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Regression models

How does an outcome Y vary as a function of x = {x1, . . . , xp}?

� What are the effect sizes?

� What is the effect of x1, in observations that have the same x2, x3, ...xp
(a.k.a. “keeping these covariates constant”)?

� Can we predict Y as a function of x?

These questions can be assessed via a regression model p(y |x).
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Regression data

Parameters in a regression model can be estimated from data: y1 x1,1 · · · x1,p
...

...
...

yn xn,1 · · · xn,p


These data are often expressed in matrix/vector form:

y =

 y1
...
yn

 X =

 x1

...
xn

 =

 x1,1 · · · x1,p
...

...
xn,1 · · · xn,p


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FTO experiment

FTO gene is hypothesized to be involved in growth and obesity.

Experimental design:

� 10 fto + /− mice

� 10 fto − /− mice

� Mice are sacrificed at the end of 1-5 weeks of age.

� Two mice in each group are sacrificed at each age.
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FTO Data
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Data analysis

� y = weight

� xg = indicator of fto heterozygote ∈ {0, 1} = number of “+” alleles

� xa = age in weeks ∈ {1, 2, 3, 4, 5}

How can we estimate p(y |xg , xa)?

Cell means model:

genotype age
−/− θ0,1 θ0,2 θ0,3 θ0,4 θ0,5
+/− θ1,1 θ1,2 θ1,3 θ1,4 θ1,5

Problem: 10 parameters – only two observations per cell
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Linear regression

Solution: Assume smoothness as a function of age. For each group,

y = α0 + α1xa + ε

This is a linear regression model. Linearity means “linear in the parameters”,
i.e. several covariates multiplied by corresponding α and added.

A more complex model might assume e.g.

y = α0 + α1xa + α2x
2
a + α3x

3
a + ε,

– but this is still a linear regression model, even with age2, age3 terms.
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Multiple linear regression

With enough variables, we can describe the regressions for both groups
simultaneously:

Yi = β1xi,1 + β2xi,2 + β3xi,3 + β4xi,4 + εi , where

xi,1 = 1 for each subject i

xi,2 = 0 if subject i is homozygous, 1 if heterozygous

xi,3 = age of subject i

xi,4 = xi,2 × xi,3

Note that under this model,

E[Y |x] = β1 + β3 × age if x2 = 0, and

E[Y |x] = (β1 + β2) + (β3 + β4)× age if x2 = 1.
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Multiple linear regression
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Normal linear regression

How does each Yi vary around its mean E[Yi |β, xi ] ?

Yi = βTxi + εi

ε1, . . . , εn ∼ i.i.d. normal(0, σ2).

This assumption of Normal errors completely specifies the likelihood:

p(y1, . . . , yn|x1, . . . xn,β, σ
2) =

n∏
i=1

p(yi |xi ,β, σ
2)

= (2πσ2)−n/2 exp{− 1

2σ2

n∑
i=1

(yi − βTxi )
2}.

Note: in larger sample sizes, analysis is “robust” to the Normality
assumption—but we are relying on the mean being linear in the x’s, and on the
εi ’s variance being constant with respect to x.
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Matrix form

� Let y be the n-dimensional column vector (y1, . . . , yn)T ;

� Let X be the n × p matrix whose ith row is xi .

Then the normal regression model is that

{y|X,β, σ2} ∼ multivariate normal (Xβ, σ2I),

where I is the p × p identity matrix and

Xβ =


x1 →
x2 →

...
xn →


 β1

...
βp

 =

 β1x1,1 + · · ·+ βpx1,p
...

β1xn,1 + · · ·+ βpxn,p

 =

 E[Y1|β, x1]
...

E[Yn|β, xn]

 .
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Ordinary least squares estimation

What values of β are consistent with our data y,X?

Recall

p(y1, . . . , yn|x1, . . . xn,β, σ
2) = (2πσ2)−n/2 exp{− 1

2σ2

n∑
i=1

(yi − βTxi )
2}.

This is big when SSR(β) =
∑

(yi − βTxi )
2 is small.

SSR(β) =
n∑

i=1

(yi − βTxi )
2 = (y − Xβ)T (y − Xβ)

= yTy − 2βTXTy + βTXTXβ .

What value of β makes this the smallest?
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Calculus

Recall from calculus that

1. a minimum of a function g(z) occurs at a value z such that d
dz
g(z) = 0;

2. the derivative of g(z) = az is a and the derivative of g(z) = bz2 is 2bz .

d

dβ
SSR(β) =

d

dβ

(
yTy − 2βTXTy + βTXTXβ

)
= −2XTy + 2XTXβ ,

Therefore,

d

dβ
SSR(β) = 0 ⇔ −2XTy + 2XTXβ = 0

⇔ XTXβ = XTy

⇔ β = (XTX)−1XTy .

β̂ols = (XTX)−1XTy is the Ordinary Least Squares (OLS) estimator of β.

14/37



The linear regression model Bayesian estimation

No Calculus

The calculus-free, algebra-heavy version – which relies on knowing the answer
in advance!

Writing Π = X(XTX)−1XT , and noting that X = Πx and Xβ̂ols = Πy;

(y − Xβ)T (y − Xβ) = (y − Πy + Πy − Xβ)T (y − Πy + Πy − Xβ)

= ((I − Π)y + Π(β̂ols − β))T ((I − Π)y + Π(β̂ols − β))

= yT (I − Π)y + (β̂ols − β)TΠ(β̂ols − β),

because all the ‘cross terms’ with Π and I − Π are zero.

Hence the value of β that minimizes the SSR – for a given set of data – is β̂ols.
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OLS estimation in R

### OLS estimate
beta.ols<- solve( t(X)%*%X )%*%t(X)%*%y

c(beta.ols)

## [1] -0.06821632 2.94485495 2.84420729 1.72947648

### using lm
fit.ols<-lm(y~ X[,2] + X[,3] +X[,4] )

summary(fit.ols)$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.06821632 1.4222970 -0.04796208 9.623401e-01
## X[, 2] 2.94485495 2.0114316 1.46405917 1.625482e-01
## X[, 3] 2.84420729 0.4288387 6.63234803 5.760923e-06
## X[, 4] 1.72947648 0.6064695 2.85171239 1.154001e-02
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OLS estimation
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summary(fit.ols)$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.06821632 1.4222970 -0.04796208 9.623401e-01
## X[, 2] 2.94485495 2.0114316 1.46405917 1.625482e-01
## X[, 3] 2.84420729 0.4288387 6.63234803 5.760923e-06
## X[, 4] 1.72947648 0.6064695 2.85171239 1.154001e-02
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Bayesian inference for regression models

yi = β1xi,1 + · · ·+ βpxi,p + εi

Motivation:

� Incorporating prior information

� Posterior probability statements: Pr(βj > 0|y,X)

� OLS tends to overfit when p is large, Bayes’ use of prior tends to make it
more conservative.

� Model selection and averaging (more later)
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Prior and posterior distribution

prior β ∼ mvn(β0,Σ0)
sampling model y ∼ mvn(Xβ, σ2I)
posterior β|y,X ∼ mvn(βn,Σn)

where

Σn = Var[β|y,X, σ2] = (Σ−1
0 + XTX/σ2)−1

βn = E[β|y,X, σ2] = (Σ−1
0 + XTX/σ2)−1(Σ−1

0 β0 + XTy/σ2).

Notice:

� If Σ−1
0 � XTX/σ2, then βn ≈ β̂ols

� If Σ−1
0 � XTX/σ2, then βn ≈ β0
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The g-prior

How to pick β0,Σ0?

g-prior:
β ∼ mvn(0, gσ2(XTX)−1)

Idea: The variance of the OLS estimate β̂ols is

Var[β̂ols] = σ2(XTX)−1 =
σ2

n
(XTX/n)−1

This is roughly the uncertainty in β from n observations.

Var[β]gprior = gσ2(XTX)−1 =
σ2

n/g
(XTX/n)−1

The g -prior can roughly be viewed as the uncertainty from n/g observations.

For example, g = n means the prior has the same amount of info as 1 obs.
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Posterior distributions under the g -prior

{β|y,X, σ2} ∼ mvn(βn,Σn)

Σn = Var[β|y,X, σ2] =
g

g + 1
σ2(XTX)−1

βn = E[β|y,X, σ2] =
g

g + 1
(XTX)−1XTy

Notes:

� The posterior mean estimate βn is simply g
g+1

β̂ols.

� The posterior variance of β is simply g
g+1

Var[β̂ols].

� g shrinks the coefficients towards0 and can prevent overfitting to the data

� If g = n, then as n increases, inference approximates that using β̂ols.

21/37



The linear regression model Bayesian estimation

Monte Carlo simulation

What about the error variance σ2?

prior 1/σ2 ∼ gamma(ν0/2, ν0σ
2
0/2)

sampling model y ∼ mvn(Xβ, σ2I)
posterior 1/σ2|y,X ∼ gamma([ν0 + n]/2, [ν0σ

2
0 + SSRg ]/2)

where SSRg is somewhat complicated.

Simulating the joint posterior distribution:

joint distribution p(σ2,β|y,X) = p(σ2|y,X)× p(β|y,X, σ2)
simulation {σ2,β} ∼ p(σ2,β|y,X) ⇔ σ2 ∼ p(σ2|y,X),β ∼ p(β|y,X, σ2)

To simulate {σ2,β} ∼ p(σ2,β|y,X),

1. First simulate σ2 from p(σ2|y,X)

2. Use this σ2 to simulate β from p(β|y,X, σ2)

Repeat 1000’s of times to obtain MC samples: {σ2,β}(1), . . . , {σ2,β}(S).

22/37



The linear regression model Bayesian estimation

FTO example

Priors:

1/σ2 ∼ gamma(1/2, 3.678/2)

β|σ2 ∼ mvn(0, g × σ2(XTX)−1)

Posteriors:

{1/σ2|y,X} ∼ gamma((1 + 20)/2, (3.678 + 251.775)/2)

{β|Y,X, σ2} ∼ mvn(.952× β̂ols, .952× σ2(XTX)−1)

where

(XT X)−1 =

 0.55 −0.55 −0.15 0.15
−0.55 1.10 0.15 −0.30
−0.15 0.15 0.05 −0.05
0.15 −0.30 −0.05 0.10

 β̂ols =

 −0.068
2.945
2.844
1.729


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R-code

## data dimensions
n<-dim(X)[1] ; p<-dim(X)[2]

## prior parameters
nu0<-1
s20<-summary(lm(y~-1+X))$sigma^2
g<-n

## posterior calculations
Hg<- (g/(g+1)) * X%*%solve(t(X)%*%X)%*%t(X)
SSRg<- t(y)%*%( diag(1,nrow=n) - Hg ) %*%y

Vbeta<- g*solve(t(X)%*%X)/(g+1)
Ebeta<- Vbeta%*%t(X)%*%y

## simulate sigma^2 and beta
s2.post<-beta.post<-NULL
for(s in 1:5000)
{

s2.post<-c(s2.post,1/rgamma(1, (nu0+n)/2, (nu0*s20+SSRg)/2 ) )
beta.post<-rbind(beta.post, rmvnorm(1,Ebeta,s2.post[s]*Vbeta))

}
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MC approximation to posterior

s2.post[1:5]

## [1] 9.737351 13.002432 15.283947 14.527585 14.818471

beta.post[1:5,]

## [,1] [,2] [,3] [,4]
## [1,] 1.701434 1.2066217 1.649404 2.840527
## [2,] -1.868185 1.2553571 3.216233 1.974885
## [3,] 1.031936 1.5554807 1.908681 2.337766
## [4,] 3.350976 -1.3819152 2.400596 2.364326
## [5,] 1.485922 -0.6651715 2.032383 2.977433
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MC approximation to posterior

quantile(s2.post,probs=c(.025,.5,.975))

## 2.5% 50% 97.5%
## 7.162945 12.554219 24.773727

quantile(sqrt(s2.post),probs=c(.025,.5,.975))

## 2.5% 50% 97.5%
## 2.676368 3.543193 4.977321

apply(beta.post,2,quantile,probs=c(.025,.5,.975))

## [,1] [,2] [,3] [,4]
## 2.5% -5.26995978 -4.839650 1.064610 -0.5928799
## 50% -0.01050552 2.697659 2.677907 1.6786014
## 97.5% 5.20649638 9.992408 4.270029 3.9070770
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OLS/Bayes comparison

apply(beta.post,2,mean)

## [1] 0.01330163 2.70795309 2.67964282 1.67363273

apply(beta.post,2,sd)

## [1] 2.6637246 3.7725596 0.8054542 1.1429453

summary(fit.ols)$coef

## Estimate Std. Error t value Pr(>|t|)
## X -0.06821632 1.4222970 -0.04796208 9.623401e-01
## Xxg 2.94485495 2.0114316 1.46405917 1.625482e-01
## Xxa 2.84420729 0.4288387 6.63234803 5.760923e-06
## X 1.72947648 0.6064695 2.85171239 1.154001e-02
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Posterior distributions
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Summarizing the genetic effect

Genetic effect = E[y |age,+/−]− E[y |age,−/−]

= [(β1 + β2) + (β3 + β4)× age]− [β1 + β3 × age]

= β2 + β4 × age
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What if the model’s wrong?

Different types of violation—in decreasing order of how much they typically
matter in practice

� Just have the wrong data (!) i.e. not the data you claim to have

� Observations are not independent, e.g. repeated measures on same mouse
over time

� Mean model is incorrect

� Error terms do not have constant variance

� Error terms are not Normally distributed
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Dependent observations

� Observations from the same mouse are more likely to be similar than those
from different mice (even if they have same age and genotype)

� SBP from subjects (even with same age, genotype etc) in the same family
are more likely to be similar than those in different familes – perhaps
unmeasured common diet?

� Spatial and temporal relationships also tend to induce correlation

If the pattern of relationship is known, can allow for it – typically in “random
effects modes” – see later session.
If not, treat results with caution! Precision is likely over-stated.
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Wrong mean model

Even when the scientific background is highly informative about the variables
of interest (e.g. we want to know about the association of Y with x1, adjusting
for x2, x3...) there is rarely strong information about the form of the model

� Does mean weight increase with age? age2? age3?

� Could the effect of genotype also change non-linearly with age?

Including quadratic terms is a common approach – but quadratics are sensitive
to the tails. Instead, including “spline” representations of covariates allows the
model to capture many patterns.

Including interaction terms (as we did with xi,2 × xi,3) lets one covariate’s effect
vary with another.
(Deciding which covariates to use is addressed in the Model Choice session.)
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Non-constant variance

This is plausible in many situations; perhaps e.g. young mice are harder to
measure, i.e. more variables. Or perhaps the FTO variant affects weight
regulation — again, more variance.

� Having different variances at different covariate values is known as
heteroskedasticity

� Unaddressed, it can result in over- or under-statement of precision

The most obvious approach is to model the variance, i.e.

Yi = βTxi + εi ,

εi ∼ Normal(0, σ2
i ),

where σi depends on covariates, e.g. σhomozy and σheterozy for the two genotypes.
Of course, these parameters need priors. Constraining variances to be positive
also makes choosing a model difficult in practice.
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Robust standard errors (in Bayes)

In linear regression, some robustness to model-misspecification and/or
non-constant variance is available – but it relies on interest in linear ‘trends’.
Formally, we can define parameter

θ = argminEy,x

[(
Ey [y |x ]− xtθ

)2]
,

i.e. the straight line that best-captures random-sampling, in a least-squares
sense.

� This ‘trend’ can capture important features in how the mean y varies at
different x

� Fitting extremely flexible Bayesian models, we get a posterior for θ

� The posterior mean approaches β̂ols, in large samples

� The posterior variance approaches the ‘robust’ sandwich estimate, in large
samples (details in Szpiro et al, 2011)
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Robust standard errors

The OLS estimator can be written as β̂ols = (XTX)−1XTy =
∑n

i=1 ciyi , for
appropriate ci .

True variance Var[ β̂ ] =
∑n

i=1 c
2
i Var[Yi ]

Robust estimate V̂arR [ β̂ ] =
∑n

i=1 c
2
i e

2
i

Model-based estimate V̂arM [ β̂ ] = Mean(e2i )
∑n

i=1 c
2
i ,

where ei = yi − xT
i β̂ols, the residuals from fitting a linear model.

Non-Bayesian sandwich estimates are available through R’s sandwich package
– much quicker than Bayes with a very-flexible model. For correlated
outcomes, see the GEE package for generalizations.
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This is not a big problem for learning about population parameters;

� The variance statements/estimates we just saw don’t rely on Normality

� The central limit theorem means that β̂ ends up Normal anyway, in large
samples

� In small samples, expect to have limited power to detect non-Normality

� ... except, perhaps, for extreme outliers (data errors?)

For prediction – where we assume that outcomes do follow a Normal
distibution – this assumption is more important.
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Summary

� Linear regressions are of great applied interest

� Corresponding models are easy to fit, particularly with judicious prior choices

� Assumptions are made — but a well-chosen linear regression usually tells us
something of interest, even if the assumptions are (mildly) incorrect
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