difference in allelic frequency between sexes = 0.10 in either

B01 556 G0|European- or Afmican-ance roul
CC: sex difference in heterozygosity = 0.3 in either ancesiry group (for
801,856 utosomal or X'

CC: Hardy-Weinberg p-value < 1e-3 in either European- or African
780,062 21, noesiry group

780,062 SNPs after QC steps listed in the table.

Exclude 141,772 SNPs with MAF < 0.02 in European-
ancestry group.

Exclude 36,949 SNPs with missingness > 2% in all samples.
Include autosomal SNPs only.

End up with 577,778 SNPs.

25



Results (genome-wide)

Table 1 Estimates of the variance explained by all autosomal SNPs for height, BMI, vWF
and QTi

No PC2 10 PCsb
Trait n hé (s.e.)C P hé (s.e.) [= Heritabilityd ~ GWAS®
Height 11,576 0.448 (0.029) 4.5x 10%° 0.419(0.030) 7.9 x 1048 80-90%32 ~10%323
BM| 11,558 0.165(0.029) 3.0 x 1010 0.159(0.029) 5.3 x 109 42-80%2%26 ~1.5%!4
vWF 6,641 0.252(0.051) 1.6x107 0.254(0.051) 2.0x107 66-75%333% ~13%1°
QTi 6,567 0.209 (0.050) 3.1 x10° 0.168(0.052) 5.0x10% 37-60%3%36  ~7%16
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Genome-partitioning:
longer chromosomes explain more variation

Variance explained by each chromosome
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Results are consistent
with reported GWAS

Variance explained by chromosome

(adjusted for the FTO SNP)

0.020 A

0.016

0.012 A

0.008 -

0.004

BMI (11,586 unrelated)

® FTO

0.010 - e

Height (11,586
unrelated)

R*=0.511

0.008 -

0.006 -

0.004 -

each chromosome

0.002

Variance explained by GIANT height SNPs on

0.000 Q Q

0.00 0.01 0.02 0.03 0.04 0.05

Variance explained by each chromosome

0.000 @&
0.000 0.004 0.008 0.012 0.016 0.020
Variance explained by chromosome
(no adjustment)




Inference robust with respect to genetic architecture

Variance explained by each chromosome

0.16 -

0.14 -

0.12 -

0.10 -

0.08 -

0.06 -

0.04 A

0.02 -

0.00 -

VWF (ARIC)
(o]
Slope = 6.9x10-
P=0.524
R?2=0.021
0o
®

© %o

50 200

100 1 250

Chromosome length (Mb)

Variance explained by chromosome

(adjusted for the ABO SNP)

0.09 -+

0.06 -

0.03 -

vWF (6,662 unrelated)

0.03 0.06 0.09 0.12 0.15

Variance explained by chromosome
(no adjustment)




Genic regions explain variation disproportionately

0-06 1 wintergenic (+20kb) Height (combined) 0.03 -  ®intergenic (+ 20 Kb) BMI (combined)
. ic (£ 20 Kb) 17,277 protein coding genes ic (£ 20 Kb) 17,277 protein coding genes
enic (+ W genic (¢
0.05 - & he? =0.328 (s.e. = 0.024) 0025 . g he2=0.117 (s.e. = 0.023)
he?=0.126 (s.e. = 0.022) ' he? = 0.047 (s.e. = 0.022)
-§ 0.04 - Coverage of genic regions = 49.4% 3 o002 Coverage of genicregions= 49.4%
"_i P(observed vs. expected) = 2.1x 1010 % ] P(observed vs. expected) = 0.022
b s
Q d x
o 0.03 $ 0.015 -
o Q
c Q
© (=
& ] &
g 0.02 § 0.01
0.01 - 0.005 -
0 - 0 |
1 2 3 45 6 7 8 91011121314 151617 18 19 20 21 22 1 2 3 45 6 7 8 9 101112 1314151617 18 19 20 21 22
Chromosome Chromosome
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Key concepts

Dense SNP panels allow the estimation of the expected
genetic covariance between distant relatives
(‘'unrelateds’)

A model based upon estimated relationships from SNPs
IS equivalent to a model fitting all SNPs simultaneously

The total genetic variance due to LD between common
SNPs and (unknown) causal variants can be estimated

Genetic variance captured by common SNPs can be
assigned to chromosomes and chromosome segments
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Prediction of quantitative traits
using marker data

Peter M. Visscher & Michael E. Goddard
peter.visscher@ug.edu.au
Mike.Goddard@depi.vic.gov.au




Key concepts

Prediction of phenotypicvaluesis limited by heritability

Accuracy of prediction dependson
— how well marker effects are estimated (sample size)

— how well marker effects are correlated with causal variants (LD)

Estimation of marker effects and prediction in the same dataleadsto
(severe) bias

— winner’s curse; over-fitting

Variance explained by a SNP-based predictoris not the same as the
variance explained by those SNPs

Marker data captures both between and within family genetic variation
Best prediction methods take geneticvalues as random effects



A@ WonrLo wine SIRES, LTD.
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Take-home from animal breeding

(1) Don’t need genome-wide significant effects
(2) Don’t need to know causal variants

(3) Don’t need to know function

(4) Fit all SNPs simultaneously



Regression Towards Mediocrity in Hereditary Stature.

Author(s): Francis Galton
Source: The Journal of the Anthropological Institute of Great Britain and Ireland, Vol. 15

(1886), pp. 216-263 FORECASTER OF STATURE
Fig(b)
RATE OF REGRESSION IN HEREDITARY STATURE.
Fig.(a)
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A guantitative genetics model

v = fixed effects+ G + E
G=A+D+|

Possible predictions:
* Predicty from fixed effectsand G
* Predict G from A

* Predicty from A

* Predict y from A using markers



Prediction using linear regression
y=p*x+e
* Usually, p and x are considered ‘fixed’

* For SNPs, x is random with variance 2p(1-p) assuming
HWE

* Later we will consider the case where 3 is random



Chance association

m markers, sample size N

All =0

Multiple linear regression of y on m markers
E(R?) = m/N {strictly m/(N-1)}

—> Variation “explained” by chance

[Wishart, 1931]



Selection bias

e Select m ‘best’ markers out of M in total

* ‘Prediction’ in same sample (in-sample prediction)

E(RZ) >> m/N
- Lots of variation explained by chance

Female

ARTICLE

Predicted values
Predicted values

The Drosophila melanogaster
Genetic Reference Panel

40 50 60 70 80 90 100
Observed values

~15 best markers selected from 2.5 million markers

-~
o

D
o

(&)
o

B
o

Male

30 40 50 60 70
Observed values

9



Least squares prediction

R’ =var(a)/var(y)=h’
E(R:))=~h* /[1+m/{Nh*}]
Even if we knew all m causal variants but needed to

estimate their effect sizes then the variance explained by the
predictor is less than the variance explained by the causal

variants in the population.

[Daetwyler et al. 2008, PLoS Genetics; Visscher, Yang, Goddard 2010, Twin Research Human Genetics 2010]



Take-home

(4) Estimation of variance contributed by (all)
loci is not the same as prediction accuracy

unless the effect sizes are estimated without
error



LETTER

Hundreds of variants clustered in genomic loci and
biological pathways affect human height

doi:10.1038/nature09410

Proportion of variapge
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Pvalue threshold the observed genotype data. We show tha f variance
can be explained by considering all SNPs shgqul#ineously. Thus,

Common SNPs explain a large proportion of the heritability
for human height

Jian Yang!, Beben Benyamin!, Brian P McEvoy!, Scott Gordon!, Anjali K Henders!, Dale R Nyholt!, 12
Pamela A Madden?, Andrew C Heath? Nicholas G Martin!, Grant W Montgomery', Michael E Goddard? &
Peter M Visscher!



Measures of how well a predictor works

e “Accuracy” (animal breeding)

— Correlation between true genome-wide genetic
value and its predictor

* R? from a regression of outcome on predictor
(human genetics)

e Area-under-curve from ROC analyses (disease
classification)



Limits of prediction

* A perfect predictor of A can be a lousy
predictor of a phenotype

* The regression R? has a maximum that
depends on heritability

* The regression R? is limited by unknown (eg
future) fixed effects and covariates



Predictions from known variants

1
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Prediction using genetic markers: using between and

within-family genetic variation

FAMILY HISTORY

All members of a sibship

have equal predicted risk
Between family variance

INDIVIDUAL GENETIC RISK

)
T

Members of a sibship have
individual predicted risk
Between and within family variance
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In class demo

* 180 height variants from Lango-Allen et al.
2010

— Estimation of b from data (N ~ 4000)
* Note that E(R?) = 180/4000 = 0.045 by chance!

— Using b from Lango-Allen paper
e Taking the top 180 SNPs from GWAS



Analysis demonstration

* Data:
— Genotype data: 3,924 unrelated individuals and ~2.5M SNPs.
— Phenotype data: height z-scores (adjusted for age and sex)
— 180 SNPsidentified by the GIANT meta-analysis (MA) of height (n = ~180,000)

* Analyses:
— Estimating effect sizes of the 180 height SNPs in the data.
— PLINK scoring: 180 GIANT SNPs, using effect sizes estimated from GIANT MA.

— GWAS analysis in the data, selecting top SNPs at 180 loci and predicting the
phenotypes in the same data.

* Results:
— Estimation: R2=0.134 (R2 = 0.046 by chance), adjusted RZ = 0.093
— Prediction: R2=0.099
— Prediction using the top SNPs selected in the same data: R2=0.429



ldentifying people at high risk: T1D
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Figure 3 | The receiver operating characteristic (ROC) curve for the known T1D
loci. The ROC curve plots the sensitivity of genetic type 1 diabetes (T1D) prediction

Polychronakos & Li NRG 2011
Clayton PLoS Genetics 2009



Prediction of genetic value using better
predictors

Model with additive inheritance
y=g+e
V(g) = Go,% V(e) =lo.?, Vly) =V = Go,* + lo.%,

Aim is to predict g for individuals
Eg to predict future risk of a disease



Prediction of genetic value
y=g+e
V(g) = Go,% V(e) =lo.?, Vly) =V = Go,* + lo.%,

Best prediction is

g-hat=E(g | y)

If y and g are bivariate normal
E(g|y)=by=0,2GV'y



Prediction of genetic value

Eg Unrelated individuals
V(g) = Ih?, V(e) = I(1-h?), V(y) =1,

Best prediction is
g-hat=E(g|y)=by=0,2GV'y=hy



Prediction of genetic value
vyv=g+e, g=~2u
V(u) = 16,2, V(Zu) = ZZ’6 2,

Best prediction is

u-hat =E(u | y)

If y and u are multivariate normal
E(u|y)=by=0,2Z'Vly



Prediction of genetic value
yv=g+e, g=~2u
V(u) = 16,2, V(Zu) = ZZ’6 2,

u-hat = E(U | Y ) = b'y = ()'UZZ'V_1 Y
g-hat =Z u-hat = 0,22ZZ’V' y = 0 2GVly



Prediction of genetic value

y=g+e g=2u
If y and u are multivariate normal
E(u|y)=by=0,2'V'y

The SNP effects are unlikely to be normally
distributed with equal variance



Prediction of genetic value
Best prediction
u-hat = E(u | y)

=/ uP(u|y)du

Bayes theorem
P(u|y)=P(y|u)P(u)/P(data)

T \
Likelihood  prior



Prediction of genetic value

Bayesian estimation
E(u|y)=]uP(y|u)P(u)/P(y) du

Distribution of SNP effects

Normal - BLUP
t-distribution - Bayes A
Mixture - Bayes B (Meuwissen et al 2001)

Mixture of N - Bayes R (Erbe et al 2012)

u ~ N(0,0,2) with probability T,

o°={0, 0.0001, 0.001,0.01} o2

Accuracy is greatest if assumed distribution matches
real distribution.
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Prediction of genetic value

Other methods of prediction

Estimate effect of each SNP one at a time and add
g-hat = Z u-hat
u-hat estimated from single SNP regression

Biased E(g | g-hat) # g-hat
Less accurate because ignores LD between SNPs
and treats u as fixed effects



Prediction of genetic value

Real data
4500 bulls and 12000 cows (Holstein and Jersey)
600,000 SNPs genotyped
Train using bulls born < 2005
Test using bulls born >= 2005

Correlation of EBV and daughter average

Protein Stature Milk Fat%
BLUP 0.66 0.52 0.65 0.72
Bayes R 0.66 0.54 0.68 0.82



\/‘ . *’,;.9‘
Proportion of SNPs from distribution with
variance

Trait 0.01% 0.1% 1% polygenic (%)
RFI 7498 296 6 11
LDPF 1419 254 36 27

Mean4029 271 19 25

31



Integration of prediction and mapping
of causal variants
Same Bayesian models as used for prediction

can be used for mapping causal variants of
complex traits
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Application to human disease data

@’PLOS ‘ GENETICS

(WTCCC)

RESEARCH ARTICLE

Simultaneous Discovery, Estimation and
Prediction Analysis of Complex Traits Using a
Bayesian Mixture Model

Gerhard Moser'*, Sang Hong Lee', Ben J. Hayes®>, Michael E. Goddard®*, Naomi
R. Wray’, Peter M. Visscher'®
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Model

e Assumestrue SNP effects are derived from a series of normal distributions

* Priorassumptions
— Effects size of SNP k

(; X N(0,0 X 62)

m, X N(0,107*x o7 )
;3 X N(0,1073 x 2)

T, X N(0,107% X )

— Mixing proportion, 1t
e Dirichlet distribution, (11, ...,m4) ~ D(6, ..., 6),with§ =1

— Genetic variance
- hyper-parameter estimated from data, o2~x~2(v,,S5)
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Figure 4. Comparison of performance of BayesR,BSLMM, LMM and GPRS in WTCCC data. (A) Estimates of
SNP-based heritability on the observed scale. Antennas are standard deviations of posterior samples for BayesR and
BSLMM or standard errors for LMM. GPRS does not provide estimates of heritability. (B) Distribution of the area under
the curve (AUC). The single boxplots display the variation in estimates among 20 replicates. In each replicate, the
data set was randomly splitinto a training sample containing 80% ofindividuals and a validation sample containing the

remaining 20%.



Expected proportion of total SNP
variance explained by each mixture

(Number of SNPs in class x variance assigned to SNP) / sum of marker variance
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Figure 6. Proportion of genetic variance on each chromosome explained by SNPs with different effect sizes
underlying seventraits in WTCCC. Proportion of additive genetic variation contributed by individual chromosomes and
the proportion of variance on each chromosome explained by SNPs with different effect sizes. For each chromosome we
calculated the proportion of variance in each mixture componentas the sum of the square of the sampled effect sizes of
the SNPs allocated to each componentdivided by the sum of the total variance explained by SNPs. The colored bars
partition the genetic variance in contributions from each mixture class.



Posterior mean of number of SNPs
estimated by BayesR
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Prediction of genetic value
Summary

Best prediction is g-hat = E(g | y)
Genetic values treated as random effects
Eg g~ N(0, Go,?)

Equivalent model to predict SNP effects u
E(u | y) depends on prior distribution of u
— Bayesian models
g-hat = Z u-hat gives higher accuracy than assuming
g ~ N(0, Go,?)
Bayesian models integrate prediction and mapping of
causal variants



Key concepts

Prediction of phenotypicvaluesis limited by heritability

Accuracy of prediction dependson
— how well marker effects are estimated (sample size)

— how well marker effects are correlated with causal variants (LD)

Estimation of marker effects and prediction in the same dataleadsto
(severe) bias

— winner’s curse; over-fitting

Variance explained by a SNP-based predictoris not the same as the
variance explained by those SNPs

Marker data captures both between and within family genetic variation
Best prediction methods take geneticvalues as random effects



Supplementary derivations



Theory (additive model)
m unlinked causal variants

m
y, = Exljbj +e =a, +e,
=1

J

var(y) = ivar(x j)bi + var(e) = var(a) + var(e)

J

m
2
cov(y;,y,) = Ecov(xij,xkj)b ;tcov(e,e)
j=I1

=cov(a,,a,)+cov(e;,e,)

=cov(a;,a,) 1t cov(e, e, )=0



Prediction

m
-~ A A
cov(y;,y,) = ) cov(x,,x,;)b; =cov(a;,a,)
=1

J=



- theory -

cov(y,,y,) = COV{E(XU b,), Ex b +e}

m m
= Evar(xij )bjbj + Exij COV(bj e;)
j=1 /=1

If b estimated from the same data in which prediction is
made, then the second term is non-zero



Effect of errors in estimating SNP effects
(least squares; single SNP)

y,=xb+e,

b=b+¢

E(b)=b

var(b) = var(e) = 02 / Zx* = var(y) / { N var(x)}
var(x) =2p(l - p) under HWE

Define R;,, = var(x)b* / var(y)

= contribution of single SNP to heritability



- effects of errors -

R} ; = cov(y, ) /{var(y) var(y)}

Elcov(y,y)]=E [cov(xb,xls)] = var(x,)E (l;)b

= var(x)b’

Elvar(y)]=E [Var(xI;)] = var(x)E [h°]

= var(x)[b” + var(h)] = var(x)b* + var(x) var(y) /[N var(x)]
= var(x)b” + var(y)/ N

E(R};) = R5 /[1+1/{NR;,,}]
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