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Module 17: Bayesian Statistics for Genetics
Lecture 4: Linear regression
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Regression models

How does an outcome Y vary as a function of x = {x1,...,x5}?

o What are the effect sizes?

e What is the effect of x1, in observations that have the same xo, x3, ...xp
(a.k.a. “keeping these covariates constant”)?

e Can we predict Y as a function of x?

These questions can be assessed via a regression model p(y|x).
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estimation

Regression data

Parameters in a regression model can be estimated from data:

yrooXxyro o Xip

Yo Xn1 v Xnp
These data are often expressed in matrix/vector form:

N X1 X1,1 X1,p

Yn Xn Xn,1 Xn,p
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FTO experiment

FTO gene is hypothesized to be involved in growth and obesity.
Experimental design:

e 10 fto + /— mice

e 10 fto — /— mice

e Mice are sacrificed at the end of 1-5 weeks of age.

e Two mice in each group are sacrificed at each age.
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FTO Data
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Data analysis

e y = weight
e x; = indicator of fto heterozygote € {0,1} = number of “+" alleles
e x, = age in weeks € {1,2,3,4,5}

How can we estimate p(y|xg, x2)?
Cell means model:
genotype | age

-/ o1 bo2 6oz Boa Oos
+/= 011 6012 613 b1a Oi5

Problem: 10 parameters — only two observations per cell
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Linear regression

Solution: Assume smoothness as a function of age. For each group,

y=ap+aixs+e€

This is a linear regression model. Linearity means “linear in the parameters”,
i.e. several covariates multiplied by corresponding o and added.

A more complex model might assume e.g.

2 3
Yy = a0+ a1xa + aeXx; + asx; + ¢,

— but this is still a linear regression model, even with age?, age® terms.
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Multiple linear regression

With enough variables, we can describe the regressions for both groups
simultaneously:

Yi = Bixii+ Bxi2 4+ B3xi3z+ Paxia+ €, where
xi1 = 1 for each subject i
xi> = 0 if subject i is homozygous, 1 if heterozygous
Xi3 = age of subject /
Xi,4 = X2 X Xi3

Note that under this model,

B[Y|x]
B[Y|x]

B1+ B3 x age if xo =0, and
(B1r+ B2) + (B3 + fa) x age if xo = 1.
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Multiple linear regression
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Normal linear regression

How does each Y; vary around its mean E[Y;|3,x;] ?

Yi = B'xi+¢

.. 2
€1,...,€n ~ iid. normal(0,0°).

This assumption of Normal errors completely specifies the likelihood:

p(.y17"'7y"|X17"'Xﬂ7/3702) = Hp(y"|xi7ﬁ702)
i=1

= (2no?)""? exp{—2fi2 Z(y,' - B7xi)’}.

Note: in larger sample sizes, analysis is “robust” to the Normality
assumption—but we are relying on the mean being linear in the x's, and on the
€;'s variance being constant with respect to x.

11/37



The linear regression model
000000000 e00000

Matrix form

o Let y be the n-dimensional column vector (y1, ... ,y,,)T;

e Let X be the n x p matrix whose ith row is x;.

Then the normal regression model is that
{y|X,8,0°} ~ multivariate normal (X8, o°1),

where | is the p X p identity matrix and

X1 —

x; N b1 Bixi1+ -+ Boxip E[Y1]8,x1]
X8 = | = : =

)\ s Busns + -+ By E[Y,/8. ]
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Ordinary least squares estimation

What values of 3 are consistent with our data y, X?

zeCa”
p.y17"'7y”){17"'}(”7ﬂ>0 276 exp — Yi ﬁ X .

This is big when SSR(3) = 3. (yi — B7x;)? is small.

n

D> i—B"x) =(y—XB) (y — XB)

i=1

SSR(3)

y'y-28"X"y+B8"X"X3.

What value of 3 makes this the smallest?

13/37



The linear regression model
00000000000 e000

Calculus

Recall from calculus that
1. a minimum of a function g(z) occurs at a value z such that Zg(z) = 0;

2. the derivative of g(z) = az is a and the derivative of g(z) = bz” is 2bz.

d d T TyT TyT
G55SR = 5 (vTy-26"XTy + 8TXTX)
= —2X"y+2X"X3,
Therefore,
%SSR(ﬂ) =0 & -2X"y+2X"X3=0

s X'Xg=X"y
& B=X"X)"XTy.

Bo. = (XTX)"*X"y is the Ordinary Least Squares (OLS) estimator of 3.
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No Calculus

The calculus-free, algebra-heavy version — which relies on knowing the answer
in advance!

Writing M = X(X"X)™!X", and noting that X = MNx and X3,,, = My;
(y=X8)"(y=XB) = (y—Ny+MNy—XB)"(y—My+MNy-XB)
= (U =My +NBy. = B) (U = My + 1By, — B))
= yT(I_n)y_‘—(lBols—ﬁ)T ( ols ﬁ)
because all the ‘cross terms’ with 1 and /| — 1 are zero.

Hence the value of 3 that minimizes the SSR — for a given set of data — is B3,,..
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OLS estimation in R

### OLS estimate

beta.ols<- solve( t(X)%*%X )%*ht (X)%*hy

c(beta.ols)

## [1] -0.06821632 2.94485495 2.84420729

### using lm
fit.ols<-1m(y~ X[,2] + X[,3] +X[,4] )

summary (fit.ols) $coef

## Estimate Std. Error
## (Intercept) -0.06821632 1.4222970
## X[, 2] 2.94485495 2.0114316
## X[, 3] 2.84420729 0.4288387

## X[, 4] 1.72947648 0.6064695

t value
-0.04796208
1.46405917
6.63234803
2.85171239

Bayesian estimation
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1.72947648

Pr(>ltl)
9.623401e-01
1.625482e-01
5.760923e-06
1.154001e-02
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OLS estimation

weight

summary (fit.ols) $coef

## Estimate
## (Intercept) -0.06821632
## X[, 2] 2.94485495
## X[, 3] 2.84420729

## X[, 4] 1.72947648

age

Std. Error t value Pr>ltl)
1.4222970 -0.04796208 9.623401e-01
2.0114316 1.46405917 1.625482e-01
0.4288387 6.63234803 5.760923e-06
0.6064695 2.85171239 1.154001e-02
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Bayesian inference for regression models

Yi=Pixi1+ -+ BoXip t+ €

Motivation:
o Incorporating prior information
o Posterior probability statements: Pr(3; > 0Oly, X)

e OLS tends to overfit when p is large, Bayes' use of prior tends to make it
more conservative.

e Model selection and averaging (more later)
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Prior and posterior distribution

prior B ~  mvn(8,, o)
sampling model y ~  mvn(X3,a°l)
posterior Bly,X ~ mvn(8,,X,)

where

¥, = Var[8ly, X, 0] (Zot+XTX/0%) 7
B, =E[Bly,X,0’] = (o' +X"X/0®) ('8, + X y/0?).

Notice:

o If 5t < XTX/0?, then B, ~ By,
e If X5 > XTX/0?, then B, = B,

19/37



20/37

Bayesian estimation
00@00000000000000000

The g-prior

How to pick By, X0?

g-prior:

B ~ mvn(0, go*(XTX)™ 1)
Idea: The variance of the OLS estimate 3, is
Var[B,,] = o*(X"X) ™" = %2(XTX/n)_1
This is roughly the uncertainty in 3 from n observations.

2
Var[Blgpior = go>(XTX) ! = rjj/ig(XTx/n)il

The g-prior can roughly be viewed as the uncertainty from n/g observations.

For example, g = n means the prior has the same amount of info as 1 obs.
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Posterior distributions under the g-prior

{Bly. X, 0%} ~ mvn(3,, X,)

_ 21 _ g 2y Ty\—1
Y, = Var[Bly, X, 0] = Pt (X7X)
—E[8ly,X,07] = & _(xX"x)'x7
B, =ElBly.X.0% = L (x"X)7XTy

Notes:

e The posterior mean estimate 3, is simply ﬁ,@ols.

e The posterior variance of 3 is simply E%Var[,@o,s].
e g shrinks the coefficients towardsQ and can prevent overfitting to the data

e If g = n, then as n increases, inference approximates that using ,30,5.
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Monte Carlo simulation

What about the error variance o2?

prior 1/0®> ~ gamma(wo/2, 1003 /2)
sampling model y ~ mvn(X3,0%l)
posterior 1/0%ly,X ~ gamma([vo + n]/2, [voo? + SSR,]/2)

where SSR, is somewhat complicated.

Simulating the joint posterior distribution:

joint distribution p(a?, Bly,X) = p(a?ly, X) x p(Bly, X, %)
simulation {o*,8} ~ p(c®,Bly,.X) & 0~ p(a’ly,X),B ~ p(Bly, X,0?)

To simulate {02, 3} ~ p(c?, By, X),
1. First simulate o from p(c?|y, X)
2. Use this o2 to simulate B from p(Bly, X, o°)
Repeat 1000's of times to obtain MC samples: {02, B}V, ..., {0?,B}©).

22/37



The linear regression model Bayesian estimation
0000000000000 00 0O0000@00000000000000

FTO example

Priors:

1/0°> ~ gamma(1/2,3.678/2)
Blo® ~ mvn(0,g x o*(XTX)1)

Posteriors:

{1/0°|ly,X} ~ gamma((1+ 20)/2,(3.678 + 251.775)/2)
{BIY,X,0°} ~ mvn(.952 x B,,,.952 x o>(X"X)™ ")

ols»
where
055 —-0.55 —-0.15 0.15 —0.068
Ty —1 —0.55 1.10 0.15 —-0.30 PO 2.945
XX) =1 _o15 015 005 —0.05 Bos=|  5gaa
0.15 —-0.30 -—-0.05 0.10 1.729
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R-code

## data dimensions
n<-dim(X) [1] ; p<-dim(X) [2]

## prior parameters

nu0<-1

s20<-summary (1m(y~-1+X) ) $sigma"2
g<-n

## posterior calculations
Hg<= (g/(g+1)) * Xi*hsolve (t(X)%*%X)%*t (X)
SSRg<- t(y)%*%( diag(1,nrow=n) - Hg ) %*%y

Vbeta<- gxsolve (t(X)%*%X)/(g+1)
Ebeta<- Vbeta¥k*t (X)%*%hy

## simulate sigma™2 and beta

s2.post<-beta.post<-NULL

for(s in 1:5000)

{
s2.post<-c(s2.post,1/rgamma(l, (nul+n)/2, (nuO*s20+SSRg)/2 ) )
beta.post<-rbind(beta.post, rmvnorm(1l,Ebeta,s2.post[s]*Vbeta))

}
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s2.post[1:5]

## [1]

9.7373561 13.002432 15.283947 14.

beta.post[1:5,]

##
##
##
##
##
##

[,1]
1.701434
-1.868185
1.031936
3.350976
1.485922

O B =

MC approximation to posterior

[,2]
.2066217
.25563571
.5554807
.3819152
.6651715

[,3]
1.649404
3.216233
1.908681
2.400596
2.032383

NN - N

527585 14.818471

[,4]

.840527
.974885
.337766
.364326
.977433

Bayesian estimation
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MC approximation to posterior

quantile(s2.post,probs=c(.025,.5,.975))

#i# 2.5 50% 97.5%
## 7.162945 12.554219 24.773727

quantile(sqrt(s2.post),probs=c(.025,.5,.975))

#i#t 2.5% 50% 97.5%
## 2.676368 3.543193 4.977321

apply(beta.post,2,quantile,probs=c(.025,.5,.975))

## [,1] [,2] [,3] [,4]
## 2.5/, -5.26995978 -4.839650 1.064610 -0.5928799
## 50% -0.01050552 2.697659 2.677907 1.6786014
## 97.57, 5.20649638 9.992408 4.270029 3.9070770
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OLS/Bayes comparison

apply(beta.post,2,mean)

## [1] 0.01330163 2.70795309 2.67964282 1.67363273

apply(beta.post,2,sd)

## [1] 2.6637246 3.7725596 0.8054542 1.1429453

summary (fit.ols)$coef

## Estimate Std. Error

## X  -0.06821632
## Xxg 2.94485495
## Xxa 2.84420729
## X 1.72947648

1.4222970
2.0114316
0.4288387
0.6064695

t value
-0.04796208
1.46405917
6.63234803
2.85171239

Pr(>[tl)
9.623401e-01
1.625482e-01
5.760923e-06
1.154001e-02

Bayesian estimation
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Posterior distributions
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B2+Biage

15

10

Genetic effect

Bayesian estimation
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Summarizing the genetic effect

= Ely|age, +/-] — E[y|age, —/—]
= [(B1+ B2) + (Bs + Ba) x age] — [B1 + B5 x age]
= P2+ Ba x age

%%@

age
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What if the model’s wrong?

Different types of violation—in decreasing order of how much they typically
matter in practice

e Just have the wrong data (!) i.e. not the data you claim to have

e Observations are not independent, e.g. repeated measures on same mouse
over time

Mean model is incorrect

e Error terms do not have constant variance

o Error terms are not Normally distributed
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Dependent observations

e Observations from the same mouse are more likely to be similar than those
from different mice (even if they have same age and genotype)

e SBP from subjects (even with same age, genotype etc) in the same family
are more likely to be similar than those in different familes — perhaps
unmeasured common diet?

e Spatial and temporal relationships also tend to induce correlation
If the pattern of relationship is known, can allow for it — typically in “random

effects modes” — see later session.
If not, treat results with caution! Precision is likely over-stated.
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Wrong mean model

Even when the scientific background is highly informative about the variables
of interest (e.g. we want to know about the association of Y with x1, adjusting
for x2, x3...) there is rarely strong information about the form of the model

o Does mean weight increase with age? age®? age®?
e Could the effect of genotype also change non-linearly with age?
Including quadratic terms is a common approach — but quadratics are sensitive

to the tails. Instead, including “spline” representations of covariates allows the
model to capture many patterns.

Including interaction terms (as we did with x;» X x; 3) lets one covariate’s effect
vary with another.
(Deciding which covariates to use is addressed in the Model Choice session.)
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Non-constant variance

This is plausible in many situations; perhaps e.g. young mice are harder to
measure, i.e. more variables. Or perhaps the FTO variant affects weight
regulation — again, more variance.

e Having different variances at different covariate values is known as
heteroskedasticity

e Unaddressed, it can result in over- or under-statement of precision
The most obvious approach is to model the variance, i.e.
T
)/i = ,8 Xi + €j,
2
ei ~ Normal(0,07),
where o; depends on covariates, e.g. Thomozy and CTpeterozy for the two genotypes.

Of course, these parameters need priors. Constraining variances to be positive
also makes choosing a model difficult in practice.
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Robust standard errors (in Bayes)

In linear regression, some robustness to model-misspecification and/or
non-constant variance is available — but it relies on interest in linear ‘trends’.
Formally, we can define parameter

6 = argminE, . [(Ey[y|x] — xtO)z] ,

i.e. the straight line that best-captures random-sampling, in a least-squares
sense.

e This ‘trend’ can capture important features in how the mean y varies at
different x
o Fitting extremely flexible Bayesian models, we get a posterior for 6

e The posterior mean approaches B... in large samples

ols?
e The posterior variance approaches the ‘robust’ sandwich estimate, in large
samples (details in Szpiro et al, 2011)
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Robust standard errors

The OLS estimator can be written as 83,,, = (X" X) !XTy = 327, ciy;, for
appropriate ¢;.

True variance Var[f] = S, ¢ Var[ Yi]
Robust estimate  Varg[3] = S e
Model-based estimate @M[ﬁ] = Mean(ef) >, ¢/,

where e = y; — x,-T,@ols, the residuals from fitting a linear model.

Non-Bayesian sandwich estimates are available through R's sandwich package
— much quicker than Bayes with a very-flexible model. For correlated
outcomes, see the GEE package for generalizations.
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This is not a big problem for learning about population parameters;
e The variance statements/estimates we just saw don’t rely on Normality
o The central limit theorem means that ,(Ai ends up Normal anyway, in large

samples
e In small samples, expect to have limited power to detect non-Normality
e ... except, perhaps, for extreme outliers (data errors?)
For prediction — where we assume that outcomes do follow a Normal

distibution — this assumption is more important.
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Summary

o Linear regressions are of great applied interest
o Corresponding models are easy to fit, particularly with judicious prior choices

e Assumptions are made — but a well-chosen linear regression usually tells us
something of interest, even if the assumptions are (mildly) incorrect
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