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Motivation for this module

To unite the language of quantitative genetics (QG) and epidemiology

Quantitative genetics of disease is often a tack on to QG of
quantitative traits -here we make it the focus

The new era of genomics bring QG of genetics of disease back info the
foreground — a renewed relevance

Understanding of prediction of disease risk in the precision medicine era



Precision Medicine Initiatives

THE PRECISION MEDICINE INITIATIVE®

DRUGS USED TO BE
DESIGNED WITH THE
AVERAGE PATIENT IN MIND

NOW, THEY CAN BE TAILORED TOSPECIFIC
PATIENTS' GENETICS, MICROBES, AND
CHEMICAL COMPOSITION

Precision medicine is an emerging approach for disease
prevention and treatment that takes into account people’s
individual variations in genes, environment, and lifestyle.

The Precision Medicine Initiative® will generate the
scientific evidence needed to move the concept of
precision medicine into clinical practice.

http://syndication.nin.gov/multimedia/pmi/infographics/pmi-infographic.pdf




Create a research cohort of > 1 million American volunteers who will
share genetic data, biological samples, and diet/lifestyle information, all
linked to their electronic health records if they choose.

0060

Pioneer a new model for doing science that emphasizes engaged
participants, responsible data sharing, and privacy protection.

Research based upon the cohort data will:

¢ Advance pharmacogenomics, the right drug for the right patient at the
right dose

e |dentify new targets for treatment and prevention
¢ Test whether mobile devices can encourage healthy behaviors

e | ay scientific foundation for precision medicine for many diseases




Course Outline

Wednesday afternoon

+ Lecture 1 Genetic epidemiology of disease; Heritability of liability (Naomi)

« Lecture 2 Single locus disease analysis: design, logistic regression, covariates (John)
Thursday morning(John)

« Lecture 3: Single locus disease model; Power calculation for disease model (Naomi)
* Lecture 4. Interpreting measures of variation; multivariate models (John)

Thursday afternoon(Naomi)

* Lecture 5:Multi-locus disease model (Naomi)

« Lecture 6: Modeling interactions: gene-environment, epistasis (John)

Friday morning(John)

» Lecture 7: Risk Prediction — measures of accuracy for risk prediction of disease (Naomi)
* Lecture 8: Pleiotropy; LDscore (John)

Friday afternoon

» Lecture 9: Risk prediction — theory (Naomi)

* Lecture 10: Rare variants; Risk Prediction — application (John)

Naomi lecture More quantitative genetics theory
practical

Coffee

Johnlecture More statistics/data analysis

practical 5
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Lecture 1
Quantifying the genetic contribution to
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Aims of Lectlure 1

If a disease affects 1% of the population and has heritability 80%
We will show why these statements are consistent :

If an individual is affected ~8% of his/hersiblings affected

If an MZ twin is affected ~50% of their co-twins are affected

If an individual is affected > 60% will have no known family history

Bringing together genetic epidemiology and quantitative genetics

- The key papers were published 40 and 70 years ago......



Structure
Disease data and risk to relatives

Aside: Quantitative Traits

Liability Threshold Model

Practical



Disease data andrisk to relatives



Risk Factors for Schizophrenia

QOdds Ratio

Winter
Placeltime of birth Urban

Influenza

Respiratory

Infection Rubella
Pcliovirus

CNS

Famine

Bereavement
Prenatal Flood

Unwantedness
Maternal depr

Rh incompatibility
Hypoxia
Obstetric CNS dzsioage
Low birth weight
Pre-eclampsia
Family history
DOI:10.1371/journal.pmed.0020212.g001

Figure 1. Comparison of a Selected Set of Relatively Well-Established Risk Factors for Schizophrenia,
Focusing Mainly on Pre- and Antenatal Factors [6] (abbreviations: CNS, central nervous system; depr,

depression; Rh, Rhesus) )
Sullivan, PLoS Med 05
10



Complex genetic diseases

Unlike Mendelian disorders, there is no clear pattern of
inheritance

Tend to “run” in families
Few large pedigrees of multiply affected individuals
Most people have no known family history

What can we learn from genetic epidemiology
about genefic architecture?



Evidence for a genetic contribution comes from
risks to relatives

Major depression

ADHD
H |st degree
relatives

Bipolar F B Population

Autism

Schzizophrenia

0 0.05 0.1 0.15 0.2

Prevalence

12



Relative risk to relatives
Recurrence risk to relatives

How much more likely are you to be diseased if yourrelative is affected
compared to a person selected randomly from the population?

Relative risk to relatives (Ag) = p(affected | relative affected) = Kg
p(affectedin population) K

How to estimate p(affected |relative affected) ¢
« Collectpopulation samples — cases infrequent
« Collectsamples of case families and assess family members

How to estimate p(affected in population) ¢
« Census or national health statistics
« |s definition of affected same in population sample as family sample

« Collectcontrol families and assess family memlbers

If disease is not common Ar = plsibling affected | case family)
p(sibling affected | control family)
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Schizophrenia risks to relatives

Relatives Coefficient of Risch Lichtenstein et al
relationship McGue et al Estimate 95% CI
Monozygotic twins 1 52.1
Dizygotic twins Y2 14.2
Parent Y2 9.4 8.3-10.8
Offspring Y 10.0 10.3 8.8-12.2
Full-sibs Yo 8.6 8.6 7.6 -9.6
Half-sibs Ya 3.5 2.5 1.6 - 4.1
Nephews/Nieces Ya 3.1 2.7 2.2-3.2
Uncles/Aunts Ya 3.2 3.0 24-39
Grandparents Ya 3.8 2.8-5.3
First Cousins 1/8 1.8 2.3 1.7-3.1
Offspring of 2 affected ¥ but 89 19 -672
parents ascertained
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James (1971) relationship between K and K,

X = scores of disease yes/no for individuals
Y = scores of disease yes/no in relatives of X
K proportion of the population affected
E(X) = E(Y) =K

Ko = E(Y|X=1)

Probability that both X and Y =1: E(XY) = K*Kg
Cov(X,Y) = E(XY) = E(X)*E(Y) = K*Kg— K?

So Covg = Cov(X,Y) = K*Ky— K2 = (Kg =K)K = (A -1)K2

James (1971) Frequency in relatives for an all-or-non trait Ann Hum Genet 35 47

Derivation from Risch (1990) Linkage strategies for genetically complex traits. | Multi-locus models. AJHG 16



Aside 1: Heritability

P= G +¢
P = phenotype
G = genetic factors
¢ = residual, anything other than genetic, including environmental and stochastic

factors _; * Parameters vs Estimates
2 G
Broad sense heritability H* = g2

p e+ Often confused and confusing

« We can measure P but we cannot
directly measure G or A.

» Estimate variance of G or A by
using cohorts of individuals for

P= A +¢ whom we know the coefficient of
P=phenotype relationship, but difficulties arise
A = additive genetic factors because of confoundin

¢ = residual, anything other than additive genetic, including enwronmenTogond
stochastic factors
0-2
A

Narrow sense heritability h? = o2
14



Aside 2: Covariances between relatives
P= A +¢

V(P)=V(A) +V(¢), A and E uncorrelated

Pehia = Achidg ¥ € =72Amum ¥ 72 Agad + Aseg t+ €

V(Achild) = V(Amum) + Va V(Adod) + V(Aseg)

V(A) = VaV(A) + 4 V(A)  +V(Awg) SO V(Asg) =2 V(A)

COV(PchiIddeod) = COV(ACh"d'AdOd) = COV(% Amum + 2 AdOd + Aseg ’ Adad) =2 V(A)
CoV(Pchig.Psio) = Cov(Achig.Asio) =

COV(]/2 Amum + 2 Adad + Aseg—ch ’ /2 Amum + 2 Adod + Aseg—sib)
=4 V(A) + % V(A) = % V(A



General covariance between relatives

COVg = covariance between relatives on the disease scale

COVR - aRVAO -+ uRVDO + a}ZQVAAO + aRuRVADO + .-

Va Vp Vaa Vap Vop
Offspring-parent b 0 Ya 0 0
Half-sib s 0 1/16 0 0
Full-sib b3 Y4 V4 L/s 1/16
MZ twin 1 1 1 1 1
General g Ug az g Ug u
coVgr= (Kg=K)K = (Ag -1)K2 Ve = K(1-K) (from a few slides back!)

An estimate of narrow sense (additive) heritability on the disease scale is
= _ g —DK? (g — DK
°  agK(1—-K) ap(1-K)

But covR contains non-additive genetic terms.
We don't know if non-additive genetic effects exist - What to do?

Estimate hZ from different types of relatives to see if the estimates are consistent

James (1971) Frequency in relatives for an all-or-non trait Ann Hum Genet 35 47



James (1971) genetic variance on the
disease scale

o _ Ox —DK?_ O — DK
° agK(1—-K) azr(1—-K)

K = 0.0085 —, _ (10 —1)0.0085

)\sz 10 ag= % ho 1 = 0.154
7(1-0.0085)_

AMs=3 Qg= Vi hs = 0.069

)\FS =8.6 QRr= V2 7170 = 0.130

A= 52 ag=1 hZ =0.438

The estimates of pZ  are very different (even if sampling variance is faken into
account)

Implies that the estimates of h2  are contaminated by non-additive variance
on this scale of measurement

James (1971) Frequency in relatives for an all-or-non trait Ann Hum Genet 35 47



Liability threshold model

Phenotypic liability of
a sample from the
population

Proportion K affected

Assumption of normality

- Only appropriate for multifactorial disease

- i.e.more than a few genes but doesn’t have to be highly polygenic
- Key-unimodal



Falconer (1965)

Phenotypic liability of
a sample from the
population

Proportion K affected

| Relationship of relatives to

e «—> affected individuals ag
Phenotypic liability of ,

relatives of affected

individuals Proportion Ky affected

Using normal distribution theory what percentage of the variance in
liability is attributale to genetic factors given K, Kg and ag 29



Prediction of response to selection and rates of
inbreeding under directional selection
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Definitions

Density

Phenotypic liability

Z = density at t

K = Proportion of the
population that are
diseased

I = mean phenotypic liability of
the diseased group

t = threshold

24



How to get from observed risks to relatives
to heritability?- Falconer (1965)

Phenotypic liability of
a sample from the
population

Proportion K affected

| Relationship of relatives to

«> affected individuals r
Phenotypic liability of , NEVICH

relatives of affected

individuals Proportion Ky affected

Using normal distribution theory what percentage of the variance in
liability is attributale to genetic factors given K, K and r 25



Liability Threshold Model
—truncated normal distribution theory

d(x) =cumulative density until liability x

standard normal distribution function z = density atf t |
¢ (.x) = probability density at x 2= ¢(f) 11, =dnoml(i)
Phi N

% K = Proportion of the

- population that are

0, )

A diseased
Standard — —
Deviation =1 K= 1-®(t) = 1-pnorm(t)
Op=1

Phenotypic liability | = mean phenotypic liability of
the diseased group

i=z/K “selectionintensity”

Variance in liability amongst ~
the diseased individuals I I = threshold
= o (1-k), where k =i(i-1) t= @71(1-K) = gnorm(1-K)

Inverse standard normal distribution (probit) funedion




Mean of diseased group *

Pearson & Lee (1908) On the generalized probable error in normal correlation.
Biometrika

Lee (1915) Table of Gaussian tail functions..Biometrika

Fisher (1941) Properties and application of Hh functions. Intfroduction to
mathematical tables

Cohen (1949) On estimating the mean and standard deviation of truncated normal
distributions Am Stat Association

Cohen & Woodward (1953)Pearson-Lee-Fisher Functions of singly truncated normal
distributions. Biometrics

Mean (i):=sum( x * freq of x)
The phenotype frequencies must sum to 1, hence the denominator

o 1 _lxz
@ KRS T g0 2
ftoo(p(x)dx K K K

Lynch and Walsh equations 2.13 and 2.14; variance equation 2.15 27



Falconer (1965)

Phenotypic liability of

a sample from the
population

Assumption of normality

Only appropriate for multifactorial disease

Proportion K affected

I.e. more than a few genes but doesn’t have to be highly polygenic

Key — unimodal

28



Falconer (1965)

The difference
between the means
for the same
threshold

The difference
pbetween the
thresholds when
standardised to have
the same mean

Mer-M = T-TR

Given the difference in thresholds, and given known additive genetic
relationship between relatives, what proportion of the total variance must be
due to genetic factors

Falconer (1965) The inheritance of liability to certain diseases, estimated from incidences in relatives,
Ann. Hum Genet. 29 51

Crittenden (1961) an interpretation o familial aggregation based on multiple genetic and environmental factors 29
Ann NY Acad Sci 91769



Calculate heritability of liability using
regression theory

X = phenotypic liability for individuals
Y = phenotypic liability for relatives of X

E(X) =E(Y)= m =0

Relationship between X and Y is linear
Y = [y + Dy x(X-py)+ €

=m + COoV(AgRA) (X-m) + ¢, sincem=0
Var(X)

= @RI X +£= Q h2X + ¢
2
0.
p

Falconer (1965) The inheritance of liabllity to certain diseases, estimated from incidences in relatives,
Ann. Hum Genet. 29 51

Crittenden (1961) an interpretatfion o familial aggregation based on multiple genetic and environmental factors 30

ANnNn NY Acad Seci 91 749



Calculate heritability of liability using
regression theory

X = phenotypic liability for individuals
Y = phenotypic liability for relatives of X
My

Y =agh?X + ¢

For affected individuals X =i

Expected phenotypic liability of relatives of those affected
E(Y | X>1) = mpe-m =1-1p

Substitute t- t,= arh?

Rearrange h2=(t- tg)/iag

Falconer (1965) The inheritance of liabllity to certain diseases, estimated from incidences in relatives,
Ann. Hum Genet. 29 51

Crittenden (1961) an interpretatfion o familial aggregation based on multiple genetic and environmental factors 3
ANnNn NY Acad Seci 91 749



Assumptions made by Falconer (19635)

Assumption: Covariance between relatives reflects only shared additive
genetic effects

Check: Use different types of relatives with different ar and different

Ur(dominance coefficient) and different shared environment to see
consistency of estimates of h2

Assumption: Phenotypic variance in relatives is unaffected by
ascertainment on affected probands

32



Accounting for reduction in variance in
relatives as a result of ascertainment on
affected individuals "

Variance in liability amongst
the diseased individuals
= o (1-k), where k = i(i-1)

Variance in liability amongst relatives the
diseased individuals

V(PR | P>T) = V(PR)-kCOV(PR,P)2
- 1 —k(agh?)? = 1 — ka3h*

Reich, James, Morris (1972) The use of mulfiple thresholds in determining the mode of transmission of semi-continuayss
traits. Ann Hum Gen 36: 163.



Reich et al: heritability of hablhfy

The difference
between the means
for the same
threshold

The difference
between the
thresholds when
standardised to have
the mean 0 and
variance 1

Mr-M = -1 /1— kaZh*

Reich, James, Morris (1972) The use of mulfiple thresholds in determining the mode of transmission of semi-continuays
traits. Ann Hum Gen 36: 163.



Reich et al: heritability of hab:hfy

X = phenotypic liability for individuals
Y = phenotypic liability for relatives of X

NB. Distribution of relatives may
Y =agh?X + ¢ also be skewed - especially for
MZ twins-Estimates could be

For affected individuals X = i biased upwards

Expected phenotypic liability of relatives of those affected

E(Y | X>1) = mg-m = ¢~ tp 1~ kaZn*
Substitute t—t, [1- kazh* = agh2i

Rearrange 1, _ t—tpy/1— (1 —t/D)(t2 - t})
ar(i + (i — t)t5)

Also useful — calculation of g when K and h? are known _ t— aRihZ
J1—a2h*k




Accounting for reduction in variance in
relatives as a result of ascertainment on
affected individuals

Variance in liability amongst
the diseased individuals

= ((1-i(i-1)) = (1-k)

Variance in liability amongst relatives the
diseased individuals = 1-i(i-) (agh?)2

‘ _ ) .
Pe ty = R , _ -ty 1= (- t/D)(E2 — tR)
J1—aZntk ag(i+ (i — O)tg)

> h2l=function(t,tR,1,aR){(t-tR*sqrt(1-(1-t/i)*(tA2-tRA2)))/(aR*(i+(i-t)*tRA2))} # heritability of liability with Reich et al correct
ion **use this one

> (h21_est=h21(t_est,t_dad,i_est,0.5))

[1] 0.7857835

> (h21_est=h21(t_est,t_MZ,i_est,1))

[1] @.7985478

Reich, James, Morris (1972) The use of mulfiple thresholds in defermining the mode of transmission of semi-continuays
traits. Ann Hum Gen 36: 163.



Practical

Uses simulation to give understanding to
the theory.

How to calculate heritability of liability from
risks to relatives.

Feel for sample size and sampling variafion

Relationship between narrow sense
heritabllity on disease and liabllity scales



Module 19: Statistical and
Quantitative Genetics of Disease

John Witte
Session #2:

Single locus analysis: design, analysis,
logistic regression, covariates.



Now Assume We Can Collect DNA
on Cases and Controls

* What study design should we
use?

 What analytic approaches?

e Conventional: estimate

impact of single genetic
variants on disease.
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Outline

. Association Approaches

Linkage Disequilibrium

Population Stratification / Study Design
Association Analysis

Odds ratios and relative risks

Logistic regression

Covariates



1. Association Study Approaches

Direct vs. Indirect

Candidate genes: hypotheses about biological
mechanisms.

— Functional

— All common variants

— Exome arrays

All common variants in genome (GWAS)

All variants in genes/genome (sequencing)
— Expensive



2. Linkage Disequilibrium

e
e SR G g SR ¢

Hirschhorn & Daly, Nat Rev Genet 2005
Direct association Indirect association

The non-random association of alleles at two or more loci,
that descend from single, ancestral chromosomes.

Assume two loci with alleles {A, a} and {B, b}

D = Pag — PaPs = PagPab — PanPas

D’ =D/ max(D)

where

max(D) = min(papp,PaPs) if D>0 or min(paps,Papy) if D<O
r* = D?/(PaPaPgPy)-



3. Population Stratification &
Study Design

* Key principle of association studies: select
controls from the cases’ source population.

* Those individuals who—if they were diseased—
would become cases.

e Otherwise potential for bias (e.g., population
stratification) and reduced efficiency.



Population Stratification

* Two populations have different allele frequencies
and background rates of disease.
®* Can lead to biased association results.

Case Control

0000...000

O
O
O
O
O

re Reviews Genetics 2010



Population Stratification:
Confounding

_ -~ Exposure of Interest

~
~
~
~

e :
\4

True Risk Factor ————yp Disease

Ethnicity < » Genotype of
* _ " Interest
| ~ 5
_ ~
|- :
True Risk —  [JiSease
Factor

Wacholder, JNCI, 2000



Example

Study Population: 4,290 Pima and Papago Native
Americans

Genetic Variant: Gm 3;5,13, 15 haplotype (Gm
system of human immunoglobulin G)

Outcome: Type 2 diabetes

Question: Is the Gm 3; 5,13, 15 haplotype
associated with Type 2 diabetes?

Knowler, AUJHG, 1998



Population Stratification: Gm3;5,13,14 in admixed sample of
Native Americans of the Pima and Papago tribes

Full heritage Native
American population

+ -

Gm3;5,13,14 ~1% ~99%

NIDDM prevalence ~40%

Gm3,5,13,14
haplotype Cases
+ 7.80%
- 92.20%

Caucasian population

+ -

Gm3;5,13,14 ~66% ~34%

NIDDM prevalence ~15%

Controls
29.00%

71.00%

Unadjusted for ethnic background pitferent genotype frequency,

OR = 0.27 (95% 0.18-0.40)

different phenotype frequency



Population Stratification: Gm3;5,13,14 in admixed sample of
Native Americans of the Pima and Papago tribes

Index of N Am Gm3:5,13,14 %

heritage haplotype Diabetes
0 65.8% 18.5%
4 42.1% 28.5%
8 1.6% 39.2%
%B%Fyﬂg s Cases Controls
+ 7.80% 29.00%

- 92.20%  71.00%

Adjusted for ethnic background | o
Previous result just picked out
OR =0.83 (95% 0.58-1.18) race/ethnicity!



How can we address the potential bias
due to population stratification?



Addressing Population Stratification

Match on self-reported ethnicity
(Wacholder et al., / Thomas & Witte, CEBP 2002)

Family-based studies
(Witte et al., AJE 1999)

Genomic control

(Devlin and Roeder, Biometrics, 1999)
Adjust test statistics for ‘inflation’ (bias) using empirical | ¢
ghstrlbytlon, comparing median observed to expected ([ 4.,
- pld

Principal Components
(Price et al., Nat Genet 2006)
Adjust regression for PCs as a proxy for genetic ancestry.



Family-Based Association Studies

Siblings

O ©

Cousms

Parents

©

@

e

60

®

Termed “psuedo’-
controls (the
hypothetical other
mendelian
transmissions)



Comparison of Designs

e Family-based designs can:
- Be less efficient than population-based designs.
- Require more recruitment efforts

Rare Recessive Common Rare Dominant

High Risk Low Risk High Risk
Population-based 100% 100% 100%
Case-sibling 69% 51% 50%
Case-cousin 7% 88 % 88%
TDT 231% 102% 101%

Witte et al. AJE 1999

15



PC1(52.3%)

05

0.0

-05

-1.0

Adjusting for Principal Components

¢ Africa
* Middle East
* Europe
C_ S _Asia
E_Asia
* QOceania
* America

e g ;‘?.;.?‘% « Maximize variance
¢ between subjects
v using all SNPs.
., * Clusters individuals
from different
populations.

-04 -0.2

| | I
0.0 02 04

PC2 (27.8%) Li et al., Science 2008



PCs Detect Fine Population Structure
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Continuum of Assoc Study Designs

Population- “Ethnicity” PCs Family-based

based Matched Adjustment

] | I | >

Population Overmatching
Stratification

(Bias..................... VEISUS...ovvvvvninnnnnnnnnn efficiency)

Subpopulation falSharing of genes & envt.
/ \ FEfficiency
: Also, recruitment 1ssues
Gene > | Disease




N o v s

Outline

. Association Analysis

Odds ratios and relative risks
Logistic regression
Covariates



4. Association Analysis: Genotypes

Locus 4 —

Allelesat @
locus 4 (C)

Locus: chromosomal location - Each somatic cell is diploid (two copies
that's polymorphic. of each autosome)

Alleles: different variants @ locus - Thus 3 genotypes at locus 4 (use only
one strand, often forward): CC, CT, TT



Association Analysis

Genotype Cases  Controls OR

CC A D AF/DC
CT B E BF/EC
1T C F 1

Simple chi-square test comparing genotype frequencies (2 d.f.)
Called a co-dominant analysis



Testing for Association

Observed: Expected

Geno Case Control Total OR Case Control
CcC A D A+D=nCC AF/DC nCC*nCase/n nCC*nCont/n
CT B E B+E=nCT AE/BD nCT*nCase/n nCT*nCont/n
TT C F C+F=nTT 1 nTT*nCase/n nTT*nCont/n

Total A+B+C D+E+F A+B+C+D+E+F

=nCase =nCont =n

Sum (Observed — Expected)"2/Expected. Chi squared with 2 degrees of
freedom.

Expected cell count = row_total * column total / total



Testing for Association

Observed: Expected

Geno Case Control Total OR Case Control
CC 20 5 25 12 25*35/65=13.5 25*%30/65=11.5
CT 10 10 20 3 20*35/65=10.8 20*30/65=9.2
TT 5 15 20 1 20*35/65=10.8 20*30/65=9.2

Total 35 30 65

=nCase =nCont =n

Sum (Observed — Expected) "2/Expected
= (20-13.5)"2/13.5 + (10-10.8)"2/10.8 + (5-10.8)"2/10.8
+ (5-11.5)"2/11.5 + (10-9.2)"2/9.2 + (15-9.2)"2/9.2
= 13.7

P-value = 0.0011 Co-dominant model



Genetic Model

ORs depend on genetic model
Genotype OR

R=r=1 notriskallele

CC R .
cT " R>r=1 recessive
TT 1 R=r>1 dominant

R=r’>1 logadditive

(Assuming positive association)



Testing for Association

2 df Genotype Recessive (G) Dominant (G)
Genotype Case Control Case Control Case Control
CC A D CC A D CC or CT A+B D+E

CT B E CT or TT B+C E+F TT C F

TT C F

~chi sq(7° (1df)

What model should we use here?

Genotype Case Control Case Control Case Control
CC 20 5 CC 20 5 CC or CT 30 15

CT 10 10 CT or TT 15 25 TT 5 15

TT 5 15

P=0.0011 P=0.0020 P=0.0045



Genetic Model

If genetic model known:
— Collapse genotypes into 2x2 table, 1 d.f. test
— Or trend test for log additive
— Use logistic regression: coding; covariates, odds ratios

If genetic model unknown?
* Log-additiveis default. Why?

* Could use all three models (dom, rec, log additive).
 Compare fit with the co-dominant (2d.f.) model (LR test).
 Can’tuse LR test to compare models since not nested.

* Model with best fit and smallest P is best?

* Use permutation test (MAX test).



5. Odds Ratios and Relative Risks

When does the OR estimate the RR?
1. When the disease is “rare”

D D A,
CCorCT | A, | B, RRe A ¥B) et
Ao q-
TT | A, | By A +B0)
0

g+: Incidence in carriers (exposed)
g-: Incidence in non-carriers

(non-exposed) A, q+ A,
B I-g+ + 1- +B
OR= —L — (1-g+) _ q " (Ag+By)
q- q- 1- A,

B,  (-q-) (A;+By)



Odds Ratios and Relative Risks

2. When exposure distributionamong the controlsis the same as

the ‘person-time’ in the cases’ source population.

D D L (R
CCor(CT A1 Bl Al AO
= 1 I, =
TT Ay | B T, T,
B, By
Let: = = T
. T, T,
T, = Amount of exposed person-time
|, = Incident rate of exposed A, A,
* =
T, = Amount of unexposed person-time ore B! ! T, _RR
l, = Incident rate of unexposed Ao, L Ag
B T

r = Samplingrate



6. Logistic Regression

1.0 —~ 5
a
& 0.8 _| =
> a
5 0 2 0 _
© o
00-4— —
o (o
D_ S—
)
0.2 _ oY)
S
00 T—T T T T T T T T 1 ST T T T T T
G G
1 P
P(DEG) = log| = | =a+BG
(1-P)
1+ea+Be)

The log odds of disease increases linearly with G.



Interpretation of Coefficients

The logistic regression coefficients: B = log (OR)

Assume G=1 (carrier), G=0 (non-carrier)
log [P, /(1-Py)] = a+p*1
log [Py /(1 —Pg)] =a+B*0
SO

log [P, /(1 —P3)] - log [Py /(1 —Pg)] =P
or

log[P1/(1—P,) / (Po/(1=Py))] =log (OR) = B

The OR for the effect of G on disease risk is eP
For multiple variants, assumes joint effects are multiplicative.



7. Including Covariates in Regression

* Confounders: PCs for population stratification.
* Modifiers: Envt or Genetic interactions.
* Independent predictors?

2 A

O GG

Zaitlen et al.; Mefford & Witte, PloS Genet, 2012
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Aims of Lecture 3

Theory
« Single locus disease model
« Power calculations



Single locus disease model

Single locus disease model:
G = genotype; D=disease; K = overall disease risk in population

P(G)

aa |(1-p)?

Aa_[2p(1-p)
AA | p?




Single locus disease model

Single locus disease model:
G = genotype; D=disease; K = overall disease risk in population

P(G) P(D|G)

aa |(1-p)? fo

Aa |2p(1-p) |foR

AA [ p? fyR?2

P(Disease)=K =f,(1-p)? + foR2p(1-p) + foR? = fy(1+p(R-1))?

fo=K/(1+p(R-1))?



Single locus disease model

Single locus disease model:
G = genotype; D=disease; K = overall disease risk in population

P(G) P(D|G) |P(D)
=P(D|G)p(G)
aa |(1-p)* |fo (1-p)*fo
Aa |2p(1-p) |foR 2p(1-p) foR
AA |p? f,R?2 p? f,R?
Sum= K

P(Disease)=K =fy(1-p)? + f{obR2p(1-p) + ftR? =1fp(14+p(R-1))>?

fo=K/(1+p(R-1))?



Power of association test — case/control

Single locus disease model:
G = genotype; D=disease; K = overall disease risk in population

P(G) P(D|G) |P(D) P(G|D)
=P(D|G)p(G) | =P(G)/P(D)
aa |(1-p)* |fo (1-p)* fo (1-p)? fo/K
Aa |2p(1-p) |foR 2p(1-p) foR | 2p(1-p) foR/K
AA |p? f,R?2 p? f,R? p2 f,R2 /K
Sum= K

P(Disease)=K =fy(1-p)? + f{obR2p(1-p) + ftR? =1fp(14+p(R-1))>?

fo=K/(1+p(R-1))?



What is power?

When we set up a statistical test
« The null hypothesisis EITHER

 frue
 false

* With the data available we EITHER
« reject the null hypothesis
« fail to reject the null hypothesis

Nuli
hypothesis is
frue

Nuli
hypothesis is
false

Reject the null
hypothesis

Type | error
False positive

Correct
Outcome
True positive

Fail to reject
the null
hypothesis

Correct
Outcome
True negative

Type Il error
False
Negative

Power = probability of
rejecting the null hypothesis
when the null hypothesis is
false

=1 —probability of failing to
reject the null hypothesis
when the null hypothesis is
false

= 1- probability(Type Il error)

Power depends on statistical test, effect size to be detected, sample size, acceptable level of Type |

error
Non-centrality parameter depends on statistical test, effect size to be detected, sample size



Relative power of a GWAS for a quantitative

trait compared to a disease ftrai

First step:
How to calculate powerin an association study?¢

Genetic Power Calculator ~ Genetic Power Calculator

Case - control for discrete traits

S. Purcell & P. Sham, 2001-2009

.. . - . L . . High risk allele frequency (A) H (0 - 1)
This site provides automated power analysis for variance components (VC) quantitative trait locus (QT!
Prevalence : (0.0001 - 0.9999)
If you use this site, please reference the following Bioinformatics article: Genotype relative risk Aa : (>1)
. Genotype relative risk AA : (>1)
Purcell S, Cherny SS, Sham PC. (2003) Genetic Power Calculator:
design of linkage and association genetic mapping studies of complex .
traits. Bioinformatics, 19(1):149-150. D-prime : (0 -1
Marker allele frequency (B) H (0 - 1)
MOdules Number of cases ] (0 - 10000000)

. Control : case ratio : (>0 )
BGenetlc Power CaICUIator ( 1 = equal number of cases and controls)
(

IZ L. Unselected controls? (* see below)
l'( Quantitative Case-Control
F

Total QTL variance . (0 - 1) User-defined type I error rate : 0.05 (0.00000001 - 0.5)

. L. User-defined power: determine N : |0.80 (0 - 1)
Dominance : additive QTL effects : (0 - 1)
(1 - type II error rate)

QTL increaser allele frequency : (0 - 1)

Marker M1 allele frequency : (0 - 1) Process Reset

Linkage disequilibrium (D-prime) : (0 - 1)

Created by Shaun Purcell 24.0¢t.2008
Number of cases : ( >0 )

Case lower threshold

Case upper threshold

Control:case ratio : ( >0 )
Controls lower threshold

Controls upper threshold

User-defined type I error rate : |0.05 (0.00000001 - 0.5)

User-defined power: determine N : |0.80 (0 - 1)
(1 - type II error rate)

Send Clear Form

L



Genetic Power Calculator

Case - control for discrete traits

High risk allele frequency (A) :
Prevalence :
Genotype relative risk Aa :
Genotype relative risk AA :
D-prime :
Marker allele frequency (B) :
Number of cases H
Control : case ratio :

User-defined type I error rate :

User-defined power: determine N :
(1 - type II error rate)

2 (0 - 1)

.01 (0.0001 - 0.9999)

1.2 (>1)
1.44 (>1)

1 (0 - 1)

2 (0 - 1)

5000 (0 - 10000000)
1 (>0 )

( 1 = equal number of cases and controls)

[ ] Unselected controls? (* see below)

0.00000005/ (0.00000001 - 0.5)

0.80 (0 - 1)

Case-control statistics: allelic 1 df test (B versus b)
Sample NCP = 28.59

|Alpha |Power “N cases for 80% power |
0.1 0.9999 1081 |
0.05 [0.9996 1372 |
0.01 [0.9972 2042 |
0.001 [0.9802 [2985 |
[5e-08 [0.4586 16924 |




Power of a case-control study

Power of a disease frait

p = frequency of risk allele in population

DPese = frequency of risk allele in cases

Poone = frequency of risk allele in controls

% = proportion of a sample of N that are cases

p = mean adllele frequency across cases and conftrols

= V Dcase + (] _V) Pcontrol

Yang et al (2009)



Power of association test — case/control

Single locus disease model:
G = genotype; D=disease; K = overall disease risk in population

P(G) P(D|G) |P(D) P(G|D)
=P(D|G)p(G) |=P(G)/P(D)
aa |(1-p)> |fo (1-p)*fo (1-p)*fo/K
Aa |2p(1-p) |foR 2p(1-p) bR | 2p(1-p) foR/K
AA pZ f0R2 p2 foR2 p2 foRZ/K
Sum= K

P(Disease)=K =fy(1-p)? + f{obR2p(1-p) + foR? =1fp(14+p(R-1))>?
fo=K/(1+p(R-1))?

Pease = ¥2 P(Aa|D)+p(AA|D) Allele frequency in cases

= foPR((l p) + pR)/K  (1+p(R-1))

Find allele frequency in controls in the same way

Peont = ﬁ (1 N (1+pIi§—1)))




Yang

Power of a case-control study

Power of a disease frait

p = frequency of risk allele in population

DPese = frequency of risk allele in cases

Poone = frequency of risk allele in controls

% = proportion of a sample of N that are cases

p = mean adllele frequency across cases and conftrols

= V Dcase + (] _V) Pcontrol

/-Test statistic of association = test of difference of two proportions =
Pcase — Pcont __ Pcase — Pcont

s.e.(pooled samplep)  s.e.(p)

(pcase T pcont)2
var(p)

1 1
var(p) = 2p(1 - p) (Nv TNa- v))

x2 non-centrality parameter =NCPgy; =




Power of a case-control study

NCPOI = (pcase - pcont)2
var(p)
a =significance level - acceptable level of type | error

t=p-1 (g) Normal distribution threshold above which null hypothesis will be rejected

POWGF=CD(N/NCP01 + t)

N=10000,v=0.5,p=0.2,R=1.2,K=0.01,0=5e-8,K=0.01, power = 0.46

Agrees with the genetic power calculator

Yang et al (2009) Comparing Apples and Oranges: Equating the Power of Case-Control and Quantitative Trait
Association Studies. Genetic Epidemiology 13



Approximate variance explained by a locus

Regression of disease on jth SNP, x;; =0,1,2
Yo1 = K + ble[i] + &

When x[j]=0  yo1 =K = P(Disease | Genotype =aq)

When x[j]=1 7§, =K+ b,;, = P(Disease|Genotype=Aaql)

Relative Risk = R= P(Disease | Genotype =Aq)/P(Disease | Genotype
=AQ)
= (K+by1)/K so by = K(R-1)

Variance aftributable to the locus on the disease scale

0-1501[]-] = hgl[]]K(l - K) — b(z)lvar(x) — Zp(l _ p)bgl

hoy(;) = 2p(1 — p)b§1/K(1 — K)
_ =BGy _ 2p(1-p)bd; _ 2p(1-p)(R-1)?

Jjl i2K i2K?2 i2

*

Assumes a population sample not a case control sample .
See Lecture 1: Dempster & Lerner (1950) Appendix by Alan Robertson. Heritability of threshold characters. Genetics 35



Power of a case-control association study
expressed in terms of variance explained by

the locus

(pcase _ pcont) 2
var(p)

x2 non-centrality parameter = NCPy; =

NCPy; = 2p(1—p)(R - 1*v(1 —v)N
(1-K)?*1+pR-1))°

If R issmall then (1+p(R-1))? =1  e.g,p=0.2, R=1.2, (1+p(R-1))?= 1.08

Variance explained by a locus = hi[ 7~ 2p(1-p)(R—1)?
J i2

(1-K)?

NCPO] =~

Yang et al (2009) Comparing Apples and Oranges: Equating the Power of Case-Control and Quantitative Trait
Association Studies. Genetic Epidemiology



Power of a association study of a
quantitative trait

Norhipi
1=y

x2 non-centrality parameter =NCPqr =

When the variance explained is the
same in c-c and for quantitative trait

NCPy; = hiii?v(1 — v)Np;
(1-K)?

NCPOl izv(l - U)N()l
NCPyr ~ (1 —K)2Nyy

Yang et al (2009) Comparing Apples and Oranges: Equating the Power of Case-Control and Quantitative Trait
Association Studies. Genetic Epidemiology



Practical

« Power In case-control study design
— Code of slides 3-6

— Curve function for power in case-conftrol
study design



Module 19: Statistical and
Quantitative Genetics of Disease:
Interpreting measures of variation

explained; Multivariate analysis



Outline

1. Measures of Variation Explained
2. Multivariate Analysis



1. Measures of Variation Explained

Assume we’ve identified risk variants from
single locus models.

Once discovered, what next?
— Search for more risk variants?

— Focus on their biology?
— Probably both!

Depends on their overall impact on disease.

Can assess with a number of measures
— give values between 0 and 100%




Measures to Assess Impact

* Heritability explained

* Sibling recurrence risk explained

* Log RR:familial risk explained

e Area under the receiver-operating curve (AUC)
* Population attributable fraction (PAF)

Key questions:
* How do these measures compare?
* Do they provide similar info?

* Does genetic architecture of disease impact
differences?



Different Messages?

* Results in contrasting and confusing use of
these measures.

* Example,

— for Crohn’s disease variants in NOD2 reported to
explain:
* 1-2% of heritability
* ~“5% of familial risk
* 18% of the PAF



Heritability Explained

Genotype®
Measures bb Bb BB
General notation
Population frequency” (1-p)? 2p(1-p) p’
Genotype risk® Wy Wgp, Wgg
Mean genotype risk (M) (1-p)* Wy 2p(1-p) W, P’ Wgg
Variance of genotype risk (V) (1-p)* (W, - M)? 2p(1-p) (Wgy, - M)? p’ (Wgg -M)?
Scale-specific genotype risks
Observed risk® Ky, k., RRg, K., RRggs
Relative risk 1 RRg, RRgg
Log relative risk 0 log(RRg,) log(RRgg)
Liability threshold" -7 (1- kyp) -®" (1- Ky, RR5,) -®" (1- ky, RRg5)
Quantitative genetics notation
Genotype risk -a d = Wgp-(WpptWgg)/2 a = Wgg - (WpptWpgg)/2

Deviations from the mean®
Total
Additive"

Dominance

-a-M = -2p(a+(1-p)d)
-2pa
-2p“d

d-M = a((1-p)-p)+d(1-2p(1-p))
((1-p)-p)a
2p(1-p)d

a-M = 2(1-p)(a-pd)
2(1-p)a
2(1-p)°d




Heritability Explained

Heritability: h? ;= Vayg / Ve =Vaun / (Ve + 1)

where
V*L[i] = additive (*=A), phenotype (*=P), genetic (*=G) variance.

Vj = (1-p)*4p?a®+ 2p(1-p)((1-p)-p)*a* + p*4(1-p)°a?
= 2p(1-p)o?
a =a+d((1-p)-p) (ave effect of replacinga b allele by a B allele).

Vo =(1-p)*4p*d*+2p(1-p)4p?(1-p)*d? + p*4(1-p)*d?
= (2p(1-p)d)?

Ve =V,+ V, (Appliedto liability risk genotypicvalues.)

Heritability explained: h?;, / h?,

Across multiplevariants:  h;;/ h?, (Falconer & Mackay 1996)



Heritability Approximation

If we can assume small RR and a multiplicative model (RRg,* =
RRes)-

Then, IN'ZLapprox[i] = zp(:I-'p)(RRBb'l)z/X2

where
X = the mean liability of cases, approximated as z/K

z is the height of the standard normal distribution at the
threshold T that truncates the proportion K, T= ®-1(1-K)

Heritability explained: h? oo / 2L

Stahl et al., Nat Genet 2012



Sibling Recurrence Risk Explained

* Proportion of the total siblingrisk explained by the risk
variants (observed scale).

* Siblingsshare V,q/2 + Vp/4 of risk.

Vaori) /, +Veolil/,

As[l’] =1+ &

Vaoy = k2pp2*P(1-p)(P*(RRge-RRgp)*+(1-p)*(RRpyp-1))?
Voopp = K2pP?(1-p)?(RRge+1-2*RRg),)?
Sibling risk explained: log(Agy;) / log(Ag)

Across multiple variants: ZlOg(ﬂs[i]) /log (4s)



Log RR: Familial Risk Explained

* More epidemiologic approach.

* Geneticvariance attributable to the ith locus on the log
risk scale:

Véiogri) = (1 — p)?M? + 2p(1 — p)(log (RRpp) — M)* + p*(log (RRpp) — M)?

where M is the mean value of log relative risk,
M= 2p(1-p) log(RRgy) + p* l0g(RRgs).

VGlog[i] = 2p(1 —p)log (RRBb)2

* Multiple alleles, log-risk ~N with var=2log(Ag)
» Variation explained: Vg g/ 2l0g(As)
 Across multiple variants Y Vgoqi/ 2l09(As)

Pharoah et al., Nat Genet 2002



Area Under the Curve

x — v)hiy;
AUC; = @ o~ vhin
where
X = mean liability among cases
v =-x * K(1-K)

T= population threshold (determined from the disease
prevalence K)

* Proportion explained: divide risk variant AUC by the
maximum attainable AUC for a genetic risk predictor.

[(AUC,;-0.5) / (AUCyy,0.5)]2

Wray et al., Plos Genet 2010



Application

* Explore how these measures can imply
different impacts of genetic variants on

disease.

* Calculate them across studies of:
a) Breast cancer
b) Crohn’s disease
c) Rheumatoid arthritis
d) Schizophrenia



Percentage

Results: Breast Cancer

© |
o) —]
q— —
_\/ -
T \
o —]
Heritability Approx. Herit. Sibling RR Family RR AUC
(17.7%7) (12.6%) (22.4%) (20.8%) (19.0%)
Measure
- RR=<1.3 — 13<RR=<2 — 2<RR=<15 =— RR>15

M=65

K=0.12
SRR=2
h?=0.6



Percentage

Results: Crohn’s Disease

16

r51320902
RR=2.4, RAF=0.93

rs574329

RR=3.1,

3
*AF=0.02

M=165
K=0.005
i SRR=10.3
Heritability Approx. Herit. Sibling RR Family RR AuC h?=0.72
(16.4%") (17.8%) (24.7%) (21.2%) (33.8%)
Measure

— RR=13 — 13<RR=<2 =— 2<RR=<15 — RR>15




Percentage

Results: RA

© _|

~— /

0) —]

<t —

O —

Heritability Approx. Herit. Sibling RR Family RR AUC

(14.8%") (20.0%) (25.3%) (18.6%) (24.3%)
Measure

RR<1.3

— 13<RR=<2 =— 2<RR=<15 — RR>15

6910071, HLA-DRB1E
{R=2.88, RAF=0.22

M=36
K=.01, SRR=6
h?2=0.63



Percentage

Results: Schizophrenia
CNVs: 16p11.2, 2291
> / RR325, RAF=0.0003
<
e
-—

% "
7 K=.01, SRR=8.8
Heritability Approx. Herit. Sibling RR Family RR AUC h2=0.8
(2.5%") (15.9%) (24.3%) (2.9%) (4.9%) V=Y.

Measure
RR<1.3 = 13<RBRR<2 = 2<RR=<15 — RR>15




What goes into Denominator?

All measures considered here require
specification of a denominator.

The apparent impact of genetic variants can
hinge on the baseline or overall risks.

Undertake probabilistic sensitivity analyses to
explore how results vary across risks.

Final results in terms of benchmarking, not
exact estimates.



Population Attributable Fraction

* Proportion by which disease reduced in a
population if exposure to a risk factor(s) was
reduced or removed.

K_kbb kbb
PAF = =1-—
K K

pap — 2P =P)(RRgp — 1) + p*(RRps — 1)
1+2p(1 —p)(RRg, — 1) + p*(RRpp — 1)

* For multiple variants:

PAFrotqr = 1 _Hi(l _PAFi)



Example of PAF

Nature Genetics 32, 581 - 583 (2002)
Published online: 4 November 2002 | doi:10.1038/ng1021

RNASEL Arg462GIn variant is implicated in up
to 13% of prostate cancer cases

Graham CaseyZ, Phillippa J. Nevillel, Sarah J. PlummerZ, Ying Xiang?,
Lisa M. Krumroyl, Eric A. Kleing, William J. Catalonai, Nina

Nup 2_John D. Carpten?, Jeffrey M. Trent®, Robert H. Silvermant
& John S. Witte2




Population Attributable Fraction

~ Order of magnitude larger than other measures.
As RAF > 0.50, PAF only measure that increases.

When RR and RAF get large, single variant PAF
approaches 100%.

Examples:

— Breast cancer variant (rs10771399, RR=1.2, RAF = 0.90)
PAF=28%

— Schizophreniarare variant (CNV at 16p11.2, RR=26, RAF =
0.0003) PAF =1.4%

— Combined PAF > 90% (=100% with %2 Crohn’svariants)



Computational Anomaly in PAF

Apparent impact of each additional risk variant
depends on which variants have already been
incorporated.

E.g., assume two genetic variants for a disease:
— each with individual PAF=0.50

— combined PAF = 0.75 (=1-(1-0.5)2).

Remove 1 variant disease by 7.

Remove 2" disease by 2 in remaining popln. Or
oy % in original population.




PAF curve Depends on SNP Order

0.9

0.8

Joint PAF
o o o
3] o ~

o
~

o
w

0.2 -

0.1 -

O I I I I I I I I I I I I
1 11 21 31 41 51 61

Number of Breast Cancer Risk Variants

= Largest to Smallest PAR ===Smallest to Largest PAR

Largest to SmallestRR ====Smallest to Largest RR




Another Issue with PAF...

* Combined PAF not analogous to that obtained by
removing an environmental exposure (smoking).

* As the number of known risk loci continues to
increase, essentially everyone in the population
will carry a number of risk alleles.

 Then any preventative treatment directed at
countering the risk loci would have to be applied
to the entire population, which seems very
unrealistic.



Take Home...

 For common and rare variants of varying
nenetrance, use heritability explained or the
oroportion of geneticrisk on a log-scale.

* Avoid approximation to the heritability and
sibling relative risk because they break down for

rare, high-penetrance variants (vastly inflated
estimates).

e |ssues with AUC, and PAF has a number of
undesirable properties.




Outline

2. Multivariate Analysis



2. Multivariate Analysis

e Single Locus Analysis

logit(P(D1G))=p,+G,p,, [=1,...m

e Multiple Loci
logit(P(D1G))=6,+G B, +...+G_ B



Hierarchical Model

logit(P(DI1G))=6,+G,p,+...+G [

p=2La+o
5 ~MVN©O,T),T =71

Efron & Morris, 1974
Witte, 1996

Conti and Witte, 2003
Chen and Witte, 2007



Posterior Estimates

e Weighted to reflect precision of ML and prior
estimates

B =BLa&+(1-B)p
where & = (Z’'WZ)'Z’W

v

W=(V+T)™!
V+T

and B =




Incorporating Additional Info?

— Part of a known pathway?

— Within linkage \ association regions?
— Potentially functional?

— Degree of conservation?

— Tagging other SNPs?

— Copy number polymorphism?



/ matrix

Functional

LD sum columns

Category

dgeyuI|
UOI)EAIISUOD
SuIpod uAs
SO

uo.jul

3uIpod su

LN VNyW

3uIpod uss
SO
uo.xyul
3uIpod su

LN VNYyW

UOI)BAIISUOD
ANADIUUOD

dNS

0
0
0

0
0
0

1

206 21 O

1

42 4.4
31 5.5
53 43

10
15

15
56

1

0
0
0

108 14 0O

340 9

S
6

0

34

356 31 1

7




HM Example: SNPs and Expression

* Previous result:

— Linkage to chromosome 1, and association between SNP in
chitinase 3-like 2 (CHI3L2) promoter and CHI3L2 s expression
level

* Genoptypes:
— Affy 500K data, unrelated CEPH individuals

* Prior information:
— Linkage region (& LOD scores)
— Functionality
— Conservation scores
— Number of SNPs tagged

Cheunget al., Nature 2005; 437:1365-1369.



Z score (Wald Statistic)
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HM Example Results

Association between SNPs and CHI3L2 on Chr 1
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Aims of Lectlure 5

Theory
« To consider polygenic models of genetic risk

« To demonstrate that many polygenic models are

consistent with empirical data and that they can be
considered equivalent

« To understand the conclusion that the liability
threshold model is the model of choice

« To understand the criticisms and controversy of the
liability threshold model



Genetic models of disease

Mendelian disease:

* Individuals that possess the mutation get the disease.

« Dominant e.g Huntington's orrecessive e.g. Cystic fibrosis
Mendelian disease with variable penetfrance.

« Onlythose with the mutation get the disease

« Noft everyone with the mutation gets the disease.

« E.g. C%0rf72in Motor Neurone Disease

Compound heterozygote disease.

« Likerecessive Mendelian but individuals carry two different rare
mutations in the same gene.

Two-hit diseases

« Hypothesized, but examples?

Oligogenic diseases —caused by presence of several genetfic risk variants
Polygenic diseases — caused by multiple genetic risk variants

Multifactorial diseases- caused by multiple genetfic risk variants and other
risk factors



Common complex genetic diseases are
likely to be polygenic multifactorial

Evidence:

Many risk variants of small effect identified

Implications:

We all carry risk alleles

Each affected person may carry a unique portfolio

Polygenic model can accommodate some people having few loci
of larger effect and others having many loci of small effect

The more lociinvolved, to be consistent with low prevalence, the
probability of disease has to increase steeply with the number of loci.

The more lociinvolved, the more likely they have a pleiotropic
effect, which would be consistent with them being common in the
population

The more lociinvolved implies that we are highly robust to
perturbations — but this breaks down when the burden of risk factors
become too great



Modeling polygenic genetic risk

“Easiest” to understand by thinking of individual risk lociand how they
act together to cause disease

— The frequency of therisk alleles
Drawn from a distribution
All the same
— The effect size of therisk alleles
Drawn from a distribution
All the same - relative risk associated
— Interaction betweenrisk loci

Complex
All act in the same way

GENETIC ARCHITECURE

Genetic variance



Basic Model

p =freqofrisk allele 0.1
1-p = freq of non-risk allele

Assume Hardy- Weinberg equilibrium in the population
Genotype frequencies

P(bb) = (1-p)?
P(Bb)  =2p(1-p)
P(BB) = p2

Relative risk associated with one risk allele R

n loci 100
Theoretical minimum number of risk loci : 0 0
Theoretical maximum number of risk loci possible: 2n 200
Mean number of risk loci: 2np 20
Variance in humber of risk loci: 2np(1-p) 18

Range in number of loci expected 2np +/- (3.5)\2np(1-p) 5-36



Visualising common complex genetic diseases
Polygenic genetic architecture

* Imagine a disorder underpinned by
— 100 loci : 2 alleles at each locus
— Each risk allele has frequency 0.1

O risk alleles = yellow

Sae 2 ik cllcies = Gork Blos

Average person a person carries 2 alleles * 100 loci *0.1 = 20 risk

‘

/////]A\\\\§ CE]\I/lglrjfbody carries some risk alleles

Range in population ~5-36 (mean +/- 3.5 sd)
Polygenic burden : top 1% carry > 33 risk alleles




Visualising variation between individuals for common
complex genetic diseases

Affected individuals

:

/

/

/

A

N

Y Y Y Y O

i
Not all affected individuals carry the risk allele at any particular locus

Unaffected individuals camry multiple risk loci
Consequences of risk alleles depend on the genetic and environmental
background

I

8



How to combine risk loci to explain disease

Additive on disease scale

Multiplicative on disease scale

Constrained multiplicative on disease scale

Multiplicative Odds on disease scale

Liability threshold model




Basic genetic risk model

Single locus disease model:
G = genotype; D=disease; K = overall disease risk in population

P(G) P(D|G) |P(D)=P(D|G)p(G) |P(G|D)=P(G)/P(D)
aa |(1-p)* |fo (1-p)*fo (1-p)*fo/K
Aa [2p(1-p) |foRsp 2p(1-p) foRsy 2p(1-p) foRep/K
AA pZ fORBB pZ fORBB p2 f()RBB/K
Sum= K

P(Disease)=K =fy(1-p)? + foRer2p(1-p) + foReep? = fo(14+p(R-1))>?

= fo((1-p)? + Ren2p(1-p) + Rep p?)
fo = K/((1-p)? + Rep2p(1-p) + Ris p?)
if RBb = R; RBB = R?

fo = K/(1+p(R-1))*



Additive on the disease scale

Probability of disease increases additively/linearly with the number of
loci (x) carried.

Relationship between # alleles & prob of disease

P(D|x=s) = b*R*s
Constraint ’
2n E g °°ooo
ZP(D|x)P(x) - K :
x=0 ) : &
E(P(D|x)) = E(b*R*x) = b*R*E(x) = b*R*2np = K S

indA = # risk alleles

So b =K/2npR



Looking at the additive model

Base

N=1ebd # number of families

n =100 # number of loci

R=1.1 # relative risk of eachrisk allele
p=0.2 # allele frequency of each risk allele
K=0.01 # probability of disease

Follow up:

Base, R=1.5, p=0.5, K =0.1

Look at maximum probability of disease and consider whether
this model will generate an increased risk in relatives



Histogram of # risk alleles Histogram of probability of dise
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Frequency

onship between # alleles & prob «

probability of disease

indR

Histogram of # risk alleles
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Additive model

Mathematically tfractable

To achieve additivity of risk loci and correct disease prevalence,
does not give high probability of disease with large number of risk loci

Not consistent with high heritability
Not consistent with observed risks to relatives

Can “fudge” the additive model by saying
- P(D|x<nl)=0
— P(D|n1<x<n2) = additive with x
— P(D|x>n2) =1

Is non-linear with x
Not mathematically tractable



Multiplicative on the disease scale

Probability of disease increases multiplicatively with the number of risk
loci (x)

P(D|x=5s) = foRs Multiplicative on therisk scale
When s =0, P(D|x=0) = fg

Constraint

2n
zP(D|x)P(x) — K
x=0

s Binomial expansion
E(P(D[x)) = E(foR*) =fo (PR + (1-p))*" =fo (1 + p(R-1)p)*" =K

fo = K/(1+p(R-1)p)2

Additive on the logrisk scale

Log(P(D | x=s)) = s log(fyR)



Looking atl the multiplicative model

Base

N=1e5 # number of families

n =100 # number of loci

R=1.1 # relative risk of each risk allele
p=0.2 # allele frequency of each risk allele
K=0.01 # probability of disease

Follow up:

Base, K=0.1

Base K=0.1,R=1.2

Look at maximum probability of disease and consider whether
this model will generate an increased risk in relatives

Add fix



Multiplicative model

« Mathematically tractable

« High probability of disease with large number of risk loci so consistent
with high heritability and can be consistent with olbserved risks to
relafives

BUT
* Probability of disease for an individual can be > 1

IF constrain so that max probability of disease is |
THEN

« E(P(D]x))is nolongerK

 Need to fudge to retain this property

* Loses mathematical tractability



K=0.1, p=0.2, R=1.1

Histogram of # risk alleles Histogram of probability of dise
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K=0.1, p=0.2, R=1.2

Histogram of # risk alleles Histogram of probability of dise
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Epidemiology risk model

Odds(Disease) = P(Disease)/(1-P(Disease))
Odds(Disease | x =s) = Odds(Disease | x =0)y* = Cyx

s = number of risk loci carried by an individuals

Yy = odds ratio for each risk locus

P(Disease | x =)= Cys/(1-Cys)

Good: probability of disease does not exceed 1
Bad: mathematically intractable

Janssen et al (2006) Predictive testing for complex diseases using multiple genes: Fact or fictione Genet Med 8 395
Lu & Elston (2008) Using the optimal ROC to design a predictive test, exemplified with Type 2 Diabetes AJHG 82

21



Epidemiology risk modelling

« R =risk = probability of disease

* logR =y ~N(u, o?)

« R ~LogNormal(u, 62) = LN(u, o2

« uis arbitrary but Pharaoh set as u = -a?/2, but can also be
calculated from disease prevalence K

0% =log(Ayz) = 2log (Asip)

u=logK —c?/2

Pharaoh et al (2002) Polygenic susceptibility to breast cancerand implications for prevention. Nature Genetics 29
Sieh et al (2014) The role of genome sequencing in personalised breast cancer prevention. Cancer Epi Biom & Prev



Epidemiology risk model

E[R] =K = fe’”ax([)(x)dx = .. = gHtd?/2

Two relatives, with risk of disease RiR,

I?1 — e[l.+0'21
R, = eu+paz1+\/(1—p2)azz|

Probability that both are affected RiR,

E[R;R;] = legb(Zl)quS(zz)dzl dz, = - = p2H+0%(1+p)
Recurrence risk = Arelative = E[lj{lsz] =€p02

Ayz = e’

Agip = g0.50%

0% =log(Ayz) = 2log (Agp)

u=logK —c?/2

See thesis from Luke Jostins ftp://ftp.sanger.ac.uk/pub/resources/theses/lj4/thesis.pdf chapter 2 — contains typos
23



Liability threshold model

Doesn’t parameterise in terms of number of risk loCi

Only parameterises in terms of
— prevalence of disease and heritability of liability

OR

— prevalence of disease and risk to relatives

l.e.
— In terms of total variance explained which could cover a range of genetic
architectures

Variance explained by a locus
depends on frequency (p) and effectsize(a): 2p(1-p)a?

Variance explainedis the same for
p=0.1, a=0.1 as for p= 0.5, a=0.06

« BUT is the liability threshold model realistice

24



Controversy - the abrupt threshold is not
biological

“Conftrary to the argument regarding the
conservatism of the multifactorial threshold model
for describing the inheritance of congenital

— _— malformations, little biological insight has resulted
T e from the series of tautological, albeit grandiose,
mathematical assumptions currently comprising
the basis for this hypothesis.” Melnick & Shields

The theoretical foundation of genome-wide
association studies

GWAS are founded on the polygenic model of disease
liability, which itself arises from an assertion of
breathtaking audacity by the godfather of quantitative
genetics, DS Falconer. In an attempt to demonstrate the
relevance of quantitative genetics to the study of human
disease, Falconer, based on work of others before him (for
example, [24]), came up with a nifty solution [25]. Even
though disease states are typically all-or-nothing, and
even though the actual risk of disease is clearly very
discontinuously distributed in the population (being
dramatically higher in relatives of affected people, for
example), he claimed that it was reasonable to assume
that there was something called the underlying liability to
the disorder that was actually continuously distributed.
Mitchell (2012) What is complex about complex disorders Genome Biol 12: 237

Edwards(19269) Familial predispositionin man, Br Med Bull

Melnick & Shields (1976) Allelic restriction: a biologic alternative to multifactorial threshold model. The Lancet

Many references to the criticism in papers of the time eg Smith (1970) 25

0.8

probability of disease
0.4

0.0

phenotypic liability

prevalence= 0.01

0.8

probability of disease
04

0.0

T T T T T
-3 -2 -1 0 1 2 3

phenotypic liability



Is the abrupt threshold non-biological?

« People are classed as diseased or not disease, any error in this classifcation,
contributes of a heritability of < 1.

«  Wright(1934) showed that 3 vs 4 foes in guinea pigs “cannot correspond to
alternate phases of a single factor (=gene)” and used crosses to show several
factors (“> 3") underly a physiological threshold

« Fraser (1976) Detailed explanation of the biology consistent with a
multifactorial threshold model for cleft palate

Fraser(1976) The multifactorial/Threshold concept —uses and misuses Teratology
Wright (1934) An analysis of variability in number of digits in an inbred strain of guineapig. Genetics 19 506
Wright (1934) The results of crosses betweeninbred strains of guinea pigs, differing in the number of. Genetics 19 537

26



probability of disease

probability of disease

No need to invoke abrupt threshold of phenotypic liability — instead use
Probability of risk of disease under liability threshold model

revalence= 025 - revaience= 0. = 0.6 prevalence= 0. M

e P , eemne® - "The abrupt threshold is thus
3 g 3 g 3 conceptual rather than real and
3 may be avoided by redefining the
5 i i variance and risk function.” Smith

s o2 a0 02 s P S 1970
phenotypic ]iab“ity A ‘ g;er\enc liability A ‘ g;er\enc liability
prevalence= 0.01 h2= 0.2 prevalence= 0.01 h2= 0.8 prevalence= 0.01
_ 2 2 P(Disease|genetic liability = x)

3 38 g s cb(x_t> CD( x—t)
: i : : : Jaé V1 — h?
A Probit model

phenotypic liability

Two parameters: disease prevalence and heritability

Probit model can be parameterised in terms of number of risk loci

Curnow (1972) The multifactorial model for the inheritance of liabilty to disease and its implications for risk to relatives.
Biometrics

Curnow & Smith (1975) Multifactorial models for familial diseases in man. J Royal Stat Soc A 138 07



Controversy — many models fit empirical data

“One cause of scepfticism of the liability threshold model was the realization
that the empirical data would also fit other models (Morton, '67; Smith, '71),
such as a major gene combined with polygenic and environmental
variation (Morton and Maclean, '74,a single locus with two alleles, each
with incomplete penetrance (Reich et al., '72, or a heterogeneous mixture
of cases determined either by a major locus with incomplete dominance
and reduced penetrance or by environmental factors (Chung et al., '74, or
various combinations of these (Elston and Stewart, '/73; Lange and Elston,
'75).

This is because the extreme tail of the distribution (whichis all one can
usually see when diseases are uncommon) are not good indicators of the
shape of the main body of the distribution. ” \

Need risk to disease from relatives of different types of
relatives to start to distinguish between models
Not easy to collect, large sampling variances

Fraser(1976) The multifactorial/Threshold concept —uses and misuses Teratology 28



Exchangeable models of disease

« Fordiseases 0.5%-2%
« High heritability

« Requires there be a large variance in risk among individuals.
Consequently risk considered as a funcfion of the number of
causative alleles has to be steeply increasing.

1.5

Probability | f
of disease '’ °¢ ;

J
/

0

— Multiplicative (unconstrained)
— Multiplicative (constrained)

— —-Threshold

----- Additive (constrained)

1 !
0 10 20 30 40 50 60 70

05+

Number of risk alleles(x)

Slatkin (2008)Exchangeable models of complex inherited diseases Genetics

Multiplicative model — standard
model used but allows probability of
disease to be >1.

P (Disease)=P (Disease | x=0)Rx
Constrained multiplicative model —
constrain the multiplicative model
to have a maximum probability of 1

“Additive” model
P(Disease)=b+xR, b=-18/7 set
P(Disease)<0 to O and
P(Disease)>1to |

29



Which polygenic model to use?

The liability threshold model is the model of choice because

« It is the simplest parameterization that fits the observable data

« Itis mathematically fractable

« |t makes least assumptions about genetic architecture

“Most models are wrong some models are useful”



Practical 7

1. Additive risk model.
a. Run code
b. Change parameters

2. Multiplicative risk model.
a. Run code
b. Change parameters
3. Logistic risk model.
a. Run code
b. Change parameters

4. Liability threshold model

ad. Run code
b. Change parameters



Module 19: Statistical and
Quantitative Genetics of Disease:
Gene-Environment Interaction

John Witte

Lecture #6: Gene-Environment
Interactions
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Overview

. Conventional approaches

. Case-only GxE

. Empirical-Bayes case-only / case-control
. Two-step approaches

. Gene-sets / pathways

. Other...

Gauderman et al., submitted 2016



Gene-Environment Interactions

 Difference in the magnitude or direction of
effect of an environmental exposure on disease
risk in people with different genotypes (or vice-
versa).

o Effect modification

* Important because it may:

— |dentify populations with environmental exposures
at increased risk.

— Increase power and/or statistical accuracy.
— Clarify biological mechanisms of disease risk.
— Explain some of the missing heritability.



1. Conventional Analysis

« Assume case-control data.
Logit(Pr(D=1|G,C) = ay + BgG + B:C
— D = binary trait or disease outcome
— G = genetic variant (e.g., SNP coded 0, 1, 2)
— C = set of potential confounders

exp(Bg) = ‘marginal effect’ of G on D

— averaging (or marginalizing) over the environmental
(E) exposure-specific effects of G.

« E may or may not be included in C



Conventional GxE Model
Logit(P(D=1|G,E,C))=ay+ BsG+ BeE+ Pg e GXE+B-C
exp(Bg) = main effect of G on D (G=1, E=0)

exp(Be) = main effect of E on D (G=0, E=1)
exp(Baxe) exp(Bg) exp(Be) = overall effect (G=1, E=1)

* For a cohort study, use a log-linear model to estimate
relative risks or a proportional hazards model to estimate
hazard rate ratios if time-to disease data are available.

* For a quantitative outcome, use linear regression.



Interaction Scale

Multiplicative

Departure from multiplicative effects implies odds-ratios associated with
one risk-factor varies by the level of the other risk-factor and vice-versa.

GXEmup = eXp(Baxe) xp(Bg) exp(Be) / (exp(Bs) exp(Be))
= exp(Bgxe) = interaction effect

Additive

Departure from additivity implies that absolute risk-reduction associated
with removal of one risk-factor depends on the levels of another and
vice-versa.

GXEapp = exp(Bexe) €XP(Bc) exp(Be) - exp(Bg) - exp(Be) +1



Joint effects for two risk factors

Sub-multiplicative effects Super-multiplicative effects

<€ >
Multiplicative model

Small when main effects

are weak

e

RRge=1 RRge

Additive model
Sub-additive effects Super-additive effects




Factor V Leiden Mutations, Oral
Contraceptive Use, and Venous Thrombosis

Strata | Cases | Controls
OR
G+E+ 25 2
G+E+:34.7 OR Interaction (mult)
- ORG+E+/ ORG+E- ORG-E+
G+E- | 10 4 | =347/6.9x3.7
G+E-: 6.9 - 14
G-E+ 84 63
G-E+: 3.7 OR Interaction (add)
= OR -OR - OR +1
G-E- 36 1 OO ~ G+E+ G+E- G-E+
G-E-: Reference — ox/-0.9-3.7+1
=251
Total 155 169

Vandenbroucke et al., The Lancet 1994



Testing for Multiplicative GxE Interactions
Logit(P(D=1|G,E,C))=ag+ BcG+ BeE+ BaeGXE+BcC
+ 1 df test. Hy: Bg,e = 0.

« 2 df test. Joint null Hy: Bg= Pee = 0.
« 2 df often more powerful than 1 df test.



Controlling Confounding

* When testing GxE interaction, need to consider

Inclusion of confounders C in the model, but also
G x C and E x C interactions.

« GXE interaction effects can themselves be
confounded by other interactions.

 Potential Confounders: PCAS, etc.

Keller MC. Biol Psychiatry 2014;75(1):18-24.



Why so few GXxE Interactions detected?

« Limited power.

« Challenges measuring E (both for discovery and
replication).

Model misspecification.

A number of approaches can increase power.



2. G-E Interaction: Case-Only

S(;tiaEtJra Ca:es Congrols Odds Ratio (OR)
e - ) ah / bg
ch / dg
GE+ e f eh / fg
G-E- g h 1

OR Interaction = ORG+E+/ ORG+E- ORG-E+
= ah/bg / (ch/dg) (eh/fg)
= (ag/ce) / (bh/df)
= ag/ce if no G-E assoc in controls (bh/df = 1).

Piegorsch et al., 1994



Case-Only Model
Logit(P(G=g|E,D=1)) = vo+ VexeE
exp(Vexe) = GXE interaction effect

* Ho vexe= 0.
« Wald test asymptotically equivalent to Hy: Bg.e = 0
(assuming log-additive coding for g, 0,1,2).

If G-E are associated in source population, then can give
high false positive rate.



Overview

3. Empirical-Bayes case-only / case-control
4. Two-step approaches

5. Gene-sets/ pathways

6. Other?



3. Empirical-Bayes GxE Test

Case-only more efficient than case-control, but can give biased
results (e.g., if G-E assumption violated).

Use EB hybrid model to combine case-control and case-only
approaches (bias versus efficiency trade-off).

Bes= K(Bexe) + (1-K)Yexe

where K=05/(06,e*+66£%)
Osc = G-E association

If 65 # 0 orif g2 is small, larger weight assigned to Bs, .
If 65 = 0 (G-E independence), Vg.e = Baxe USe Ve (More efficient).

Hy: Beg = 0. More power than case-control, helps control type |
error from case-only.

Mukherjee and Chatterjee, 2008






Harry Potter’'s Pedigree

Muggle

Wizard /
Witch

Vernon Dursley | Petunia Dursley Lily Evans | James Potter

Dudley Dursley Harry Potter



Harry Potter’'s Pedigree

Muggle

Wizard /
‘ ‘ ‘ ‘ Witch

Vernon Dursley | Petunia Dursley Lily Evans James Potter
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Dudley Dursley Harry Potter

| or ||



What About Filch?




4. Two-Step GXE Tests

« Step 1 screen: For each SNP, compute screening test
statistic T, and corresponding p-value p;.

« Step 2 test: Prioritize SNPs based on p4, and conduct
GxE interaction test T, with corresponding p-value p,.

« Key requirement: T, and T, are independent.

Kooperberg and LeBlanc, 2008; Murcray et al., 2009; 2011; Hsu et al., 2012



Two Step GxE: Case-Control Data

Step 1:
« Test for marginal D-G association
Logit(Pr(D=1 | G) =1, + |G, and/or
« Test for E-G association
Logit(Pr(G | E) = dy + d:E
Step 2:

» Test for GXE interaction, only using SNPs passing Step 1
threshold (fewer comparisons).

« Can use an E Bayes procedure here.

« Additional info from Step 1 increases power by up to
50% over conventional approach.



Hybrid 2-Step Approach

« Step 1: test DG and EG.

« Retain SNPs that pass at least one of these
tests.

« Step 2: Apply case-control analysis and test
GxE, correcting for the number of SNPs retained
from step 1.

Murcray et al., 2011;



Cocktail Method

« Step 1: If p<threshold for EG, assign SNP that p.
* Else, assign SNP from DG (marginal) analysis.

o Step 2:
— If p from DG, then test for GXE using case-only
model.

— If p from EG, then test GxE using case-control
analysis.

— Use weighted hypothesis testing.

Hsu et al., 2012



EDGXE Approach

« Step 1: combines the DG and EG tests into
single 2 df test.

« Step 2: weighted hypothesis testing of case-
control analysis.

Gauderman et al., 2013



Power Gains for Two-step

Assume G has MAF = 0.3, and for E 30%
exposed

exp(bg) = exp(bg) = 1.0, exp(bg,e) = 1.5.
For a GWAS, 80% power (alpha = 0.05)
For conventional GXE model, N=10,060.
Two-step approaches:

— D-G screening, N=6,630

— E-G screening, N=4,472

— EDGE screening, N=3,994.



A) Moderate interaction with common G and E (ORaexe=1.5, qa=0.23, pe=0.40)

Comparison of GxE Tests

Power
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Gauderman et al., 2013



B) Strong interaction with less common G and E (ORexe=2.0, qa=0.14, pe=0.10)

Power
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Marginal G effect (ORg)

Gauderman et al., 2013



Step 2: Weighted hypothesis testing

 Partition SNPs into groups, where higher ranked
SNPs have less stringent alpha level.

* B most significant SNPs in step 1 tested in step
2 at significance level (0/2)/B, next 2B at
(a/4)/2B, next 4B at (a/8)/4B, etc.

* Maintains overall GWAS alpha level, but uses
larger alpha level for most promising
iInteractions.

lonita-Laza et al. 2007



Overview

5. Gene-sets/ rare variants
6. Other?



GXE for Gene Sets / Rare Variants

 Burden and variance components tests.

« Combination of burden and variance component
GXxE tests.

e Can incorporate GxE term into kernel.



6. Other...

GXxE interactions using Summary Stats
Analyses stratified by E.
Then test for differences in G main effects.

Note: same methods can be applied to GxG
Interactions.



Epistasis: Gene-Gene Interactions

* Similar issues as with gene-environment
interaction (e.g., multiplicative vs additive scale)
o P(Y=1|gy,8)=cb0+ do1X(g81) + 6,X(82) + ¢01,X(81) X(82)

e Usually testwhen g, is from one gene, and g, from
another gene (e.g., take GWAS hits)

e Feasible to do all pairwise: plink: --fast-epistasis

— “4.5 billion two-locus tests generated from a 100K data set took just over 24 hours
to run” (http://pngu.mgh.harvard.edu/~purcell/plink/)



Example: GWAS of Psoriasis
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Figure 1 Plot of genome-wide association results. Genome-wide association results from 523,067
SNPs on chromosomes 1-22 and 12,408 SNPs on the X chromosome using the additive model in
SNPTEST. The —log;o P values are thresholded at 10~19. Regions in red are described in Table 2.
Regions which have been shown previously to be associated with psoriasis and which replicated in
this study are highlighted in green, as described in Table 1.

Take the hits, and follow up on gene-gene interaction test --

(nextslide)-->

Strange et al. Nature Genetics 2010



Example of Gene-Gene
Interaction

30.0

20.0 1
15.0 -

10.0 1 {
®
7.5 4
5.0 -
4.0 4 }

3.0 -

Estimated odds ratio

2.0 -
1.5 -

1.0 - o i {

ERAP1 rs27524 GG AG AA GG AG AA GG AG AA
HLA-C rs10484554 GG GG GG AG AG AG AA AA AA

Figure 3 Statistical interaction between ERAPI and HLA-C genotypes.

Strange et al. Nature Genetics 2010



Endnote on Interactions

Challenges

Old Approach

Solutions/New Approach

Interaction can be
dependent on scale

Only multiplicative scale considered

Consider evaluating interaction on both
additive and multiplicative scales

SNP-based analyses can
lack power

Single step analysis subject to multiple
comparisons burden due to large
number of SNPs considered at once

Conduct more efficient 2-step tests

Single variant approach agnostic to
biological information

Conduct gene-based/set-based tests

Individual studies report results
independently

Conduct meta-analysis across
studies/cohorts

Only homogenous populations
considered, typically of European decent

Consider admixture analysis, if
appropriate

Exposure measurement can
be inconsistent and
imperfect

Individual studies independently
determine method of exposure
measurement

Work towards common core of
exposures and definitions

Employ easiest measurement method for
largest study sample possible

Prioritize improving precision of
measurements

Software is not available to
conduct efficient GXE

Individual analysts tweak existing
software to generate limited GxE results

Implement new software designed for
high-volume GxE analyses using novel

Gauderman et al., submitted 2016




GXxE Software

Program GxE Case- EB 2-Step Additive
only models

PLINK X
GxEScan X X X
CGEN X X X X
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Aims of Lecture 7

1. Calculation of Risk Profile Scores
2. Examples of Use of Risk Profile Scores
3. Statistics to evaluate risk profile scores

a.

© 00T

Nagelkerke's R?

AUC

Decile Odds Ratio

Variance explained on liability scale
Risk stratification



Polygenic risk profile



Evidence for a polygenic contribution to
disease

100
3 90 : . L/
o 30 Schizophrenia:
£ 20 Crohn's: ~ 4/1,000
£ ¢ ~10/1,000 /S
f_m 50 0 ./(y
..g 40 P /" /7 Adult height:
h 0 ~3/1,000
2
£
3
z
0 10,000 20,000 30,000 40,000
Number of Cases

Levinson et al (2014) Genetic studies of major depressive disorder. Why are there no GWAS findings and what can we do
about it2 Biological Psychiatry 4



Risk Profile Scoring

P=2x1028
0.03
mP; <0.1
— mP;<0.2
c mP;<0.3
D 0.02- mP; < 0.4
- mP; <0.5
Q
x
o
D
O
C
8
L 0.01

O‘ =3

g v & P & CAD CD HT RA TID T2D
L B S

Schizophrenia  Bipolar disorder Non-psychiatric (WTCCCQC)

Purcell /1SC et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder Nature 2009



SNP profiling schematic
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Visualising variation between individuals for common
complex genetic diseases

Affected individuals

—

Unaffected individuals

12 /

« Not all affectedindividuals carry the risk allele at any particular locus
« Unaffectedindividuals carry multiple risk loci

« Conseqguences of risk alleles depend on the genetic and environmental
background

7



Steps 1 - 3in polygenic risk scoring

1. Identify Discovery sample with genome-wide association
analysis summary statistics

1. Identify Target sample with genome-wide genotypes.

— The Target sample should not include individuals closely related to those
in the Discovery sample. Results can be inflated if there is overlap
between samples.

2. Determine the list of SNPsin common between Discovery
and Target samples

See: Wray et al (2013) Pitfalls of predicting complex traits from SNPs. Nature Reviews Genetics



Steps 4-7 in polygenic risk scoring as
currently commonly applied

4. Construct a clumped SNP list: association p-value informed
removal of correlated SNPs,

— e.9. LD threshold of r?2 < 0.2 across 500 kb.
— e.g..in the program PLINK: —clump-p1 T-clump-p2 T-clump-
r2 0.2—clump-kb 500

5. Limit SNP list to those with association p-value less than a
defined threshold
— often several thresholds are considered, i.e., <0.00001,0.0001,
0.001,0.01,0.1,0.2, 0.3 efc.

6. Generate genomic profile scores in the target sample: e.g., sum
of risk alleles weighted by Discovery sample log(odds ratio).

— e.g., in PLINK: =score

/. Evaluate

Purcell /ISC et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder Nature 2009



Polygenic Modeling

Calculate polygenic risk score for individual |

E In(OR,) x SNP,

i=1

Score ;=

m
where

— In(ORi ) = effect size or ‘score’ for SNP; from ‘discovery’ sample
— SNP; = # of alleles (0,1,2) for SNP;, personjin ‘target’ sample.
— m = number of SNPs considered in test set

10
Purcell /I1SC et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder Nature 2009



Consider step 4

4. Construct a clumped SNP list: association p-value informed
removal of correlated SNPs,
— e.9. LD threshold of r2 < 0.2 across 500 kb.
— e.g..inthe program PLINK: —clump-p1 1-clump-p2 1-
clump-r2 0.2—-clump-kb 500

This step can be improved upon to make it less arbitary

11
Purcell /I1SC et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder Nature 2009



Step 7 in polygenic risk scoring

Evaluate efficacy of score predictor.

Regression analysis:

y= phenotype, x = profile score.

Compare variance explained from the full model (with x) compared to a
reduced model (covariates only).

Check the sign of the regression coefficient to determine if the
relationship between y and x is in the expected direction.
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Applications of polygenic Risk Profile Scoring

Discovery & Target samples could be:

A. Same Disorder - demonstrates polygenicity even in absence of
genome-wide significant SNP associations
B. Different disorders - demonstrates genetic overlap between disorders

A. Target samples are disorder subtypes
- investigates genetic genetic heterogeneity
- think carefully about how the heterogeneity is
represented in the Discovery sample if Target and
Discovery are the same disease



Example Disorder Sub-types. Discovery: PGC-BPD
Target: Postnatal depression in MDD

Postnatal depression —  a more homogeneous subtype of
depression?

Female only

Same bio-social stressor

J CO;.TS [

FOOTBALL %

A 5 3 i L

MDD Enda Tania

o MDD Females
§ . ® PPD cases / All Controls E:y”?”e R
***  m PPD Cases/ Screened Controls S arl O'”?OM "
amantndad elrzer-
* Brody
Nick Martin

0.010

Brenda Penninx

Signed Nagelkerke R2

NB. Nullresult in the ALSPAC
community sample measured for
PND buf not MDD

0.005
|

F*dk

NS

—

QIMR NESDA
Byrne et al (2014) Common polygenic variation contributesto risk of schizophrenia and bipolar disorder. Archives of Womenisd

Health.In press
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Applications of polygenic Risk Profile Scoring

Discovery & Target samples could be:

A. Same Disorder - demonstrates polygenicity even in absence of
genome-wide significant SNP associations
B. Different disorders - demonstrates genetic overlap between disorders

A. Target samples are disorder subtypes
- investigates genetic genetic heterogeneity
- think carefully about how the heterogeneity is
represented in the Discovery sample if Target and
Discovery are the same disease

D. Target samples have the same disease as the discovery sample and have
environmental risk factors recorded
- investigate GxE
- think carefully about how the environmental risk

factor is represented in the Discovery sample



Application of Polygenic Risk Profiling Scores to
investigate GxE, e.g., depression and childhood
frauma

All MDD

Severe childhood trauma

Moderate childhood trauma

()
o)
>
ks
(%2}
o
o
o
g 2-
No/low childhood trauma
O -
T T T T T
-2 -1 0 1 2

PRS based on threshold P<0.1 (s.d.)

Peyrot et al (2014) Effect of polygenic risk scores on depression in childhood frauma Biol
Psychiatry



Applications of polygenic Risk Profile Scoring

Discovery & Target samples could be:

A.

B.

A.

Same Disorder - demonstrates polygenicity even in absence of
genome-wide significant SNP associations
Different disorders - demonstrates genetic overlap between disorders

Target samples are disorder subtypes
- investigates genetic genetic heterogeneity
- think carefully about how the heterogeneity is
represented in the Discovery sample if Target and
Discovery are the same disease

Target samples have the same disease as the discovery sample and have
environmental risk factors recorded
- investigate GxE
- think carefully about how the environmental risk
factor is represented in the Discovery sample
Target samples are recorded for an environmental risk factor
- insight into GxE



Example: E in target sample
Discovery: schizophrenio
Target: Cannabis use

Schizophrenia polygene scores and cannabis use
_ 02 -
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Figure 2. Mean standardized polygenic risk scores for pairs of twins
when neither (n=272), one (n=273) or both twins (n=445) had
0.0 reported use of cannabis. An ordinal regression reported a
' significant association (P=0.001).

Ever vs. never used Quantity of lifetime use

- Community

Power et al (2014) Effect of polygenic risk scores on depression in childhood frauma Mol
Psychiatry



Factors affecting accuracy of risk
prediction

Genetic architecture of the trait - unknown

Sample size of discovery sample — maximise

Sample size of target sample — be sufficiently large (once achieved not
so much gained by increasing further)

Variance explained by genetic factors

Dudbridge (2013) Power and predictive accuracy of polygenic risk scores. PLoS Genetics 20
Wray et al (2014) Polygenic methods and their application to psychiatric traits. Journal of Child Psychology & Psychiatry (in press)



Evaluating Polygenic Risk Scores



SNP profiling schematic
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Statistics to evaluate polygenic

risk scoring 1.
Nagelkerke's R?

— Pseudo-R? statistic for logistic regression

http://www.ats.ucla.edu/stat/mult pkg/fag/general/Psuedo RSguareds.him

Cox & Snell R?

2
=1- exp( ) (LogLikelihood (Reduced model)
— LoglLikelihood (Full model))

Full model:. y ~ covariates + score Logistic, y= case/control=1/0
Reduced model: y ~ covariates
N: sample size

This definition gives R2 for a quantitative trait.
For a binary trait in logistic regression, C&S R2 has maximum

2
=1- exp( ) (LogLikelihood (Reduced model))

Nagelkerke's R2 divides Cox & Snell R? by its maximum to give an R2 with usual
properties of between 0 and 1.

*

23



Nagelkerke's R?

0.25

o
(N

0.15

©
[N

0.05

Problem with Nagelkerke’s R?

e | = 0.01 w— = 0.1 b K = disease prevalence

Predictor explains 7% of
variance in liability

N

0.2 0.4 0.6 0.8 1

Proportion of cases in the target sample (P)

24



Statistics to evaluate polygenic
risk scoring 2.

2. Area Under Receiver Operator Characteristic Curve

Well established measure of validity of tests for classifier diseased vs non-
diseased individuals

Nice property —independent to proportion of cases and controls in sample
Range 0.5 1o 1
0.5 the score has no predictive value

Probability that a randomly selected case has a score higher than a
randomly selected conirol

25



Visualising AUC

Rank individuals on score

Start at origin on graph

Work through list of ranked individuals

Move one unit along y-axis if next individual is a case
Move one unit along x-axis is next individual is a controlé
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Problem with AUC

Well recognised as a measure of clinical validity
A measure of how well genomic profile predicts yes/no phenotype

But hides the fact that is should be judged as a measure of analytic validity
A measure of how well genomic profile predicts genotype

1.0

0.9

0.8

AUC oy
0.7

a K=0.001
b K=0.01

The maximum AUC achievable depends on the
heritability of the disease

c K=0.1
d K=03
° Many useful properties
o]l Problem is genetic interpretation
0.0 0.2 0.4 0.6 0.8 1.0

Wray et al (2010) The genetic interpretation of area under the receiver operator characteristic curve in genomic profibng.
PLoS Genetics



Statistics to evaluate polygenic risk scoring 3.

3. Odds Ratio

[ Cut distribution into deciles

‘H Each decile will include both cases and controls

Mﬁﬂ Odds of being a case in each decile

A Odds ratfio foreach decile compared to the 15 decile

25

« Good visualisation

« Shows that there could be utility in using
high vs low profile risk scores

* But remember case-control samples are
50% cases

 Would look less impressive if a
population sample

QOdds ratio

- N WA OO N ©O© O
TN TR TN SN TN NN SN SN N

28
PGC-SCZ 2014 108 loci Nature



Statistics to evaluate polygenic risk scoring 3.

In case control samples Same data scaled to population risk

DDDDDDD
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Statistics to evaluate polygenic
risk scoring 4.

3. R2on liability scale

Linear model
Fullmodel: y ~covariates + score y = case/control = 1/0
Reduced model: y~ covariates

Calculate R? attributable to score

If target sample is a population sample i.e. prevalence of cases in sample =
prevalence of cases in controls

Then R2is a measure of the proportion of variance in case-conftrol status
aftributable to the genomic risk profile score

= heritability attributable to genomic profile score hérps_o1 0N the disease scale

Convert to liability scale (see lecture 1)
hérps—01K (1 — K)
Z2

2 —
hGRPS —

Lee et al (2012) A better coefficient of determination for genetic profile analysis. Genetic Epidemiology 30



Statistics to evaluate polygenic
risk scoring 4 cont.

3. R?on liability scale cont.
If target sample is a case-control sample
l.e. prevalence of cases in sample >> prevalence of cases in conftrols

Then R%is a measure of the proportion of variance in case-control status
aftributable to the genomic risk profile score

= heritability aftributable to genomic profile score on the case-control scale
hérs—cc
Convert to the liability scale

2 _ hé‘RS—CCC

GRS 1+ h%‘RS—CCC
Where C is:

K(1-K)K(1—K)
~ 22 p1-P)

C

hZps is onthe same scale as heritability estimated from family studies and
GREML SNP-chip heritability

Lee et al (2012) A better coefficient of determination for genetic profile analysis. Genetic Epidemiology



Statistics to evaluate polygenic
risk scoring
5.8tratification & health economics

Population risk of 1%

80% of cases in
top 18% of genetic risk

Proportion of population

For every 1,000 people treated with intervention could “save” 10
Treatonly 18% = 180 and “save” 8 (4%)

Number of people tfreated to save 1 reduced from 100 to 22.5

Polychronakos & Li NRG (2011) Understanding Type | Diabetes through genetics. Nat Rev Genetics



Area Under ROC

Variance explained by genetic predictor r2 (has max h?)
Mean phenotypic liability of cases =i =z/K

Phenotypic liability
variance is 1

Mean genetic liability of controls = v = -iK/(1-K) VA
Mean liability of cases explained by predictor = ir?
Mean genetic liability of controls = vr? / t

Variance of genetic predictor in cases = r2(1-rZ(i-1))
Variance of genetic predictor in controls = r2(1-r2v(v-1))

Using normal distribution theory can work out
Proportion of cases captured when x% of population screened

Proportion of population that needs to be screened in order to capture 80% of
the cases



Improvement between predictors

Difference in AUC

Net reclassificationindex

The NRI, as originally proposed, seeks to quantify
whether a new marker provides clinically relevant improve-
ments in prediction. In the definition of “net reclassification
indices,” the risk prediction model with established predictors
is called the “old” model. The model that adds the new marker
is the “new” model. “Events” are cases—persons who have or
will have the disease or outcome in the absence of intervention.
“Nonevents” are controls. The formula defining the NRI is*

NRI = P(up|event) — P(down|event)+ P(down|nonevent)

— P(up|nonevent).

NRI_ = P(up|event) — P(down|event)

NRI . = P(down|nonevent)— P(up|nonevent)

ne

Topic of debate
Needs more research

Kerr et al (2014) NRI for
evaluating risk
prediction indices.

34



Module 18: Statistical and
Quantitative Genetics of Disease:
Pleiotropy / Co-heritability



Pleiotropy

* From Greek: Pleio (many) and tropic (affecting).

‘in9le__ gene Trait A

Pleiotropy

Trait B

Multiple traits

Trait C

* One gene, multiple traits.



Assessing Pleiotropy

1. Pleiotropy ‘look-ups’
2. Meta-analysis (ASSET)
3. Multiphenotype

4. Multilevel pleiotropy
5. Polygenic risk scores
6. Co-heritability



Cancers

Prostate
Breast
Testicular
Melanoma
Colon
Bladder
Lung
Rectum
NHL
Ovary

1. Pleiotropy “Look-ups”

1 2 ... 100 101 1K 1M

Variants / SNPs
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Cancers

Pleiotropy “Look-ups”

Prostate - -

Breast
Testicular
Melanoma
Colon
Bladder
Lung
Rectum
NHL
Ovary
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Cancers

Pleiotropy “Look-ups”

Prostate - . .
- Univariate analyses:

Breast
Testicular

- logit (Pr(Y=1|G, C)) =a + GB + Cy

Melanoma

coon IR

Bladder
Lung

One-at-a-time for each SNP / cancer

- B, P-values, FDR

Rectum
NHL

Ovary -

1 2 ... 100 101 1K 1M

Variants / SNPs



Cancers

2. Meta-Analysis Approach
Prostate -

Breast
Testicular
Melanoma

Colon - Single estimate of effect
Bladder
Lung

Rectum
NHL

Ovary -

1 2 ... 100 101 1K 1M

Variants / SNPs



ASSET

Standard fixed-effects

K Z, =Py se(f;)
Zmem = E«/J'L’kzk Where
k=1

K
Subset-based

V4

max-—meta

Where Z(s)= ¥ \Jm,(5)Z,

keS Bhattacharjee et al. AJHG, 2012

= max g |Z(s)]



Cancers

3. Multiphenotype Approach

Prostate
Breast
Testicular
Melanoma
Colon
Bladder
Lung
Rectum
NHL
Ovary

* Model all traits simultaneously.
 Can be more:
* consistent with underlying biology;
 powerful than univariate.
 Power gain due to:
* genetic correlations among traits;
* fewer tests.

100 101 1K 1M

Variants / SNPs



Multinomial Regression
logit (Pr(Y;=1|G, C)) = a; + G;B; + Cy;
Y is multivariate with dimension = # traits

Test different pleiotropic models by
specifying assumptions about the 3.



Cancers

Prostate
Breast
Testicular
Melanoma
Colon
Bladder
Lung
Rectum
NHL
Ovary

Null Model

Ho: B1=B,=...=By=0

100 101 1K

Variants / SNPs

1M
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Alternative Hypotheses

At least one B,20

1 2 ... 100 101 1K 1M

Variants / SNPs



Cancers

Prostate
Breast
Testicular
Melanoma
Colon
Bladder
Lung
Rectum
NHL
Ovary

Alternative Hypotheses

All B, are equal and non-zero

2 ... 100 101 1K 1M

Variants / SNPs

v



Cancers

Prostate
Breast
Testicular
Melanoma
Colon
Bladder
Lung
Rectum
NHL
Ovary

Alternative Hypotheses

A pre-specified subset of B, are
non-zero.
1 2 .. 100 101 .. 1K .. 1M

Variants / SNPs



Cancers

Alternative Hypotheses

Prostate

Breast . .
reas All traits have different effects

Testicular
Melanoma
Colon
Bladder
Lung

What if we have different types of
traits: binary, discrete, or

Rectum continuous?

NHL
Ovary

1 2 ... 100 101 1K 1M

Variants / SNPs



MultiPhen: ‘Inverse Regression’

1M
a 1K
=
V)
S~
» 101
s’
S 100
e
©
>

Proportional odds logistic regression of genotype on
cancers:

log (Pr(G>m|Y)/Pr(G=mlY)) = a,,+Y’B+Cy

m =0,1
— <
Y 0 W o
or Q o =2 o a - = I Q
~ 4 £ § 5 o ® 35 " 2
® = > = Cancers

O'Reilly et al.,PLoS One 2012



MultiPhen: ‘Inverse Regression’

1M

1K

101
100

Variants / SNPs

91e150.4d

.

Model selection or shrinkage to detect pleiotropy.

Explore subsets of traits, select ‘best’ model that
minimizes expected loss of information penalized
by model complexity (e.g., AIC, BIC).

Shrinkage via LASSO (adaptive) to select non-null
traits.
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Comparison of FDR, ASSET & MultiPhen

Traits simulated under additive model (Galesloot et al. 2014)

Single causal variant with influence on a subset of traits.

Number of traits: 4 - 20
Residual correlation between traits: 0.05-0.3
Heritability of trait due to variant: 0-0.4%

LD between variant and typed SNP:  0.80, 0.95
MAF at variant and SNP: 0.1, 0.2
Number of individuals: 10K - 30K

Majumdar, Haldar, Witte, Genetic Epi 2016.
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08 0.9 1.0

0.7
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05

specific
Scenario 8 (choice 2)
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9
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A AIC
o BIC O
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+ MBHg 4
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o fg= (05.0.3)
o Ig= (05.0.5)
I l | 1 1 1
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Results

Overall pleiotropy:
MultiPhen > ASSET (power)
— Except when all traits associated
& in same direction.

Increases with increasing correlation.

Traits underlying pleiotropy:

FDR > MultiPhen > ASSET (sens /spec)

— Except FDR = MultiPhen when weak
correlation

— MultiPhen = ASSET when strong
correlation.

Majumdar, Haldar, Witte, Genetic Epi 2016.



Cancers

4. Multilevel Pleiotropy

Prostate
Breast Incorporate additional infointo analysis
Testicular - Pathways
Melanoma - Cancer types
Colon - Cancer histology
Bladder - Other exposures
Lung
Rectum
NHL
Ovary

1 2 ... 100 101 1K 1M

Variants / SNPs



Prostate
Breast
Testicular
Melanoma
Colon
Bladder
Lung

Cancers

Rectum
NHL
Ovary

Gene / Pathway Priors

Gene A in Gene B in
Pathway 1 Pathway 2
1 2 e 100 101 1K 1M

Variants / SNPs



Cancers

Leverage Individual-level Data

Prostate
Breast
Testicular
Melanoma
Colon
Bladder
Lung
Rectum
NHL
Ovary

Hormonal Tumor histology
Exposures:
Smoking
BMI
Digestive
100 101 1K M

Variants / SNPs



Cancers

5. Polygenic Risk Scores (PRS)
Single SNPs not very predictive.
Prostate _ Combining SNPs in a PRS

Breast substantially more predictive.
Testicular
m
Melanoma E
px;
Colon _ /
¢ = i=1
Bladder J
Lung where m
B; = log(odds ratio) for SNP: from one cancer.
Rectum . .. .
xij= # of alleles for SNP i, person j in diff cancer.
NHL Large number of SNPs (m)
Ovary

1 2 PRS

Variants / SNPs



Cancers

Polygenic Risk Score Pleiotropy
rrostate [N

Breast
Testicular
Melanoma -
Colon
Bladder

Lung
Rectum -
NHL
Ovary

1 2 PRS

Variants / SNPs



PanCancer PRS in UK Biobank

Risk Score Profile
Bladder Breast | Colorectal | Endometrial ESOZ:;?:S/ 9 Lung Prostate | Testicular

Bladder - 0.008 0.20 0.27 0.17 0.09 0.67 0.03
. Colon 0.18 0.81 - 0.74 0.59 0.97 0.01 0.01
8 Kidney 0.002 0.20 0.46 0.34 0.23 0.07 0.81 0.23
g Lung 0.39 0.66 0.46 0.54 0.03 - 0.31 0.51
O
"0'3 Melanoma| 0.32 0.99 0.40 0.04 0.39 0.99 0.54 0.70
% Prostate 0.21 0.63 0.003 0.00001 0.27 0.47 - 0.02
= Rectum 0.72 0.89 - 0.79 0.01 0.01 0.94 0.61

Testicular 0.02 0.23 0.75 0.0002 0.57 0.21 0.10 -

Negative Association

Positive Association




Cancers

Prostate
Breast
Testicular
Melanoma
Colon
Bladder
Lung
Rectum
NHL
Ovary

6. Co-heritability

2 ... 100 101 1K

Variants / SNPs




Cancers

Prostate
Breast
Testicular
Melanoma
Colon
Bladder
Lung
Rectum
NHL
Ovary

Co-heritability

91e150.4d
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Co-heritability

Prostate
Breast
Testicular
Melanoma
Colon
Bladder
Lung

Cancers

Rectum
NHL
Ovary
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Co-heritability with Summary Statistics

¢ & o\? J’ '*5&'&6 \e @“ A°‘°’a°° S
RS
Qf%“‘o‘“‘@«

Ever/never smoked . *
BMI = .- * * * * * * * * *
Childnood obesity [Nl
Fastingglucose = [ *

C ro Ss_t ra i t Coronary artery dis:aioe : .!i * : - ’ - 0.56
LD Score R RN ' -

Rheumatoid arthritis -] [
. Aizheimer's disease =
RegreSSIOn Age at menarche * * . w *
HDL * » B » . * . -
Crohn's disease B
[

Ulcerative colitis * . - -0.11
Height * * . B
Infant head circumference *

Ll
|- - --0.33
Birth length « « =
Birth weight * A .

Autism spectrum = ~0.56
Years of education = = * - - * . »
Anorexia * .
Depression

-

m- -

Bipolar disorder L m-.
Schizophrenia = E.. -1.00

-
-

0.78

+ 0.1

-0.78

Bulik-Sullivan, etal. NG 2015b



LD Score:

Distribution of Associated SNPs

QQ-Plot

Observed -log10(p)

—

Expected-log10(p)

If a proportion of SNPs associated:
observed = expected
(median test statistic)

If observed > expected:
genomicinflation

Due to populationstratification?

Yang et al (2011). EJHG



Genomic Inflation Expected under
Polygenic Inheritance

Under null hypothesis:
* Mean test statistic (A, .,,) = median test statistic (A eqian)

Under polygenicinheritance (no population stratification):

7\mean > xmedian
Mmean  Feflects SNP heritability h,?
Mmedian Fe€flects # causal variants contributingto h,?

Controlling for genomicinflation mayremove both pop strat and real
effects. How to tell themapart?

Yang et al (2011). EJHG



Impact of LD on Association

LD among SNPs: Lonely SNPs [no LD]

LD blocks

Consider causal SNPs

i All in LD with causal SNP
Association also associated
:': Lonely SNPs only
Association associated if causal

More tagging of SNPs, more likely to tag a causal variant.

If all SNPs equally likely associated given LD status, expect more association for
SNPs with more LD ‘friends’.

This is a reasonable assumption under a polygenic genetic architecture.

Slide: Ben Neale



Expected Value of Summary Stats

Sample size
/ SNP
heritability
: Nhg
M amount of genetic
\ variation taggedbyj.
Number of
SNPs
l _ /) LD Score:
j = T]k r? LD between SNP j and
k%] neighboring SNPS

But can’t separate out population stratification here.

Bulik-Sullivan, etal. NG 2015



Expected Value of Summary Stats

Separating h,?and population stratification

: Nhg
Amoan = El)(j] = Na+1+ Wl]
| \ l
\ |
Population e as
Stratification
before
factor
\ JL_
| |
regression intercept | | slope

Bulik-Sullivan, etal. NG 2015



Polygenicity vs Population Stratification

GWAS QQ Plot

Regression of
association X2
statisticon LD
score

o

10 4

Observed (—log P)

Stratification

1.5 1

1.4 1

Mean Xz

1.2 1

1.3 1

Regression
weight
® 0.2
@ 04
® 0.6
® 0.8
®1.0

T T T T

50 100 150 200 250
LD Score bin

b Polygenicity

10 A

Observed (—log P)

2.2 1

2.0 1

< 1.8 -

S . Regression

S 16- ‘ weight
2 @02
1.4 - P ® 04
S ® 0.6
124 7, ® 0.8
A ® 1.0

50 100 150 200 250
LD Score bin

Bulik-Sullivan, etal. NG 2015



Co-heritability with Summary Statistics
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Cross-trait LD-score Regression

Genetic
covariance Phenotypic
between correlation
traits
\ / Number of
| NiNyo,  oN—— .
01 8 UiV g overlapping
E[leZZ('j] - 'j+ samples
M JNIN,

 Use LD Score to estimate the genetic correlations
between diseases with summary statistics

Bulik-Sullivan, etal. NG 2015



2016 Module 18:
Statistical & Quantitative Genetics of Disease

Lecture 9
Tying up some ends on risk prediction

Naomi Wray



Aims of Lecture 9

1. Variance explained by genetic factors
2. Factors affecting accuracy of risk prediction
3. Pitfalls of Risk Prediction



Variance explained by genetic factors



Definition of heritabilities

Proportion of variance attributable to genetic factors

From family data and phenotypic records h2
Proportion of variance attributable to genetic factors accounting for all genefic
variants across the frequency spectrum (Lecture 1. Wray)

From genome-wide significant SNP h2-j
Proportion of variance attributable to a single variant (Lecture 2: Witte)

From genome-wide significant SNP h2-GWS
Proportion of variance attributable 1o genome-wide significant SNPs

From genome-wide significant SNP h2-profile score
Proportion of variance attributable to a set SNPs (Lecture 7: Wray)

From all SNPs h2-SNP or h2-chip or h2-g
Proportion of variance attributable 1o common SNPs on SNP chips (GREML; 4
|l DScore: Lecture 8: Witte)



The heritabilities

Fioiire 4
- — Total heritability.
* Estimated from family studies, assumed to reflect additive genetic effects.
- Still-missing Heritability. Not captured by GWAS variants.
*  On average will not decrease with larger sample size, but will decrease
as more of the genetic variance is captured (e.g., rare variants).
Missing —
Heritability . o
Chip-heritability.
*  Proportion of variance attributed to all variants assayed by GWAS arrays.
== Hiding heritability. Could ultimately be captured by GWAS variants.
* Should decrease as sample sizes grow.
— === Heritability due to known variants.

* Proportion of variance attributed to statistically significant GWAS variants.

Zero heritability explained.

Witte, Visscher, Wray (2014) The contributions of genetic variants to disease depends on the ruler. Nature Gen%ﬂcs



Variance explained by sets of SNPs
e.g., all GWS SNPs

If independentloci then simply sum up estimates from individual SNPs

If not independentneedto use set based tests

« Set-based test (--sbat)
— Using GWAS summary data
— Similar as PLINK --set or VEGAS but more accurate and faster
—  Working on more powerful improvements
« Can be used for discovery
— e.g.gene-based tests (genome-wide)
« Can be used to test prior hypotheses

— e.g. do dll known together explain more variation than expected by chance?

http://www.cnsgenomics.com/software/



h2-SNP or h?-chip or h?g

Purpose:

« Defects the signal contributed from variants that are not
genome-wide significant

« Defectsif cases are more similar to other cases genome-
wide than they are to controls without specifying af which
loci there are more similar

« Gives an indication of what could be detected as GWS
as sample size increases

« Uses data available from currently available data to
inform on fufure experimental design



h2-SNP or h?-chip or h?g

Five ways to measure:
Compare empirical results to simulations — Purcell et al (2009) Nature

GREML - linear mixed models- GREML
(Visscher & Goddard SISG Unift)
Haseman-Elston or PCGC

Transformation of polygenic risk scores —
LDscore —-GWAS summary stafistics -

Yang et al (2010), Lee et al (2011)

Haseman & Elston (1972),

Chen (2014) Frontiers Gen,
Golan et al (2014) PNAS
Dudbridge (2013)

Yang et al (2011) EJHG,
Bulik-Sullivan et al (2015) Nat Gen



h2-SNP by simulation to explain these
results
p <105 to 1028

HP<03

Schizophrenia CADCD HT RATIDT2D
Bipolar disorder Non-psychiatric (WTCCC)

Purcell et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature



Simulations

« Simulations considered a wide range of genetic architectures
— Numberrisk loci, effect size

— Which genetic architectures generated the same pattern of
results we observed with the real data

 Results showed

— Most genetic architectures were not consistent with empirical
result

— But many architectures were consisted with the empirical results
— All consistent models pointed to h2SNP= ~0.3 for schizophrenia

« Results not consistent with
— Many extremely rare (MAF < 1/10,000) variant

Purcell et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature



Direct estimation of h2-SNP parallels

estimation of thhag:sf

Coefficient of relationship of parent and
offspring = %

Estimate of heritability
= 2*correlation of offspring and parent

Coefficient of relationship of grand-
parent and grand-offspring =

Estimate of heritability
= 4*correlation of grandoffspring and
grandparent

Coefficient of relationship of individual
and distant relative= 1/r

Estimate of heritability
= r*correlation between distant relatives
on individuals

Yanget al (2010) Nature

In real analysis
twiddles and caveats

- But the gist of where
the informationis
coming from



Visualizing where the information is
coming from

80 ~
a MZ and DZ b
twin pairs
Sibling pairs G=
60 - B Unrelated
2
8 40|
8 G-
20
G=
oL
L | | | | J
0.0 0.2 0.4 0.6 0.8 1.0
Genetic relatedness

1 Pedigree design
11 4 individuals from 2 families,
0 0 1 including 1 MZ twin pair and
0 0 05 1 1 DZ twin pair
1
0543 1 Within-family design
' 4 individuals from 2 families,
0 0 1 including 2 full sibling pairs
i 0 O 0476 1
1.002
Population design
-0.016 1.018

4 'unrelated’ individuals

—0.003 -0.006 0.994 from the same population

0.015 0.021 -0.011 0.983

Vinkhuyzen et al (2013) Estimation and Partition of Heritability in Human Populations Using Whole-Genome Analysis Methods | 2

Annualreviews of genetics.



GREML: h>-SNP

 Uses individuals who are unrelated in the classical
sense

« Coefficientof relationship < 279 cousins

Because based on a very large number of pairwise
relationships

Sample of 10,000 has ~10,000%/2 = 50M



h? vs h2-SNP

h2

Proportion of variance attributable
to all genefic variants — across
whole frequency spectrum

Could be contaminated by non-
additive genetic variance

Could be contaminated by
environmental factors shared by
close family members

h2-SNP
Proportion of variance afttributable to
common genetic variants

Non-additive genetic effects shared
by distant relatives are finy — expect
Nno contamination

Distant relatives unlikely to share
environmental effects



N=1 anecdote, skepticism check
A

N. Irelqnd N. Ireland N. Ireland
T B
Great-great-
grandfather
Bedford Ist cousins: Last contact as children N. Ireland

Brisbane

London Same school, Same street ?

Last year found out they were 3@ cousins

Edinburgh Brisbane

15



Comparison of GREML and LDscore

Table 1. Estimates of genetic correlation between men and women from the bivariate GCTA-GREML analysis using individual-level data for five

anthropometric traits.

Trait Sample size (men versus women) hZ (Men) hZ (Women) Tg
Est. SE Est. SE Est. SE P(rg=1)

Height 19095 versus 24 504 0.447 0.018 0.431 0.015 1.022 0.031 0.483
BMI 19016 versus 24 350 0.236 0.019 0.226 0.015 1.011 0.064 0.859
WCadjBMI 13158 versus 15874 0.167 0.026 0.174 0.022 0.774 0.119 0.057
HIPadjBMI 13119 versus 15 854 0.231 0.026 0.185 0.022 0.855 0.101 0.149
WHRadjBMI 13115 versus 15846 0.159 0.026 0.182 0.022 0.607 0.112 44x107*
hé = proportion of phenotypic variance explained by all SNPs used in the analysis. P(rg=1): Wald’s test P-value against rg=1.
Table 2. Estimates of genetic correlation between men and women from the LDSC regression analysis using summary data for five
anthropometric traits.
Trait Sample size (men versus women) hZ (Men) hZ (Women) Tg

Est. SE Est. Est. Est. SE P(rg=1)
Height 60505 versus 73073 0.274 0.018 0.261 0.018 0.957 0.023 0.063
BMI 58599 versus 67 935 0.167 0.012 0.186 0.010 0.879 0.035 59x107*
WCadjBMI 38361 versus 42727 0.143 0.014 0.110 0.013 0.780 0.071 1.9x1073
HIPadjBMI 32920 versus 40712 0.162 0.018 0.136 0.015 1.000 0.083 0.999
WHRadjBMI 34 594 versus 47 463 0.102 0.016 0.093 0.017 0.770 0.108 0.033

hZ = proportion of phenotypic variance explained by all SNPs used in the analysis. HIPadjBMI, BMI-adjusted hip circumference; WCadjBMI, BMI-adjusted waist
circumference; WHRadjBMI, BMI-adjusted waist-hip ratio. The samples size shown in this table is the median of the per-SNP sample sizes reported in the summary

data. P(rg=1): Wald’s test P-value against rg=1.

Yang et al (2015) Genome-wide heterogeneity between sexes and populations for

human height and bod massindex. Hum Mol Gen



Comparison of GREML and LDscore

Table 1. Estimates of genetic correlation between men and women from the bivariate GCTA-GREML analysis using individual-level data for five

anthropometric traits.

Trait Sample size (men versus women) hZ (Men) hZ (Women) Tg

Est. SE Est. SE Est. SE P(rg=1)
Height 19095 versus 24 504 0.447 0.018 0.431 0.015 1.022 0.031 0.483
BMI 19016 versus 24 350 0.236 0.019 0.226 0.015 1.011 0.064 0.859
WCadjBMI 13158 versus 15874 0.167 0.026 0.174 0.022 0.774 0.119 0.057
HIPadjBMI 13119 versus 15 854 0.231 0.026 0.185 0.022 0.855 0.101 0.149
WHRadjBMI 13115 versus 15 846 0.159 0.026 0.182 0.022 0.607 0.112 44x107*

hé = proportion of phenotypic variance explained by all SNPs used in the analysis. P(rg=1): Wald’s test P-value against rg=1.

Supplementary Table 1 Estimates of genetic correlation between men and women from the bivariate

LDSC regression analysis in the combined GWAS data for five anthropometric traits.

Trait Sample size k', (Men) | K, (Women) .
(menvs.women) Est. SE Est. SE Est. SE P(r,=1)
No adjustment Height 19095 vs. 24504 | 0.412 0042 0374 0039 1006 0051 0905
BMI 19016 vs.24350 | 0.196 0026 0.187 0026 1.198 0.113 0079
WCadiBMI | 13158 vs. 15874 0,158 | 0037 0.118 0.030 0986 0226 0952
HIPadiBMI = 13119vs. 15854 0,192 | 0046 0.109 0.031 1000 0219 0999
WHRadjBMI = 13115vs. 15846  0.112 | 0038 0.139  0.033 0593 0224 0.069
Genomic Control Height 19095 vs.24504 ' 0367 0038 0326 0034 1006 0051 0907
BMI 19016 vs. 24350 | 0.180 0024 0.172 0024 1.198 0.113 0.079
WCadiBMI | 13158 vs. 15874 0,153 | 0036 0.114 0029 0986 0226 0952
HIPadjBMI = 13119vs. 15854  0.184 | 0044 0.104 0.029 1000 0219 0999
WHRadjBMI | 13115 vs. 15846 ' 0.108 | 0.037  0.134  0.032 | 0593 0224  0.069

*, = proportion of phenotypic variance explained by all SNPs used in the analysis. P(r, = 1): Wald test

p-value against ry = 1.

17



GREML: h2-SNP for disease

. Observations are on disease scale Use linear regression
but heritability is most interpretable Estimate on observed
on the liability scale scale
« Transform to Liability scale
via Robertson
Transformation

« Case-contfrol samples are
ascertained « Up date transformation

« Differences between case and Very stringent QC
control samples may reflect

artefacts

Lee et al (2011) Estimating missing heritability for Disease from GWAS AJHG 18
Lee et al (2013) Estimation and partition of polygenic variation captured by common SNPs for AD, MS & Endo, HMG



Densty

Ascertainment in case-control studies
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See Lecture 1
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Zhou & Stephens (2013) Polygenic Modeling with Bayesian Sparse
Linear Mixed Models PLoSG Text S3

Golan et al (2014) Measuring missing heritability: Inferring fve
contribution of common variants PNAS




Golan et al (2014) Measuring missing heritability:
Inferring the contribution of common variants PNAS

¢ Control
* Case

Marginal distrribution
of phenotype/liability

r T T T 1
-t 2 0 2 2

r T T T 1 r T T T 1
- 2 ] 2 ¢ -t 2 e 2 ¢

Fig. 1. Distributions of genetic effects, environmental effects, phenotypes, and liabilities in three study designs. In each of A, B, and C, a phenotype is
assumed to depend on the sum of a genetic effect and an environmental effect. The scatterplot shows the joint distribution of the genetic and environmental
effects, the upper left shows the marginal distributions of the environmental effect, the upper right shows the marginal distributions of the genetic effect,
and the lower portion shows the marginal distribution of the phenotype. (A) Quantitative phenotype in a random sample of the population. (B) Disease
phenotype in a random sample of the population. (C) Disease trait in a balanced case—control study. Disease phenotypes were simulated under a liability
threshold model with disease prevalence of 10% (B) and 0.1% (C), with red points indicating affected individuals (liability above the threshold) and black
points indicating unaffected individuals (liability below the threshold). In C, the marginal distributions of the genetic and environmental effects no longer are
normally distributed, and there is an induced positive correlation between the genetic and environmental effects (r = 0.53).

Non-normality of liability

Case-control samplinginduces GxE correlation

Solution use Haseman-Elston regression regression of phenotype correlation between each pair of
individuals and genetic relationship between each pair of individuals

(see also Chen et al, 2013 Estimating heritability of complex traits from GWAS using IBS-based 20
Haseman-Elston regression. Front Genet )



Golan et al (2014) Measuring missing heritability:
Inferring the contribution of common variants PNAS

Denote by Z;; the product of the standardized phenotypes:

7= WPE) Regress Z; on Ay (coefficient of relationship
The variable Z;; can obtain three values: estimated from SNPS)
2 ow=y=1
Z”:{f_ip h PCGC regression (phenotype correlation-

genotype correlation regression) — general
form of Haseman-Elston correction for fixed
effects

Their simulation shows substantial underestimation of SNP-heritability fromm GREML applied to
disease traits

NB their simulation strategies exacerbate differences that we see inreal data

In the past we have used H-E in-house as a check, that allis well with GREML. Usually we see
little difference in estimates, but standard errors smaller with GREML.

As sample sizes increase the induced GxE correlation will become more of a problem. See
revision when posted of

Loh et al Nature Genetics 2015

Includes updated faster version of PCGC



Golan et al (2014) Measuring missing heritability:

Inferring the contribution of common variants PNAS
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Fig. 2. Comparison of REML and PCGC regression. (A) REML yields biased estimates for case-control studies of diseases, whereas PCGC regression yields
unbiased estimates. We simulated case—control studies for nine combinations of K (prevalence) and P (proportion of cases among overall samples), and for
five values of h? (0.1, 0.3, 0.5, 0.7, and 0.9). For each combination of parameters, we show the average of 10 heritability estimates obtained by applying the
REML method of Lee et al. (10) and PCGC regression to our simulated case-control data. REML produced biased estimates, whereas PCGC regression produced
unbiased estimates for all scenarios. The bias of REML estimates increases as both the true heritability and overrepresentation of cases increase. To dem-
onstrate the severity of the bias, consider the scenario of a disease with prevalence of 0.1% in a balanced case—control study (values typical for Crohn’s disease
or MS). When the true heritability is 50%, the estimated heritability would be 30% on average, as indicated by the black dots. (B) Heritability estimates for
case—control studies with increasing sample size. Simulated case—control studies are as previously described, with the prevalence of the disease, the pro-
portion of cases, and the heritability fixed at 1%, 30%, and 50%, respectively. The size of simulated studies ranged from 2,000 to 8,000. The bias of heritability
estimates from REML increases with study size, whereas those from PCGC regression estimates remain unbiased. (C) Heritability estimation in the presence of
fixed effects. We simulated case—control studies with an additional “sex” covariate, which either has no effect on the disease or increases the relative risk (RR)
by twofold or fourfold. The prevalence of the disease in the population was 0.5%, the heritability was set to 50%, and the numbers of cases and controls were
equal. Applying REML with or without accounting for the additional covariate resulted in underestimation of the heritability. Moreover, inclusion of the
covariate as a fixed effect resulted in even lower estimates of heritability when the effect of the covariate on the phenotype was considerable. By contrast,
PCGC regression correctly accounted for the presence of the covariate.
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Summary

Heritability from family records is not expected to
be the same as SNP-h?

Five methods to estimate SNP-h?
— GCTA GREML = gold standard

— Methods based on summary statistics are the best
starting place

We are not inferested in decimal place accuracy
missing heritability

We should be interested in order of magnitude
missing heritability

— What can we learn from the data available now to
inform on future experimental design

23



Risk Prediction ..again



Factors affecting accuracy of risk
prediction
Genetic architecture of the frait — unknown
 Number, frequency, effectsize

« How well marker effects are correlated with causal
variants (LD)

Sample size of discovery sample — maximise
— how well marker effects are estimated

Sample size of target sample — be sufficiently large
(once achieved not so much gained by increasing
further)

 Precision of estimation of R2

Dudbridge (2013) Power and predictive accuracy of polygenic risk scores. PLoS Genetics
Wray et al (2014) Polygenic methods and their application to psychiatric traits. Journal of Child Psychology & Psychiatry (in press)



Single GWAS- how to split into discovery
and target?

Split based on independently collected samples
What is the optimum split?

Equal sample sizes of discovery and target gives maximum power to
detect association between discovery and target (Dudbridge).

But with large samples power achieves 1, so value of increasing target
sample is redundant.

Rule of thumb.

Split sample equally into discovery and target until target has ~2000
cases + 2000 conftrols, then add additional samples to discovery.

Then with larger sample sizes the accuracy of the estimation of SNP
effectsisincreased and the accuracy of the GRS for an individual
increases

Dudbridge (2013) Power and predictive accuracy of polygenic risk scores. PLoS Genetics
Wray et al (2014) Polygenic methods and their application to psychiatric traits. Journal of Child Psychology & Psychiatry



Simulation study demonstrating the impact of sample
size and genetic architecture on profile scoring

Figure S8: Impact of increasing sample size on score analysis.
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Purcell et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature
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MT1-M7 vary in
« proportion of SNPs associated in
disease

« distribution of effect sizes
« Frequency distribution

« LD between SNPs and causal
variants
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Pitfall 1: No target (=validation) sample

— Report RZ or AUC from discovery sample only
— Small n large p problem

— Even under null can get high R2 within discovery
sample whenp >>n

Wray, Yang, Hayes, Price, Goddard, Visscher (2013) Pitfalls of predicting complex traitsfrom SNPs. Nat Rev Genetics



Pitfall 2: Overlapping Discovery &
Target Sample

« Overlapping discovery & target samples

« Greater similarity between discovery & target samples
than discovery & frue validation samples

— E.g. cross-validation samples
— Not a pitfall, as such, but to be aware

Wray, Yang, Hayes, Price, Goddard, Visscher (2013) Pitfalls of predicting complex traitsfrom SNPs. Nat Rev Genetics



Pitfall 3: Less obvious non-independence

 Cross-validation but select associated SNPs from total
sample

« SelectSNPs in discovery sample, for those SNPs re-
estimate effectsin the target sample

Wray, Yang, Hayes, Price, Goddard, Visscher (2013) Pitfalls of predicting complex traitsfrom SNPs. Nat Rev Genetics



Selection bias

ARTI CLE d0i:10.1038/nature10811
Select m ‘best’ markers out of M in total The Dr osophila melanogaster
Genetic Reference Panel
Prediction” in same sample ~15 best markers selected
from 2.5 million markers
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Module 18: Statistical and

Quantitative Genetics of Disease:
Rare Variants and Prediction



Rare Variants

e “Common”: MAF > 0.05
e “Less common”: 0.05>MAF>0.01
e “Rare”: 0.01<MAF

e SNP: MAF>0.01 (Single Nucleotide
Polymorphism)

e SNV: MAF<0.01 (Single Nucleotide
Variant)



Rare Variants

 Previous GWAS focused on chips
designed for MAF > 0.05 (most powered
for MAF > 0.10)

e Exome arrays
e Sequencing (de novo)



Sequencing Costs have Fallen

Moore's Law

National Human Genome
Research Institute

genome.gov/sequencingcosts

S - -

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014




Analysis of Rare Variants

Focus on a set of k variants

g(Yi) = ao + ZBkXikv
k

e Difficult to model due to sparsity.
* Limited power.



Sample Size for Rare Variants
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Rare Variant Tests

‘Up-weight’ analyses for most likely causal variants.
Burden tests (CAST, Collapsing, WSS).

Variance component (dispersion) tests (SKAT, SKAT-O, C-alpha).

Burden tests more powerful when a large percentage of rare
variants are causal and have the same sign (direction of
association).

Variance component more powerful when there is a mixture of
risk and protective variants, and most rare variants are not
causal.



Burden Tests for Rare Variants

g(Y:) = a0+~ E Wi Xik | -
|k _
Where w, defines similarities among the variants for

their aggregation / modeling

Estimate the effect of a weighted summary ‘score’
across each individuals’ rare variants on outcome.



Key Aspect: Specifying w,

W, =a, XS, XI,

where
a, inverse variance weighting, controls’ MAF
s, direction of association; positive / negative
i, Indicators for whether to aggregate
. Overall MAF
—  Hard cutpoint(e.g., MAF < 0.01)
. Functional information
— Non-synonymous
—  Deleterious (SIFT)



Example: Cohort Allelic Sums Test (CAST)

Aggregate rare variants within three genes
a, =1
s, =1
i, = 1 if rare, nonsynonymous

ABCa1,

<5%
APOA1, or  >95% HDL ° OR (p-value)
LCAT HDL
No ns 125 107 1.0
variants
ns variants 3 21 8.1 (1x104)

Cohen et al., Science 2004;305:869.
Morgenthaler Mut Res 2007;615:28.



Difficult to determine best weighting /
aggregation scheme a priori

Most approaches make strong assumptions about
exchangeability and combination of rare variants for
analysis.



Empirical ‘Step-Up’ Approach

Data driven aggregation of rare variants
Consider multiple possible groupings
Select the “best” grouping (e.g., min P)
Correct by permutation

Possible groupings defined by:
— MAF weighting / cutoffs

— Positive or negative associations
— Nonsynonomous

— Deleterious (SIFT)

All possible subsets, or those contributing most to signal

Hoffmann, Marini & Witte, 2010



Variance Components Approach

e SNP-set (Sequence) Kernel Association Test (SKAT)
(Wu et al., AJHG 2011).

e Uses flexible weight kernels, which reflect different
assumptions underlying the rare variant tests.

e For example, that rarer variants have larger effect
sizes.



Test Stats for SKAT vs. Burden

o

SKAT: Q=3 W _zj(y,.-;,.;)x,., and

o

Burden : Q,,zl = ZW,Z(Y, — ;T())Xi .



Prediction: Ozzy Osbourne!?

cientists to map Ozzy Osbourne's
enetic code to find out how he survived
o much substance abuse

"NICK KLOPSIS
LY NEWS WRITER

Increased risk of:

* Alcoholand cocaine
dependence.

e Hallucinationswhile on
marijuana.

nday, June 14th 2010, 1:39 PM

Slow to metabolise coffee.

SaylesiaP
zzy Osbourne has had many issues relating to drug and alcohol abuse, so scientists are
apping out his genetic code to find out howy his body can take it.

u can't kill rock and roll, but it's not RELATED NEWS
ually this hard to kill a rocker.



More Info will Improve Prediction

Cold [ ] [ ] HOME
Spring
Harbor b l o R lV
Laboratory .
beta Searcl
THE PREPRINT SERVER FOR BIOLOGY

New Results
Deep Sequencing of 10,000 Human Genomes

Amalio Telenti, Levi T Pierce, William H Biggs, Julia di lulio, Emily H.M. Wong, Martin
M Fabani, Ewen F Kirkness, Ahmed Moustafa, Naisha Shah, Chao Xie, Suzanne C
Brewerton, Nadeem Bulsara, Chad Garner, Gary Metzker, Efren Sandoval, Brad A
Perkins, Franz ] Och, Yaron Turpaz, ). Craig Venter

doi: http://dx.doi.org/10.1101/061663



Precision Medicine Initiative Cohort

Key Features

Framingham Heart

Study

Precision Medicine
Initiative Cohort

Year Started

Number of Individuals

Age

Ancestry

Medical data obtained

Focus

Data return to
participants

Data available for
research community

* Initial cohort

1948
5,209*
30-62

>95% European

Every 2 yrs at office visit

Heart disease

No

Program
2016

1,000, 000
All

Diverse, cross-section of
Americans

Real world, real time, via
mobile devices, Web

All medical conditions,
health

Yes

Yes



Genetic Prediction

> «,® Y o
l/ 1 DN AFlt Welcome  Fitness Diet 23andMe  PersonalTrainers  Science  Aboutus Store Help 3£ :E;

The DNAFit United squad have revealed their genes
why not find out how you match up today?




Chromosome 11

Research suggests that Possible

elite athletes who rely variations

on the power of (genotypes)

fast-twitch fibers in their of the ACTN3

muscles, like sprinters, gene. R R X

share a common

genotype. These fibers

contain a protein

produced by the R allele

(version) of the ACTN3

gene.

ACTN3 Beneficial for elite Not beneficial

power and endurance for elite power
athletes athletes.
Genotype RR RX XX Frequency of occurrence
frequency ] BN I 0% 25 50 75 100
I | | ) |

axe"gse"!e POWER OLYMPIANS (32) | ——
g“etesm FEMALE POWER ATHLETES (35) | —
elite TOTAL POWER ATHLETES (107) | o m
endurance CONTROLS (438) | EE—
athletes. TOTAL ENDURANCE ATHLETES (184) | S
Condidance FEMALE ENDURANCE ATHLETES (72) | — |
intervals are 95%. ENDURANCE OLYMPIANS (18) | I |

Sources: Stephen M. Roth, Ph.D., Universily of Maryland; American Journal of Human Genetics

NY Times, 11/30/08



| AACR Meeting Abstra...
Home LoglIn

PRODUCTS ABOUT US COMPANY RESEARCH SHOPPING CART

“A‘! SPORTS GENETICS —_—

P ATHUETIC TALENT L Anasven

ATHLETIC 'I'AI.ENI' LABORATORY ANALYSIS SYSTEM

Finding any great
Olympic champion
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ATLAS First

Recommended for ages 1 and up.

Description: OQur Atlas First product is geared specifically at the youngest of athletes. Doing
any type of performance based sport talent identification testing is very difficult below age 6
due to developmental levels of motor skills, strength and eye-hand coordination. Atlas First
looks at only genetic markers, specifically the presence of ACTN3. Studies have found that
individuals having the variant in both copies of their ACTN3 gene may have a natural
predisposition to endurance events, one copy of their ACTN3 gene may be equally suited to for
both endurance and sports/power event, neither copy of their ACTN3 gene may have a natural
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eliminating choices for sport activities but adding exposure to a host of team or individual sport
events that may come easier to a young athlete.

The test is one of tool of many that can help children realize their athletic potential.

Other Products available through Atlas First

Height monitoring charts
Weight monitoring charts
BMI charts

Height Prediction Calculator (not genetic)
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Compare Genes

Name a Outcome Last Updated
Family Inheritance
Alcohol Flush Reaction 2% Does Not Flush Dec 19, 2007
my ancestors
y Bitter Taste Perception 2k Can Taste Nov 19, 2007
Maternal Line
Earwax Type 3% Wet Nov 19, 2007

Paternal Line
Ancestry Painting Eye Color 3% Likely Blue Mar 25, 2008

Global Similarity Lactose Intolerance 3% Likely Tolerant Nov 19, 2007
23andWe Malaria Resistance (Duffy Antigen) ¢ ___ Not Resistant Feb 28, 2008
Introduction @cle Performance #% Unlikely Sprinter ) Nov 19, 2007
Vv reys (15)
My Surveys (15 Non-ABO Blood Groups See Report Mar 25, 2008
Featured Research

Norovirus Resistance Resistant Jul 23, 2008
community Resistance to HIV/AIDS Not Resistant Jan 27,2008

23andMe Community

The genotyping services of 23andMe are performed in LabCorp's CLIA-registered laboratory. The results presented here have not been cleared or
account approved by the FDA but have been analytically validated according to CLIA standards.

Genome Sharing

Inbox
Settings Talk with the Community Q
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rrequency

Possible clinical decisions

* General advice on having a i * Lifestyle changes i * Individual counselling in primary care and referral to
healthy lifestyle i * Frequent i secondary or tertiary care
* Mammography screening i mammography i » Enhanced screening and surveillance
frequency tailored to risk i screening i » Chemoprevention and/or endocrine therapy
i * Discuss preventive . * Risk-reducing surgery (mastectomy, salpingo-oophorectomy)
i therapies ;
Absolute risk
E E [ ] Near or lower than average risk (<15%)
: ' Moderately increased risk (15-25%)
: ! B High risk (>25%)
T |
10 20 30 40 50

Lifetime absolute risk of breast cancer (%)

I Chatterjee et al., NRG 2016

Possible risk factor profile

* Moderate to high polygenic risk with family history of breast cancer and many
environmental risk factors, or known BRCA1 and BRCAZ2 or TP53 mutation carriers
for very high risk

* No family history of
breast cancer,
moderate polygenic
risk and several
environmental risk
factors

* No family history of breast cancer,
low to moderate polygenic risk,
and none or few environmental
risk factors






