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Introduction

e With the advent of high-throughput technologies in genomics there is now
the possibility of carrying out millions of tests, and so the implications of
such multiple testing must be carefully considered.

o In this lecture we will review the rationale for p-values.
e We then explore the connection between p-values and Bayes factors.
e Multiple testing will be reviewed and a Bayesian perspective presented.

e An example in the context of a pharmacogenomics GWAS will be
presented.

e The use of substantive prior information will also be demonstrated.
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Motivating Data Description

The Vitamin Intervention for Stroke Prevention (VISP) trial is an
NIH-funded, multi-center, double-blind, randomized, controlled clinical
trial.

More detail in Wakefield et al. (2014).

The aim is to determine whether a daily intake of high dose folic acid and
vitamins B6 and B12 was associated with cardiovascular endpoints.

We examine data on n = 1670 individuals, with 837 randomized to the
high dose and 833 to the low dose.

The outcome is the intermediary variable homocysteine level: high levels in
blood are associated with cardiovascular disease.

In the VISP trial, levels were measured longitudinally but for simplicity we
take as outcome the difference between the baseline and the first
post-baseline measurements: Y will represent this difference.

The change was -0.37 umol/L in the low dose group versus -2.36 umol/L
in the high dose group, i.e., a difference of -1.99 umol/L (p < 2 x 107%¢).
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Marker-Specific Treatment Effects

An increasingly important venture is examining treatment effects by
marker (e.g. SNP): a particular type of gene-environment interaction.

Historically, candidate gene studies were popular, but now genome-wide
scans are also being performed, see Daly (2010) for a review.

Pharmacogenomics-related traits: Drug response, susceptibility to adverse
drug reactions,...

Key Statistical Point: The estimated interactions are based on subgroups
of varying sizes, so that the power varies substantially across tests.

In the VISP trial, there are J = 803,122 SNPs and suppose we define
subgroups as having at least one copy of the minor allele.

The number in this subgroup ranges between 21 and 1564 across SNPs.

Conclusions References
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Beyond single-marker analyses: mining whole
genome scans for insights into treatment
responses in severe sepsis
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Management of severe sepsis, an acute illness with high merbidity and
mortality, suffers from the lack of effective biomarkers and largely empirical
predictions of disease progression and therapeutic responses. We conducted
a genome-wide association study using a large randomized clinical trial
cohort to discover genetic biomarkers of response to therapy and prognosis
utilizing novel approaches, including combination markers, to overcome
limitations of single-marker analyses. Sepsis prognostic models were domi-
nated by clinical variables with genetic markers less informative. In contrast,
evidence for gene-gene interactions were identified for sepsis treatment
responses with genetic biomarkers dominating models for predicting
therapeutic responses, yielding candidates for replication in other cohorts.
The Pharmacogenomics Journal advance online publication, 7 February 2012;
doi:10.1038/tp}.2012.1
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study; polymorphism; Severe sepsis
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e Aim: To identify marker-defined populations with improved response to
DAA (for treatment of severe sespis).
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Figure 1 Representative MManhattan plot from GWAS in the entire
cohort for genotype BB ws mot BB. All possible combinations of
genotypes representimg a dominant, heterozygous and recessive
inheritance were evaluated. Three pairs of comparisons A% vs not AA,
AB (heterozygous) vs not AB and BB vs not BB were completed. This
figure represents the plot of chromosome position and FPvalues for
homozygous genotype (BB) vs heterozygous (AB) or homozygous for
the other allele (AA), or BB vs not BB. (Manhattan plots of GWAS
results for genotype A& vs not AA and AB ws not AB are shown in
Supplementary Figure 1). GWAS = genome-wide association study.
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The Statistical Set-Up

e We begin with a very simple situation in which we have a single parameter
of interest 6.

e Assume the null of interest is
Hy:0=0
with 0, for example, a treatment difference, or a log odds ratio, or a log

hazard ratio.

e We assume an analysis yields a statistic T for which large values indicate
departures from the null.

o For example, the squared Wald statistic, T = 52/V, with V the
asymptotic variance of the MLE®.

e An alternative is the likelihood ratio statistic.

1T=2? where Z is the Z-score
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Types of Testing

o The observed p-value is given by:

p = Pr(T > tos|Ho)

PG Example Conclusions

0000000000000 o

where t., is a number that is evaluated for the data at hand.

e To report p only, gives a pure significance test.
o A small p-value can arise because:

e Hp is true but we were “unlucky”.
e Hp is not true.

References

— to decide which explanation is responsible depends crucially on the prior

belief on whether Hp is true or not.

Key question: How small is small?
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Types of Testing

A test of significance sets a cut-off value (e.g. & = 0.05) and rejects Hp if
p<a.

Again: How to pick a?

A type | error is to reject Hy when it is true, and a test of significance
controls the type | error (whereas a pure significance test does not).

A type Il error occurs when H; is true but Hp is not rejected.

A hypothesis test goes one step further and specifies an alternative
hypothesis.

e A decision is then taken as to which of Hy and H; is chosen.

The celebrated Neyman-Pearson lemma shows that for fixed a-level the
likelihood ratio statistic maximizes the power.

Wouldn't it be more reasonable to balance type | and type Il errors?
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The Dangers of Fixed Significance Levels

Example: Sample, Y1, ..., Y, of size n from normal(0, 1),
H()Z@ZO, H19:1

Obvious that we should reject Hp for Y > k, a constant.

The table below illustrates the problems of choosing a fixed «, regardless

of sample size — imbalance in « and 3 as a function of n.
n « 153 k
1 0.01 0.91 6.21
25 | 0.01 0.0038 0.42
100 | 0.01 | 8x 107" | 25 x 107"

Also: Statistical versus practical significance.

For both p-values and « levels we need thresholds that decrease as a
function of the sample size n. Pearson (1953, p. 68), “...the quite
legitimate device of reducing « as n increases” .

References
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Calibrating p-values

= Pr(Ho), Sellke, Bayarri and Berger (2001) show that:

Pr(Ho| data ) > {1

_ 1 y 1—mo
2.72 plogp o

References

(1)

e A small p-value doesn't translate to a small probability that the null is not

true.

Posterior probability of the null

0.2 04 06 0.8 1.0

0.0

% =0.75
T =0.5
— 1,=0.25

T T T T T T
0.05 0.10 0.15 0.20 0.25 0.30

p-value
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Why does anyone use p-values?

Historically, it was usual to carry out well-powered (single) experiments,
and the prior on the alternative was not small.
With respect to (1) and with mo = 0.5:
e p-value = 0.05 gives Pr(Hp| data ) > 0.29.
e p-value = 0.01 gives Pr(Hp| data ) > 0.11.
Scientists well-calibrated in their own discipline?
Perhaps, but if you're going to be subjective, why not be formal about it?

Aside: Reason for lack of replication in observational epidemiology? Along
with confounding, data dredging, measurement error,...
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Calibrating a-Levels

e We want Pr(Hy| data ), where “data” corresponds to the event T > ty,,
but to obtain this we must specify alternatives — consider a simple
alternative, say H; : 0 = 0;.

e Then,

PF(T > tﬁx|H0) Pr(Ho)
X
Pr(T > tw|H1) Pr(H:)
(6%

= 1_ 3 x Prior Odds of Hp

Posterior Odds of Hy =

e For ranking associations (which does not involve the prior odds if constant
across tests): must consider the power, Pr( data |H:).

e For calibration: must consider the prior odds of Hp.
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A Sanity Check via a Simple Example

e The model:
Y;|0 ~iig normal(0,0%), o> known,
i=1,..,n
o The distribution of the MLE is:
8 =Y ~ normal(6, V)
with V = ¢?/n,
2
nY
T == ?.
e Null and alternative hypotheses are

Ho:0=0, Hy:0#0,

References
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A Sanity Check via a Simple Example

Under H; assume the prior 8 ~ normal(0, W).

Recall from Lectures 3 and 4, that the evidence in the data for a pair of
hypotheses is summarized in the Bayes factor.

The Bayes factor is

e POl [T, dnorm(y[0.)
p(ylHi1) [, TIi_, dnorm(y;|6,02) x dnorm(6|0, W)d6

where dnorm is shorthand for the density of a normal random variable.

We take W = o2, which corresponds to the “unit information prior” of
Kass and Wasserman (1995) (this choice not so important).

With a prior odds, PO, and ratio of costs R this gives the decision rule to
reject Ho:

BFXPO:\/1+n><exp(—I n >><PO<R
21+n

Notice how this depends on T and n.
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A Bayesian Test Statistics Threshold

e Rearrangement gives a threshold for rejection of:
T > L'j_rl)log(@ 1+n)

o For relatively large prior odds on the null PO: require T to be larger (more
evidence).

e For relatively large cost of Type Il errors R (so that we are averse to type
Il error, i.e. missing signals): require T to be smaller (less evidence).

e Not such a simply summarization for n but, beyond a certain point, as n
gets larger, we require larger T (more evidence).

e The above should be contrasted with the usual frequentist approach of
T > const

with the constant usually chosen to control the type | error.
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A Bayesian Test Statistic Threshold

e The table below evaluates the probability of rejection given Hy. We
assume R = 1.

e For mp = 0.5 and n = 20,50, 100 the thresholds give ~ 0.05 — the
situation in which this infamous threshold was first derived?

o = 0.25 o = 0.50 o = 0.95

n=10 0.64 0.10 0.0025
n=20 0.35 0.074 0.0022
n =50 0.18 0.045 0.0016
n =100 0.12 0.031 0.0011

n = 1000 0.030 0.0085 0.00034
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Calibration with p-values

Interesting question: When do Bayes and frequentist p-value inference
coincide?
e Consider an approximate Bayes approach. We have parameter of interest 6
with
o Data: MLE 8 and standard error v/V to give likelihood €A|0 ~ normal(6, V),
e Prior: 6 ~ normal(0, W).

e The null and alternative hypotheses of interest are
Ho:@IO H107é0

e This leads to the approximate Bayes factor (ABF)

ABF

1 2
ﬁexp(—?)
_ o jvrw (22 W
B % 2 V+Ww

where r = W/(V + W) and Z =8/ V.

e Here we write explicitly as a function of Z, with T = Z2,

Conclusions References
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Calibration with p-values

ABF = Q/W exp (7272 V«V+Vw> , which depends on n, because V does.

Recall we reject if ABF x PO > threshold R.

We are trying to find a Bayes factor that does not depend on n, to
correspond with a p-value rule.

We can reverse engineer a version of ABF that does not depend on n by
taking the prior variance W = K x V, where K is a constant.

Then we have approximate Bayes factor

ABFF = /1 + K ex —Z—2L
- P\U21+K)
Important point: No dependence on n, i.e. it depends on Z only, and
therefore on the p-value only.

If we use the above prior and Bayes factor in multiple tests, then the
rankings of p-values and ABF” will be identical. The problem is that this
prior makes no sense.
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Calibration with p-values

e The ABF with W not depending on n is consistent (you get the right
answer with a lot of data), whereas the “p-value” Bayes factor is not.

e The original ABF can be inverted to give a rule for Z? that depends on
PO, R and n (as with the simple example presented previously).

e For more details, see Wakefield (2009).

e Figure 1 shows the behavior of this rule as a function of the sample size n,
and for different choices of the prior on the alternative m; and the ratio of
costs of type Il to type | errors.

o Larger values on the y axis correspond to less extreme test statistics.

e The curves have the expected ordering and, as n gets large, a greater and
greater level of evidence is required.

e This is as we would expect because as the sample size increases we want
both Type | and Type Il errors to go to zero.
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A Bayes Factor Threshold
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Figure 1 : Threshold for rejection, on the log;q(p)-value scale, versus sample size.

Notice how the threshold is decreasing with increasing sample size.
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Multiple Testing

The problem: m tests being carried out, often (in a GWAS context, for
example) with a tiny probability of any association being non-null.

We describe:

o Family-wise error: Bonferroni and Sidak.

Control of expected number of false discoveries.

Control of false discovery rate.

o A Bayesian perspective.
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Framework for Multiple Testing

Possibilities with m tests and when K are flagged as requiring further attention

Non-Flagged Flagged
Ho A B mo
H1 C D m
m—K K m

e mp is the number of true nulls.
e B is the number of type | errors.

o (C is the number of type Il errors.

Problem: To select a rule that will determine K.

We discriminate between:
e A sensible criterion.

e How the criterion should depend on sample size.

References
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The Family-Wise Error Rate

Non-Flagged Flagged
Ho A B mo
Hl C D my
m—K K m

e The family-wise error rate (FWER) is the probability of making at least
one Type | error, i.e.

Pr(B > 1] all Hp true ).

o Let B; be the event that the i-th null is incorrectly rejected, so that
B = U, B; is the total number of incorrectly rejected nulls.
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The Family-Wise Error Rate

e The FWER is given by:
FWER = Pr(B > 1| all Hp true ) = Pr(UZ;Bj| all Hp true)

< > Pr(Bj| all Ho true )
i=1

*
= mo

where o* is the level for each test.
e This is true regardless of whether the tests are independent or not.
e Bonferroni takes a* = a/m to give FWER < a.
e Example: For control at a = 0.05 with m = 500K  tests take

a* = 0.05/500,000 = 107",

e Such stringent rules lead to a loss of power, but not ridiculous if you think
there is a reasonable chance that all nulls could be true (but « should
depend on n, in partcular should decrease as n gets larger and larger).
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Sidak Correction

o If all the tests are independent:

Pr(B>1) =

1-Pr(B=0)
1- Pr(ﬂ"-llB,-/)

1-— 1_"’[ Pr(B/)
i=1

1—-(1-a")"

e So to achieve FWER = a take a* =1 — (1 — a)"/™ — the Sidak

correction (Sidak, 1967).
e Example: with m = 500K tests take

o =1—(1—0.05)°%0% — 103 x 107"

References
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Expected Number of False Discoveries

e We describe an alternative criterion.

Conclusions References

o

e For i =1,...,m tests let B; again be the 1/0 random variable representing
whether the null was incorrectly rejected or not, so that B = UL, B;.

e The expected number of false discoveries (EFD), with significance level o

for each test, is given by

EFD = E[B] = i E[B] = ma

i=1

if all nulls are true.
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Expected False Discoveries

For myo true nulls: E[B] = moc, but myg is unknown, so all we can say is

EFD = E[B] < ma.

In a GWAS context suppose m = 500K and « = 0.05; this gives
EFD < 25,000, so conventional levels will clearly not work!

o We can easily put an upper bound on the EFD.

o For example, if we set & = 1/m the expected number of false discoveries
is bounded by 1.
e With a = 5/m the expected number of false discoveries is bounded by 5.

e Compare to Bonferroni which controls the FWER via o/ m.



Introduction

[e]e]e}

Motivation p-Values and BFs Multiple Testing Methodology for PG PG Example Conclusions
0000 000000 0000000800 OO0000O000O000 0000000000000 o
000000000 00000
000
False Discovery Rate
e A very popular criterion is the false discovery rate (FDR).
Non-Flagged Flagged
HO A B mo
H, C D my
m—K K m
e Define the false discovery proportion (FDP) as the proportion of incorrect
rejections:
B .
= fK>0
FOP=¢ K %~
0 if K=0

e Then the false discovery rate (FDR), the expected proportion of rejected
nulls that are actually true nulls, is given by

FDR = E[FDP].

References
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False Discovery Rate

We describe an algorithm for controlling the FDR.
o Consider the following procedure for independent p-values:
1. Let Py < ... < P(y; denote the ordered p-values.
2. Define I; = ia/m and R = max{i : P(jy < l;} where a is the value at which
we would like FDR control.
3. Then define the p-value threshold as pr = P(g).
4. Reject all Hp; for which P; < Pr.
e Benjamini and Hochberg (1995) show that if this procedure is applied,
then regardless of how many nulls are true (mg) and regardless of the
distribution of the p-values when the null is false

FDR < ™o < a.
m
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False Discovery Rate

e If all the nulls are true then B = K (all rejections are false) and

FDR=E {g} =1xPr(B>1)=FWER.

e FDR in this form and with extensions, e.g. Storey and Tibshirani (2003)
(description of the g-value methodology) have been successfully used in
the microarrays field, where the number of non-null associations is not
small.

o Unfortunately less successful in a GWAS, because the proportion of nulls is

very close to 1.

Conclusions References
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Simulated Example

e We illustrate control by the family-wide error rate (FWER), the expected
number of false discoveries (EFD) and the false discovery rate (FDR).

e We simulate data for m = 100 tests, with m; = 5 being non-null.

e True table:

Non-Flagged Flagged

Ho A B 95

Hy C D 5

m—K K 100

References
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Simulated Example

We begin by plotting, in Figure 2 the oberved p-values versus those
expected under the null, i.e. i/(m+1) fori=1,...,m.

Hard to interpret, so we truncate the scales in Figure 3.

Finally we stretch the scale in Figure 4 to show — log,, the observed
p-values versus expected p-values.

On this scale, a value of 2 corresponds to a p-value of 0.01, and a value of
3 corresponds to a p-value of 0.001.

We see that the FWER is very conservative (p = 0.05/100 =5 x 10™*, or
—log;o(p) = 3.30) and only flags one test as being significant.

The EFD=1 gives a p-value threshold of 0.01, or —log;q p = 2 and picks
up all 5 signals.

The FDR control at 5% gives the green diagonal line and rejects 3 tests.
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Figure 2 :  Observed versus expected p-values.
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Observed versus expected p-values with truncated scale.
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Bayesian False Discoveries/Non-Discoveries

e In a Bayesian approach, based on Bayes factors we have a rule to flag a
single association as noteworthy if:

Posterior Odds = Bayes Factor x Prior Odds
< R

where R is the ratio of costs of type Il to type | errors.

e In a multiple testing situation in which m associations are being examined
nothing, in principle, changes.

e We simply apply the same rule m times, perhaps changing the priors if we
have different priors for different associations.

e The choice of threshold, R, and hence the procedure, does not depend on:
the number of tests being carried out?.

2unless the prior on the null, or the ratio of costs of errors depends on the number of tests



Introduction

[e]e]e}

Motivation p-Values and BFs Multiple Testing Methodology for PG PG Example Conclusions
0000 000000 0000000000 0000000000000 0000000000000 o
000000000 00000
(o] e}

Bayesian False Discoveries/Non-Discoveries

As we have seen, the Bayes factor depends, crucially, on the sample size.

In contrast, multiple testing based on p-values (e.g. Bonferroni/Sidak)
does not depend on the sample size but, crucially, on the number of tests
m.

We have already noted that p-value calibration is very difficult, and we
would like a procedure by which p-value thresholds decrease to zero with
increasing sample size.

The same would also be required of EFD or FDR based procedures.
To summarize in the case of normal test statistics:

The Bayesian decision is based on the Z score and on the sample
size, n, but not on the number of tests, m.

In contrast:

The Bonferroni decision is based on the Z score and on the number
of tests, m, but not on the sample size, n.

References



Introduction

[e]e]e}

Motivation

0000

p-Values and BFs  Multiple Testing  Methodology for PG PG Example Conclusions

000000 0000000000 0000000000000 0000000000000 o
000000000 00000
ocoe

Bayesian Multiple Testing

In a Bayesian context, for a single test:

References

e If we call a hypothesis noteworthy then Pr(Ho| data ) is the probability of
a false discovery.

o If we call a hypothesis not rejected then Pr(Hy| data ) is the probability of
a false non-discovery.

e In a multiple-hypothesis testing situation (and assuming ordered so the
first K are rejected), we have

Expected number of false non-discoveries =

Expected number of false discoveries =

Pr(Hoi| data;)

M)~

s

PI’(H1;| data,-).

Il
X

i=K+1

A Key Point: A Bayesian analysis of a single SNP alone, or the same SNP from
multiple SNPs will produce the same decision (assuming the prior is the same).
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Overall Treatment Effect

e We now describe the methodology for the VISP trial.

e Suppose we have two treatments T = 0/1 (e.g. low dose/high dose), a
continuous response Y and n/2 subjects in each treatment group, where n
is the number of trial participants.

o Let Y; be the response for the j-th individual and T; the treatment
indicator.

e To estimate the overall treatment effect we fit the model
Yi=a+ 8T +e€

with var(¢;) = o°, so that 3 is the parameter of interest.
e Hy: B = 0 is the null of interest, i.e. no treatment effect?
o Test statistic:

Z= BA ~ normal(0, 1) under Ho

se(9)
where B =Y — Y.0 and s.e.(3) = 5//n.
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Treatment-by-Marker Interactions

e Now consider the situation in which we wish to examine the treatment
effect by marker.
e To be concrete, define the subgroups relative to a recessive model so that
at a generic SNP we have S = 0:
No Copies of the Minor Allele
and S=1:
One or Two Copies of the Minor Allele.

e There are therefore m comparisons of interest, with summary data at
marker j, as below:

Marker
S§5=0 S=1 Sample Size
T=0 Yo Yo n/2
T=1 Y10 Yu n/2
n— ns ns n

Table 1 : Summary data at a generic marker, under two treatments T = 0/1; there
are n individuals in total, of which ns possess the marker of interest.
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Treatment-by-Marker Interactions

Let S; = 0/1 be a marker indicator for individual i and a generic SNP.

For the treatment effect and at each marker we fit the model

Yi=a+pBTi+7S5+ A TixS+e
~~
Interaction

with var(¢;) = o°.

Ho : A = Ao is the null of interest, i.e. is there a differential treatment
effect of a certain size at the SNP, e.g. A¢ = 0, to compare to the
marginal treatment effect.

Test statistic

Z= A—féo ~ normal(0, 1) under Ho.
s.e.(A)

To emphasize, the same 833/837 responses are used in each of the m
comparisons, but they are distributed into the four treatment x marker
cells differently.

Key Observation: The standard error will vary considerably across SNPs.

References
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VISP Example

After data cleaning, there were m = 803, 122 SNPs on which data were
available, with at least 5 individuals in each treatment x marker subgroup.

Suppose we are interested in detecting marker subgroups for which there is
an enhanced effect, i.e. an increased reduction over the marginal
treatment effect.

Figure 5 shows the standard errors in the VISP trial — large variability and
so the power ranges considerably also.

Now refresh memory on the Bayesian approach to testing.
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Computation of Bayes Factors

e Recall that

AA ~ N(A,V)
A~ N(Ao, W).

where vV is the standard error of the estimator leads to a simple form for

the Bayes factor:
v+ w zZw
BF =\ —y o (‘7m)

where
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Bayesian Boundaries

We again use the Bayes factors as a mechanism by which Z-score
boundaries can be calculated, as a function of the standard error v V.

The Bayesian Z2 score threshold is:

25 = (V) {ms () +2e ()}

to give a threshold which is an explicit function of V, R and PO.

If the prior odds PO on the null increases, threshold increases: require
more evidence.

If cost of Type Il to Type | errors R increase, threshold decreases: require
less evidence.
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Bayesian Boundaries

e The Bayesian boundary:
V+W V+W PO
Z? = —— | _— 21 — .
> = () {os () +206(R)}
e Beyond a certain point, as V decreases the Type | error decreases to zero.
e Specifically, let n denote an appropriate measure of sample size and
V =0o?/n. Then, as n — oo,
w P
2,23 — log (1 + n—2) +2log <—O> .
o R
N—————
— 00
o Relative to a fixed boundary:

e For small n/large standard error the Bayesian approach requires more
evidence because of the low power.

e For large n/small standard error the Bayesian approach requires more
evidence because of the high power and the comparison with the
distribution under Hy.
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Figure 5 : Histogram of standard errors of the interaction parameter estimates Ain
the VISP study.
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Figure 6 : Bayesian Z-score threshold as a function of the standard error. The
Bayesian threshold is based on a prior on the alternative of 0.0001, R = 1 and a prior

standard deviation on the interaction effect size of VW = 5.1; this prior gives a 95%
interval on A of (-10,10).
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A Priori Operating Characteristics

Ranking is straightforward with Bayes factors, since the only choice is the
prior on the effect parameter (W), and inference is relatively insensitive to
this value.

There is much greater sensitivity to the ratio of costs R and the prior odds
PO.

Deciding upon values for R and PO is not straightforward, but only the
ratio PO/R is needed.

We assume R = 1 (equal costs of type | and type Il errors) and
m = 0.001,0.0001,0.0001.

For m = 803,122 SNPs this corresponds to expecting 803, 80 and 8
non-null interactions, respectively.

These signals will not reflect 803, 80, 8 different causal variants since
typically multiple SNPs will tag each causal variant.

Figure 7 plots various useful operating characteristics.
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Operating Characteristics

To determine the EFD and ETD we require specification of the number of
null and non-null signals, which we label as mg and m;, respectively (so
that m = mo + my).

We take the true number of signals as m; = 50 so that there are
mg = 803,072 null signals.

Then

EFD = moxa
ETD m x (1 - B)

where « and 3 are the type | and type Il errors.

We emphasize that in a GWAS in which the fraction of non-null
associations is close to zero, the ETD is highly sensitive to the choice of
my (in contrast to EFD, which is insensitive)
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Figure 7 :  Operating characteristics of Bayes/Bonferroni. For Bayes boundaries R =1
and “Bayes 1", “Bayes 2", “Bayes 3" correspond to priors of 13 = 0.001, 0001, 00001.
Power is to detect a drop of 5 units. For EFD/ETD we set m; = 50.
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Operating Characteristics

The most liberal prior of m; = 0.001 produces a large number of type |
errors (around 20 for standard errors in the mid-range) and might be
judged to give unacceptably poor performance.

The most sceptical prior is more conservative than Bonferroni (with a
FWER of 20%) and the prior with 71 = 0.0001 is a compromise for this
choice of my.

For example: For a standard error of 1, around 2 false discoveries would be
expected (as in the lower left panel) but with around 10 more true signals
being detected (as seen in the lower right panel), which seems a
reasonable trade-off.

Note, however, that if we think the number of true signals is smaller than
my = 50 then the number of true signals will fall proportionally.

For example: At a standard error of 1, if m; =5 then we would only
expect to detect a single additional signal, when compared to the use of
Bonferroni.

Armed with this information we move to an analysis of the VISP data.
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Motivating Homocysteine Example

We fitted the interaction model with adjustment for age and gender.

The genetic subgroups are defined as having at least one copy of the
minor allele as compared to two copies of the major allele.

The number in the former subgroup ranges between 21 and 1,564 across
SNPs.

We choose W to give a 95% prior interval for the interactions A of +10.
Figure 8 plots the Z-scores versus the standard error, along with boundary
corresponding to a FWER of 20%.

For both the most conservative prior and the Bonferroni approach (with a
FWER of 20%, which gives a p-value threshold of 2.5 x 10~7) two SNPs
are flagged.

With a FWER of 5% the Bonferroni threshold is 6.2 x 1078 and results in
a single SNP being deemed significant.

With the more optimistic prior of w1 = 0.0001, a further signal is flagged
(and these are not significant using Bonferroni).
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Figure 8 : Z-score threshold as a function of the standard error for the VISP data,
ratio of costs of type Il to type | errors R = 1 and varying priors on the alternative of
w1 = 0.001, 0001, 00001 (to give Bayes 1, Bayes 2, Bayes 3 boundaries).
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SNP ID Chrom A sE(D) ‘ p-value Bayes Factor | Post Prob
rs3736238 17 -6.68 1.38 1.5x10°% 93x10°' 0.99
rs16893296 6 461 0.8 | 71x10°% 39x10°° 0.96
rs1739317 6 -3.23 064 | 40x107" 23x107° 0.81
rs11819196 10 -1.72 037 |35x10°°% 29x107* 0.26

Table 2 : The SNPs in the VISP study that had posterior probabilities on the

alternative of greater than 0.25 (R = 3), with a prior on the alternative of
71 = 0.0001 and under the equal variances recessive genetic model.
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VISP Results

Figure 9 plots the posterior probabilities of the alternative hypothesis
(with 73 = 0.0001) versus chromosomal position (this is similar to a
Manhattan plot in which — log;, p-values are plotted against position).
The 3 SNPs that fall outside of the boundary in Figure 8 are highlighted.
The strongest signal is for SNP rs3736238 on chromosome 17. For this
SNP there are 42 individuals in the M = 1 subgroup, of which 24 and 18
are in the low and high dose groups, respectively.

The probability of this signal being a false discovery is 0.01 under our
assumed prior.
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Figure 9 : Posterior probability on the alternative plotted versus genomic position for
the VISP data. The prior on the alternative is m; = 0.0001.
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Figure 10 shows that the p-values and Bayes factors differ in their rankings
due to the differing sample sizes/standard errors.

The points are color-coded by the size of the standard error and we see
that the points with larger standard errors are consistently ranked as
giving greater evidence for the alternative under the Bayesian approach.

This behavior occurs here because of the association between the Z?
boundary and the standard error for these priors, as shown in Figure 6.

Specifically, the majority of the signals occur in that portion of the latter
curve in which the Bayes boundary lies below the FWER boundary.

Figure 11 shows an example in which distinctly different behavior occurs.
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Figure 10 : -logy¢BFs vs -log;q p-values, color-coded by standard error with W = 10.
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Figure 11 : -logyoBFs vs -log;q p-values, color-coded by standard error with W = 3.
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A related interesting exercise is to simulate the distribution of observed
effect sizes under our assumed priors (on both the proportion of non-null
signals and the effect sizes), using the observed distribution of standard
errors.

The distribution of effect sizes is N(A, V 4+ W) for the non-null signals
and normal(0, V) for the null signals.

We can then evaluate the power, and hence determine the number of
signals we would expect to detect given our prior assumptions.

For the VISP data, with a proportion of non-null signals 3 = 0.0001,
R=1 and 95% range for the effect sizes of +10, we would expect to see
52 true positives and one false positive.

Given we only observed three non-null signals, this implies that either the
range of effect sizes (as defined through W) was too wide or, more
probably, that our estimate of w1 was optimistic.

Repeating this exercise with 711 = 0.00001 gives 5 true positives and close
to 0 false positives, which is more consistent with that which was observed.

Figure 12 gives the posterior probabilities for this prior.
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Figure 12 : Posterior probability on the alternative plotted versus genomic region for
the VISP data. The prior on the alternative is the more conservative choice of
w1 = 0.00001.
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We chose the value 1 = 0.0001 by examining frequentist summaries
before the real data analysis was performed.

We define m; as the proportion of SNPs that would be associated with the
disease, if the power were 1.

After the data are analyzed we can, for those SNPs declared as null (i.e. all
but 3 SNPs in the VISP trial), sum up the posterior probabilities of being
non-null, and this gives the expected number of false non-discoveries .

For the VISP data, this expected number is 24.6 so that we are missing a
large number of signals, with lack of power being a major issue.

For the three significant signals, at the 0.5 threshold, the probabilities of
the null being true are 0.01, 0.04 and 0.19, so that the expected number
of false discoveries is 0.24.

Taking the threshold of significance as 0.25 gives an additional SNP as
being declared significant.

The sum of the posterior probabilities of the null is 0.98 in this case and
so, under this prior, we would expect one of the reports signals to be a
false discovery.
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Sensitivity to 7

The posterior probability of the alternative is highly dependent on the
choice of prior on the null 7o, and a sensitivity analysis is always warranted.

Ideally, rather than fix 7o as we have done, one would estimate of 7wy from
the totality of data (i.e. over all m SNPs), but this is difficult because in a
GWAS the proportion of detectable null signals is typically very close to 1;
there may be many thousands of small but non-zero effects, but the power
to detect these signals is low, with the usual sample sizes.

In other contexts, such as the analysis of gene expression data (Storey and
Tibshirani, 2003), the data can be used to estimate mp more reliably.

If the same prior on the null is used for all the tests, the rankings based on
the Bayes factor will remain the same as the ranking based on posterior
probabilities.

However, calibrating the Bayes factors to the probability scale requires
prior probabilities.

Within a sensitivity exercise one may include an analysis in which any
available information on particular SNPs may be included.
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An Alternative Approach to Significance

The posterior probability (and the Z-score threshold) is equally sensitive to
R as to 1.

The form of the latter suggests that all we need to do is to fix PO/R.
As mentioned above, in the VISP analysis we selected 71 by examining the
frequentist operating characteristics.

An alternative method (Wakefield, 2012) for obtaining PO/R is to specify
a value for the Z2 boundary, z2, at a particular V (for example, at a MAF
and sample size that one is familiar with) and then solve for

U = log(PO/R) via

U:

ZxW 1, (VW
2vw) 2%\ v )

With this value of U = PO/R one can then proceed to use

2> 2= <V;/W> {bg(vcw) +2|og(D)}

across the observed range of standard errors.
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Conclusions

Bayesian analysis is attractive in a multiple testing context, but the results
are very sensitive to the prior on the proportion of nulls, 7.

Fast methods are required for large m (e.g. in a GWAS context) of tests,
which is still a drawback for many Bayesian approaches.

Priors can be made a function of characteristics of the SNP
(e.g. non-synonymous, previously implicated,...). See Johansson et al.
(2012) for an example.

Such priors can have a major impact on rankings and posterior
probabilities.

In genetics, journals are sympathetic to Bayes analyses (not true in all
disciplines).

A huge GWAS enterprise used p-values and Bayes factors to assess
significance (Wellcome Trust Case Control Consortium, 2007).

Stephens and Balding (2009) provide a review of Bayesian approaches in
GWAS.
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