Module 17: Bayesian Statistics for Genetics Lecture 4: Linear regression

Ken Rice

Department of Biostatistics
University of Washington

Outline

The linear regression model

Bayesian estimation

Regression models

How does an outcome Y vary as a function of $\mathbf{x}=\left\{x_{1}, \ldots, x_{p}\right\}$?

- What are the effect sizes?
- What is the effect of x_{1}, in observations that have the same $x_{2}, x_{3}, \ldots x_{p}$ (a.k.a. "keeping these covariates constant")?
- Can we predict Y as a function of \mathbf{x} ?

These questions can be assessed via a regression model $p(y \mid \mathbf{x})$.

Regression data

Parameters in a regression model can be estimated from data:

$$
\left(\begin{array}{cccc}
y_{1} & x_{1,1} & \cdots & x_{1, p} \\
\vdots & \vdots & & \vdots \\
y_{n} & x_{n, 1} & \cdots & x_{n, p}
\end{array}\right)
$$

These data are often expressed in matrix/vector form:

$$
\mathbf{y}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \quad \mathbf{X}=\left(\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right)=\left(\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, p} \\
\vdots & & \vdots \\
x_{n, 1} & \cdots & x_{n, p}
\end{array}\right)
$$

FTO experiment

FTO gene is hypothesized to be involved in growth and obesity.

Experimental design:

- 10 fto + / - mice
- 10 fto - / - mice
- Mice are sacrificed at the end of 1-5 weeks of age.
- Two mice in each group are sacrificed at each age.

FTO Data

Data analysis

- $y=$ weight
- $x_{g}=$ indicator of fto heterozygote $\in\{0,1\}=$ number of " + " alleles
- $x_{a}=$ age in weeks $\in\{1,2,3,4,5\}$

How can we estimate $p\left(y \mid x_{g}, x_{a}\right)$?
Cell means model:

genotype	age				
$-/-$	$\theta_{0,1}$	$\theta_{0,2}$	$\theta_{0,3}$	$\theta_{0,4}$	$\theta_{0,5}$
$+/-$	$\theta_{1,1}$	$\theta_{1,2}$	$\theta_{1,3}$	$\theta_{1,4}$	$\theta_{1,5}$

Problem: 10 parameters - only two observations per cell

Linear regression

Solution: Assume smoothness as a function of age. For each group,

$$
y=\alpha_{0}+\alpha_{1} x_{a}+\epsilon
$$

This is a linear regression model. Linearity means "linear in the parameters", i.e. several covariates multiplied by corresponding α and added.

A more complex model might assume e.g.

$$
y=\alpha_{0}+\alpha_{1} x_{a}+\alpha_{2} x_{a}^{2}+\alpha_{3} x_{a}^{3}+\epsilon,
$$

- but this is still a linear regression model, even with age ${ }^{2}$, age ${ }^{3}$ terms.

Multiple linear regression

With enough variables, we can describe the regressions for both groups simultaneously:

$$
\begin{aligned}
Y_{i} & =\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\beta_{3} x_{i, 3}+\beta_{4} x_{i, 4}+\epsilon_{i}, \text { where } \\
x_{i, 1} & =1 \text { for each subject } i \\
x_{i, 2} & =0 \text { if subject } i \text { is homozygous, } 1 \text { if heterozygous } \\
x_{i, 3} & =\text { age of subject } i \\
x_{i, 4} & =x_{i, 2} \times x_{i, 3}
\end{aligned}
$$

Note that under this model,

$$
\begin{aligned}
& \mathrm{E}[Y \mid \mathbf{x}]=\beta_{1}+\beta_{3} \times \text { age if } x_{2}=0, \text { and } \\
& \mathrm{E}[Y \mid \mathbf{x}]=\left(\beta_{1}+\beta_{2}\right)+\left(\beta_{3}+\beta_{4}\right) \times \text { age if } x_{2}=1
\end{aligned}
$$

Multiple linear regression

Normal linear regression

How does each Y_{i} vary around its mean $\mathrm{E}\left[Y_{i} \mid \boldsymbol{\beta}, \mathbf{x}_{i}\right]$?

$$
\begin{aligned}
Y_{i} & =\boldsymbol{\beta}^{T} \mathbf{x}_{i}+\epsilon_{i} \\
\epsilon_{1}, \ldots, \epsilon_{n} & \sim \text { i.i.d. normal }\left(0, \sigma^{2}\right)
\end{aligned}
$$

This assumption of Normal errors completely specifies the likelihood:

$$
\begin{aligned}
p\left(y_{1}, \ldots, y_{n} \mid \mathbf{x}_{1}, \ldots \mathbf{x}_{n}, \boldsymbol{\beta}, \sigma^{2}\right) & =\prod_{i=1}^{n} p\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\beta}, \sigma^{2}\right) \\
& =\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{\beta}^{T} \mathbf{x}_{i}\right)^{2}\right\}
\end{aligned}
$$

Note: in larger sample sizes, analysis is "robust" to the Normality assumption-but we are relying on the mean being linear in the \mathbf{x} 's, and on the ϵ_{i} 's variance being constant with respect to \mathbf{x}.

Matrix form

- Let \mathbf{y} be the n-dimensional column vector $\left(y_{1}, \ldots, y_{n}\right)^{T}$;
- Let \mathbf{X} be the $n \times p$ matrix whose i th row is \mathbf{x}_{i}.

Then the normal regression model is that

$$
\left\{\mathbf{y} \mid \mathbf{X}, \boldsymbol{\beta}, \sigma^{2}\right\} \sim \text { multivariate normal }\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right)
$$

where \mathbf{I} is the $p \times p$ identity matrix and

$$
\mathbf{X} \boldsymbol{\beta}=\left(\begin{array}{c}
\mathbf{x}_{1} \rightarrow \\
\mathbf{x}_{2} \rightarrow \\
\vdots \\
\mathbf{x}_{n} \rightarrow
\end{array}\right)\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{p}
\end{array}\right)=\left(\begin{array}{c}
\beta_{1} x_{1,1}+\cdots+\beta_{p} x_{1, p} \\
\vdots \\
\beta_{1} x_{n, 1}+\cdots+\beta_{p} x_{n, p}
\end{array}\right)=\left(\begin{array}{c}
\mathrm{E}\left[Y_{1} \mid \boldsymbol{\beta}, \mathbf{x}_{1}\right] \\
\vdots \\
\mathrm{E}\left[Y_{n} \mid \boldsymbol{\beta}, \mathbf{x}_{n}\right]
\end{array}\right)
$$

Ordinary least squares estimation

What values of $\boldsymbol{\beta}$ are consistent with our data \mathbf{y}, \mathbf{X} ?
Recall

$$
p\left(y_{1}, \ldots, y_{n} \mid \mathbf{x}_{1}, \ldots \mathbf{x}_{n}, \boldsymbol{\beta}, \sigma^{2}\right)=\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{\beta}^{T} \mathbf{x}_{i}\right)^{2}\right\} .
$$

This is big when $\operatorname{SSR}(\boldsymbol{\beta})=\sum\left(y_{i}-\boldsymbol{\beta}^{T} \mathbf{x}_{i}\right)^{2}$ is small.

$$
\begin{aligned}
\operatorname{SSR}(\boldsymbol{\beta}) & =\sum_{i=1}^{n}\left(y_{i}-\boldsymbol{\beta}^{T} \mathbf{x}_{i}\right)^{2}=(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{T}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}) \\
& =\mathbf{y}^{T} \mathbf{y}-2 \boldsymbol{\beta}^{T} \mathbf{X}^{T} \mathbf{y}+\boldsymbol{\beta}^{T} \mathbf{X}^{T} \mathbf{X} \boldsymbol{\beta}
\end{aligned}
$$

What value of β makes this the smallest?

Calculus

Recall from calculus that

1. a minimum of a function $g(z)$ occurs at a value z such that $\frac{d}{d z} g(z)=0$;
2. the derivative of $g(z)=a z$ is a and the derivative of $g(z)=b z^{2}$ is $2 b z$.

$$
\begin{aligned}
\frac{d}{d \boldsymbol{\beta}} \operatorname{SSR}(\boldsymbol{\beta}) & =\frac{d}{d \boldsymbol{\beta}}\left(\mathbf{y}^{T} \mathbf{y}-2 \boldsymbol{\beta}^{T} \mathbf{X}^{T} \mathbf{y}+\boldsymbol{\beta}^{T} \mathbf{X}^{T} \mathbf{X} \boldsymbol{\beta}\right) \\
& =-2 \mathbf{X}^{T} \mathbf{y}+2 \mathbf{X}^{T} \mathbf{X} \boldsymbol{\beta}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\frac{d}{d \boldsymbol{\beta}} \operatorname{SSR}(\boldsymbol{\beta})=0 & \Leftrightarrow-2 \mathbf{X}^{T} \mathbf{y}+2 \mathbf{X}^{T} \mathbf{X} \boldsymbol{\beta}=0 \\
& \Leftrightarrow \mathbf{X}^{T} \mathbf{X} \boldsymbol{\beta}=\mathbf{X}^{T} \mathbf{y} \\
& \Leftrightarrow \boldsymbol{\beta}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
\end{aligned}
$$

$\hat{\boldsymbol{\beta}}_{\mathrm{ols}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}$ is the Ordinary Least Squares (OLS) estimator of $\boldsymbol{\beta}$.

No Calculus

The calculus-free, algebra-heavy version - which relies on knowing the answer in advance!

Writing $\Pi=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}$, and noting that $\mathbf{X}=\Pi \mathbf{x}$ and $\mathbf{X} \hat{\boldsymbol{\beta}}_{\mathrm{ols}}=\Pi \mathbf{y}$;

$$
\begin{aligned}
(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{T}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}) & =(\mathbf{y}-\Pi \mathbf{y}+\Pi \mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{T}(\mathbf{y}-\Pi \mathbf{y}+\Pi \mathbf{y}-\mathbf{X} \boldsymbol{\beta}) \\
& =\left((I-\Pi) \mathbf{y}+\Pi\left(\hat{\boldsymbol{\beta}}_{\mathrm{ols}}-\boldsymbol{\beta}\right)\right)^{T}\left((I-\Pi) \mathbf{y}+\Pi\left(\hat{\boldsymbol{\beta}}_{\mathrm{ols}}-\boldsymbol{\beta}\right)\right) \\
& =\mathbf{y}^{T}(I-\Pi) \mathbf{y}+\left(\hat{\boldsymbol{\beta}}_{\mathrm{ols}}-\boldsymbol{\beta}\right)^{T} \Pi\left(\hat{\boldsymbol{\beta}}_{\mathrm{ols}}-\boldsymbol{\beta}\right)
\end{aligned}
$$

because all the 'cross terms' with Π and $I-\Pi$ are zero.
Hence the value of $\boldsymbol{\beta}$ that minimizes the SSR - for a given set of data - is $\hat{\boldsymbol{\beta}}_{\text {ols }}$.

OLS estimation in R

```
### OLS estimate
beta.ols<- solve( t(X)%*%X )%*%t(X)%*%y
c(beta.ols)
## [1] -0.06821632 2.94485495 2.84420729 1.72947648
### using lm
fit.ols<-lm(y~ X[,2] + X[,3] +X[,4] )
summary(fit.ols)$coef
\begin{tabular}{lrrrr} 
\#\# & Estimate & Std. Error & t value & \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
\#\# (Intercept) & -0.06821632 & 1.4222970 & -0.04796208 & \(9.623401 \mathrm{e}-01\) \\
\#\# X[, 2] & 2.94485495 & 2.0114316 & 1.46405917 & \(1.625482 \mathrm{e}-01\) \\
\#\# X[, 3] & 2.84420729 & 0.4288387 & 6.63234803 & \(5.760923 \mathrm{e}-06\) \\
\#\# X[, 4] & 1.72947648 & 0.6064695 & 2.85171239 & \(1.154001 \mathrm{e}-02\)
\end{tabular}
```


OLS estimation

summary(fit.ols)\$coef

\#\#	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
\#\# (Intercept)	-0.06821632	1.4222970	-0.04796208	$9.623401 \mathrm{e}-01$
\#\# X[, 2]	2.94485495	2.0114316	1.46405917	$1.625482 \mathrm{e}-01$
\#\# X[, 3]	2.84420729	0.4288387	6.63234803	$5.760923 \mathrm{e}-06$
\#\# X[, 4]	1.72947648	0.6064695	2.85171239	$1.154001 \mathrm{e}-02$

Bayesian inference for regression models

$$
y_{i}=\beta_{1} x_{i, 1}+\cdots+\beta_{p} x_{i, p}+\epsilon_{i}
$$

Motivation:

- Incorporating prior information
- Posterior probability statements: $\operatorname{Pr}\left(\beta_{j}>0 \mid \mathbf{y}, \mathbf{X}\right)$
- OLS tends to overfit when p is large, Bayes' use of prior tends to make it more conservative.
- Model selection and averaging (more later)

Prior and posterior distribution

where

$$
\begin{aligned}
\Sigma_{n}=\operatorname{Var}\left[\boldsymbol{\beta} \mid \mathbf{y}, \mathbf{X}, \sigma^{2}\right] & =\left(\Sigma_{0}^{-1}+\mathbf{X}^{T} \mathbf{X} / \sigma^{2}\right)^{-1} \\
\boldsymbol{\beta}_{n}=\mathrm{E}\left[\boldsymbol{\beta} \mid \mathbf{y}, \mathbf{X}, \sigma^{2}\right] & =\left(\Sigma_{0}^{-1}+\mathbf{X}^{T} \mathbf{X} / \sigma^{2}\right)^{-1}\left(\Sigma_{0}^{-1} \boldsymbol{\beta}_{0}+\mathbf{X}^{T} \mathbf{y} / \sigma^{2}\right)
\end{aligned}
$$

Notice:

- If $\Sigma_{0}^{-1} \ll \mathbf{X}^{T} \mathbf{X} / \sigma^{2}$, then $\boldsymbol{\beta}_{n} \approx \hat{\boldsymbol{\beta}}_{\text {ols }}$
- If $\Sigma_{0}^{-1} \gg \mathbf{X}^{T} \mathbf{X} / \sigma^{2}$, then $\boldsymbol{\beta}_{n} \approx \boldsymbol{\beta}_{0}$

The g-prior

How to pick $\boldsymbol{\beta}_{0}, \Sigma_{0}$?
g-prior:

$$
\boldsymbol{\beta} \sim \operatorname{mvn}\left(\mathbf{0}, g \sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right)
$$

Idea: The variance of the OLS estimate $\hat{\boldsymbol{\beta}}_{\text {ols }}$ is

$$
\operatorname{Var}\left[\hat{\boldsymbol{\beta}}_{\mathrm{ols}}\right]=\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}=\frac{\sigma^{2}}{n}\left(\mathbf{X}^{T} \mathbf{X} / n\right)^{-1}
$$

This is roughly the uncertainty in $\boldsymbol{\beta}$ from n observations.

$$
\operatorname{Var}[\boldsymbol{\beta}]_{\mathrm{gprior}}=g \sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}=\frac{\sigma^{2}}{n / g}\left(\mathbf{X}^{T} \mathbf{X} / n\right)^{-1}
$$

The g-prior can roughly be viewed as the uncertainty from n / g observations.
For example, $g=n$ means the prior has the same amount of info as 1 obs.

Posterior distributions under the g-prior

$$
\begin{aligned}
\left\{\boldsymbol{\beta} \mid \mathbf{y}, \mathbf{X}, \sigma^{2}\right\} & \sim \operatorname{mvn}\left(\boldsymbol{\beta}_{n}, \boldsymbol{\Sigma}_{n}\right) \\
\Sigma_{n}=\operatorname{Var}\left[\boldsymbol{\beta} \mid \mathbf{y}, \mathbf{X}, \sigma^{2}\right] & =\frac{g}{g+1} \sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \\
\boldsymbol{\beta}_{n}=\mathrm{E}\left[\boldsymbol{\beta} \mid \mathbf{y}, \mathbf{X}, \sigma^{2}\right] & =\frac{g}{g+1}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
\end{aligned}
$$

Notes:

- The posterior mean estimate $\boldsymbol{\beta}_{n}$ is simply $\frac{g}{g+1} \hat{\boldsymbol{\beta}}_{\text {ols }}$.
- The posterior variance of $\boldsymbol{\beta}$ is simply $\frac{g}{g+1} \operatorname{Var}\left[\hat{\boldsymbol{\beta}}_{\mathrm{ols}}\right]$.
- g shrinks the coefficients towards $\mathbf{0}$ and can prevent overfitting to the data
- If $g=n$, then as n increases, inference approximates that using $\hat{\boldsymbol{\beta}}_{\text {ols }}$.

Monte Carlo simulation

What about the error variance σ^{2} ?
prior
sampling model posterior

$$
\begin{aligned}
1 / \sigma^{2} & \sim \operatorname{gamma}\left(\nu_{0} / 2, \nu_{0} \sigma_{0}^{2} / 2\right) \\
\mathbf{y} & \sim \operatorname{mvn}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right) \\
1 / \sigma^{2} \mid \mathbf{y}, \mathbf{X} & \sim \operatorname{gamma}\left(\left[\nu_{0}+n\right] / 2,\left[\nu_{0} \sigma_{0}^{2}+\mathrm{SSR}_{g}\right] / 2\right)
\end{aligned}
$$

where SSR_{g} is somewhat complicated.
Simulating the joint posterior distribution:

$$
\begin{array}{lr}
\text { joint distribution } & p\left(\sigma^{2}, \boldsymbol{\beta} \mid \mathbf{y}, \mathbf{X}\right)
\end{array} \quad=\quad \begin{gathered}
p\left(\sigma^{2} \mid \mathbf{y}, \mathbf{X}\right) \times p\left(\boldsymbol{\beta} \mid \mathbf{y}, \mathbf{X}, \sigma^{2}\right) \\
\text { simulation }
\end{gathered} \quad\left\{\sigma^{2}, \boldsymbol{\beta}\right\} \sim p\left(\sigma^{2}, \boldsymbol{\beta} \mid \mathbf{y}, \mathbf{X}\right) \quad \Leftrightarrow \quad \sigma^{2} \sim p\left(\sigma^{2} \mid \mathbf{y}, \mathbf{X}\right), \boldsymbol{\beta} \sim p\left(\boldsymbol{\beta} \mid \mathbf{y}, \mathbf{X}, \sigma^{2}\right)
$$

To simulate $\left\{\sigma^{2}, \boldsymbol{\beta}\right\} \sim p\left(\sigma^{2}, \boldsymbol{\beta} \mid \mathbf{y}, \mathbf{X}\right)$,

1. First simulate σ^{2} from $p\left(\sigma^{2} \mid \mathbf{y}, \mathbf{X}\right)$
2. Use this σ^{2} to simulate $\boldsymbol{\beta}$ from $p\left(\boldsymbol{\beta} \mid \mathbf{y}, \mathbf{X}, \sigma^{2}\right)$

Repeat 1000's of times to obtain MC samples: $\left\{\sigma^{2}, \boldsymbol{\beta}\right\}^{(1)}, \ldots,\left\{\sigma^{2}, \boldsymbol{\beta}\right\}^{(S)}$.

FTO example

Priors:

$$
\begin{aligned}
& 1 / \sigma^{2} \sim \operatorname{gamma}(1 / 2,3.678 / 2) \\
& \boldsymbol{\beta} \mid \sigma^{2} \sim \operatorname{mvn}\left(\mathbf{0}, g \times \sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right)
\end{aligned}
$$

Posteriors:

$$
\begin{aligned}
\left\{1 / \sigma^{2} \mid \mathbf{y}, \mathbf{X}\right\} & \sim \operatorname{gamma}((1+20) / 2,(3.678+251.775) / 2) \\
\left\{\boldsymbol{\beta} \mid \mathbf{Y}, \mathbf{X}, \sigma^{2}\right\} & \sim \operatorname{mvn}\left(.952 \times \hat{\boldsymbol{\beta}}_{\text {ols }}, .952 \times \sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right)
\end{aligned}
$$

where

$$
\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}=\left(\begin{array}{rrrr}
0.55 & -0.55 & -0.15 & 0.15 \\
-0.55 & 1.10 & 0.15 & -0.30 \\
-0.15 & 0.15 & 0.05 & -0.05 \\
0.15 & -0.30 & -0.05 & 0.10
\end{array}\right) \quad \hat{\boldsymbol{\beta}}_{\mathrm{ols}}=\left(\begin{array}{r}
-0.068 \\
2.945 \\
2.844 \\
1.729
\end{array}\right)
$$

R-code

```
## data dimensions
n<-dim(X) [1] ; p<-dim(X) [2]
## prior parameters
nu0<-1
s20<-summary(lm(y~-1+X))$sigma^2
g<-n
## posterior calculations
Hg<- (g/(g+1)) * X%*%solve(t(X)%*%X)%*%t(X)
SSRg<- t(y)%*%( diag(1,nrow=n) - Hg ) %*%y
Vbeta<- g*solve(t(X)%*%X)/(g+1)
Ebeta<- Vbeta%*%%t(X)%*%y
## simulate sigma^2 and beta
s2.post<-beta.post<-NULL
for(s in 1:5000)
{
    s2.post<-c(s2.post,1/rgamma(1, (nu0+n)/2,(nu0*s20+SSRg)/2 ) )
    beta.post<-rbind(beta.post, rmvnorm(1,Ebeta,s2.post[s]*Vbeta))
}
```


MC approximation to posterior

```
s2.post[1:5]
## [1] 9.737351 13.002432 15.283947 14.527585 14.818471
```

beta.post [1:5,]

\#\#	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
\#\#	$[1]$,	1.701434	1.2066217	1.649404
\#\# $[2]$,	-1.868185	1.2553571	3.216233	1.974885
\#\# [3,]	1.031936	1.5554807	1.908681	2.337766
\#\# $[4]$,	3.350976	-1.3819152	2.400596	2.364326
\#\# $[5]$,	1.485922	-0.6651715	2.032383	2.977433

MC approximation to posterior

```
quantile(s2.post,probs=c(.025,.5,.975))
## 2.5% 50% 97.5%
## 7.162945 12.554219 24.773727
quantile(sqrt(s2.post),probs=c(.025,.5,.975))
## 2.5% 50% 97.5%
## 2.676368 3.543193 4.977321
apply(beta.post,2,quantile,probs=c(.025,.5,.975))
\(\left.\begin{array}{lrrrr}\text { \#\# } & {[, 1]} & {[, 2]} & {[, 3]} & {[, 4]} \\ \text { \#\# } & 2.5 \% & -5.26995978 & -4.839650 & 1.064610\end{array}\right)-0.5928799\)
```


OLS/Bayes comparison

```
apply(beta.post,2,mean)
## [1] 0.01330163 2.70795309 2.67964282 1.67363273
apply(beta.post,2,sd)
## [1] 2.6637246 3.7725596 0.8054542 1.1429453
summary(fit.ols)$coef
\begin{tabular}{lrrrr} 
\#\# & Estimate & Std. Error & t value & \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
\#\# X & -0.06821632 & 1.4222970 & -0.04796208 & \(9.623401 \mathrm{e}-01\) \\
\#\# Xxg & 2.94485495 & 2.0114316 & 1.46405917 & \(1.625482 \mathrm{e}-01\) \\
\#\# Xxa & 2.84420729 & 0.4288387 & 6.63234803 & \(5.760923 \mathrm{e}-06\) \\
\#\# X & 1.72947648 & 0.6064695 & 2.85171239 & \(1.154001 \mathrm{e}-02\)
\end{tabular}
```


Posterior distributions

Summarizing the genetic effect

$$
\begin{aligned}
\text { Genetic effect } & =\mathrm{E}[y \mid \text { age },+/-]-\mathrm{E}[y \mid \text { age },-/-] \\
& =\left[\left(\beta_{1}+\beta_{2}\right)+\left(\beta_{3}+\beta_{4}\right) \times \text { age }\right]-\left[\beta_{1}+\beta_{3} \times \text { age }\right] \\
& =\beta_{2}+\beta_{4} \times \text { age }
\end{aligned}
$$

What if the model's wrong?

Different types of violation-in decreasing order of how much they typically matter in practice

- Just have the wrong data (!) i.e. not the data you claim to have
- Observations are not independent, e.g. repeated measures on same mouse over time
- Mean model is incorrect
- Error terms do not have constant variance
- Error terms are not Normally distributed

Dependent observations

- Observations from the same mouse are more likely to be similar than those from different mice (even if they have same age and genotype)
- SBP from subjects (even with same age, genotype etc) in the same family are more likely to be similar than those in different familes - perhaps unmeasured common diet?
- Spatial and temporal relationships also tend to induce correlation

If the pattern of relationship is known, can allow for it - typically in "random effects modes" - see later session.
If not, treat results with caution! Precision is likely over-stated.

Wrong mean model

Even when the scientific background is highly informative about the variables of interest (e.g. we want to know about the association of Y with x_{1}, adjusting for $\mathbf{x}_{2}, \mathbf{x}_{3} \ldots$) there is rarely strong information about the form of the model

- Does mean weight increase with age? age ${ }^{2}$? age ${ }^{3}$?
- Could the effect of genotype also change non-linearly with age?

Including quadratic terms is a common approach - but quadratics are sensitive to the tails. Instead, including "spline" representations of covariates allows the model to capture many patterns.

Including interaction terms (as we did with $x_{i, 2} \times x_{i, 3}$) lets one covariate's effect vary with another.
(Deciding which covariates to use is addressed in the Model Choice session.)

Non-constant variance

This is plausible in many situations; perhaps e.g. young mice are harder to measure, i.e. more variables. Or perhaps the FTO variant affects weight regulation - again, more variance.

- Having different variances at different covariate values is known as heteroskedasticity
- Unaddressed, it can result in over- or under-statement of precision The most obvious approach is to model the variance, i.e.

$$
\begin{aligned}
Y_{i} & =\boldsymbol{\beta}^{T} \mathbf{x}_{i}+\epsilon_{i} \\
\epsilon_{i} & \sim \operatorname{Normal}\left(0, \sigma_{i}^{2}\right)
\end{aligned}
$$

where σ_{i} depends on covariates, e.g. $\sigma_{\text {homozy }}$ and $\sigma_{\text {heterozy }}$ for the two genotypes. Of course, these parameters need priors. Constraining variances to be positive also makes choosing a model difficult in practice.

Robust standard errors (in Bayes)

In linear regression, some robustness to model-misspecification and/or non-constant variance is available - but it relies on interest in linear 'trends'. Formally, we can define parameter

$$
\boldsymbol{\theta}=\operatorname{argmin} E_{y, x}\left[\left(E_{y}[y \mid x]-\mathbf{x}^{t} \boldsymbol{\theta}\right)^{2}\right],
$$

i.e. the straight line that best-captures random-sampling, in a least-squares sense.

- This 'trend' can capture important features in how the mean y varies at different x
- Fitting extremely flexible Bayesian models, we get a posterior for $\boldsymbol{\theta}$
- The posterior mean approaches $\hat{\boldsymbol{\beta}}_{\text {ols }}$, in large samples
- The posterior variance approaches the 'robust' sandwich estimate, in large samples (details in Szpiro et al, 2011)

Robust standard errors

The OLS estimator can be written as $\hat{\boldsymbol{\beta}}_{\text {ols }}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}=\sum_{i=1}^{n} c_{i} y_{i}$, for appropriate c_{i}.

$$
\begin{array}{rrrr}
\text { True variance } & \operatorname{Var}[\hat{\beta}] & = & \sum_{i=1}^{n} c_{i}^{2} \operatorname{Var}\left[Y_{i}\right] \\
\text { Robust estimate } & \widehat{\operatorname{Var}}_{[}[\hat{\beta}] & = & \sum_{i=1}^{n} c_{i}^{2} e_{i}^{2} \\
\text { Model-based estimate } & \widehat{\operatorname{Var}}_{M}[\hat{\beta}] & = & \operatorname{Mean}\left(e_{i}^{2}\right) \sum_{i=1}^{n} c_{i}^{2},
\end{array}
$$

where $e_{i}=y_{i}-\mathbf{x}_{i}^{T} \hat{\boldsymbol{\beta}}_{\text {ols }}$, the residuals from fitting a linear model.
Non-Bayesian sandwich estimates are available through R's sandwich package - much quicker than Bayes with a very-flexible model. For correlated outcomes, see the GEE package for generalizations.

This is not a big problem for learning about population parameters;

- The variance statements/estimates we just saw don't rely on Normality
- The central limit theorem means that $\hat{\boldsymbol{\beta}}$ ends up Normal anyway, in large samples
- In small samples, expect to have limited power to detect non-Normality
- ... except, perhaps, for extreme outliers (data errors?)

For prediction - where we assume that outcomes do follow a Normal distibution - this assumption is more important.

Summary

- Linear regressions are of great applied interest
- Corresponding models are easy to fit, particularly with judicious prior choices
- Assumptions are made - but a well-chosen linear regression usually tells us something of interest, even if the assumptions are (mildly) incorrect

