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Motivation for this module
• To unite the language of quantitative genetics (QG) and epidemiology
• Quantitative genetics of disease is often a tack on to QG of 

quantitative traits –here we make it the focus
• The new era of genomics bring QG of genetics of disease back into the 

foreground – a renewed relevance
• Understanding of prediction of disease risk in the precision medicine era
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Precision Medicine Initiatives

http://syndication.nih.gov/multimedia/pmi/infographics/pmi-infographic.pdf





Course Outline
Wednesday afternoon
• Lecture 1 Genetic epidemiology of disease; Heritability of liability (Naomi)
• Lecture 2 Single locus disease analysis: design, logistic regression, covariates (John)
Thursday morning(John)
• Lecture 3: Single locus disease model; Power calculation for disease model (Naomi)
• Lecture 4: Interpreting measures of variation; multivariate models (John)
Thursday afternoon(Naomi)
• Lecture 5:Multi-locus disease model (Naomi)
• Lecture 6: Modeling interactions: gene-environment, epistasis (John)
Friday morning(John)
• Lecture 7: Risk Prediction – measures of accuracy for risk prediction of disease (Naomi)
• Lecture 8: Pleiotropy; LDscore (John)
Friday afternoon
• Lecture 9: Risk prediction – theory (Naomi)
• Lecture 10: Rare variants; Risk Prediction – application (John)
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Naomi lecture
practical

Coffee

John lecture
practical

More quantitative genetics theory 

More statistics/data analysis 



Lecture 1
Quantifying the genetic contribution to 

disease
Naomi Wray

2016 Module 18: 
Statistical & Quantitative Genetics of Disease
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Aims of Lecture 1
If a disease affects 1% of the population and has heritability 80%

We will show why these statements are consistent :

If an individual is affected  ~8% of his/her siblings affected 

If an MZ twin is affected  ~50% of their co-twins are affected

If an individual is affected > 60% will have no known family history

Bringing together genetic epidemiology and quantitative genetics

- The key papers were published 40 and 70 years ago……
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Structure

8

Disease data and risk to relatives

Aside: Quantitative Traits

Liability Threshold Model

Practical



Disease data and risk to relatives
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Risk Factors for Schizophrenia

Sullivan, PLoS Med 05
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Complex genetic diseases

• Unlike Mendelian disorders, there is no clear pattern of 
inheritance

• Tend to “run” in families
• Few large pedigrees of multiply affected individuals
• Most people have no known family history

What can we learn from genetic epidemiology 
about genetic architecture?
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Evidence for a genetic contribution comes from 
risks to relatives

0 0.05 0.1 0.15 0.2

Autism

Bipolar

Schzizophrenia

ADHD

Major depression

Prevalence

1st degree 
relatives
Population
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Relative risk to relatives
Recurrence risk to relatives

Relative risk to relatives (λR) = p(affected|relative affected) = KR
p(affected in population) K

How to estimate p(affected|relative affected) ?
• Collect population samples – cases infrequent
• Collect samples of case families and assess family members

How to estimate p(affected in population) ?
• Census or national health statistics

• Is definition of affected same in population sample as family sample
• Collect control families and assess family members

If disease is not common λR = p(sibling affected|case family) 
p(sibling affected |control family)

How much more likely are you to be diseased if your relative is affected 
compared to a person selected randomly from the population?
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Affected Probands

Unaffected Probands

13/30 are affected; 
Risk = 0.433

8/30 are affected; 
Risk = 0.267

Relative Risk (RR) = 0.433 / 0.267 = 1.63
In siblings of affected compared to unaffected probands

Slide credit: Dale Nyholt
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Schizophrenia risks to relatives

0.5               0.25      0.125    coefficient of relationship

Baseline risk, K = 0.85% McGue et al
= 0.407% Lichtenstein 

et al

Risch(1990) Linkage Strategies for Genetically 
Complex Traits AJHG
McGue et al (1983) Genetic Epidemiology 2: 99
Lichtenstein et al (2006) Recurrence risks for 
schizophrenia in a Swedish National 
Cohort.Psychological Medicine
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James (1971) relationship between K and KR

X = scores of disease yes/no for individuals
Y = scores of disease yes/no in relatives of X
K proportion of the population affected
E(X) = E(Y) = K

KR =  E(Y|X=1)

Probability that both X and Y =1:  E(XY) = K*KR

Cov(X,Y) = E(XY) – E(X)*E(Y) = K*KR– K2

So CovR = Cov(X,Y) = K*KR – K2 = (KR –K)K  = (λR -1)K2

James (1971) Frequency in relatives for an all-or-non trait Ann Hum Genet 35 47

Derivation from Risch (1990) Linkage strategies for genetically complex traits. I Multi-locus models. AJHG 16



Aside 1: Heritability
P  =   G  + ε

P = phenotype 
G = genetic factors
ε = residual, anything other than genetic, including environmental and stochastic 
factors

Broad sense heritability

P  =   A  + ε
P = phenotype 
A = additive genetic factors
ε = residual, anything other than additive genetic, including environmental and 
stochastic factors 

Narrow sense heritability

• Parameters vs Estimates

• Often confused and confusing

• We can measure P but we cannot 
directly measure G or A.

• Estimate variance of G or A by 
using cohorts of individuals for 
whom we know the coefficient of 
relationship, but difficulties arise 
because of confounding
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Aside 2: Covariances between relatives
P  =   A  + ε

V(P) = V(A) + V(ε),    A and E uncorrelated

Pchild =   Achild + ε = ½ Amum + ½ Adad + Aseg + ε

V(Achild) = ¼ V(Amum) + ¼ V(Adad) + V(Aseg)

V(A)       =  ¼ V(A)      + ¼ V(A)     + V(Aseg)    so    V(Aseg) = ½ V(A)

Cov(Pchild,Pdad) =  Cov(Achild,Adad) = Cov(½ Amum + ½ Adad + Aseg , Adad) = ½ V(A)

Cov(Pchild,Psib) =  Cov(Achild,Asib) = 
Cov(½ Amum + ½ Adad + Aseg-ch , ½ Amum + ½ Adad + Aseg-sib) 

=¼ V(A)  +  ¼ V(A)  =  ½ V(A)
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covR = covariance between relatives on the disease scale

covR =
! !! ! !! ! !!! ! !!" ! !!! !
Offspring*parent! ½" 0" ¼" 0" 0"
Half*sib! ¼" 0" 1/16" 0" 0"
Full*sib! ½" ¼" ¼" 1/8" 1/16"
MZ!twin! 1" 1" 1" 1" 1"
General! aR# uR# !!! # aR#uR# !!! #
"

covR = (KR –K)K  = (λR -1)K2 VP = K(1-K)          (from a few slides back!)

An estimate of narrow sense (additive) heritability on the disease scale is

But covR contains non-additive genetic terms.
We don’t know if non-additive genetic effects  exist  - What to do?

Estimate       from different types of relatives to see if the estimates are consistentℎ!!!!
James (1971) Frequency in relatives for an all-or-non trait Ann Hum Genet 35 47

General covariance between relatives
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James (1971) genetic variance on the 
disease scale 

James (1971) Frequency in relatives for an all-or-non trait Ann Hum Genet 35 47

K = 0.0085                                                     
λOP= 10  aR= ½

λHS = 3    aR= ¼

λFS = 8.6  aR= ½

λMZ= 52    aR= 1

The estimates of           are very different (even if sampling variance is taken into 
account)

Implies that the estimates of           are contaminated by non-additive variance 
on this scale of measurement  

!ℎ!! = !
10!− 1 0.0085
1
2 1− 0.0085

!!= 0.154!

!ℎ!! = 0.069!
!

!ℎ!! = 0.130!
!

!ℎ!! = 0.438!

ℎ!!!!

ℎ!!!!
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Liability threshold model
Phenotypic liability of 
a sample from the 
population

Proportion K affected

Assumption of normality
- Only appropriate for multifactorial disease
- i.e. more than a few genes but doesn’t have to be highly polygenic
- Key – unimodal
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Falconer (1965)
Phenotypic liability of 
a sample from the 
population

Proportion K affected

Phenotypic liability of 
relatives of affected 
individuals Proportion KR affected

Relationship of relatives to 
affected individuals aR

Using normal distribution theory what percentage of the variance in 
liability is attributale to genetic factors given K, KR and aR 22



Quantitative Phenotype
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Next 
generation

Prediction of response to selection and rates of 
inbreeding under directional selection

Strong parallels 
to quantitative 
genetics of 
disease
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Definitions

Phenotypic liability

D
en

sit
y K = Proportion of the 

population that are 
diseased

t = threshold  

z = density at t

i = mean phenotypic liability of 
the diseased group  

24



How to get from observed risks to relatives 
to heritability?- Falconer (1965)

Phenotypic liability of 
a sample from the 
population

Proportion K affected

Phenotypic liability of 
relatives of affected 
individuals Proportion KR affected

Relationship of relatives to 
affected individuals r

Using normal distribution theory what percentage of the variance in 
liability is attributale to genetic factors given K, KR and r 25



Liability Threshold Model 
–truncated normal distribution theory

Φ(x) =cumulative density until liability x
standard normal distribution function
ϕ (x) = probability density at x
Phi

K= 1-Φ(t) = 1-pnorm(t)  

Variance in liability amongst 
the diseased individuals
= ((1-k), where k = i(i-t)

Standard
Deviation =1
σp = 1

K = Proportion of the 
population that are 
diseased

t = threshold  

z = density at t

i = mean phenotypic liability of 
the diseased group  

Phenotypic liability

D
en

sit
y

t=  Φ-1(1-K)  = qnorm(1-K)

z = ϕ (t)                      = dnorm(t)

i= z/K  “selection intensity”

Inverse standard normal distribution (probit) function26



Mean of diseased group
• Pearson & Lee (1908) On the generalized probable error in normal correlation. 

Biometrika
• Lee (1915) Table of Gaussian tail functions..Biometrika
• Fisher (1941) Properties and application of Hh functions. Introduction to 

mathematical tables
• Cohen (1949) On estimating the mean and standard deviation of truncated normal 

distributions Am Stat Association
• Cohen & Woodward (1953)Pearson-Lee-Fisher Functions of singly truncated normal 

distributions. Biometrics

Mean (i): = sum( x * freq of x)
The phenotype frequencies must sum to 1, hence the denominator

Lynch and Walsh equations 2.13 and 2.14; variance equation 2.15 27



Falconer (1965)
Phenotypic liability of 
a sample from the 
population

Proportion K affected

Assumption of normality
- Only appropriate for multifactorial disease
- i.e. more than a few genes but doesn’t have to be highly polygenic
- Key – unimodal
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Falconer (1965)
The difference 
between the means 
for the same 
threshold

The difference 
between the 
thresholds when 
standardised to have 
the same mean

t

tR

m

mR

mR-m = t-tR

Falconer (1965) The inheritance of liability to certain diseases, estimated from incidences in relatives, 
Ann. Hum Genet. 29 51

Crittenden (1961) an interpretation o familial aggregation based on multiple genetic and environmental factors
Ann NY Acad Sci 91 769

Given the difference in thresholds, and given known additive genetic 
relationship between relatives, what proportion of the total variance must be 
due to genetic factors

29



Calculate heritability of liability using 
regression theory

X = phenotypic liability for individuals
Y = phenotypic liability for relatives of X
E(X) = E(Y) =  m  = 0

Relationship between X and Y is linear
Y = µY + bY.X(X-µx)+ ε

= m + cov(AR,A) (X-m) + ε ,  since m = 0 
Var(X)

=        X +ε= aRh2X + ε

Falconer (1965) The inheritance of liability to certain diseases, estimated from incidences in relatives, 
Ann. Hum Genet. 29 51

Crittenden (1961) an interpretation o familial aggregation based on multiple genetic and environmental factors
Ann NY Acad Sci 91 769

z
K

t
i

m
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Calculate heritability of liability using 
regression theory

X = phenotypic liability for individuals
Y = phenotypic liability for relatives of X

Y = aRh2X + ε

For affected individuals X = i
Expected phenotypic liability of relatives of those affected
E(Y|X>t) = mR-m = t- tR

Substitute t- tR= aRh2i

Rearrange h2 =(t- tR)/iaR

Falconer (1965) The inheritance of liability to certain diseases, estimated from incidences in relatives, 
Ann. Hum Genet. 29 51

Crittenden (1961) an interpretation o familial aggregation based on multiple genetic and environmental factors
Ann NY Acad Sci 91 769

z
K

t
i

m
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Assumptions made by Falconer (1965)
Assumption: Covariance between relatives reflects only shared additive 
genetic effects

Check: Use different types of relatives with different aR and different 
uR(dominance coefficient) and different shared environment to see 
consistency of estimates of h2

Assumption: Phenotypic variance in relatives is unaffected by 
ascertainment on affected probands

32



Accounting for reduction in variance in 
relatives as a result of ascertainment on 

affected individuals t

m

mR

Reich, James, Morris (1972) The use of multiple thresholds in determining the mode of transmission of semi-continuous 
traits. Ann Hum Gen 36: 163.

Variance in liability amongst 
the diseased individuals
= ((1-k), where k = i(i-t)

Variance in liability amongst relatives the 
diseased individuals
V(PR|P>t) = V(PR)-kCov(PR,P)2

=    

P

PR

1− !(!!ℎ!)! = 1− !!"!!ℎ! !
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Reich et al: heritability of liability
The difference 
between the means 
for the same 
threshold

The difference 
between the 
thresholds when 
standardised to have 
the mean 0 and 
variance 1

t

tR

m

mR

mR-m = t-tR 1− !!"!!ℎ! !

Reich, James, Morris (1972) The use of multiple thresholds in determining the mode of transmission of semi-continuous 
traits. Ann Hum Gen 36: 163.
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Reich et al: heritability of liability
tX = phenotypic liability for individuals

Y = phenotypic liability for relatives of X

Y = aRh2X + ε

For affected individuals X = i
Expected phenotypic liability of relatives of those affected
E(Y|X>t) = mR-m = 

Substitute  

Rearrange

NB. Distribution of relatives may 
also be skewed – especially for 
MZ twins-Estimates could be 
biased upwards

ℎ! = ! ! − !! 1− (1− !/!)(!! − !!!)
!!(! + ! − ! !!!)

!

! − !! 1− !!"!!ℎ! !

! − !! 1− !!"!!ℎ! = !!!ℎ!!!

Also useful – calculation of tR when K and h2 are known
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Accounting for reduction in variance in 
relatives as a result of ascertainment on 

affected individuals

m

mR

Variance in liability amongst 
the diseased individuals
=  ((1-i(i-t)) = (1-k)

Variance in liability amongst relatives the 
diseased individuals = 1- i(i-t)(aRh2)2

P

PR

Reich, James, Morris (1972) The use of multiple thresholds in determining the mode of transmission of semi-continuous 
traits. Ann Hum Gen 36: 163.

ℎ! = ! ! − !! 1− (1− !/!)(!! − !!!)
!!(! + ! − ! !!!)

!
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Practical
Uses simulation to give understanding to 
the theory.

How to calculate heritability of liability from 
risks to relatives.

Feel for sample size and sampling variation

Relationship between narrow sense 
heritability on disease and liability scales

37



Module	19:	Statistical	and	
Quantitative	Genetics	of	Disease

John	Witte
Session	#2:	

Single	locus	analysis:	design,	analysis,	
logistic	regression,	covariates.	



Now	Assume	We	Can	Collect	DNA	
on	Cases	and	Controls

• What	study	design	should	we	
use?

• What	analytic	approaches?
• Conventional:	estimate	
impact	of	single	genetic	
variants	on	disease.



Outline

1. Association	Approaches
2. Linkage	Disequilibrium
3. Population	Stratification	/	Study	Design
4. Association	Analysis
5. Odds	ratios	and	relative	risks
6. Logistic	regression
7. Covariates



1.	Association	Study	Approaches

• Direct	vs.	Indirect
• Candidate	genes:	hypotheses	about	biological	
mechanisms.	
– Functional
– All	common	variants
– Exome arrays

• All	common	variants	in	genome	(GWAS)
• All	variants	in	genes/genome	(sequencing)

– Expensive



2.	Linkage	Disequilibrium

Hirschhorn & Daly, Nat Rev Genet 2005

The non-random association of alleles at two or more loci, 
that descend from single, ancestral chromosomes.

Assume two loci with alleles {A, a} and {B, b}
D = PAB – pApB = PABPab – PAbPaB
D’ = D / max(D)
where
max(D) = min(pApb,papB) if D>0  or min(pApB,papb) if D<0
r2 = D2/(pApapBpb).



3.	Population	Stratification	&
Study	Design

• Key	principle	of	association	studies:	select	
controls	from	the	cases’ source	population.

• Those	individuals	who—if	they	were	diseased—
would	become	cases.

• Otherwise	potential	for	bias	(e.g.,	population	
stratification)	and	reduced	efficiency.



Population	Stratification

Balding,	Nature	Reviews	Genetics	2010

• Two	populations	have	different	allele	frequencies	
and	background	rates	of	disease.

• Can	lead	to	biased	association	results.



Population Stratification: 
Confounding

Exposure of Interest

True Risk Factor Disease

Genotype of 
Interest

Disease

Ethnicity

True Risk 
Factor

Wacholder, JNCI, 2000



Example

Study Population: 4,290 Pima and Papago Native 
Americans

Genetic Variant: Gm 3;5,13, 15 haplotype (Gm
system of human immunoglobulin G)

Outcome: Type 2 diabetes

Question: Is the Gm 3; 5,13, 15 haplotype 
associated with Type 2 diabetes?

Knowler, AJHG, 1998



Population Stratification: Gm3;5,13,14 in admixed sample of 
Native Americans of the Pima and Papago tribes

Unadjusted for ethnic background
OR = 0.27 (95% 0.18-0.40)

Full heritage Native 
American population

+ -

Gm3;5,13,14 ~1% ~99%

NIDDM prevalence ~40%

Caucasian population

+ -

Gm3;5,13,14 ~66% ~34%

NIDDM prevalence ~15%

Gm3,5,13,14 
haplotype Cases Controls

+ 7.80% 29.00%

- 92.20% 71.00%
Different genotype frequency,
different phenotype frequency



Gm3,5,13,14 
haplotype Cases Controls

+ 7.80% 29.00%

- 92.20% 71.00%

Adjusted for ethnic background 
OR = 0.83 (95% 0.58-1.18)

Index of N Am 
heritage

Gm3;5,13,14 
haplotype

% 
Diabetes

0 65.8% 18.5%

4 42.1% 28.5%

8 1.6% 39.2%

Previous result just picked out 
race/ethnicity!

Population Stratification: Gm3;5,13,14 in admixed sample of 
Native Americans of the Pima and Papago tribes



How	can	we	address	the	potential	bias	
due	to	population	stratification?



Addressing	Population	Stratification

• Match on self-reported ethnicity 
(Wacholder et al., / Thomas & Witte, CEBP 2002)

• Family-based studies 
(Witte et al., AJE 1999)

• Genomic control 
(Devlin and Roeder, Biometrics, 1999)
Adjust test statistics for ‘inflation’ (bias) using empirical c2 

distribution, comparing median observed to expected (c2
new= c2

old/l).

• Principal Components 
(Price et al., Nat Genet 2006)
Adjust regression for PCs as a proxy for genetic ancestry.



Family-Based Association Studies

Siblings Parents

GG G

GG

GCousins

G G

Termed “psuedo”-
controls (the 
hypothetical other 
mendelian
transmissions)



Rare Recessive Common Rare Dominant
High Risk Low Risk High Risk  

Population-based 100% 100% 100%

Case-sibling 69% 51% 50%
Case-cousin 97% 88% 88%
TDT 231% 102% 101%

• Family-based	designs	can:
- Be	less	efficient	than	population-based	designs.
- Require	more	recruitment	efforts

Comparison	of	Designs

Witte et al. AJE 1999
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Adjusting	for	Principal	Components

Li et al., Science 2008

• Maximize variance 
between subjects 
using all SNPs.

• Clusters individuals 
from different 
populations.



PCs	Detect	Fine	Population	Structure

Razib,	Current	Biology	2008



Population-
based

“Ethnicity”
Matched

PCs 
Adjustment

Family-based

Population 
Stratification

Overmatching

Continuum	of	Assoc Study	Designs

Gene

Subpopulation

Disease

­Sharing of genes & envt.

Ēfficiency

Also, recruitment issues

(Bias…………………versus………………...efficiency)



Outline

1. Association	Approaches
2. Linkage	Disequilibrium
3. Population	Stratification	/	Study	Design
4. Association	Analysis
5. Odds	ratios	and	relative	risks
6. Logistic	regression
7. Covariates



Locus 4

Alleles at 
locus 4

4.	Association	Analysis:	Genotypes

Locus: chromosomal location
that’s polymorphic.
Alleles: different variants @ locus

- Each somatic cell is diploid (two copies 
of each autosome)
- Thus 3 genotypes at locus 4 (use only 
one strand, often forward): CC, CT, TT

C C C T T T

T

C



Association Analysis

Genotype Cases Controls OR

CC A D AF/DC

CT B E BF/EC

TT C F 1

Simple chi-square test comparing genotype frequencies (2 d.f.)
Called a co-dominant analysis



Testing	for	Association
Observed:                           Expected
Geno Case  Control  Total   OR Case         Control
CC    A        D  A+D=nCC AF/DC   nCC*nCase/n  nCC*nCont/n
CT    B        E  B+E=nCT AE/BD   nCT*nCase/n  nCT*nCont/n
TT    C        F  C+F=nTT 1 nTT*nCase/n  nTT*nCont/n

Total A+B+C  D+E+F  A+B+C+D+E+F
=nCase =nCont =n

Sum (Observed – Expected)^2/Expected. Chi squared with 2 degrees of 
freedom.

Expected cell count = row_total * column_total / total



Observed:                    Expected
Geno Case  Control  Total OR    Case           Control
CC   20        5  25  12     25*35/65=13.5  25*30/65=11.5  
CT   10       10  20    3 20*35/65=10.8  20*30/65=9.2
TT   5       15  20 1       20*35/65=10.8  20*30/65=9.2

Total  35       30  65
=nCase =nCont =n

Sum (Observed – Expected)^2/Expected 
= (20-13.5)^2/13.5 + (10-10.8)^2/10.8 + (5-10.8)^2/10.8

+ (5-11.5)^2/11.5 + (10-9.2)^2/9.2 + (15-9.2)^2/9.2
= 13.7

P-value = 0.0011 Co-dominant	model

Testing	for	Association



Genetic	Model

Genotype OR
CC R
CT r
TT 1

ORs	depend	on	genetic	model
R	=	r	=	1 not	risk	allele
R	>	r	=	1 recessive
R	=	r	>	1	 dominant
R	=	r2 >	1 log	additive

(Assuming	positive	association)



Testing	for	Association
2 df Genotype                   Recessive (G)           Dominant (G)     
Genotype Case Control           Case Control            Case Control    
CC       A    D              CC A    D         CC or CT A+B  D+E       
CT       B    E        CT or TT B+C  E+F             TT C    F         
TT C F
~chi_sq(2df)                   ~chi_sq(1df)           ~chi_sq(1df)      

Genotype Case Control           Case Control            Case Control     
CC       20    5              CC 20    5         CC or CT 30 15        
CT       10    10       CT or TT 15   25               TT 5  15        
TT        5    15

P=0.0011              P=0.0020                 P=0.0045       

What	model	should	we	use	here?



Genetic	Model
If	genetic	model	known:	

– Collapse	genotypes	into	2x2	table,	1	d.f.	test	
– Or	trend	test	for	log	additive
– Use	logistic	regression:	coding;	covariates,	odds	ratios

If	genetic	model	unknown?	
• Log-additive	is	default.	Why?

• Could	use	all	three	models	(dom,	rec,	log	additive).
• Compare	fit	with	the	co-dominant	(2d.f.)	model	(LR	test).	
• Can’t	use	LR	test	to	compare	models	since	not	nested.
• Model	with	best	fit	and	smallest	P	is	best?
• Use	permutation	test	(MAX	test).	



5.	Odds	Ratios	and	Relative	Risks

When	does	the	OR	estimate	the	RR?
1.	When	the	disease	is	“rare”

q+:	Incidence	in	carriers	(exposed)
q-:	Incidence	in	non-carriers
(non-exposed)

RR=

A1

(A1 + B1) =
q+

A0 q-
(A0 + B0)

OR=

A1 q+ A0

B1 =
(1-q+)

=
q+

*
1- (A0+B0)

A0 q- q- 1- A1

B0 (1-q-) (A1+B1)

D Ď

CC or CT A1 B1

TT A0 B0



2.	When	exposure	distribution	among	the	controls	is	the	same	as	
the	‘person-time’	in	the	cases’	source	population.

Let:
T1 =	Amount	of	exposed	person-time
I1 =	Incident	rate	of	exposed
T0 =	Amount	of	unexposed	person-time
I0 =	Incident	rate	of	unexposed
r	=	Sampling	rate

B1
=

B0
= r 

T1 T0

A1 = I1 I0 =
A0

T1 T0

A1 * r =
A1

B1 T1

A0 * r =
A0

B0 T0

I1 = RR
I0

OR= =RR

Odds	Ratios	and	Relative	Risks

D Ď

CC or CT A1 B1

TT A0 B0



6.	Logistic	Regression

1
P(D½G)	=

1	+	e	-(α	+	βG)

G G

log
P

(1-P) =	α	+	βG	

Pr
ob

ab
ili
ty
	(P
)

Lo
gi
t(
P)
	=
	(l
og
[P
/(
1-
P)
])1.0

0.8

0.6

0.4

0.2

0.0

5

0

-5

The	log	odds	of	disease	increases	linearly	with	G.



Interpretation	of	Coefficients
• The	logistic	regression	coefficients:	β	=	log	(OR)	

• Assume	G=1	(carrier),	G=0	(non-carrier)
log	[P1	/(1	– P1)]	=	α	+	β*1
log	[P0	/(1	– P0)]	=	α	+	β*0

so
log	[P1 /(1	– P1)]	- log	[P0 /(1	– P0)]	=	β

or
log[P1	/(1	– P1)	/	(P0	/(1	– P0))]	=	log	(OR)	=	β

• The	OR	for	the	effect	of	G	on	disease	risk	is	eβ

• For	multiple	variants,	assumes	joint	effects	are	multiplicative.	



7.	Including	Covariates	in	Regression

• Confounders:	PCs	for	population	stratification.
• Modifiers:	Envt or	Genetic	interactions.
• Independent	predictors?

Zaitlen et	al.;	Mefford &	Witte,	PloS Genet,	2012
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Lecture 3
Polygenic models of disease risk

Naomi Wray

Module 18: 
Statistical & Quantitative Genetics of Disease

1



Aims of Lecture 3
Theory
• Single locus disease model
• Power calculations

2



!
! P(G)! P(D|G)! P(D!and!G)!

=P(D|G)p(G)!
P(G|D)!
=P(D!and!G)/P(D)!

aa! (1/p)2! f0! (1/p)2!f0! (1/p)2!f0/K!
Aa! 2p(1/p)! f0R! 2p(1/p)!f0R! 2p(1/p)!f0R/K!
AA! p2! f0R2! p2!f0R2! p2!f0R2/K!
! ! ! Sum=!K! !
!
P(Disease)=K!=f0(1/p)2!+!f0R2p(1/p)!+!f0R2! =!f0(1+p(R/1))2!
!
f0=K/(1+p(R/1))2!
!
pcase!=!½!P(Aa|D)+p(AA|D)!!!Allele!frequency!in!cases!
!!!!!!!!!=!!!!" 1− ! + !" /! = ! !"

(!!! !!! )!
!
Find!allele!frequency!in!controls!in!the!same!way!
pcont!=! !!!! 1− !"

(!!! !!! ) !

Single locus disease model:
G = genotype;  D=disease;  K = overall disease risk in population

Single locus disease model

3



Single locus disease model:
G = genotype;  D=disease;  K = overall disease risk in population

Single locus disease model

	
	 P(G)	 P(D|G)	
aa	 (1-p)2	 f0	
Aa	 2p(1-p)	 f0R	
AA	 p2	 f0R2	
	 	 	
	
P(Disease)=K	=f0(1-p)2	+	f0R2p(1-p)	+	f0R2	 =	f0(1+p(R-1))2	
	
f0=K/(1+p(R-1))2	
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Single locus disease model:
G = genotype;  D=disease;  K = overall disease risk in population

Single locus disease model

	
	 P(G)	 P(D|G)	 P(D)	

=P(D|G)p(G)	
aa	 (1-p)2	 f0	 (1-p)2	f0	
Aa	 2p(1-p)	 f0R	 2p(1-p)	f0R	
AA	 p2	 f0R2	 p2	f0R2	
	 	 	 Sum=	K	
	
P(Disease)=K	=f0(1-p)2	+	f0R2p(1-p)	+	f0R2	 =	f0(1+p(R-1))2	
	
f0=K/(1+p(R-1))2	
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Single locus disease model:
G = genotype;  D=disease;  K = overall disease risk in population

Power of association test – case/control

	
	 P(G)	 P(D|G)	 P(D)	

=P(D|G)p(G)	
P(G|D)	
=P(G)/P(D)	

aa	 (1-p)2	 f0	 (1-p)2	f0	 (1-p)2	f0/K	
Aa	 2p(1-p)	 f0R	 2p(1-p)	f0R	 2p(1-p)	f0R/K	
AA	 p2	 f0R2	 p2	f0R2	 p2	f0R2/K	
	 	 	 Sum=	K	 	
	
P(Disease)=K	=f0(1-p)2	+	f0R2p(1-p)	+	f0R2	 =	f0(1+p(R-1))2	
	
f0=K/(1+p(R-1))2	
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What is power?
When we set up a statistical test
• The null hypothesis is EITHER 

• true 
• false

• With the data available we EITHER 
• reject the null hypothesis
• fail to reject the null hypothesis

Null 
hypothesis is 
true

Null 
hypothesis is 
false

Reject the null 
hypothesis

Type I error
False positive

Correct 
Outcome
True positive

Fail to reject 
the null 
hypothesis

Correct 
Outcome
True negative

Type II error
False
Negative

Power = probability of 
rejecting the null hypothesis 
when the null hypothesis is 
false

=1 –probability of failing to 
reject the null hypothesis 
when the null hypothesis is 
false 

= 1- probability(Type II error)

Power depends on statistical test, effect size to be detected, sample size, acceptable level of Type I 
error
Non-centrality parameter depends on statistical test, effect size to be detected, sample size 7



Relative power of a GWAS for a quantitative 
trait compared to a disease trait

Yang

First step:
How to calculate power in an association study?

8
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Power of a disease trait
p	 = frequency of risk allele in population
pcase = frequency of risk allele in cases
pcont = frequency of risk allele in controls
v = proportion of a sample of N that are cases

= mean allele frequency across cases and controls
= v pcase + (1-v) pcontrol

Z-Test statistic of association  = test of difference of two proportions =

χ2 non-centrality parameter   = NCP01 =

Power of a case-control study

Yang et al (2009)
10



Single locus disease model:
G = genotype;  D=disease;  K = overall disease risk in population

Power of association test – case/control

!
! P(G)! P(D|G)! P(D)!

=P(D|G)p(G)!
P(G|D)!
=P(G)/P(D)!

aa! (1-p)2! f0! (1-p)2!f0! (1-p)2!f0/K!
Aa! 2p(1-p)! f0R! 2p(1-p)!f0R! 2p(1-p)!f0R/K!
AA! p2! f0R2! p2!f0R2! p2!f0R2/K!
! ! ! Sum=!K! !
!
P(Disease)=K!=f0(1-p)2!+!f0R2p(1-p)!+!f0R2! =!f0(1+p(R-1))2!
!
f0=K/(1+p(R-1))2!
!
pcase!=!½!P(Aa|D)+p(AA|D)!!!Allele!frequency!in!cases!
!!!!!!!!!=!!!!" 1− ! + !" /! = ! !"

(!!! !!! )!
!
Find!allele!frequency!in!controls!in!the!same!way!
pcont!=! !!!! 1− !!

(!!! !!! ) !
11



Power of a disease trait
p	 = frequency of risk allele in population
pcase = frequency of risk allele in cases
pcont = frequency of risk allele in controls
v = proportion of a sample of N that are cases

= mean allele frequency across cases and controls
= v pcase + (1-v) pcontrol

Z-Test statistic of association  = test of difference of two proportions =

χ2 non-centrality parameter   = NCP01 =

Power of a case-control study

Yang
12



NCP01 =

α = significance level  - acceptable level of type I error

Power = 

Power of a case-control study

t"="Φ!! !
! !"
Φ !"!!" + ! !!

N=10000,v=0.5,p=0.2,R=1.2,K=0.01,α=5e-8,K=0.01, power = 0.46

Agrees with the genetic power calculator

Normal distribution threshold above which null hypothesis will be rejected

Yang et al (2009) Comparing Apples and Oranges: Equating the Power of Case-Control and Quantitative Trait 
Association Studies. Genetic Epidemiology 13



Approximate variance explained by a locus
Regression of disease on jth SNP, x[j] = 0,1,2

!!" = ! + !!"![!] + !!

Variance attributable to the locus on the disease scale  

!!!" !! = ℎ!" !! ! 1− ! = !!!"! !"# ! = !2!(1− !)!!"! !
ℎ!" !! = !2!(1− !)!!"! /! 1− ! !
ℎ![!]! = ! (!!!)!!"[!]

!

!!! !!=!!!(!!!)!!"
!

!!!! !=!!!!(!!!)(!!!)
!

!! !

When x[j]=0                             = P(Disease|Genotype =aa)!!" = !!

When x[j]=1                             = P(Disease|Genotype =Aa)!!" = ! + !!!"!!
Relative Risk = R= P(Disease|Genotype =Aa)/P(Disease|Genotype
=Aa)

= (K+b01)/K									so				b01	=	K(R-1)

Assumes a population sample not a case control sample
See Lecture 1: Dempster & Lerner (1950) Appendix by Alan Robertson. Heritability of threshold characters. Genetics 35

14



χ2 non-centrality parameter   = NCP01 =

NCP01 =

If R is small then (1+p(R-1))2	 ≈	1								e.g.,	p=0.2,	R=1.2,	(1+p(R-1))2=	 1.08

Variance	explained	by	a	locus	=	

NCP01 ≈

Power of a case-control association study 
expressed in terms of variance explained by 

the locus

ℎ![!]! ≈ ! !!(!!!)(!!!)
!

!! !!!
ℎ![!]! !!! 1− ! !

(1− !)! !

Yang et al (2009) Comparing Apples and Oranges: Equating the Power of Case-Control and Quantitative Trait 
Association Studies. Genetic Epidemiology 15



χ2 non-centrality parameter   = NCPQT =

NCP01 ≈

Power of a association study of a 
quantitative trait

!!"ℎ![!]!

1− ℎ![!]! !!

ℎ![!]! !!! 1− ! !!"
(1− !)! !

Yang et al (2009) Comparing Apples and Oranges: Equating the Power of Case-Control and Quantitative Trait 
Association Studies. Genetic Epidemiology

When the variance explained is the 
same in c-c and for quantitative trait

!"!!"
!"!!"

≈ ! !
!!(1− !)!!"
(1− !)!!!"

!

16



Practical
• Power in case-control study design
– Code of slides 3-6
– Curve function for power in case-control 

study design

17



Module	19:	Statistical	and	
Quantitative	Genetics	of	Disease:	
Interpreting	measures	of	variation	
explained;	Multivariate	analysis	

John	Witte
Lecture	#4



Outline

1. Measures	of	Variation	Explained
2. Multivariate	Analysis



1.	Measures	of	Variation	Explained

• Assume	we’ve	identified	risk	variants	from	
single	locus	models.

• Once	discovered,	what	next?
– Search	for	more	risk	variants?
– Focus	on	their	biology?
– Probably	both!

• Depends	on	their	overall	impact	on	disease.
• Can	assess	with	a	number	of	measures

– give	values	between	0	and	100%	



Measures	to	Assess	Impact
• Heritability	explained
• Sibling	recurrence	 risk	explained
• Log	RR:	familial	risk	explained
• Area	under	the	receiver-operating	 curve	(AUC)
• Population	attributable	fraction	(PAF)	

Key	questions:
• How	do	these	measures	compare?
• Do	they	provide	similar	info?
• Does	genetic	architecture	of	disease	impact	
differences?



Different	Messages?

• Results	in	contrasting	and	confusing	use	of	
these	measures.	

• Example,	
– for	Crohn’s disease	variants	in	NOD2 reported	to	
explain:
• 1-2%	of	heritability
• ~5%	of	familial	risk
• 18%	of	the	PAF	



Heritability	Explained



Heritability	Explained
Heritability:	h2

L[i]=	VAL[i] /	VPL[i]	 =VAL[i] /	(VGL[i] +	1)
where	

V*L[i]	=	additive	(*=A),	phenotype	(*=P),	genetic	(*=G)	variance.	

VA =	(1-p)24p2α2	+	2p(1-p)((1-p)-p)2α2 +	p24(1-p)2α2

=	2p(1-p)α2

α	 =	a+d((1-p)-p)	(ave effect	of	replacing	a	b	allele	by	a	B	allele).	

VD =	(1-p)24p4d2	+	2p(1-p)4p2(1-p)2d2 +	p24(1-p)4d2

=	(2p(1-p)d)2

VG =	VA +		VD (Applied	to	liability risk	genotypic	values.)

Heritability	explained:	h2
L[i] /	h2

L

Across	multiple	variants:						h2
L[i] /	h2

L (Falconer	&	Mackay	1996)
i
∑



Heritability	Approximation

If	we	can	assume	small	RR	and	a	multiplicative	model	(RRBb2 =	
RRBB).

Then,	h2Lapprox[	i] =	2p(1-p)(RRBb-1)2/x2

where	
x	=	the	mean	liability	of	cases,	approximated	as	z/K	
z	is	the	height	of	the	standard	normal	distribution	at	the	

threshold	 T	that	truncates	the	proportion	K,	T= Φ-1(1-K)	

Heritability	explained:	h2Lapprox[i] /	h2L

Stahl	et	al.,	Nat	Genet	2012	



• Proportion	of	the	total	sibling	risk	explained	by	the	risk	
variants	(observed	scale).

• Siblings	share	VAO/2	+	VDO/4	of	risk.

VAO[i] = k2
bb2*p(1-p)(p*(RRBB-RRBb)+(1-p)*(RRBb-1))2

VDO[i] = k2
bbp2(1-p)2(RRBB+1-2*RRBb)2

Sibling risk explained: log(λS[i]) / log(λS) 

Across multiple variants:

Sibling	Recurrence	Risk	Explained



Log	RR:	Familial	Risk	Explained
• More	epidemiologic	approach.	
• Genetic	variance	attributable	to	the	ith locus	on	the	log	

risk	scale:	

where	M	is	the	mean	value	of	log	relative	risk,	
M=	2p(1-p)	log(RRBb)	+	p2 log(RRBB).	

• Multiple	alleles,	log-risk	~N	with	var=2log(λS)
• Variation explained: VGlog[i]/ 2log(λS)
• Across multiple variants     VGlog[i]/ 2log(λS)

Pharoah et	al.,	Nat	Genet	2002

i
∑



Area	Under	the	Curve

where	
x	=	mean	liability	among	cases
v	=	-x	*	K(1-K)	
T=	population	threshold	(determined	from	the	disease	
prevalence	K)

• Proportion	explained:	divide	risk	variant	AUC	by	the	
maximum	attainable	AUC	for	a	genetic	risk	predictor.	

[(AUCL[i]-0.5)	/	(AUCMax-0.5)]2

Wray	et	al.,	Plos Genet	2010



Application

• Explore	how	these	measures	can	imply	
different	impacts	of	genetic	variants	on	
disease.

• Calculate	them	across	studies	of:
a)	Breast	cancer
b)	Crohn’s disease
c)	Rheumatoid	arthritis
d)	Schizophrenia	



a) Breast Cancer

Measure

Pe
rc

en
ta

ge

0
1

4
9

16

Heritability
(17.7%*)

Approx. Herit.
(12.6%)

Sibling RR
(22.4%)

Family RR
(20.8%)

AUC
(19.0%)

RR ≤ 1.3 1.3 < RR ≤ 2 2 < RR ≤ 15 RR>15

M=65
K=0.12
SRR=2
h2=0.6

Results:	Breast	Cancer



b) Crohn's Disease

Measure

Pe
rc

en
ta

ge

0
1

4
9

16

Heritability
(16.4%*)

Approx. Herit.
(17.8%)

Sibling RR
(24.7%)

Family RR
(21.2%)

AUC
(33.8%)

RR ≤ 1.3 1.3 < RR ≤ 2 2 < RR ≤ 15 RR>15

M=165
K=0.005	
SRR=10.3
h2=0.72	

rs1120902
RR=2.4,	RAF=0.93	

rs5743293
RR=3.1,	RAF=0.02	

Results:	Crohn’s Disease



c) Rheumatoid Arthritis

Measure

Pe
rc

en
ta

ge

0
1

4
9

16

Heritability
(14.8%*)

Approx. Herit.
(20.0%)

Sibling RR
(25.3%)

Family RR
(18.6%)

AUC
(24.3%)

RR ≤ 1.3 1.3 < RR ≤ 2 2 < RR ≤ 15 RR>15

M=36
K=.01,	SRR=6
h2=0.63

rs6910071,	HLA-DRB1E
RR=2.88,	RAF=0.22Results:	RA



d) Schizophrenia

Measure

Pe
rc

en
ta

ge

0
1

4
9

16

Heritability
(2.5%*)

Approx. Herit.
(15.9%)

Sibling RR
(24.3%)

Family RR
(2.9%)

AUC
(4.9%)

RR ≤ 1.3 1.3 < RR ≤ 2 2 < RR ≤ 15 RR>15

M=24
K=.01,	SRR=8.8
h2=0.8

CNVs:	16p11.2,	22q1
RR>25,	RAF=0.0003

Results:	Schizophrenia



What	goes	into	Denominator?

• All	measures	considered	here	require	
specification	of	a denominator.

• The	apparent	impact	of	genetic	variants	can	
hinge	on	the	baseline	or	overall	risks.

• Undertake	probabilistic	sensitivity	analyses	to	
explore	how	results	vary	across	risks.

• Final	results	in	terms	of	benchmarking,	not	
exact	estimates.



Population	Attributable	Fraction
• Proportion	by	which	disease	reduced	in	a	
population	if	exposure	to	a	risk	factor(s)	was	
reduced	or	removed.	

• For	multiple	variants:

!"!!"#$% = 1− (1− !"#!! )  

!"# = 2!(1− !)(!!!" − 1)+ !!!(!!!! − 1)
1+ 2!(1− !)(!!!" − 1)+ !!!(!!!! − 1)

 



Example	of	PAF



Population	Attributable	Fraction
• ~	Order	of	magnitude	larger	than	other	measures.
• As	RAF	>	0.50,	PAF	only	measure	that	increases.
• When	RR	and	RAF	get	large,	single	variant	PAF	
approaches	100%.

• Examples:
– Breast	cancer	variant	(rs10771399,	RR=1.2,	RAF	=	0.90)	
PAF=28%

– Schizophrenia	rare	variant	(CNV	at	16p11.2,	RR=26,	RAF	=	
0.0003)	PAF	=1.4%

– Combined	PAF	>	90%	(=100%	with	½	Crohn’svariants)	



Computational	Anomaly	in	PAF
• Apparent	impact	of	each	additional	risk	variant	
depends	on	which	variants	have	already	been	
incorporated.

• E.g.,	assume	two	genetic	variants	for	a	disease:	
– each	with	individual	PAF=0.50	
– combined	PAF	= 0.75	(=1-(1-0.5)2).	

• Remove	1	variant			disease	by	½.	
• Remove	2nd disease	by	½	in	remaining	popln.	Or	
by	¼	in	original	population.



PAF	curve	Depends	on	SNP	Order

0
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0.4
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0.6
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in
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F

Number of Breast Cancer Risk Variants

Largest	to	Smallest	PAR Smallest	to	Largest	PAR

Largest	to	Smallest	RR Smallest	to	Largest	RR



Another	Issue	with	PAF…

• Combined	PAF	not	analogous	to	that	obtained	by	
removing	an	environmental	exposure	(smoking).

• As	the	number	of	known	risk	loci	continues	to	
increase,	essentially	everyone	in	the	population	
will	carry	a	number	of	risk	alleles.	

• Then	any	preventative	treatment	directed	at	
countering	the	risk	loci	would	have	to	be	applied	
to	the	entire	population,	which	seems	very	
unrealistic.



Take	Home…

• For	common	and	rare	variants	of	varying	
penetrance,	use	heritability	explained	or	the	
proportion	of	genetic	risk	on	a	log-scale.

• Avoid	approximation	to	the	heritability	and	
sibling	relative	risk	because	they	break	down	for	
rare,	high-penetrance	variants	(vastly	inflated	
estimates).

• Issues	with	AUC,	and	PAF	has	a	number	of	
undesirable	properties.	



Outline

1. Measures	of	Variation	Explained
2. Multivariate	Analysis



2.	Multivariate	Analysis

• Single Locus Analysis

• Multiple Loci

logit(P(D |G)) = β0 +Glβl, l =1,…,m

logit(P(D |G)) = β0 +G1β1 +…+Gmβm



Hierarchical	Model

ITT

Z
2),,0(~ τδ

δαβ

=

+=

MVN

logit(P(D |G)) = β0 +G1β1 +…+Gmβm

Efron &	Morris,	1974
Witte,	1996
Conti	and	Witte,	2003
Chen	and	Witte,	2007



Posterior	Estimates

• Weighted	to	reflect	precision	of	ML	and	prior	
estimates
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Incorporating	Additional	Info?

– Part	of	a	known	pathway?
– Within	linkage	\ association	regions?
– Potentially	functional?
– Degree	of	conservation?
– Tagging	other	SNPs?
– Copy	number	polymorphism?



Z	matrix



HM	Example:	SNPs	and	Expression

• Previous	result:
– Linkage	to	chromosome	1,	and	association	between	SNP	in	
chitinase	3-like	2	(CHI3L2) promoter	and	CHI3L2’s	expression	
level

• Genoptypes:
– Affy	500K	data,	unrelated	CEPH	individuals

• Prior	information:
– Linkage	region	(&	LOD	scores)
– Functionality
– Conservation	scores
– Number	of	SNPs	tagged

Cheung	et	al.,	Nature	2005;	437:1365-1369.



HM	Example	Results

Chen	&	Witte,	AJHG	2007



Lecture 5
Polygenic models of disease risk

Naomi Wray

2016 Module 18: 
Statistical & Quantitative Genetics of Disease
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Aims of Lecture 5
Theory
• To consider polygenic models of genetic risk
• To demonstrate that many polygenic models are 

consistent with empirical data and that they can be 
considered equivalent

• To understand the conclusion that the liability 
threshold model is the model of choice

• To understand the criticisms and controversy of the 
liability threshold model

2



Genetic models of disease
Mendelian disease: 
• Individuals that possess the mutation get the disease.
• Dominant e.g Huntington’s  or recessive  e.g. Cystic fibrosis
Mendelian disease with variable penetrance. 
• Only those with the mutation get the disease
• Not everyone with the mutation gets the disease.
• E.g. C9orf72 in Motor Neurone Disease
Compound heterozygote disease.
• Like recessive Mendelian but individuals carry two different rare 

mutations in the same gene.
Two-hit diseases
• Hypothesized, but examples?
Oligogenic diseases –caused by presence of several genetic risk variants 
Polygenic diseases – caused by multiple genetic risk variants 
Multifactorial diseases- caused by multiple genetic risk variants and other 
risk factors

3



Common complex genetic diseases are 
likely to be polygenic multifactorial

Evidence:
Many risk variants of small effect identified

Implications: 
• We all carry risk alleles
• Each affected person may carry a unique portfolio
• Polygenic model can accommodate some people having few loci 

of larger effect and others having many loci of small effect
• The more loci involved, to be consistent with low prevalence, the 

probability of disease has to increase steeply with the number of loci.
• The more loci involved, the more likely they have a pleiotropic 

effect, which would be consistent with them being common in the 
population

• The more loci involved implies that we are highly robust to 
perturbations – but this breaks down when the burden of risk factors 
become too great

4



Modeling polygenic genetic risk 
• “Easiest” to understand by thinking of individual risk loci and how they 

act together to cause disease
– The frequency of the risk alleles

• Drawn from a distribution
• All the same

– The effect size of the risk alleles
• Drawn from a distribution
• All the same – relative risk associated

– Interaction between risk loci
• Complex
• All act in the same way

5



Basic Model
p = freq of risk allele 0.1
1-p = freq of non-risk allele

Assume Hardy- Weinberg equilibrium in the population
Genotype frequencies

P(bb)  = (1-p)2

P(Bb) = 2p(1-p)
P(BB) = p2

Relative risk associated with one risk allele R

n loci

Theoretical minimum number of risk loci : 0
Theoretical maximum number of risk loci possible: 2n

Mean number of risk loci: 2np
Variance in number of risk loci: 2np(1-p)
Range in number of loci expected 2np +/- (3.5)√2np(1-p)

100

0
200

20
18
5 - 36   

6



Visualising common complex genetic diseases
Polygenic genetic architecture

• Imagine a disorder underpinned by 
– 100 loci : 2 alleles at each locus
– Each risk allele has frequency 0.1

0 risk alleles = yellow
1 risk allele = light blue
2 risk alleles = dark blue
Average person a person carries 2 alleles * 100 loci *0.1 = 20 risk 
alleles
Everybody carries some risk alleles
Range in population ~5-36 (mean +/- 3.5 sd)
Polygenic burden : top 1% carry > 33 risk alleles

7



Visualising variation between individuals for common 
complex genetic diseases

Not all affected individuals carry the risk allele at any particular locus
Unaffected individuals carry multiple risk loci
Consequences of risk alleles depend on the genetic and environmental 
background 8



How to combine risk loci to explain disease

9

Additive on disease scale

Multiplicative on disease scale

Constrained multiplicative on disease scale

Multiplicative Odds on disease scale

Liability threshold model



Single locus disease model:
G = genotype;  D=disease;  K = overall disease risk in population

Basic genetic risk model

!
! P(G)! P(D|G)! P(D)=P(D|G)p(G)! P(G|D)=P(G)/P(D)!
aa! (1-p)2! f0! (1-p)2!f0! (1-p)2!f0/K!
Aa! 2p(1-p)! f0RBb! 2p(1-p)!f0RBb! 2p(1-p)!f0RBb/K!
AA! p2! f0RBB! p2!f0RBB! p2!f0RBB/K!
! ! ! Sum=!K! !
!
P(Disease)=K!=f0(1-p)2!+!f0RBb2p(1-p)!+!f0RBBp2! =!f0(1+p(R-1))2!
!
!
!=!f0((1-p)2!+!RBb2p(1-p)!+!RBB!p2)!
!
f0!!=!K/((1-p)2!+!RBb2p(1-p)!+!RBB!p2)!
!
if!RBb!=!R;!RBB!=!R2!
!
f0!!=!K/(1+p(R-1))2!
!
! 10



Additive on the disease scale
Probability of disease increases additively/linearly with the number of 
loci (x) carried.

P(D|x = s) = b*R*s

Constraint 
P(D|x = s) = b*R*s

E(P(D|x )) = E(b*R*x) = b*R*E(x) = b*R*2np = K

So b = K/2npR

11



Looking at the additive model

12

Base
N = 1e5                        # number of families
n = 100                         # number of loci
R = 1.1                          # relative risk of each risk allele
p = 0.2                         # allele frequency of each risk allele
K = 0.01                 # probability of disease

Follow up:
Base, R=1.5, p=0.5, K =0.1
Look at maximum probability of disease and consider whether 
this model will generate an increased risk in relatives



13
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Additive model
• Mathematically tractable
• To achieve additivity of risk loci and correct disease prevalence, 

does not give high probability of disease with large number of risk loci
• Not consistent with high heritability
• Not consistent with observed risks to relatives

• Can “fudge” the additive model by saying 
– P(D|x < n1) = 0
– P(D|n1<x<n2) = additive with x
– P(D|x> n2) = 1

Is non-linear with x
Not mathematically tractable

15



Multiplicative on the disease scale
Probability of disease increases multiplicatively with the number of risk 
loci (x)

P(D|x = s) = f0Rs

When s =0, P(D|x = 0) = f0

Constraint 

Binomial expansion
E(P(D|x)) = E(f0Rs) =f0 (pR + (1-p))2n = f0 (1 + p(R-1)p)2n = K

f0  =  K/(1 + p(R-1)p)2n

Additive on  the log risk scale

Log(P(D|x=s)) = s log(f0R)

Multiplicative on  the risk scale

16



Looking at the multiplicative model

17

Base
N = 1e5                        # number of families
n = 100                         # number of loci
R = 1.1                          # relative risk of each risk allele
p = 0.2                         # allele frequency of each risk allele
K = 0.01                       # probability of disease

Follow up:
Base, K=0.1
Base  K = 0.1, R =1.2
Look at maximum probability of disease and consider whether 
this model will generate an increased risk in relatives

Add fix



Multiplicative model
• Mathematically tractable
• High probability of disease with large number of risk loci so consistent 

with high heritability and can be consistent with observed risks to 
relatives

BUT
• Probability of disease for an individual can be > 1

IF constrain so that max probability of disease is 1
THEN 
• E(P(D|x)) is no longer K
• Need to fudge to retain this property
• Loses mathematical tractability

18



K=0.1, p=0.2, R=1.1

19
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K=0.1, p=0.2, R=1.2



Epidemiology risk model
Odds(Disease)= P(Disease)/(1-P(Disease))

Odds(Disease|x =s) = Odds(Disease|x =0)γx = Cγx

s = number of risk loci carried by an individuals

γ = odds ratio for each risk locus

P(Disease| x = s)= Cγs/(1-Cγs)

Good: probability of disease does not exceed 1
Bad: mathematically intractable

Janssen et al (2006) Predictive testing for complex diseases using multiple genes: Fact or fiction? Genet Med 8 395
Lu & Elston (2008) Using the optimal ROC to design a predictive test, exemplified with Type 2 Diabetes AJHG 82

21



Epidemiology risk modelling
• R = risk = probability of disease
• logR =  y ~N(𝞵, 𝞼2)
• R ~ LogNormal(𝞵, 𝞼2) = LN(𝞵, 𝞼2)
• 𝞵 is arbitrary but Pharaoh set as 𝞵 = -𝞼2/2, but can also be 

calculated from disease prevalence K

22Pharaoh	et	al	(2002)	Polygenic	susceptibility	 to	breast	cancer	and	implications	 for	prevention.	Nature	Genetics
Sieh et	al	(2014)	The	role	of	genome	sequencing	 in	personalised	breast	cancer	prevention.	Cancer	Epi	Biom &	Prev



Epidemiology risk model

See thesis from Luke Jostins ftp://ftp.sanger.ac.uk/pub/resources/theses/lj4/thesis.pdf chapter 2 – contains typos
23



Liability threshold model
Doesn’t parameterise in terms of number of risk loci
Only parameterises in terms of 

– prevalence of disease and heritability of liability 

OR
– prevalence of disease and risk to relatives

i.e.
– In terms of total variance explained which could cover a range of genetic 

architectures

• BUT is the liability threshold model realistic?

Variance explained by a locus
depends on frequency (p) and effect size(a) :   2p(1-p)a2

Variance explained is the same for 
p= 0.1, a=0.1            as for                  p= 0.5, a=0.06

24



Controversy – the abrupt threshold is not 
biological

Mitchell (2012) What is complex about complex disorders Genome Biol 12: 237
Edwards(1969) Familial predisposition in man, Br Med Bull 
Melnick & Shields (1976) Allelic restriction: a biologic alternative to multifactorial threshold model. The Lancet
Many references to the criticism in papers of the time eg Smith (1970)

“Contrary to the argument regarding the 
conservatism of the multifactorial threshold model 
for describing the inheritance of congenital 
malformations, little biological insight has resulted 
from the series of tautological, albeit grandiose, 
mathematical assumptions currently comprising 
the basis for this hypothesis.” Melnick & Shields 

(RP) [11]. Each of these, in turn, can arise due to 
mutations in any of a large number of different genes 
(over 100 for RP) [12]. Calculating the heritability of 
blindness or the relative risks to family members, 
averaged across all of these conditions, would not be a 
worthwhile or informative endeavor; in fact, the resultant 
figures would be pretty meaningless. Even within one 
‘condition’, such as RP, such calculations would not be 
worthwhile as some cases are dominant, others recessive, 
some X-linked and others autosomal.

‘Mental retardation’ is another common condition that 
has very high underlying genetic heterogeneity [13,14]. In 
many cases, this heterogeneity is apparent because the 
condition often arises as part of a distinct and discernible 
genetic syndrome (causing typical facial morphology, for 
example). But if we had only the intellectual disability to 
go on, there would be no way to distinguish these sub-
types. If we looked at the inheritance of mental retarda-
tion as a whole, it would indeed fit the criteria for a 
‘complex’ disorder. Yet there is no reason to think that 
most, or indeed any, cases of mental retardation arise due 
to a polygenic mechanism (that is, in the absence of a 
reasonably penetrant mutation).

Are ‘diabetes’, ‘schizophrenia’ or ‘coronary artery 
disease’ any more specific than ‘mental retardation’ as 
diagnoses? If two patients had different underlying 
causes, would we have any way to know this on the basis 
of their symptom profiles? Is it not possible, even likely, 
that as with blindness or mental retardation, many 
different insults could give rise to a similar end-state? 
This is especially likely if our descriptors are crude. For 
psychiatric disorders, for example, there is no definitive 
biomarker, brain scan or blood test that can aid in clinical 
diagnosis. These disorders are defined on the basis of 
surface criteria: the patient’s behavior and reports of their 
subjective experience. The diagnostic categories are 
constantly being debated and the borders between them 
redefined (for example, [15]). Many patients’ diagnoses 
are fluid over time and two patients can have the same 
diagnosis without sharing a single symptom in common.

None of this gives much confidence that many disease 
categories are natural kinds. Treating them as such is 
thus a massive leap of faith, and as we will see, the 
empirical evidence has not upheld this belief. GWAS 
have not uncovered the expected common variants that 
would explain polygenic inheritance across each of these 
disorders. By contrast, the identification of rare, indi-
vidually causal variants in a large number of different 
genes in different people clearly demonstrates a very high 
degree of genetic heterogeneity underlying common, 
complex conditions.

This is especially noteworthy for psychiatric disorders 
such as autism and schizophrenia, where mutations in 
over 100 different loci have been found [16-19]. For 

schizophrenia, genetic heterogeneity had supposedly 
been definitively rejected on the basis of the observed 
distribution of familial relative risks [2-4]. As we have 
seen, this is a circular argument: those numbers only 
make any sense if the condition is indeed monolithic. As 
it happens, it is trivial to show that a similar distribution 
can be generated on the basis of genetic heterogeneity, 
even by an arbitrary division of cases into different modes 
of inheritance [18]. Indeed, as originally pointed out by 
James [20]: there is ‘an infinite number of parameter 
sets … which lead to the same frequencies in relatives’.

The other argument against genetic heterogeneity is 
that if rare mutations of high penetrance exist, they 
should have been found by linkage analysis [4,21,22]. This 
conclusion again rests on several assumptions: that 
linkage was sought with the right phenotype, that the 
inconsistent replication of linkage results necessarily 
means that the large number found are all false positives, 
and that the level of genetic heterogeneity is low enough 
that even lumping many different families together into 
one analysis should still yield real linkage peaks [18,23]. 
Again, the data indicate otherwise. Thus, the hypothesis 
of a polygenic architecture for these disorders arises from 
the unfounded assumption that they are actually 
common disorders, as opposed to umbrella terms for a 
diverse set of very rare genetic conditions that happen to 
share symptoms. This is, however, just the first of a series 
of assumptions underlying the search for common 
variants conferring disease risk.

The theoretical foundation of genome-wide 
association studies
GWAS are founded on the polygenic model of disease 
liability, which itself arises from an assertion of 
breathtaking audacity by the godfather of quantitative 
genetics, DS Falconer. In an attempt to demonstrate the 
relevance of quantitative genetics to the study of human 
disease, Falconer, based on work of others before him (for 
example, [24]), came up with a nifty solution [25]. Even 
though disease states are typically all-or-nothing, and 
even though the actual risk of disease is clearly very 
discontinuously distributed in the population (being 
dramatically higher in relatives of affected people, for 
example), he claimed that it was reasonable to assume 
that there was something called the underlying liability to 
the disorder that was actually continuously distributed. 
This could be converted to a discontinuous distribution 
by further assuming that only individuals whose burden 
of genetic variants passed an imagined threshold actually 
got the disease. To transform discontinuous incidence 
data (that is, mean rates of disease in various groups, 
such as people with different levels of genetic relatedness 
to affected individuals) into mean liability on a 
continuous scale, it was necessary to further assume that 

Mitchell Genome Biology 2012, 13:237 
http://genomebiology.com/2012/13/1/237

Page 2 of 11
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Is the abrupt threshold non-biological?
• People are classed as diseased or not disease, any error in this classifcation, 

contributes of a heritability of < 1.

• Wright(1934) showed that 3 vs 4 toes in guinea pigs “cannot correspond to 
alternate phases of a single factor (=gene)” and used crosses to show several 
factors (“> 3”) underly a physiological threshold

• Fraser (1976) Detailed explanation of the biology consistent with a 
multifactorial threshold model for cleft palate

Fraser(1976) The multifactorial/Threshold concept –uses and misuses Teratology
Wright (1934) An analysis  of variability in number of digits in an inbred strain of guineapig. Genetics 19 506
Wright (1934) The results of crosses between inbred strains of guinea pigs, differing in the number of. Genetics 19 537

26



No need to invoke abrupt threshold of phenotypic liability – instead use 
Probability of risk of disease under liability threshold model

Two parameters: disease prevalence and heritability

“The abrupt threshold is thus 
conceptual rather than real and 
may be avoided by redefining the 
variance and risk function.” Smith 
1970

Curnow (1972) The multifactorial model for the inheritance of liabilty to disease and its implications for risk to relatives. 
Biometrics
Curnow & Smith (1975) Multifactorial models for familial diseases in man. J Royal Stat Soc A 138

! !"#$%#$ !"#"$%&!!"#$"!"%& = !)
= !Φ x− t

!!!
= !Φ x− t

1− ℎ!
!

Probit model

Probit model can be parameterised in terms of number of risk loci

27



Controversy – many models fit empirical data

Fraser(1976) The multifactorial/Threshold concept –uses and misuses Teratology

“One cause of scepticism of the liability threshold model was the realization 
that the empirical data would also fit other models (Morton, ’67; Smith, ’71), 
such as a major gene combined with polygenic and environmental 
variation (Morton and MacLean, ’74,a single locus with two alleles, each 
with incomplete penetrance (Reich et al., ’72, or a heterogeneous mixture 
of cases determined either by a major locus with incomplete dominance 
and reduced penetrance or by environmental factors (Chung et al., ’74, or 
various combinations of these (Elston and Stewart, ’73; Lange and Elston, 
’75). 

This is because the extreme tail of the distribution (which is all one can 
usually see when diseases are uncommon) are not good indicators of the 
shape of the main body of the distribution. ”

Need risk to disease from relatives of different types of 
relatives to start to distinguish between models
Not easy to collect, large sampling variances

28



Exchangeable models of disease
• For diseases 0.5%-2%
• High heritability
• Requires there be a large variance in risk among individuals. 

Consequently risk considered as a function of the number of 
causative alleles has to be steeply increasing.

Slatkin (2008)Exchangeable models of complex inherited diseases Genetics
most of the population has very low risk and a few
individuals have much higher risks. For example, if f is
beta distributed, i.e., Prð f Þdf } f a#1ð1# f Þb#1df , then
a ¼ 0.34 and b ¼ 3.31 for Var( f )/K2 ¼ 29. The as-
sumption of multiplicative interactions, with or without
the constraint that f # 1, is only one way to obtain a risk
function with such a large coefficient of variation of risk.
Any function for which the risk increases steeply in the
narrow range of genotypes present in relatively high
frequency will have the same qualitative properties. To
illustrate, consider the threshold model with parame-
ters chosen to approximate the constrained multiplica-
tive model. The solid line in Figure 1 shows the risk
under the multiplicative model as a function of i2 with
i1 ¼ 0 for the parameters given above. The dashed line
in Figure 1 shows the dependence of f on i2 for the
threshold model with b ¼ 5.7 3 10#8, p ¼ 0.198, T ¼ 22,
se ¼ 1.5, and L ¼ 70. The simulation results for this
model are similar to those from both multiplicative
models (Table 1). Even the additive model produces
similar results provided that it is constrained so that
values ,0 are set to 0 and values .1 are set to 1 (Table
1). These results demonstrate that it is not the multipli-
cative interaction among loci but the steep increase in
risk that creates the pattern of low prevalence and high
recurrence risk.

Additional simulation results confirm this conclu-
sion. The patterns are easiest to see in the threshold
model because the background risk (b), the range of
genotypes for which risk increases (T), and the steep-
ness of increase (1/se) can be varied independently.
In the multiplicative model, the overall shape of the
risk function depends on combinations of the parame-

ters. For example, the value of i2 for which f ¼ 0.5
(corresponding to T in the threshold model) is
# logð0:5Þ1 logðbÞ½ &=logð1 1 hrÞ.

The background risk, b, makes little difference in the
results as long as it is substantially smaller than the
average risk, K. Table 2 shows some typical results for a
series of cases in which K was constrained to 0.01. This
lack of sensitivity to changes in b confirms that the
behavior of the risk function only as risk starts to increase
determines patterns of recurrence risk and other measur-
able quantities.

If the model is fixed and L is allowed to vary, again
holding K constant, the main effect is to increase p, with
a smaller effect on KM, l1, and OR2 as shown in Figure 2.
The results are similar for other combinations of
parameters. Assuming a smaller number of loci does
not affect the qualitative conclusions and it reduces any
effects of linkage.

Increasing T while holding L and the other parame-
ters fixed has the opposite effect to increasing L: p
increases with increasing T, although KM and l1 are
somewhat more sensitive to changes in T (Figure 3).

Changes in se have almost no effect on p, but the
recurrence risks all increase as se becomes smaller, thus
confirming the importance of the steepness of the risk
function for recurrence risks. Some results are shown
in Table 3.

The results presented so far assume p is the same at
every locus. If p varies among loci, the results are
surprisingly similar. An example is shown in Table 4.
The parameter values are the same as for the threshold
model in Table 1 and Figure 1. The value of p that
yielded K ¼ 0.01 was used as the mean of a beta
distribution with a specified coefficient of variation
(CV) to generate a set of pj. That set of pj was tested to
determine whether 0.09 , K , 0.11 in the simulation
program, and the process continued until a set of pj

satisfying that condition was obtained. Then the simu-
lation program computed the other quantities of in-
terest. Results in Table 4 are based on averages of 106

replicates for each of five independent sets of pi. The
realized coefficients of variation in the five sets are 0.78,
0.72, 0.77, 0.71, and 0.72.

Figure 1.—Graphs of risk functions f 0; i2; L # i2ð Þ for the
models described in the text plotted against i2, the number of
heterozygous loci. For the two multiplicative models, b ¼ 5.7 3
10#8, r¼ 1; for the threshold model, b¼ 5.7 3 10#8, T¼ 22, and
se ¼ 2.5; for the constrained additive model, b ¼ #18

7 and
d ¼ 1

7 .

TABLE 2

Effect of varying b, the background risk, in the
threshold model

b p PAR OR1 OR2 KM l1

10#6 0.199 0.08 1.46 2.09 0.13 4.6
10#5 0.199 0.08 1.46 2.08 0.13 4.5
10#4 0.198 0.08 1.45 2.08 0.13 4.4
10#3 0.197 0.08 1.41 1.98 0.12 4.0

In all cases, L ¼ 70, T ¼ 22, se ¼ 2.5, h ¼ 0.5, and p is ad-
justed so that K¼ 0.01. All results are based on the averages of
106 replicates of the simulation program described in the text.

Exchangeable Models of Disease Risk 2257

Probability 
of disease

Number of risk alleles(x)

Multiplicative model – standard 
model used but allows probability of 
disease to be >1.
P(Disease)=P(Disease|x=0)Rx

Constrained multiplicative model –
constrain the multiplicative model 
to have a maximum probability of 1

“Additive” model
P(Disease)=b+xR, b=-18/7 set 
P(Disease)<0 to 0 and 
P(Disease)>1to 1

29



Which polygenic model to use?
The liability threshold model is the model of choice because

• It is the simplest parameterization that fits the observable data

• It is mathematically tractable

• It makes least assumptions about genetic architecture

“Most models are wrong some models are useful”

30



Practical 7
1. Additive risk model.

a. Run code
b. Change parameters

2. Multiplicative risk model.
a. Run code
b. Change parameters

3. Logistic risk model.
a. Run code
b. Change parameters

4. Liability threshold model
a. Run code
b. Change parameters
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Module	19:	Statistical	and	
Quantitative	Genetics	of	Disease:	
Gene-Environment	Interaction

John	Witte
Lecture	#6:	Gene-Environment	

Interactions



Overview

1. Conventional approaches
2. Case-only GxE
3. Empirical-Bayes case-only / case-control
4. Two-step approaches
5. Gene-sets / pathways
6. Other…

Gauderman et	al.,	submitted	2016



Gene-Environment Interactions

• Difference in the magnitude or direction of 
effect of an environmental exposure on disease 
risk in people with different genotypes (or vice-
versa). 

• Effect modification
• Important because it may:

– Identify populations with environmental exposures 
at increased risk.

– Increase power and/or statistical accuracy.
– Clarify biological mechanisms of disease risk.
– Explain some of the missing heritability.



1.	Conventional	Analysis

• Assume case-control data.
Logit(Pr(D=1|G,C) = α0 + βGG + βCC
– D = binary trait or disease outcome 
– G = genetic variant (e.g., SNP coded 0, 1, 2)
– C = set of potential confounders

exp(βG) = ‘marginal effect’ of G on D 
– averaging (or marginalizing) over the environmental 

(E) exposure-specific effects of G.  

• E may or may not be included in C



Conventional	GxE Model

Logit(P(D=1|G,E,C))=α0+ βGG+ βEE+ βGxEGxE+βCC

exp(βG) = main effect of G on D (G=1, E=0) 
exp(βE) = main effect of E on D (G=0, E=1)
exp(βGxE) exp(βG) exp(βE) = overall effect (G=1, E=1) 

• For a cohort study, use a log-linear model to estimate 
relative risks or a proportional hazards model to estimate 
hazard rate ratios if time-to disease data are available. 

• For a quantitative outcome, use linear regression.



Interaction	Scale
Multiplicative 
Departure from multiplicative effects implies odds-ratios associated with 
one risk-factor varies by the level of the other risk-factor and vice-versa. 

GxEMultp = exp(βGxE) exp(βG) exp(βE) / (exp(βG) exp(βE)) 
= exp(βGxE) = interaction effect 

Additive
Departure from additivity implies that absolute risk-reduction associated 
with removal of one risk-factor depends on the levels of another and 
vice-versa. 

GxEADD = exp(βGxE) exp(βG) exp(βE)  - exp(βG) - exp(βE) +1 





Factor V Leiden Mutations, Oral 
Contraceptive Use, and Venous Thrombosis

Strata Cases Controls

G+E+ 25 2

G+E- 10 4

G-E+ 84 63

G-E- 36 100

OR

G+E+: 34.7

G+E-: 6.9

G-E+: 3.7

G-E-: Reference

Total 155 169

Vandenbroucke et al., The Lancet 1994

OR Interaction (mult)
= ORG+E+ / ORG+E- ORG-E+
= 34.7 / 6.9 x 3.7
= 1.4

OR Interaction (add)
= ORG+E+ - ORG+E- - ORG-E+ +1
= 34.7 - 6.9 - 3.7 +1
= 25.1



Testing	for	Multiplicative	GxE Interactions

Logit(P(D=1|G,E,C))=α0+ βGG+ βEE+ βGxEGxE+βCC

• 1 df test. H0: βGxE = 0.
• 2 df test. Joint null H0: βG= βGxE = 0.
• 2 df often more powerful than 1 df test.



Controlling	Confounding

• When testing GxE interaction, need to consider 
inclusion of confounders C in the model, but also 
G x C and E x C interactions.

• GxE interaction effects can themselves be 
confounded by other interactions.

• Potential Confounders: PCAs, etc.

Keller	MC.	Biol Psychiatry 2014;75(1):18-24.



Why	so	few	GxE Interactions	detected?

• Limited power.
• Challenges measuring E (both for discovery and 

replication).
• Model misspecification.

• A number of approaches can increase power.



2. G-E Interaction: Case-Only

OR Interaction = ORG+E+ / ORG+E- ORG-E+
= ah/bg / (ch/dg) (eh/fg) 
= (ag/ce) / (bh/df) 
= ag/ce if no G-E assoc in controls (bh/df = 1). 

Strata Cases Controls
G+E+ a b
G+E- c d
G-E+ e f
G-E- g h

Odds Ratio (OR)
ah / bg
ch / dg
eh / fg
1

Piegorsch et	al.,	1994



Case-Only	Model

Logit(P(G=g|E,D=1)) = γ0+ γGxEE

exp(γGxE) = GxE interaction effect

• H0: γGxE = 0.
• Wald test asymptotically equivalent to H0: βGxE = 0 

(assuming log-additive coding for g, 0,1,2).

If G-E are associated in source population, then can give 
high false positive rate.



Overview

1. Conventional approaches
2. Case-only GxE
3. Empirical-Bayes case-only / case-control
4. Two-step approaches
5. Gene-sets / pathways
6. Other?



3.	Empirical-Bayes	GxE Test	
• Case-only more efficient than case-control, but can give biased 

results (e.g., if G-E assumption violated). 
• Use EB hybrid model to combine case-control and case-only 

approaches (bias versus efficiency trade-off).

βEB = K(βGxE) + (1-K)γGxE

where K=θGE
2/(σGxE

2+θGE
2)

θGE = G-E association

• If θGE ≠ 0 or	if	σGxE
2 is	small,	larger	weight	assigned	to	βGxE.	

• If θGE = 0 (G-E	independence),	γGxE≅ βGxE,	use	γGxE (more efficient).

• H0: βEB = 0. More power than case-control, helps control type I 
error from case-only.

Mukherjee	and	Chatterjee,	2008
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4.	Two-Step	GxE Tests

• Step 1 screen: For each SNP, compute screening test 
statistic T1 and corresponding p-value p1.  

• Step 2 test: Prioritize SNPs based on p1, and conduct 
GxE interaction test T2 with corresponding p-value p2.  

• Key requirement: T1 and T2 are independent. 

Kooperberg and	LeBlanc,	2008;	Murcray et	al.,	2009;	2011;	Hsu	et	al.,	2012



Two	Step	GxE:	Case-Control	Data

Step 1:
• Test for marginal D-G association

Logit(Pr(D=1 | G) = l0 + lGG, and/or
• Test for E-G association

Logit(Pr(G | E) = d0 + dEE
Step 2: 
• Test for GxE interaction, only using SNPs passing Step 1 

threshold (fewer comparisons).
• Can use an E Bayes procedure here.  
• Additional info from Step 1 increases power by up to 

50% over conventional approach.  



Hybrid	2-Step	Approach

• Step 1: test DG and EG.
• Retain SNPs that pass at least one of these 

tests.

• Step 2: Apply case-control analysis and test 
GxE, correcting for the number of SNPs retained 
from step 1.

Murcray et	al.,	2011;



Cocktail	Method

• Step 1: If p<threshold for EG, assign SNP that p.
• Else, assign SNP from DG (marginal) analysis.

• Step 2: 
– If p from DG, then test for GxE using case-only 

model.
– If p from EG, then test GxE using case-control 

analysis.
– Use weighted hypothesis testing.

Hsu	et	al.,	2012



EDGxE Approach

• Step 1: combines the DG and EG tests into 
single 2 df test. 

• Step 2: weighted hypothesis testing of case-
control analysis.

Gauderman et	al.,	2013



Power	Gains	for	Two-step

• Assume G has MAF = 0.3, and for E 30% 
exposed

• exp(bG) = exp(bE) = 1.0, exp(bGxE) = 1.5.  
• For a GWAS, 80% power (alpha = 0.05)
• For conventional GxE model, N=10,060.
• Two-step approaches:

– D-G screening, N=6,630
– E-G screening, N=4,472
– EDGE screening, N=3,994. 



Comparison	of	GxE Tests

Gauderman et	al.,	2013



Gauderman et	al.,	2013



Step	2:	Weighted	hypothesis	testing

• Partition SNPs into groups, where higher ranked 
SNPs have less stringent alpha level.

• B most significant SNPs in step 1 tested in step 
2 at significance level (α/2)/B, next 2B at 
(α/4)/2B, next 4B at (α/8)/4B, etc.

• Maintains overall GWAS alpha level, but uses 
larger alpha level for most promising 
interactions. 

Ionita-Laza et	al.	2007



Overview

1. Conventional approaches
2. Case-only GxE
3. Empirical-Bayes case-only / case-control
4. Two-step approaches
5. Gene-sets / rare variants
6. Other?



GxE for	Gene	Sets	/	Rare	Variants

• Burden and variance components tests.
• Combination of burden and variance component 

GxE tests.
• Can incorporate GxE term into kernel.



6.	Other…

• GxE interactions using Summary Stats
• Analyses stratified by E. 
• Then test for differences in G main effects. 

• Note: same methods can be applied to GxG
interactions.



Epistasis: Gene-Gene Interactions

• Similar	issues	as	with	gene-environment	
interaction	(e.g.,	multiplicative	vs additive	scale)

• P(Y=1|g1,g2)=b0	+	b1X(g1)	+	b2X(g2)	+	b12X(g1)	X(g2)
• Usually	test	when	g1 is	from	one	gene,	and	g2 from	

another	gene	(e.g.,	take	GWAS	hits)
• Feasible	to	do	all	pairwise:	plink:	--fast-epistasis

– “4.5	billion	two-locus	tests	generated	from	a	100K	data	set	took	just	over	24	hours	
to	run”	(http://pngu.mgh.harvard.edu/~purcell/plink/)



Example: GWAS of Psoriasis

Strange et al. Nature Genetics 2010

Take	the	hits,	and	follow	up	on	gene-gene	interaction	test	--
(nextslide)-->

ERAP1



Example of Gene-Gene 
Interaction

Strange et al. Nature Genetics 2010



Endnote	on	Interactions

Gauderman et	al.,	submitted	2016



GxE Software

Program GxE Case-
only

EB 2-Step Additive 
models

PLINK X

GxEScan X X X

CGEN X X X X
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Aims of Lecture 7
1. Calculation of Risk Profile Scores
2. Examples of Use of Risk Profile Scores
3. Statistics to evaluate risk profile scores

a. Nagelkerke’s R2

b. AUC
c. Decile Odds Ratio
d. Variance explained on liability scale
e. Risk stratification

2



Polygenic risk profile

3



Evidence for a polygenic contribution to 
disease

Figure 1
Click here to download high resolution image

Levinson et al (2014) Genetic studies of major depressive disorder. Why are there no GWAS findings and what can we do 
about it? Biological Psychiatry 4



Purcell	/	ISC	et	al.	 Common	polygenic	 variation	contributes	 to	risk	of	schizophrenia	and	bipolar	disorder	Nature 2009

Risk	Profile	Scoring

5
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Visualising variation between individuals for common 
complex genetic diseases

• Not all affected individuals carry the risk allele at any particular locus
• Unaffected individuals carry multiple risk loci
• Consequences of risk alleles depend on the genetic and environmental 

background 7
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Steps 1 - 3 in polygenic risk scoring
1. Identify Discovery sample with genome-wide association 

analysis summary statistics 

1. Identify Target sample with genome-wide genotypes. 
– The Target sample should not include individuals closely related to those 

in the Discovery sample. Results can be inflated if there is overlap 
between samples.

2. Determine the list of SNPs in common between Discovery 
and Target samples 

See: Wray et al (2013) Pitfalls of predicting complex traits from SNPs. Nature Reviews Genetics
8



Steps 4-7 in polygenic risk scoring as 
currently commonly applied

4. Construct a clumped SNP list: association p-value informed 
removal of correlated SNPs, 
– e.g. LD threshold of r2 < 0.2 across 500 kb. 
– e.g.,in the program  PLINK: −clump-p1  1–clump-p2  1–clump-

r2 0.2–clump-kb 500

5. Limit SNP list to those with association p-value less than a 
defined threshold 
– often several thresholds are considered, i.e., <0.00001, 0.0001, 

0.001, 0.01, 0.1, 0.2, 0.3 etc.
–

6. Generate genomic profile scores in the target sample: e.g., sum 
of risk alleles weighted by Discovery sample log(odds ratio). 
– e.g., in PLINK: –score

7. Evaluate

Purcell	/	ISC	et	al.	 Common	polygenic	 variation	contributes	 to	risk	of	schizophrenia	and	bipolar	disorder	Nature 2009
9



Calculate polygenic risk score for individual j

where 
– ln(ORi ) = effect size or‘score’ for SNPi from ‘discovery’ sample
– SNPij = # of alleles (0,1,2) for SNPi, person j in ‘target’ sample.
– m = number of SNPs considered in test set

Polygenic	Modeling

Scorej =
ln(ORi )× SNPij

i=1

m

∑
m

Purcell	/	ISC	et	al.	 Common	polygenic	 variation	contributes	 to	risk	of	schizophrenia	and	bipolar	disorder	Nature 2009
10



Consider step 4
4. Construct a clumped SNP list: association p-value informed 

removal of correlated SNPs, 
– e.g. LD threshold of r2 < 0.2 across 500 kb. 
– e.g.,in the program  PLINK: −clump-p1  1–clump-p2  1–

clump-r2 0.2–clump-kb 500

This step can be improved upon to make it less arbitary

Purcell	/	ISC	et	al.	 Common	polygenic	 variation	contributes	 to	risk	of	schizophrenia	and	bipolar	disorder	Nature 2009
11



Step 7 in polygenic risk scoring
7. Evaluate efficacy of score predictor.

– Regression analysis: 
– y= phenotype, x = profile score. 
– Compare variance explained from the full model (with x) compared to a 

reduced model (covariates only). 
– Check the sign of the regression coefficient to determine if the 

relationship between y and x is in the expected direction.

12



Discovery                         
Target Variance of target 

sample phenotype
explained by 
predictor

GWAS
association
results

Genome-
Wide 
genotypes

Select 
top SNPs 
and
identify 
risk 
alleles

Apply Genomic profiles
weighted sum of 
risk alleles

Evaluate   

SNP profiling schematic

Methods to identify risk 
loci and estimate SNP 
effects

Methods

Common pitfalls

Applications



Discovery & Target samples could be:

A. Same Disorder                - demonstrates polygenicity even in absence of 
genome-wide significant SNP associations

B. Different disorders - demonstrates genetic overlap between disorders

A. Target samples are disorder subtypes           
- investigates genetic genetic heterogeneity
- think carefully about how the heterogeneity is 

represented in  the Discovery sample if Target and 
Discovery are the same disease

Applications	of	polygenic	Risk	Profile	Scoring

14



NB. Null result in the ALSPAC 
community sample measured for 
PND but not MDD

Example Disorder Sub-types. Discovery: PGC-BPD
Target: Postnatal depression in MDD

Postnatal depression – a more homogeneous subtype of 
depression?

Female only 
Same bio-social stressor

Enda Tania
Byrne
Carillo-Roa
Samantha Meltzer-
Brody
Nick Martin
Brenda Penninx

Byrne et al (2014) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Archives of Women’s 
Health. In press
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Discovery & Target samples could be:

A. Same Disorder                - demonstrates polygenicity even in absence of 
genome-wide significant SNP associations

B. Different disorders - demonstrates genetic overlap between disorders

A. Target samples are disorder subtypes           
- investigates genetic genetic heterogeneity
- think carefully about how the heterogeneity is 

represented in  the Discovery sample if Target and 
Discovery are the same disease

D. Target samples have the same disease as the discovery sample and have 
environmental risk factors recorded

- investigate GxE
- think carefully about how the environmental risk 

factor  is represented in  the Discovery sample

Applications	of	polygenic	Risk	Profile	Scoring

16
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Application of Polygenic Risk Profiling Scores to 
investigate GxE, e.g., depression and childhood 
trauma

Peyrot et al (2014) Effect of polygenic risk scores on depression in childhood trauma Biol
Psychiatry

Peyrot et al

Thus far, polygenic information has not been taken into
account in research on G6E interaction in MDD, but there has
been ongoing research for interaction with candidate genes. The
motivation for research on G6E interaction in MDD is found
in its contribution to understanding the complex aetiology of
MDD,33 and its possibility to select environmental conditions
with increased genetic effects. Nevertheless, research on candidate
genes has led to rather contradictory results: in research on
the well-known serotonin transporter gene (5-HTTLPR) even
meta-analyses differ in their conclusions,5,6,34 with concerns about
publications bias.1 However, because genetic effects on MDD are

polygenic in nature,11,12 we argued that G6E interaction should
be tested with polygenic information.

The interaction effect thus found within our sample between
polygenic risk scores and childhood trauma in MDD has two
implications. The first is that polygenic risk scores have increased
effects in the presence of childhood trauma (as illustrated in
Fig. 1), which indicates that research on direct genetic effects
potentially gains power by focusing on individuals exposed to
childhood trauma. Therefore, if numbers would allow, it would
be very useful to perform a GWAS within, for example, the
collaborative PGC15 in individuals who experienced childhood

4

Table 2 Interaction between polygenic risk score (PRS) and childhood trauma in predicting major depressive disorder risk
and direct effects of PRSs and childhood trauma

Direct effectsa PRS6childhood trauma interactionb

PRS (model 1) Childhood trauma (model 2) Multiplicative (model 3) Additive (model 4)

PRS thresholds OR P OR P OR P RERI 95% CI

All major depressive disorderc

P50.001 1.01 0.808 1.64 50.001 1.06 0.288 0.08 70.08 to 0.25
P50.01 1.12 0.059 1.64 50.001 1.09 0.080 0.21 0.04 to 0.47
P50.05 1.22 0.001 1.64 50.001 1.14 0.008 0.37 0.14 to 0.71
P50.1 1.18 0.005 1.64 50.001 1.15 0.005 0.34 0.13 to 0.64
P50.2 1.15 0.021 1.64 50.001 1.12 0.014 0.29 0.10 to 0.56
P50.3 1.13 0.037 1.64 50.001 1.14 0.005 0.30 0.11 to 0.56
P50.4 1.13 0.035 1.64 50.001 1.13 0.010 0.28 0.08 to 0.55
P50.5 1.11 0.081 1.64 50.001 1.12 0.018 0.24 0.04 to 0.50

Severe major depressive disorderd

P50.001 1.02 0.805 1.69 50.001 1.07 0.185 0.09 70.08 to 0.28
P50.01 1.11 0.116 1.69 50.001 1.11 0.054 0.21 0.02 to 0.46
P50.05 1.22 0.002 1.69 50.001 1.14 0.013 0.37 0.14 to 0.72
P50.1 1.2 0.005 1.69 50.001 1.14 0.008 0.36 0.13 to 0.69
P50.2 1.17 0.016 1.69 50.001 1.13 0.017 0.33 0.10 to 0.67
P50.3 1.17 0.017 1.69 50.001 1.16 0.005 0.36 0.13 to 0.69
P50.4 1.17 0.016 1.69 50.001 1.14 0.009 0.34 0.11 to 0.70
P50.5 1.15 0.032 1.69 50.001 1.14 0.014 0.30 0.07 to 0.63

OR, odds ratio.
a. Direct effects of the PRSs, childhood trauma and their interaction effects were estimated in four separate logistic regression models. The effects of the PRS (model 1) and
childhood trauma (model 2) were estimated in models with age, gender and three principal components as covariates.
b. The interaction effects were estimated in a model additionally including PRS and childhood trauma as covariates (model 3 and model 4). The relative excess risks due to interaction
(RERI) represent tests for interaction as departure from additivity and were computed by ebCT+bPRS+bPRSxCT-ebCT-ebPRS+1.
c. 1645 cases and 340 controls.
d. 956 cases and 340 controls.

All MDD Severe MDD

Severe childhood trauma

Moderate childhood trauma

No/low childhood trauma

Severe childhood trauma

Moderate childhood trauma

No/low childhood trauma

6 –

4 –

2 –

0 –

6 –

4 –

2 –

0 –

72 71 0 1 2

PRS based on threshold P50.1 (s.d.)

72 71 0 1 2

PRS based on threshold P50.3 (s.d.)

Lo
g

od
ds

of
M

D
D

Fig. 1 Interaction between childhood trauma and polygenic risk score (PRS) on the risk for major depressive disorder (MDD).

The interaction effects as departure of multiplicativity in predicting risk on all MDD and risk on severe MDD are visualised by displaying the direct effects of the PRS based on
threshold P50.1 and P50.3 respectively for three childhood trauma levels, with childhood trauma scores of 0–1, 2–3 and 4–8 respectively.
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Discovery & Target samples could be:

A. Same Disorder                - demonstrates polygenicity even in absence of 
genome-wide significant SNP associations

B. Different disorders - demonstrates genetic overlap between disorders

A. Target samples are disorder subtypes           
- investigates genetic genetic heterogeneity
- think carefully about how the heterogeneity is 

represented in  the Discovery sample if Target and 
Discovery are the same disease

D. Target samples have the same disease as the discovery sample and have 
environmental risk factors recorded

- investigate GxE
- think carefully about how the environmental risk 

factor  is represented in  the Discovery sample
E. Target samples are recorded for an environmental risk factor

- insight into GxE

Applications	of	polygenic	Risk	Profile	Scoring
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Example: E in target sample
Discovery: schizophrenia
Target: Cannabis use

Power et al (2014) Effect of polygenic risk scores on depression in childhood trauma Mol
Psychiatry

PGC-SZ1+
SWE

AUS
Community 
sample

MATERIALS AND METHODS
The data used in this study come from the Australian Twin Registry. Data
were obtained from two studies in which twins and their families
participated in semi-structured diagnostic telephone interviews aimed
primarily at assessing psychiatric health. Informed consent was obtained
from all participants.
Sample 1 consisted of 6265 individuals aged between 23 and 39 years

(mean= 29.9 ± 2.5) interviewed between 1996 and 2000. Participants were
members of the young adult cohort, a volunteer panel of twins born
between 1964 and 1971. The interview was based on a modified version of
the SSAGA (Semi-Structured Assessment of the Genetics of Alcoholism33).
Detailed information about the sample recruitment, the study procedure
and the measures can be found elsewhere.34 Sample 2 comprised 9688
individuals aged between 18 and 91 years (mean= 46.3 ± 11.3) interviewed
between 2001 and 2005. Participants were members of the older and
younger adult cohort of Australian twin pairs (born between 1895 and
1964, and between 1964 and 1971, respectively). A subset of this sample
was ascertained based on large sibship size, or having a relative with
nicotine or alcohol dependence. The interview used for this sample was
also based on a modified version of the SSAGA. Further details about the
sample and assessment can be found in Heath et al.35

A subset of the participants (N= 1866; 11.7%) participated in both
studies, in which case we used data from the last assessment. The
combined phenotypic sample consisted of 14 087 individuals, of whom
7172 were genotyped. In both studies, twins were asked the same items
about cannabis use: (1) did you ever use marijuana?, (2) how old were you
the very first time you tried marijuana (not counting the times you took it
as prescribed)? and (3) how many times in your life have you used
marijuana (do not count times when you used a drug prescribed for you
and took the prescribed dose). Ever use was measured on a dichotomous
scale (ever versus never), whereas age at initiation and frequency of use
were open questions. Table 1 shows the prevalence of cannabis use for
individuals included in the present study.
Genotype data were obtained using three different Illumina single nucleotide

polygmorphism (SNP) genotyping platforms (317K, HumanCNV370-
Quadv3, Human CNV370v1 and Human610-Quad). Standard quality control
procedures were applied as outlined previously,36 including checks for
ancestry outliers, Hardy–Weinberg equilibrium (Po10−6), Mendelian errors,
call rate, genotypic missingness (>5%), individual missingness (>5%) and
minor allele frequency (o0.01). Individuals were pruned on relatedness,
removing one individual from each pair with relatedness >0.05, as
determined from genetic data. The final sample therefore comprised
2082 ‘unrelated’ individuals (see Table 1 for sample details).
Polygenic risk profile scores were constructed using the P-values and

log10 odds ratios from the most recent large GWAS of schizophrenia, a
meta-analysis of the Psychiatric Genomics Consortium’s studies with
additional Swedish samples totalling 13 833 cases and 18 310 controls.27

SNPs were pruned for linkage disequilibrium using P-value informed
clumping in PLINK,37 using a cutoff of R2 = 0.25 within 200 kb window. The

Q2 MHC region of the genome was excluded, due to its complex linkage
disequilibrium structure. After linkage disequilibrium pruning, 147 830
SNPs remained. Multiple scores were generated for each individual using
the PLINK score option and based on top SNPs from the schizophrenia
GWAS using varying significance thresholds (P= 0.0001, 0.001, 0.01. 0.05,
0.1, 0.2, 0.3, 0.4, 0.5 and 1.0). Polygenic risk profile scores were tested for
association with a binary ever versus never used cannabis and two
quantitative traits for quantity of use and age at first use, in logistic and
linear regressions, respectively. These analyses were corrected for the first
10 ancestry-informative principal components, genotyping platform, sex,
age, age squared and sex by age. Analysis was performed in STATA.38

RESULTS
After pruning, 2082 unrelated individuals remained in our sample
with both genotype and phenotype measures. Within the sample,
1011 individuals (48.6%) had ever used cannabis, of whom 997
had data on quantity of use. Mean number of usages of cannabis
over lifetime was 62.7 (95% CI 53.8–71.6), and the mean age of
initiation of use was 20.1 (95% CI 19.7–20.5). Males showed higher
rates of use than females, 53.5% compared with 43.9% (Po0.001),
although no difference in age at initiation. Table 1 shows the
summary statistics for the samples.
Polygenic risk scores for schizophrenia showed positive

associations for ever versus never use of cannabis across all P-
value thresholds, with the strongest association for those SNPs
with P-values below 0.01 in the original schizophrenia GWAS (see
Figure 1, R2 = 0.47%, P= 2.6× 10− 4). Significant associations were
also seen in the analysis of quantity of cannabis use for 9 of the 10
SNP cutoffs, with the top association seen for those SNPs with
P⩽ 0.05 for schizophrenia (R2 = 0.85%, P= 0.003). No association
was seen with age at initiation of use, although the association
with quantity of use remained significant when number of years of
usage was accounted for (results not shown).
As a secondary analysis, polygenic risk score for schizophrenia

risk alleles with Po0.01 (the threshold with the greatest
association in the primary analysis) was examined within 990
twin pairs (608 dizygotic and 382 monozygotic) where data on
cannabis use of both twins was available. Taking the mean
polygenic risk score within each twin pair, an ordinal regression
was performed to predict whether neither (n= 272), one (n= 273)
or both twins (n= 445) were cannabis users. After correcting for
age, sex and zygosity, a significant association was observed
(P= 0.001). Those twin pairs where both reported using cannabis
had the greatest burden of schizophrenia risk alleles, pairs with
only one user were found to have an intermediate level and the
lowest burden was found in pairs where neither twin reported use
(see Figure 2).

Table 1. Summary statistics of sample for cannabis use traits

Users Non-users

N 1011 1071
Mean age (s.e.) 41.3 (0.23) 53.0 (0.37)
Percentage female (%) 46.5 56.0
Mean age at initiation (s.e.) 19.6 (0.06) —
Mean number of usesQ5 over lifetime (s.e.) 62.7 (4.56) —

Schizophrenia polygene scores and cannabis use
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Figure 1. Results of polygenic risk scores for schizophrenia predict-
ing variance explained (R2) in cannabis use as both a binary trait of
ever versus never, and as a quantitative trait of lifetime use within
only users. Polygenic scores were created using different cutoffs for
the inclusion of risk variants for schizophrenia, ranging from
P= 0.0001 to 1.0.

Genetic predisposition to schizophrenia
RA Power et al
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DISCUSSION
Our results show that to some extent the association between
cannabis and schizophrenia is due to a shared genetic aetiology
across common variants. They suggest that individuals with an
increased genetic predisposition to schizophrenia are both more
likely to use cannabis and to use it in greater quantities. This is not
to say that there is no causal relationship between use of cannabis
and risk of schizophrenia, but it does establish that at least part of
the association may be due to causal relationship in the opposite
direction. Although the variance in cannabis use explained by
schizophrenia polygenic risk profiles is small, it is in line with other
cross-phenotype analyses, largely due to the polygenic risk scores
for schizophrenia predicting only ~ 7% of the variation for
schizophrenia itself. Previous associations between polygenic risk
scores for schizophrenia and other psychiatric illnesses, such as
bipolar disorder, major depression and autism,39 have shown
effects of similar sizes. Further research will be needed to see
whether the genetic overlap observed here is specific to cannabis
use or is present across illicit drug use and addiction phenotypes,
data for which was not widely available in this sample. For now,
these findings have important implications for the current
perception of cannabis use as a risk factor for schizophrenia,
and other psychotic disorders.
It is important to emphasize that the implication of schizo-

phrenia risk alleles predicting cannabis use, if true, does not rule
out the possibility of cannabis independently being a risk factor
for schizophrenia. A bidirectional association between cannabis
use and psychosis has previously been suggested.40 Further, one
caveat to interpreting the direction of causation concerns the
discovery sample used to identify schizophrenia risk alleles. The
schizophrenia GWAS sample will likely include many more
cannabis users among cases than controls. This may lead to an
excess of causal SNPs associated with cannabis use, as opposed to
schizophrenia itself, identified as schizophrenia risk alleles. Only if
the discovery schizophrenia sample was comprised entirely of
non-cannabis users could causation be inferred without any risk of
confounding. This is an important consideration as to whether
polygenic risk scores overestimate individuals’ un-modifiable
genetic risk by including their genetic predisposition to modifiable
environmental risk factors.
These results highlight the blurring between behavioural

phenotypes and environment, and have wider implications for
how we perceive supposedly environmental risks for disease.
Individuals select their own environments based on their innate
and learned preferences, and have their environments react to

their own behaviour. Further, parents pass down both genes and
environment to their children. All of these can contribute to
gene–environment correlation, particularly with respect to beha-
vioural traits. Several studies have shown that supposedly environ-
mental risk factors such as urbanicity, religiosity and stressful life
events have heritable components to them.41–43 The existence of
heritability for supposedly environmental risk factors does not
mean they are inevitable, only that causality is more complicated
to discern. Future studies will need to explore the matching of
cases and controls on environmental risk variants to fully
disentangle causation. Q3This can be supplemented exploring the
generation of polygenic risk scores for environmental risk factors,
and their role in predicting disease status. The wider availability of
genetic data in richly phenotyped samples should allow for the
integration of genetics into an epidemiological framework, and so
the discovery of gene–environment correlations where they exist.
With ongoing debate over the legalization of cannabis and the

potential health risks it poses, understanding the association
between its use and schizophrenia is a priority. It has previously
been suggested that, even assuming an entirely causal relation-
ship, the required reduction in the number of cannabis users to
prevent one case of schizophrenia is in the thousands.44

Our findings here highlight the possibility that this association
might be bidirectional in causation, and that the risks of cannabis
use could be overestimated. This is an important subtlety to
consider when calculating the economic and health impact of
cannabis use.
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Factors affecting accuracy of risk 
prediction

Genetic architecture of the trait - unknown

Sample size of discovery sample – maximise

Sample size of target sample – be sufficiently large (once achieved not 
so much gained by increasing further)

Variance explained by genetic factors

Dudbridge (2013) Power and predictive accuracy of polygenic risk scores. PLoS Genetics
Wray et al (2014) Polygenic methods and their application to psychiatric traits. Journal of Child Psychology & Psychiatry (in press)
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Statistics to evaluate polygenic 
risk scoring 1.

1. Nagelkerke’s R2

– Pseudo-R2 statistic for logistic regression

http://www.ats.ucla.edu/stat/mult_pkg/faq/general/Psuedo_RSquareds.htm

Cox & Snell R2

Full model: y ~ covariates + score         Logistic, y= case/control = 1/0
Reduced model: y ~ covariates
N: sample size

This definition gives R2 for a quantitative trait.
For a binary trait in logistic regression, C&S R2 has maximum 

Nagelkerke’s R2 divides Cox & Snell R2 by its maximum to give an R2 with usual 
properties of between 0 and 1.

= 1− exp 2
! !"#!$%&'$ℎ!!"!(!"#$%"#!!"#$% )!!
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Problem with Nagelkerke’s R2

K = disease prevalence

Predictor explains 7% of 
variance in liability

24



Statistics to evaluate polygenic 
risk scoring 2.

2. Area Under Receiver Operator Characteristic Curve

– Well established measure of validity of tests for classifier diseased vs non-
diseased individuals

– Nice property – independent to proportion of cases and controls in sample
– Range 0.5 to 1
– 0.5 the score has no predictive value
– Probability that a randomly selected case has a score higher than a 

randomly selected control

25



Visualising AUC
• Rank individuals on score 
• Start at origin on graph
• Work through list of ranked individuals
• Move one unit along y-axis if next individual is a case
• Move one unit along x-axis is next individual is a control6

3  cases
1   control
1
1
2
1
2
2
1
53

2

2
1

1

1

1

1

2

5
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Problem with AUC

Complex genetic diseases
Table 1 lists AUCmax for a range of complex genetic diseases

calculated using equation 3, with h2
L calculated using equation 1

from published estimates of K and lS. Despite being observable,
the parameters K and lS are subject to considerable sampling
variance; we have tried, where possible, to take estimates from
reviews or large studies, but large study samples simply do not
exist for some low prevalence disorders. The values of AUCmax

show that it should be possible for a genomic profile for complex
diseases to exceed 0.75, the threshold regarded [20] as making a
diagnostic classifier clinically useful when applied to a sample
considered to be at increased risk. However, based on the results
in Table 1 only the diseases with high heritability and low
prevalence, such as Type I diabetes, Crohn’s Disease and Lupus,
can achieve an AUC, by genomic profiling alone, above the 0.99
threshold regarded [20] as being required for a diagnostic
classifier to be applied in the general population. In Table 1, we
also consider the AUC expected under scenarios where a
genomic profile accounts for only a half (AUChalf) or a quarter
(AUCquar) of the known genetic variance. These results show that
for rare diseases genomic profiles can be useful classifiers of
disease (AUC.0.8 when K,0.01), when the profile explains only
a quarter of the genetic variance.

Using equations (4) and (5) we calculate r2
ĜGG

for the diseases
listed in Table 1 when AUC = 0.75. The results (Table 1) show
that the same AUC can represent quite different successes of the
genomic profile in representing the known genetic variance,
ranging from 0.10 to 0.74. If we are able to explain half of the
known genetic variance with identified risk variants then genomic
profiles for most complex genetic disease (AUChalf, Table 1) will
achieve some clinical validity as AUC is .0.75 for all but bladder
cancer, for the examples provided.

Example: age related macular degeneration
Consider the first listed example in Table 1, age related macular

degeneration (AMD).

Based on the review of Scholl et al [21] and the large twin study
of Seddon et al [22] we have used a prevalence after 80 years age
of advanced AMD K = 11.8% and a sibling recurrence risk
representing the genetic contribution of lS = 2.2, which corre-
spond to heritability on the liability scale of h2

L = 0.68 (equation 1).
If the genetic test explains all the genetic variance (r2

ĜGG
= 1), the

maximum AUC that could be achieved by a genomic profile is
AUCmax = 0.92. If only half or a quarter of the genetic variance can
be detected by genomic markers then the maximum AUC that can
achieved are AUChalf = 0.81 and AUCquar = 0.72, respectively,
values that exceed the prediction of genetic risk based of the most
optimistic scenario from a prediction based on family history (Text
S1). If complete disease status is known for all siblings, parents,
grandparents, aunts, uncles and cousins then the maximum AUC
that could be achieved is 0.71, translating to a genomic profile that
explains 0.21 of the genetic variance (Table S1). In practice, the
AUC for a risk predictor based on rs1061170 a single nucleotide
polymorphism in the complement factor H (CFH) gene was 0.69
[23] (and was approximately equal for advanced AMD cases vs
controls and all AMD cases vs controls). From equations 4–6,
h2

L x½ " = 0.12, lS[x] = 1.17, r2
ĜGG

= 0.17 and (lS[x] – 1)/(lS – 1) = 0.15.

Discussion

Relationship of AUCmax to heritability and disease
prevalence when the disease classifier is a genetic risk
predictor

The AUC is a widely used statistic that summarises the clinical
validity of a diagnostic or prognostic test. However, the AUC
statistic of a genomic profile alone has an upper limit (i.e. AUCmax)
which depends on the genetic epidemiology of the disease, namely
the disease prevalence and heritability. It is important that in the
first instance, particularly when genomic profiling is in its infancy,
that genomic profiles are judged on their ability to predict genetic
risk (their analytic validity) rather than on the basis of clinical

Figure 2. Relationship between maximum AUC (AUCmax) from a
genomic profile and heritability on the liability scale h2

L. For
different disease prevalences (A–D) from simulation (dashed line) and
from equation 3 (solid line).
doi:10.1371/journal.pgen.1000864.g002

Figure 3. The relationship between maximum AUC (AUCmax)
from a genomic profile and heritability on the liability scale h2

L
(dashed line) or heritability on the observed scale H2

01 (solid
line), for disease prevalences in order from top left, K = 0.001,
0.01, 0.1, 0.3.
doi:10.1371/journal.pgen.1000864.g003

Genetic Interpretation of AUC

PLoS Genetics | www.plosgenetics.org 6 February 2010 | Volume 6 | Issue 2 | e1000864

Well recognised as a measure of clinical validity
A measure of how well genomic profile predicts yes/no phenotype

But hides the fact that is should be judged as a measure of analytic validity 
A measure of how well genomic profile predicts genotype

The maximum AUC achievable depends on the 
heritability of the disease 

Many useful properties
Problem is genetic interpretation

Wray	et	al	(2010)	The	genetic	interpretation	of	area	under	the	receiver	operator	characteristic	curve	in	genomic	profiling.
PLoS Genetics
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3. Odds Ratio

Statistics to evaluate polygenic risk scoring 3.

PGC-SCZ	2014	108	loci	Nature
28

Cut distribution into deciles
Each decile will include both cases and controls
Odds of being a case in each decile
Odds ratio for each decile compared to the 1st decile

analysis (Extended Data Fig. 5 and 6a). However, using the same target
sample as earlier studies and PT 5 0.05, R2 is now increased from 0.03
(ref. 10) to 0.184 (Extended Data Fig. 5). Assuming a liability-threshold
model, a lifetime risk of 1%, independent SNP effects, and adjusting for
case-control ascertainment, RPS now explains about 7% of variation on
the liability scale46 to schizophrenia across the samples (Extended Data
Fig. 6b), about half of which (3.4%) is explained by genome-wide signi-
ficant loci.

We also evaluated the capacity of RPS to predict case-control status
using a standard epidemiological approach to a continuous risk factor.
We illustrate this in three samples, each with different ascertainment
schemes (Fig. 3). The Danish sample is population-based (that is, inpa-
tient and outpatient facilities), the Swedish sample is based on all cases
hospitalized for schizophrenia in Sweden, and the Molecular Genetics
of Schizophrenia (MGS) sample was ascertained specially for genetic
studies from clinical sources in the US and Australia. We grouped indi-
viduals into RPS deciles and estimated the odds ratios for affected status
for each decile with reference to the lowest risk decile. The odds ratios
increased with greater number of schizophrenia risk alleles in each sam-
ple, maximizing for the tenth decile in all samples: Denmark 7.8 (95%
confidence interval (CI): 4.4–13.9), Sweden 15.0 (95% CI: 12.1–18.7)
and MGS 20.3 (95% CI: 14.7–28.2). Given the need for measures that
index liability to schizophrenia47,48, the ability to stratify individuals by
RPS offers new opportunities for clinical and epidemiological research.
Nevertheless, we stress that the sensitivity and specificity of RPS do not

support its use as a predictive test. For example, in the Danish epide-
miological sample, the area under the receiver operating curve is only
0.62 (Extended Data Fig. 6c, Supplementary Table 6).

Finally, seeking evidence for non-additive effects on risk, we tested
for statistical interaction between all pairs of 125 autosomal SNPs that
reached genome-wide significance. P values for the interaction terms
were distributed according to the null, and no interaction was significant
after correction for multiple comparisons. Thus, we find no evidence for
epistatic or non-additive effects between the significant loci (Extended
Data Fig. 7). It is possible that such effects could be present between
other loci, or occur in the form of higher-order interactions.

Discussion
In the largest (to our knowledge) molecular genetic study of schizophre-
nia, or indeed of any neuropsychiatric disorder, ever conducted, we dem-
onstrate the power of GWAS to identify large numbers of risk loci. We
show that the use of alternative ascertainment and diagnostic schemes
designed to rapidly increase sample size does not inevitably introduce a
crippling degree of heterogeneity. That this is true for a phenotype like
schizophrenia, in which there are no biomarkers or supportive diagnostic
tests, provides grounds to be optimistic that this approach can be suc-
cessfully applied to GWAS of other clinically defined disorders.

We further show that the associations are not randomly distributed
across genes of all classes and function; rather they converge upon genes
that are expressed in certain tissues and cellular types. The findings include
molecules that are the current, or the most promising, targets for ther-
apeutics, and point to systems that align with the predominant aeti-
ological hypotheses of the disorder. This suggests that the many novel
findings we report also provide an aetiologically relevant foundation
for mechanistic and treatment development studies. We also find over-
lap between genes affected by rare variants in schizophrenia and those
within GWAS loci, and broad convergence in the functions of some of
the clusters of genes implicated by both sets of genetic variants, parti-
cularly genes related to abnormal glutamatergic synaptic and calcium
channel function. How variation in these genes impact function to increase
risk for schizophrenia cannot be answered by genetics, but the overlap
strongly suggests that common and rare variant studies are complemen-
tary rather than antagonistic, and that mechanistic studies driven by rare
genetic variation will be informative for schizophrenia.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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Figure 3 | Odds ratio by risk score profile. Odds ratio for schizophrenia by
risk score profile (RPS) decile in the Sweden (Sw1-6), Denmark (Aarhus), and
Molecular Genetics of Schizophrenia studies (Supplementary Methods).
Risk alleles and weights were derived from ‘leave one out’ analyses in which
those samples were excluded from the GWAS meta-analysis (Supplementary
Methods). The threshold for selecting risk alleles was PT , 0.05. The RPS
were converted to deciles (1 5 lowest, 10 5 highest RPS), and nine dummy
variables created to contrast deciles 2-10 to decile 1 as the reference. Odds ratios
and 95% confidence intervals (bars) were estimated using logistic regression
with PCs to control for population stratification.
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• But remember case-control samples are 

50% cases
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analysis (Extended Data Fig. 5 and 6a). However, using the same target
sample as earlier studies and PT 5 0.05, R2 is now increased from 0.03
(ref. 10) to 0.184 (Extended Data Fig. 5). Assuming a liability-threshold
model, a lifetime risk of 1%, independent SNP effects, and adjusting for
case-control ascertainment, RPS now explains about 7% of variation on
the liability scale46 to schizophrenia across the samples (Extended Data
Fig. 6b), about half of which (3.4%) is explained by genome-wide signi-
ficant loci.

We also evaluated the capacity of RPS to predict case-control status
using a standard epidemiological approach to a continuous risk factor.
We illustrate this in three samples, each with different ascertainment
schemes (Fig. 3). The Danish sample is population-based (that is, inpa-
tient and outpatient facilities), the Swedish sample is based on all cases
hospitalized for schizophrenia in Sweden, and the Molecular Genetics
of Schizophrenia (MGS) sample was ascertained specially for genetic
studies from clinical sources in the US and Australia. We grouped indi-
viduals into RPS deciles and estimated the odds ratios for affected status
for each decile with reference to the lowest risk decile. The odds ratios
increased with greater number of schizophrenia risk alleles in each sam-
ple, maximizing for the tenth decile in all samples: Denmark 7.8 (95%
confidence interval (CI): 4.4–13.9), Sweden 15.0 (95% CI: 12.1–18.7)
and MGS 20.3 (95% CI: 14.7–28.2). Given the need for measures that
index liability to schizophrenia47,48, the ability to stratify individuals by
RPS offers new opportunities for clinical and epidemiological research.
Nevertheless, we stress that the sensitivity and specificity of RPS do not

support its use as a predictive test. For example, in the Danish epide-
miological sample, the area under the receiver operating curve is only
0.62 (Extended Data Fig. 6c, Supplementary Table 6).

Finally, seeking evidence for non-additive effects on risk, we tested
for statistical interaction between all pairs of 125 autosomal SNPs that
reached genome-wide significance. P values for the interaction terms
were distributed according to the null, and no interaction was significant
after correction for multiple comparisons. Thus, we find no evidence for
epistatic or non-additive effects between the significant loci (Extended
Data Fig. 7). It is possible that such effects could be present between
other loci, or occur in the form of higher-order interactions.

Discussion
In the largest (to our knowledge) molecular genetic study of schizophre-
nia, or indeed of any neuropsychiatric disorder, ever conducted, we dem-
onstrate the power of GWAS to identify large numbers of risk loci. We
show that the use of alternative ascertainment and diagnostic schemes
designed to rapidly increase sample size does not inevitably introduce a
crippling degree of heterogeneity. That this is true for a phenotype like
schizophrenia, in which there are no biomarkers or supportive diagnostic
tests, provides grounds to be optimistic that this approach can be suc-
cessfully applied to GWAS of other clinically defined disorders.

We further show that the associations are not randomly distributed
across genes of all classes and function; rather they converge upon genes
that are expressed in certain tissues and cellular types. The findings include
molecules that are the current, or the most promising, targets for ther-
apeutics, and point to systems that align with the predominant aeti-
ological hypotheses of the disorder. This suggests that the many novel
findings we report also provide an aetiologically relevant foundation
for mechanistic and treatment development studies. We also find over-
lap between genes affected by rare variants in schizophrenia and those
within GWAS loci, and broad convergence in the functions of some of
the clusters of genes implicated by both sets of genetic variants, parti-
cularly genes related to abnormal glutamatergic synaptic and calcium
channel function. How variation in these genes impact function to increase
risk for schizophrenia cannot be answered by genetics, but the overlap
strongly suggests that common and rare variant studies are complemen-
tary rather than antagonistic, and that mechanistic studies driven by rare
genetic variation will be informative for schizophrenia.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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Figure 3 | Odds ratio by risk score profile. Odds ratio for schizophrenia by
risk score profile (RPS) decile in the Sweden (Sw1-6), Denmark (Aarhus), and
Molecular Genetics of Schizophrenia studies (Supplementary Methods).
Risk alleles and weights were derived from ‘leave one out’ analyses in which
those samples were excluded from the GWAS meta-analysis (Supplementary
Methods). The threshold for selecting risk alleles was PT , 0.05. The RPS
were converted to deciles (1 5 lowest, 10 5 highest RPS), and nine dummy
variables created to contrast deciles 2-10 to decile 1 as the reference. Odds ratios
and 95% confidence intervals (bars) were estimated using logistic regression
with PCs to control for population stratification.
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3. R2 on liability scale

Linear model  
Full model: y ~covariates + score          y = case/control = 1/0
Reduced model: y~ covariates

Calculate R2 attributable to score

If target sample is a population sample i.e. prevalence of cases in sample = 
prevalence of cases in controls
Then R2 is a measure of the proportion of variance in case-control status 
attributable to the genomic risk profile score 
= heritability attributable to genomic profile score                 on the disease scale

Convert to liability scale (see lecture 1)

ℎ!"#$!!"! !

Statistics to evaluate polygenic 
risk scoring 4.

ℎ!"#$! = ℎ!"#$!!"! !(1− !)
!! !

Lee	et	al	(2012)	A	better	coefficient	of	determination	for	genetic	profile	analysis.	Genetic	Epidemiology 30



3. R2 on liability scale cont.
If target sample is a case-control sample 

i.e. prevalence of cases in sample >> prevalence of cases in controls
Then R2 is a measure of the proportion of variance in case-control status 
attributable to the genomic risk profile score 
= heritability attributable to genomic profile score on the case-control scale

Convert to the liability scale

Where C is:

is on the same scale as heritability estimated from family studies and                    
GREML SNP-chip heritability

Statistics to evaluate polygenic 
risk scoring 4 cont.

ℎ"#$% = ℎ"#$'((% )
1 + ℎ"#$'((% )	

Lee	et	al	(2012)	A	better	coefficient	of	determination	for	genetic	profile	analysis.	Genetic	Epidemiology
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Statistics to evaluate polygenic 
risk scoring 

5.Stratification & health economics

For every 1,000 people treated with intervention could “save” 10
Treat only 18% = 180 and “save” 8 (4%)

Number of people treated to save 1 reduced from 100 to 22.5

Polychronakos & Li NRG (2011) Understanding Type I Diabetes through genetics. Nat Rev Genetics

Population risk  of 1%

80% of cases in 
top 18% of genetic risk



z
K

t
i

Variance explained by genetic predictor r2 (has max h2)
Mean phenotypic liability of cases = i = z/K
Mean genetic liability of controls = v = -iK/(1-K)
Mean liability of cases explained by predictor = ir2

Mean genetic liability of controls = vr2

Variance of genetic predictor in cases = r2(1-r2i(i-t))
Variance of genetic predictor in controls = r2(1-r2v(v-t))

Using normal distribution theory can work out 
Proportion of cases captured when x% of population screened

Proportion of population that needs to be screened in order to capture 80% of 
the cases

Area Under ROC

33

v

Phenotypic liability 
variance is 1



Improvement between predictors

34

Difference in AUC

Net reclassification index

Topic of debate
Needs more research

Kerr et al (2014) NRI for 
evaluating risk 
prediction indices.



Module	18:	Statistical	and	
Quantitative	Genetics	of	Disease:	

Pleiotropy /	Co-heritability
John	Witte
Lecture	8



Pleiotropy
• From	Greek:	Pleio (many)	and	tropic	(affecting).

• One	gene,	multiple	traits.



Assessing	Pleiotropy

1.	Pleiotropy ‘look-ups’
2.	Meta-analysis	(ASSET)
3.	Multiphenotype
4.	Multilevel	pleiotropy
5.	Polygenic	risk	scores
6.	Co-heritability
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Pleiotropy “Look-ups”

Univariate analyses:

logit (Pr(Y=1|G,	C))	=	α	+	Gβ +	Cγ

One-at-a-time	for	each	SNP	/	cancer

β, P-values,	FDR
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2.	Meta-Analysis	Approach
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Single	estimate	of	effect



ASSET

Standard	fixed-effects

Subset-based

Zmeta = π k Zk
k=1

K

∑
Zk = βk / se(βk )

π k = nk / nkk=1

K
∑

Where

Bhattacharjee et	al. AJHG, 2012

Zmax−meta =maxs∈S Z(s)

Z(s) = π k (s)Zk
k∈S
∑Where
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3. Multiphenotype Approach
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• Model	all	traits	simultaneously.
• Can	be	more:	

• consistent	with	underlying	biology;
• powerful	than	univariate.

• Power	gain	due	to:	
• genetic	correlations	among	traits;
• fewer	tests.



Multinomial Regression

logit (Pr(Yi=1|G, C)) = αi + Giβi + Cγi

Y is multivariate with dimension = # traits

Test different pleiotropic models by 
specifying assumptions about the βi. 
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H0:	β1=β2=...=βk=0	
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At	least	one	βi≠0	

Alternative Hypotheses



1 2 ... 100 101 … 1K ... 1M …

Prostate
Breast

Testicular
Melanoma

Colon
Bladder
Lung

Rectum
NHL
Ovary

Alternative Hypotheses
Ca
nc
er
s

Variants	/	SNPs

All	βI are	equal	and	non-zero
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Alternative Hypotheses
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Variants	/	SNPs

A pre-specified	subset	of	βI	are	
non-zero.	
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All	traits	have	different	effects

What	if	we	have	different	types	of	
traits:	binary,	discrete,	or	
continuous?
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MultiPhen: ‘Inverse Regression’
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Cancers

Proportional	odds	logistic	regression	of	genotype	on	
cancers:

log	(Pr(G>m|Y)/Pr(G≤m|Y)) =	αm+Y’β+Cγ
m = 0,1 

O'Reilly	et	al.,PLoS One	2012
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• Model selection or shrinkage to detect pleiotropy.

• Explore subsets of traits, select ‘best’ model that 
minimizes expected loss of information penalized 
by model complexity (e.g.,	AIC,	BIC).

• Shrinkage	via	LASSO	(adaptive)	to	select	non-null	
traits.

MultiPhen: ‘Inverse Regression’



Comparison	of	FDR,	ASSET	&	MultiPhen

Majumdar,	 Haldar,	Witte,	Genetic	Epi 2016.

• Traits simulated under additive model (Galesloot et al. 2014)

• Single causal variant with influence on a subset of traits.

• Number of traits: 4 - 20

• Residual correlation between traits: 0.05 - 0.3

• Heritability of trait due to variant: 0 - 0.4%

• LD between variant and typed SNP: 0.80, 0.95

• MAF at variant and SNP: 0.1, 0.2

• Number of individuals: 10K - 30K  



Results
Overall	pleiotropy:	

MultiPhen >	ASSET	(power)
– Except	when	all	traits	associated	
&	in	same	direction.

Increases	with	increasing	correlation.

Traits	underlying	pleiotropy:
FDR	>	MultiPhen >	ASSET	(sens /spec)
– Except	FDR	=	MultiPhenwhen	weak	

correlation
– MultiPhen =	ASSET	when	strong	

correlation.	

Majumdar,	 Haldar,	Witte,	Genetic	Epi 2016.
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Incorporate	additional	info	into	analysis
- Pathways
- Cancer	types
- Cancer	histology
- Other	exposures

4.	Multilevel	Pleiotropy
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Gene	/	Pathway	Priors
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Gene	A	in	
Pathway	1

Gene	B	in	
Pathway	2



1 2 ... 100 101 … 1K ... 1M …

Prostate
Breast

Testicular
Melanoma

Colon
Bladder
Lung

Rectum
NHL
Ovary

Ca
nc
er
s

Variants	/	SNPs

Leverage	Individual-level	Data

Hormonal

Digestive

Tumor	histology
Exposures:
Smoking
BMI
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5.	Polygenic	Risk	Scores	(PRS)
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Variants	/	SNPs

Single	SNPs	not	very	predictive.
Combining	SNPs	in	a	PRS
substantially	more	predictive.

sj =
βi xij

i=1

m

∑
mwhere	

βi =	log(odds	ratio)	for	SNPi from	one	cancer.
xij =	#	of	alleles	for	SNP i,	person	j	in	diff	cancer.
Large	number	of	SNPs	(m)
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Polygenic	Risk	Score	Pleiotropy



Risk	Score	Profile
Bladder Breast Colorectal Endometrial Esophagus/Gastric Lung Prostate Testicular

Ta
rg
et
	C
an

ce
r

Bladder - 0.008 0.20 0.27 0.17 0.09 0.67 0.03

Colon 0.18 0.81 - 0.74 0.59 0.97 0.01 0.01

Kidney 0.002 0.20 0.46 0.34 0.23 0.07 0.81 0.23

Lung 0.39 0.66 0.46 0.54 0.03 - 0.31 0.51

Melanoma 0.32 0.99 0.40 0.04 0.39 0.99 0.54 0.70

Prostate 0.21 0.63 0.003 0.00001 0.27 0.47 - 0.02

Rectum 0.72 0.89 - 0.79 0.01 0.01 0.94 0.61

Testicular 0.02 0.23 0.75 0.0002 0.57 0.21 0.10 -

Negative	Association

Positive Association

PanCancer PRS	in	UK	Biobank
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6.	Co-heritability
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Co-heritability	with	Summary	Statistics

Bulik-Sullivan,	et	al.	NG	2015b

Cross-trait
LD	Score
Regression
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Expected	-log10(p)	

QQ-Plot	

Yang	et	al	(2011).	EJHG

If	a	proportion	of	SNPs	associated:
observed	=	expected	
(median	test	statistic)	

If	observed	>	expected:
genomic	inflation

Due	to	population	stratification?

LD	Score:
Distribution	of	Associated	SNPs	



Genomic	Inflation	Expected	under	
Polygenic	Inheritance

Under	null	hypothesis:
• Mean	test	statistic	(λmean)	=	median	test	statistic	(λmedian)

Under	polygenic	inheritance	(no	population	stratification):
λmean >	λmedian
λmean reflects	SNP	heritability	hg

2

λmedian reflects	#	causal	variants	contributing	to	hg
2

Controlling	for	genomic	inflation	may	remove	both	pop	strat and	real	
effects.	How	to	tell	them	apart?

Yang	et	al	(2011).	EJHG



Impact	of	LD	on	Association

Slide:	Ben	Neale

LD	among	SNPs:

• More	tagging	of	SNPs,	more	likely	 to	tag	a	causal	variant.
• If	all	SNPs	equally	likely	associated	given	LD	status,	expect	more	association	for	

SNPs	with	more	LD	‘friends’.
• This	is	a	reasonable	assumption	under	a	polygenic	genetic	architecture.	

Consider	 causal	SNPs

All	in	LD	with	causal	SNP	
also	associated

Lonely	SNPs	only	
associated	if	causal



Expected	Value	of	Summary	Stats

But	can’t	separate	out	population	 stratification	here.	

Sample	size

SNP	
heritability

Number	of	
SNPs

LD	Score	of	SNP	j:	
amount	of	genetic	
variation	tagged	by	j.

Bulik-Sullivan,	et	al.	NG	2015

LD	Score:	
r2 LD	between	SNP	j	and	

neighboring	 SNPS



Separating	hg2	and	population	stratification

Same	as	
before

Population
Stratification	
factor

intercept sloperegression

Bulik-Sullivan,	et	al.	NG	2015

Expected	Value	of	Summary	Stats



Polygenicity vs Population	Stratification

GWAS	QQ	Plot

Regression	of	
association	X2
statistic	on	LD	
score

Stratification Polygenicity

Bulik-Sullivan,	et	al.	NG	2015



Co-heritability	with	Summary	Statistics

Bulik-Sullivan,	et	al.	NG	2015b

Cross-trait
LD	Score
Regression



Phenotypic	
correlation

Genetic	
covariance	
between	
traits

Number	of	
overlapping	
samples

Bulik-Sullivan,	et	al.	NG	2015

Cross-trait	LD-score	Regression

• Use	LD	Score	to	estimate	the	genetic	correlations	
between	diseases	with	summary	statistics
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Aims of Lecture 9
1. Variance explained by genetic factors
2. Factors affecting accuracy of risk prediction
3. Pitfalls of Risk Prediction

2



Variance explained by genetic factors

3



Definition of heritabilities

4

Proportion of variance attributable to genetic factors

From family data and phenotypic records h2

Proportion of variance attributable to genetic factors accounting for all genetic 
variants across the frequency spectrum (Lecture 1: Wray)

From genome-wide significant SNP h2-i
Proportion of variance attributable to a single variant (Lecture 2: Witte)

From all SNPs h2-SNP or h2-chip or h2-g
Proportion of variance attributable to common SNPs on SNP chips (GREML; 
LDScore; Lecture 8: Witte)

From genome-wide significant SNP h2-GWS
Proportion of variance attributable to genome-wide significant SNPs 

From genome-wide significant SNP h2-profile score
Proportion of variance attributable to a set SNPs (Lecture 7: Wray)



The heritabilities
Total&heritability.&&
•  Es$mated*from*family*studies,*assumed*to*reflect*addi$ve*gene$c*effects.**

Chip/heritability.**
•  Propor$on*of*variance*a;ributed*to*all*variants*assayed*by*GWAS*arrays.*

Heritability&due&to&known&variants.**
•  Propor$on*of*variance*a;ributed*to*sta$s$cally*significant*GWAS*variants.*

S"ll$missing*Heritability.*Not*captured*by*GWAS*variants.**
•  On*average*will*not*decrease*with*larger*sample*size,*but*will*decrease*

as*more*of*the*gene$c*variance*is*captured*(e.g.,*rare*variants).*

Hiding*heritability.*Could*ul$mately*be*captured*by*GWAS*variants.**
•  Should*decrease*as*sample*sizes*grow.*

Missing*
Heritability*

Figure*4.*

Zero&heritability&explained.&

5Witte, Visscher, Wray (2014) The contributions of genetic variants to disease depends on the ruler. Nature Genetics



Variance explained by sets of SNPs 
e.g., all GWS SNPs

If independent loci then simply sum up estimates from individual SNPs

If not independent need to use set based tests

• Set-based test (--sbat)

– Using GWAS summary data

– Similar as PLINK --set or VEGAS but more accurate and faster

– Working on more powerful improvements

• Can be used for discovery

– e.g. gene-based tests (genome-wide)

• Can be used to test prior hypotheses

– e.g. do all known together explain more variation than expected by chance?

6http://www.cnsgenomics.com/software/



h2-SNP or h2-chip or h2g

7

Purpose:
• Detects the signal contributed from variants that are not 

genome-wide significant
• Detects if cases are more similar to other cases genome-

wide than they are to controls without specifying at which 
loci there are more similar

• Gives an indication of what could be detected as GWS 
as sample size increases

• Uses data available from currently available data to 
inform on future experimental design



h2-SNP or h2-chip or h2g

8

Five ways to measure:
• Compare empirical results to simulations – Purcell et al (2009) Nature
• GREML – linear mixed models- GREML  Yang et al (2010), Lee et al (2011)

(Visscher & Goddard SISG Unit)
• Haseman-Elston or PCGC Haseman & Elston (1972), 

Chen (2014) Frontiers Gen, 
Golan et al (2014) PNAS

• Transformation of polygenic risk scores – Dudbridge (2013)
• LDscore –GWAS summary statistics - Yang et al (2011) EJHG, 

Bulik-Sullivan et al (2015) Nat Gen



h2-SNP by simulation to explain these 
results

0

0.01

0.02

0.03
P < 0.1

P < 0.2

P < 0.3

P < 0.4

P < 0.5

Schizophrenia
Bipolar disorder Non-psychiatric (WTCCC)

CADCD HT RA T1D T2D

0

0.01

0.02

0.03
P < 0.1

P < 0.2

P < 0.3

P < 0.4

P < 0.5

All p > 0.05

p < 10-5 to 10-28

Purcell et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature



Simulations
• Simulations considered a wide range of genetic architectures

– Number risk loci, effect size
– Which genetic architectures generated the same pattern of 

results we observed with the real data
• Results showed

– Most genetic architectures were not consistent with empirical 
result

– But many architectures were consisted with the empirical results
– All consistent models pointed to h2SNP= ~0.3 for schizophrenia

• Results not consistent with
– Many extremely rare (MAF < 1/10,000) variant

10Purcell et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature



11

Direct estimation of h2-SNP parallels 
estimation of h2– the gist

Coefficient of relationship of parent and 
offspring = ½

Estimate of heritability
= 2*correlation of offspring and parent

Coefficient of relationship of grand-
parent and grand-offspring = ¼ 

Estimate of heritability
= 4*correlation of grandoffspring and 
grandparent

Coefficient of relationship of individual 
and distant relative= 1/r 

Estimate of heritability
= r*correlation between distant relatives 
on individuals

Yang et al (2010) Nature

In real analysis 
twiddles and caveats

- But the gist of where 
the information is 
coming from



Visualizing where the information is 
coming from

12Vinkhuyzen et al (2013) Estimation and Partition of Heritability in Human Populations Using Whole-Genome Analysis Methods
Annual reviews of genetics. 



GREML: h2-SNP
• Uses individuals who are unrelated in the classical 

sense
• Coefficient of relationship < 2nd cousins

13

How can we get an 
accurate estimate when 
coefficients of 
relationships are so tiny?

Because based on a very large number of pairwise 
relationships
Sample of 10,000 has ~10,0002/2 = 50M



h2 vs h2-SNP

14

h2

Proportion of variance attributable 
to all genetic variants – across 
whole frequency spectrum

Could be contaminated by non-
additive genetic variance

Could be contaminated by 
environmental factors shared by 
close family members

h2-SNP
Proportion of variance attributable to 
common genetic variants

Non-additive genetic effects shared 
by distant relatives are tiny – expect 
no contamination

Distant relatives unlikely to share 
environmental effects

Do you know your 
3rd cousins??



N=1 anecdote, skepticism check

15

Same school, Same street
Last year found out they were 3rd cousins

Edinburgh

London

Bedford N. Ireland

Brisbane

Brisbane

N. Ireland N. Ireland

1st cousins: Last contact as children

Great-great-
grandfather

N. Ireland



Comparison of GREML and LDscore

16
Yang et al (2015) Genome-wide heterogeneity between sexes and populations for 
human height and bod mass index. Hum Mol Gen



Comparison of GREML and LDscore

17



GREML: h2-SNP for disease

18

• Observations are on disease scale 
but heritability is most interpretable 
on the liability scale

• Case-control samples are 
ascertained

• Differences between case and 
control samples may reflect 
artefacts

• Use linear regression
• Estimate on observed 

scale
• Transform to Liability scale 

via Robertson 
Transformation

• Up date transformation

• Very stringent QC

Lee et al (2011) Estimating missing heritability for Disease from GWAS AJHG
Lee et al (2013) Estimation and partition of polygenic variation captured by common SNPs for AD, MS & Endo, HMG



Ascertainment in case-control studies

Unaffected (1-K) affected (K)

x

z

t

Control (1-P) Case (P)

19

Robertson (1950)
Appendix of Dempster and Lerner (1950)
See Lecture 1

Lee et al (2011)AJHG
Zhou & Stephens (2013) Polygenic Modeling with Bayesian Sparse 
Linear Mixed Models PLoSG Text S3
Golan et al (2014) Measuring missing heritability: Inferring the 
contribution of common variants PNAS

Estimate of proportion of variance explained 
by SNP between cases and controls



Golan et al (2014) Measuring missing heritability: 
Inferring the contribution of common variants PNAS

20

Non-normality of liability
Case-control sampling induces GxE correlation
Solution use Haseman-Elston regression regression of phenotype correlation between each pair of 
individuals and genetic relationship between each pair of individuals

(see also Chen et al, 2013 Estimating heritability of complex traits from GWAS using IBS-based 
Haseman-Elston regression. Front Genet )



Golan et al (2014) Measuring missing heritability: 
Inferring the contribution of common variants PNAS

21

Regress Zij on Aij (coefficient of relationship 
estimated from SNPs)

PCGC regression (phenotype correlation-
genotype correlation regression) – general 
form of Haseman-Elston correction for fixed 
effects

Their simulation shows substantial underestimation of SNP-heritability from GREML applied to 
disease traits

NB their simulation strategies exacerbate differences that we see in real data

In the past we have used H-E in-house as a check, that all is well with GREML. Usually we see 
little difference in estimates, but standard errors smaller with GREML.

As sample sizes increase the induced GxE correlation will become more of a problem. See 
revision when posted of
Loh et al Nature Genetics 2015
Includes updated faster version of PCGC



Golan et al (2014) Measuring missing heritability: 
Inferring the contribution of common variants PNAS

22



Summary
• Heritability from family records is not expected to 

be the same as SNP-h2

• Five methods to estimate SNP-h2

– GCTA GREML = gold standard

– Methods based on summary statistics are the best 
starting place

• We are not interested in decimal place accuracy 
missing heritability

• We should be interested in order of magnitude 
missing heritability
– What can we learn from the data available now to 

inform on future experimental design

23



Risk Prediction ..again



Factors affecting accuracy of risk 
prediction

Genetic architecture of the trait – unknown
• Number, frequency, effect size
• How well marker effects are correlated with causal 

variants (LD)

Sample size of discovery sample – maximise
– how well marker effects are estimated

Sample size of target sample – be sufficiently large 
(once achieved not so much gained by increasing 
further)
• Precision of estimation of R2

Dudbridge (2013) Power and predictive accuracy of polygenic risk scores. PLoS Genetics
Wray et al (2014) Polygenic methods and their application to psychiatric traits. Journal of Child Psychology & Psychiatry (in press)

25



Single GWAS- how to split into discovery 
and target?

Split based on independently collected samples

What is the optimum split?

Equal sample sizes of discovery and target gives maximum power to 
detect association between discovery and target (Dudbridge).

But with large samples power achieves 1, so value of increasing target 
sample is redundant.

Rule of thumb. 
Split sample equally into discovery and target until target has ~2000 
cases + 2000 controls, then add additional samples to discovery.
Then with larger sample sizes the accuracy of the estimation of SNP 
effects is increased and the accuracy of the GRS for an individual 
increases

Dudbridge (2013) Power and predictive accuracy of polygenic risk scores. PLoS Genetics
Wray et al (2014) Polygenic methods and their application to psychiatric traits. Journal of Child Psychology & Psychiatry
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Simulation study demonstrating the impact of sample 
size and genetic architecture on profile scoring

Purcell et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature

M1-M7 vary in 
• proportion of SNPs associated in 

disease
• distribution of effect sizes
• Frequency distribution
• LD between SNPs and causal 

variants

27



Discovery                         
Target Variance of target 

sample phenotype
explained by 
predictor

The image part with 
relationship ID rId2 
was not found in the 
file.

GWAS
association
results

Genome-
Wide 
genotypes

Select 
top SNPs 
and
identify 
risk 
alleles

Apply Genomic profiles
weighted sum of 
risk alleles

Evaluate   

SNP profiling schematic

Methods to identify risk 
loci and estimate SNP 
effects

Methods

Common pitfalls

Applications



Pitfall 1: No target (=validation) sample

– Report R2 or AUC from discovery sample only
– Small n large p problem
– Even under null can get high R2 within discovery 

sample when p >> n

Wray,	Yang,	Hayes,	Price,	Goddard,	 Visscher	(2013)	Pitfalls	of	predicting	complex	traits	from	SNPs.	Nat	Rev	Genetics	



Pitfall 2: Overlapping Discovery & 
Target Sample

• Overlapping discovery & target samples
• Greater similarity between discovery & target samples 

than discovery & true validation samples
– E.g. cross-validation samples
– Not a pitfall, as such, but to be aware

Wray,	Yang,	Hayes,	Price,	Goddard,	 Visscher	(2013)	Pitfalls	of	predicting	complex	traits	from	SNPs.	Nat	Rev	Genetics	



Pitfall 3: Less obvious non-independence
• Cross-validation but select associated SNPs from total 

sample

• Select SNPs in discovery sample, for those SNPs re-
estimate effects in the target sample  

Wray,	Yang,	Hayes,	Price,	Goddard,	 Visscher	(2013)	Pitfalls	of	predicting	complex	traits	from	SNPs.	Nat	Rev	Genetics	



Select m ‘best’ markers out of M in total

‘Prediction’ in same sample

E(R2) >> m/N

à Lots of variation 
explained by chance

~15 best markers selected 
from 2.5 million markers

Selection bias



Practical

39



Module	18:	Statistical	and	
Quantitative	Genetics	of	Disease:
Rare	Variants	and	Prediction

John	Witte
Lecture	10



Rare Variants

• “Common”: MAF > 0.05
• “Less common”: 0.05>MAF>0.01
• “Rare”: 0.01<MAF

• SNP: MAF>0.01 (Single Nucleotide 
Polymorphism)

• SNV: MAF<0.01 (Single Nucleotide 
Variant)



Rare Variants

• Previous GWAS focused on chips 
designed for MAF > 0.05 (most powered 
for MAF > 0.10)

• Exome arrays
• Sequencing (de novo)



Sequencing	Costs	have	Fallen



Analysis	of	Rare	Variants

Focus	on	a	set	of	k	variants

• Difficult	to	model	due	to	sparsity.
• Limited	power.



Sample	Size	for	Rare	Variants



Rare	Variant	Tests
• ‘Up-weight’	analyses	for	most	likely	causal	variants.

• Burden	tests	(CAST,	Collapsing,	WSS).

• Variance	component	(dispersion)	tests	(SKAT,	SKAT-O,	C-alpha).

• Burden	tests	more	powerful	when	a	large	percentage	of	rare	
variants	are	causal	and	have	the	same	sign	(direction	of	
association).

• Variance	component	more	powerful	when	there	is	a	mixture	of	
risk	and	protective	variants,	and	most	rare	variants	are	not	
causal.



Burden	Tests	for	Rare	Variants

Where	wk defines	similarities	among	the	variants	for	
their	aggregation	/	modeling

Estimate	the	effect	of	a	weighted	summary	‘score’
across	each	individuals’	rare	variants	on	outcome.



Key	Aspect:	Specifying	wk

where
ak inverse	variance	weighting,	controls’	MAF
sk direction	of	association;	positive	/	negative
ik Indicators	for	whether	to	aggregate

• Overall	MAF	
– Hard	cutpoint (e.g.,	MAF	<	0.01)

• Functional	information
– Non-synonymous
– Deleterious	(SIFT)

kkkk isaw ××=



Example:	Cohort	Allelic	Sums	Test	(CAST)

ABCa1, 
APOA1, or 

LCAT
>95% HDL

<5% 
HDL

OR (p-value)

No ns 
variants 125 107 1.0

ns variants 3 21 8.1 (1x10-4)

Aggregate rare variants within three genes
ak = 1
sk = 1
ik = 1 if rare, nonsynonymous

Cohen et al., Science 2004;305:869.
Morgenthaler Mut Res 2007;615:28.



Difficult	to	determine	best	weighting	/	
aggregation	scheme	a	priori	

Most	approaches	make	strong	assumptions	about	
exchangeability	and	combination	of	rare	variants	for	

analysis.



Empirical	‘Step-Up’	Approach

• Data	driven	aggregation	of	rare	variants
• Consider	multiple	possible	groupings
• Select	the	“best”	grouping	(e.g.,	min	P)
• Correct	by	permutation

• Possible	groupings	defined	by:
– MAF	weighting	/	cutoffs
– Positive	or	negative	associations
– Nonsynonomous
– Deleterious	(SIFT)

• All	possible	subsets,	or	those	contributing	most	to	signal	

Hoffmann,	Marini	&	Witte,	2010



Variance Components Approach

• SNP-set	(Sequence)	Kernel	Association	Test	(SKAT)	
(Wu	et	al.,	AJHG	2011).

• Uses	flexible	weight	kernels,	which	reflect	different	
assumptions	underlying	the	rare	variant	tests.	

• For	example,	that	rarer	variants	have	larger	effect	
sizes.	



Test Stats for SKAT vs. Burden



Prediction:	Ozzy Osbourne!?

Increased	risk	of:	
• Alcohol	and	cocaine	
dependence.

• Hallucinations	while	on	
marijuana.

Slow	to	metabolise coffee.



More	Info	will	Improve	Prediction



Precision	Medicine	Initiative	Cohort



Genetic	Prediction

• DNAfit



‘Test to Play’

NY Times, 11/30/08







My	23andMe	Results	for	ACTN3



Chatterjee et	al.,	NRG	2016




