2016 Module 18:

 Statistical \& Quantitative Genetics of DiseaseConverging fields of genetics, epidemiology \& genetic epidemiology

Motivation for this module

- To unite the language of quantitative genetics (QG) and epidemiology
- Quantitative genetics of disease is often a tack on to QG of quantitative traits -here we make it the focus
- The new era of genomics bring QG of genetics of disease back into the foreground - a renewed relevance
- Understanding of prediction of disease risk in the precision medicine era

Precision Medicine Initiatives

THE PRECISION MEDICINE INITIATIVE®

Precision medicine is an emerging approach for disease prevention and treatment that takes into account people's individual variations in genes, environment, and lifestyle.

The Precision Medicine Initiative ${ }^{\circ}$ will generate the scientific evidence needed to move the concept of precision medicine into clinical practice.

LONGER-TERM GOALS

Create a research cohort of > $\mathbf{1}$ million American volunteers who will share genetic data, biological samples, and diet/lifestyle information, all linked to their electronic health records if they choose.

Pioneer a new model for doing science that emphasizes engaged participants, responsible data sharing, and privacy protection.

Research based upon the cohort data will:

- Advance pharmacogenomics, the right drug for the right patient at the right dose
- Identify new targets for treatment and prevention
- Test whether mobile devices can encourage healthy behaviors
- Lay scientific foundation for precision medicine for many diseases

Course Outline

Wednesday afternoon

- Lecture 1 Genetic epidemiology of disease; Heritability of liability (Naomi)
- Lecture 2 Single locus disease analysis: design, logistic regression, covariates (John) Thursday morning(John)
- Lecture 3: Single locus disease model; Power calculation for disease model (Naomi)
- Lecture 4: Interpreting measures of variation; multivariate models (John)

Thursday afternoon(Naomi)

- Lecture 5:Multi-locus disease model (Naomi)
- Lecture 6: Modeling interactions: gene-environment, epistasis (John)

Friday morning(John)

- Lecture 7: Risk Prediction - measures of accuracy for risk prediction of disease (Naomi)
- Lecture 8: Pleiotropy; LDscore (John)

Friday afternoon

- Lecture 9: Risk prediction - theory (Naomi)
- Lecture 10: Rare variants; Risk Prediction - application (John)

Naomi lecture practical Coffee

John lecture practical

More quantitative genetics theory

2016 Module 18:

 Statistical \& Quantitative Genetics of DiseaseLecture 1
Quantifying the genetic contribution to disease Naomi Wray

Aims of Lecture 1

If a disease affects 1% of the population and has heritability 80%
We will show why these statements are consistent :
If an individual is affected $\sim 8 \%$ of his/her siblings affected
If an $M Z$ twin is affected $\sim 50 \%$ of their co-twins are affected
If an individual is affected $>60 \%$ will have no known family history

Bringing together genetic epidemiology and quantitative genetics

- The key papers were published 40 and 70 years ago......

Structure

Disease data and risk to relatives
Aside: Quantitative Traits Liability Threshold Model

Practical

Disease data and risk to relatives

Risk Factors for Schizophrenia

Figure 1. Comparison of a Selected Set of Relatively Well-Established Risk Factors for Schizophrenia, Focusing Mainly on Pre- and Antenatal Factors [6] (abbreviations: CNS, central nervous system; depr, depression; Rh, Rhesus)

Complex genetic diseases

- Unlike Mendelian disorders, there is no clear pattern of inheritance
- Tend to "run" in families
- Few large pedigrees of multiply affected individuals
- Most people have no known family history

What can we learn from genetic epidemiology about genetic architecture?

Evidence for a genetic contribution comes from risks to relatives

Relative risk to relatives Recurrence risk to relatives

How much more likely are you to be diseased if your relative is affected compared to a person selected randomly from the population?

Relative risk to relatives $\left(\lambda_{R}\right)=\frac{p(\text { affected } \mid \text { relative affected) }}{p(\text { affected in population) }}=\frac{K_{R}}{K}$
How to estimate p(affected|relative affected) ?

- Collectpopulation samples - cases infrequent
- Collectsamples of case families and assess family members

How to estimate p(affected in population) ?

- Census or national health statistics
- Is definition of affected same in population sample as family sample
- Collect control families and assess family members

If disease is not common $\quad \lambda_{R}=p$ (sibling affected |case family) p(sibling affected | control family)

Affected Probands

$\square_{T O}^{\circ} \square_{T} \square_{T O}^{O} \square_{T}^{O} \square_{T}^{O}$
K

Relative Risk (RR) $=0.433 / 0.267=1.63$ In siblings of affected compared to unaffected probands
$\square_{T} \mathrm{O} \square_{T} \mathrm{O}$

\square

8/30 are affected; Risk $=0.267$

Schizophrenia risks to relatives

Relatives	Coefficient of relationship	Risch McGue et al	Lichtenstein et al Estimate 95\% CI	
Monozygotic twins	1	52.1		
Dizygotic twins	1/2	14.2		
Parent	1/2		9.4	8.3-10.8
Offspring	1/2	10.0	10.3	8.8-12.2
Full-sibs	1/2	8.6	8.6	7.6-9.6
Half-sibs	1/4	3.5	2.5	1.6-4.1
Nephews/Nieces	1/4	3.1	2.7	2.2-3.2
Uncles/Aunts	1/4	3.2	3.0	2.4-3.9
Grandparents	1/4		3.8	2.8-5.3
First Cousins	1/8	1.8	2.3	1.7-3.1
Offspring of 2 affected parents	$1 / 2$ but ascertained		89	19-672

James (1971) relationship between K and K_{R}

$X=$ scores of disease yes/no for individuals
$Y=$ scores of disease yes/no in relatives of X
K proportion of the population affected
$E(X)=E(Y)=K$
$K_{R}=E(Y \mid X=1)$

Probability that both X and $Y=1: E(X Y)=K^{*} K_{R}$
$\operatorname{Cov}(X, Y)=E(X Y)-E(X) * E(Y)=K * K_{R}-K^{2}$

So $\operatorname{Cov}_{R}=\operatorname{Cov}(X, Y)=K^{*} K_{R}-K^{2}=\left(K_{R}-K\right) K=\left(\lambda_{R}-1\right) K^{2}$

Aside 1: Heritability

$$
P=G+\varepsilon
$$

P = phenotype
$G=$ genetic factors
$\varepsilon=$ residual, anything other than genetic, including environmental and stochastic factors

Broad sense heritability

$$
H^{2}=\frac{\sigma_{G}^{2}}{\sigma_{p}^{2}}
$$

- Parameters vs Estimates
- Often confused and confusing
- We can measure P but we cannot directly measure G or A.
- Estimate variance of G or A by using cohorts of individuals for $P=A+\varepsilon$
$\mathrm{P}=$ phenotype
A = additive genetic factors whom we know the coefficient of relationship, but difficulties arise
$\varepsilon=$ residual, anything other than additive genetic, including environmental and stochastic factors

Narrow sense heritability

$$
h^{2}=\frac{\sigma_{A}^{2}}{\sigma_{p}^{2}}
$$

Aside 2: Covariances between relatives

$$
\begin{aligned}
& P=A+\varepsilon \\
& V(P)=V(A)+V(\varepsilon), \quad A \text { and } E \text { uncorrelated }
\end{aligned}
$$

$$
\begin{aligned}
& P_{\text {child }}=A_{\text {child }}+\varepsilon=1 / 2 A_{\text {mum }}+1 / 2 A_{\text {dad }}+A_{\text {seg }}+\varepsilon \\
& V\left(A_{\text {child }}\right)=1 / 4 V\left(A_{\text {mum }}\right)+1 / 4 V\left(A_{\text {dad }}\right)+V\left(A_{\text {seg }}\right) \\
& V(A)=1 / 4 V(A)+1 / 4 V(A)+V\left(A_{\text {seg }}\right) \text { so } \quad V\left(A_{\text {seg }}\right)=1 / 2 V(A) \\
& \operatorname{Cov}\left(P_{\text {chidd }}, P_{\text {dad }}\right)=\operatorname{Cov}\left(A_{\text {child }}, A_{\text {dad }}\right)=\operatorname{Cov}\left(1 / 2 A_{\text {mum }}+1 / 2 A_{\text {dad }}+A_{\text {seg }}, A_{\text {dad }}\right)=1 / 2 V(A)
\end{aligned}
$$

$\operatorname{Cov}\left(\mathrm{P}_{\text {child }}, \mathrm{P}_{\text {sib }}\right)=\operatorname{Cov}\left(\mathrm{A}_{\text {child }}, \mathrm{A}_{\text {sib }}\right)=$

$$
\operatorname{Cov}\left(1 / 2 A_{\text {mum }}+1 / 2 A_{\text {dad }}+A_{\text {seg-ch }}, 1 / 2 A_{\text {mum }}+1 / 2 A_{\text {dad }}+A_{\text {seg-sib }}\right)
$$

$$
=1 / 4 V(A)+1 / 4 V(A)=1 / 2 V(A)
$$

General covariance between relatives

$\operatorname{cov}_{R}=c_{\text {covariance between relatives on the disease scale }}$
$\operatorname{COV}_{\mathrm{R}}=a_{R} V_{A o}+u_{R} V_{D o}+a_{R}^{2} V_{A A o}+a_{R} u_{R} V_{A D o}+\cdots$

	$\boldsymbol{V}_{\boldsymbol{A}}$	$\boldsymbol{V}_{\boldsymbol{D}}$	$\boldsymbol{V}_{\boldsymbol{A} \boldsymbol{A}}$	$\boldsymbol{V}_{\boldsymbol{A} \boldsymbol{D}}$	$\boldsymbol{V}_{\boldsymbol{D} \boldsymbol{D}}$
Offspring-parent	$1 / 2$	0	$1 / 4$	0	0
Half-sib	$1 / 4$	0	$1 / 16$	0	0
Full-sib	$1 / 2$	$1 / 4$	$1 / 4$	$1 / 8$	$1 / 16$
MZ twin	1	1	1	1	1
General	a_{R}	u_{R}	a_{R}^{2}	$a_{R} u_{R}$	u_{R}^{2}

$\operatorname{cov}_{R}=\left(K_{R}-K\right) K=\left(\lambda_{R}-1\right) K^{2} \quad V_{P}=K(1-K) \quad$ (from a few slides back!)
An estimate of narrow sense (additive) heritability on the disease scale is

$$
\widehat{h_{o}^{2}}=\frac{\left(\lambda_{R}-1\right) K^{2}}{a_{R} K(1-K)}=\frac{\left(\lambda_{R}-1\right) K}{a_{R}(1-K)}
$$

But covR contains non-additive genetic terms.
We don't know if non-additive genetic effects exist - What to do?
Estimate $\widehat{h_{o}^{2}}$ from different types of relatives to see if the estimates are consistent

James (1971) genetic variance on the disease scale

$$
\widehat{h_{o}^{2}}=\frac{\left(\lambda_{R}-1\right) K^{2}}{a_{R} K(1-K)}=\frac{\left(\lambda_{R}-1\right) K}{a_{R}(1-K)}
$$

$$
\begin{aligned}
& K=0.0085 \\
& \lambda_{\mathrm{OP}}=10 \quad \mathrm{a}_{\mathrm{R}}=1 / 2 \\
& \begin{aligned}
\widehat{h}_{o}^{2}=\frac{(10-1) 0.0085}{\frac{1}{2}(1-0.0085)} & =0.154 \\
\widehat{h}_{o}^{2} & =0.069
\end{aligned} \\
& \lambda_{\text {FS }}=8.6 \mathrm{a}_{\mathrm{R}}=1 / 2 \\
& \lambda_{M Z}=52 \quad a_{R}=1 \\
& \widehat{h}_{o}^{2}=0.130 \\
& \widehat{h_{o}^{2}}=0.438
\end{aligned}
$$

The estimates of $\widehat{h_{o}^{2}}$ are very different (even if sampling variance is taken into account)

Implies that the estimates of $\widehat{h_{o}^{2}}$ are contaminated by non-additive variance on this scale of measurement

Liability threshold model

Phenotypic liability of a sample from the population

Assumption of normality

- Only appropriate for multifactorial disease
- i.e. more than a few genes but doesn't have to be highly polygenic
- Key-unimodal

Falconer (1965)

Phenotypic liability of a sample from the population

Phenotypic liability of relatives of affected individuals

Using normal distribution theory what percentage of the variance in liability is attributale to genetic factors given K, K_{R} and a_{R}

Prediction of response to selection and rates of inbreeding under directional selection

Strong parallels to quantitative genetics of disease

Definitions

How to get from observed risks to relatives

 to heritability?- Falconer (1965)Phenotypic liability of a sample from the population

Phenotypic liability of relatives of affected individuals

Using normal distribution theory what percentage of the variance in liability is attributale to genetic factors given K, K_{R} and r

Liability Threshold Model -truncated normal distribution theory

$\Phi(x)=$ cumulative density until liability x standard normal distribution function $\varphi(x)=$ probability density at x Phi

Standard

Deviation =1 $\sigma_{p}=1$

```
z = density at \dagger
```

$z=\varphi(t) \quad \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} t^{2}} \quad=$ dnorm (t)

K = Proportion of the population that are diseased
$K=1-\Phi(t)=1-$ pnorm (t)

Phenotypic liability

Variance in liability amongst the diseased individuals $=\sigma_{p}^{2}(1-k)$, where $\mathrm{k}=\mathrm{i}(\mathrm{i}-\mathrm{t})$

Mean of diseased group

- Pearson \& Lee (1908) On the generalized probable error in normal correlation. Biometrika
- Lee (1915) Table of Gaussian tail functions..Biometrika
- Fisher (1941) Properties and application of Hh functions. Introduction to mathematical tables
- Cohen (1949) On estimating the mean and standard deviation of truncated normal distributions Am Stat Association
- Cohen \& Woodward (1953)Pearson-Lee-Fisher Functions of singly truncated normal distributions. Biometrics

Mean (i): = sum(x^{*} freq of x)
The phenotype frequencies must sum to 1 , hence the denominator

$$
i=\frac{\int_{t}^{\infty} x \phi(x) d x}{\int_{t}^{\infty} \phi(x) d x}=\frac{\int_{t}^{\infty} x \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x}{K}=\frac{\phi(t)}{K}=\frac{z}{K}
$$

Falconer (1965)

Phenotypic liability of a sample from the population

Assumption of normality

- Only appropriate for multifactorial disease
- i.e. more than a few genes but doesn't have to be highly polygenic
- Key-unimodal

FOICOMET(7965)

Given the difference in thresholds, and given known additive genetic relationship between relatives, what proportion of the total variance must be due to genetic factors

Calculate heritability of liability using regression theory

$X=$ phenotypic liability for individuals
$Y=$ phenotypic liability for relatives of X
$E(X)=E(Y)=m=0$

Relationship between X and Y is linear
$Y=\mu_{Y}+b_{Y . X}\left(X-\mu_{X}\right)+\varepsilon$
$=m+\operatorname{cov}\left(A_{\underline{\underline{R}}}, A\right)(X-m)+\varepsilon$, since $m=0$ $\operatorname{Var}(X)$
$=\frac{a_{R} \sigma_{a}^{2}}{\sigma_{p}^{2}} X+\varepsilon=a_{R} h^{2} X+\varepsilon$

Calculate heritability of liability using regression theory

$X=$ phenotypic liability for individuals
$Y=$ phenotypic liability for relatives of X
$Y=a_{R} h^{2} X+\varepsilon$

For affected individuals $\mathrm{X}=\mathrm{i}$
Expected phenotypic liability of relatives of those affected
$\mathrm{E}(\mathrm{Y} \mid \mathrm{X}>\dagger)=m_{R}-m=t-t_{R}$

Substitute

Rearrange

$$
t-t_{R}=a_{R} h^{2} i
$$

$$
h^{2}=\left(t-t_{R}\right) / i a_{R}
$$

Assumptions made by Falconer (1965)

Assumption: Covariance between relatives reflects only shared additive genetic effects

Check: Use different types of relatives with different a_{R} and different U_{R} (dominance coefficient) and different shared environment to see consistency of estimates of h^{2}

Assumption: Phenotypic variance in relatives is unaffected by ascertainment on affected probands

Accounting for reduction in variance in relatives as a result of ascertainment on affected individuals

> | Variance in liability amongst |
| :--- |
| the diseased individuals |
| $=\sigma_{p}^{2} \quad(1-k)$, where $\mathrm{k}=\mathrm{i}(\mathrm{i}-\mathrm{t})$ |

$$
\begin{aligned}
& \text { Variance in liability amongst relatives the } \\
& \text { diseased individuals } \\
& \begin{aligned}
\mathrm{V}\left(\mathrm{P}_{\mathrm{R}} \mid \mathrm{P}>\dagger\right) & =\mathrm{V}\left(\mathrm{P}_{\mathrm{R}}\right)-\mathrm{Cov}\left(\mathrm{P}_{\mathrm{R}, \mathrm{P}}\right)^{2} \\
& =1-k\left(a_{R} h^{2}\right)^{2}=1-k a_{R}^{2} h^{4}
\end{aligned}
\end{aligned}
$$

Reich et al: heritability of liability

The difference between the thresholds when standardised to have the mean 0 and variance 1

$$
\mathrm{m}_{R}-\mathrm{m}=\mathrm{t}-\mathrm{t}_{\mathrm{R}} \sqrt{1-k a_{R}^{2} h^{4}}
$$

Reich et al: heritability of liability

$X=$ phenotypic liability for individuals
$Y=$ phenotypic liability for relatives of X
$Y=a_{R} h^{2} X+\varepsilon$
NB. Distribution of relatives may also be skewed - especially for MZ twins-Estimates could be biased upwards
For affected individuals X = i
Expected phenotypic liability of relatives of those affected
$\mathrm{E}(\mathrm{Y} \mid \mathrm{X}>\mathrm{f})=\mathrm{m}_{R}-\mathrm{m}=t-t_{R} \sqrt{1-k a_{R}^{2} h^{4}}$
Substitute $t-t_{R} \sqrt{1-k a_{R}^{2} h^{4}}=a_{R} h^{2} i$
Rearrange $\quad h^{2}=\frac{t-t_{R} \sqrt{1-(1-t / i)\left(t^{2}-t_{R}^{2}\right)}}{a_{R}\left(i+(i-t) t_{R}^{2}\right)}$
Also useful - calculation of t_{R} when K and h^{2} are known

$$
t_{R}=\frac{t-a_{R} i h^{2}}{\sqrt{1-a_{R}^{2} h^{4} k}}
$$

Accounting for reduction in variance in relatives as a result of ascertainment on affected individuals

Variance in liability amongst relatives the diseased individuals $=1-i(i-t)\left(a_{R} h^{2}\right)^{2}$
P_{R}

$$
t_{R}=\frac{t-a_{R} i h^{2}}{\sqrt{1-a_{R}^{2} h^{4} k}} \quad h^{2}=\frac{t-t_{R} \sqrt{1-(1-t / i)\left(t^{2}-t_{R}^{2}\right)}}{a_{R}\left(i+(i-t) t_{R}^{2}\right)}
$$

$>h 2 l=f u n c t i o n(t, t R, i, a R)\left\{\left(t-t R^{*} \operatorname{sqrt}\left(1-(1-t / i) *\left(t^{\wedge} 2-t R \wedge 2\right)\right)\right) /\left(a R^{*}\left(i+(i-t) * t R^{\wedge} 2\right)\right)\right\}$ \# heritability of liability with Reich et al correct ion **use this one
> (h2l_est=h2l(t_est,t_dad,i_est,0.5))
[1] 0.7857835
> (h2l_est=h2l(t_est,t_MZ,i_est,1))
[1] 0.7985478

Practical

Uses simulation to give understanding to the theory.

How to calculate heritability of liability from risks to relatives.

Feel for sample size and sampling variation
Relationship between narrow sense heritability on disease and liability scales

Module 19: Statistical and Quantitative Genetics of Disease

John Witte
 Session \#2:

Single locus analysis: design, analysis, logistic regression, covariates.

Now Assume We Can Collect DNA on Cases and Controls

- What study design should we use?
- What analytic approaches?
- Conventional: estimate impact of single genetic variants on disease.

Outline

1. Association Approaches
2. Linkage Disequilibrium
3. Population Stratification / Study Design
4. Association Analysis
5. Odds ratios and relative risks
6. Logistic regression
7. Covariates

1. Association Study Approaches

- Direct vs. Indirect
- Candidate genes: hypotheses about biological mechanisms.
- Functional
- All common variants
- Exome arrays
- All common variants in genome (GWAS)
- All variants in genes/genome (sequencing)
- Expensive

2. Linkage Disequilibrium

The non-random association of alleles at two or more loci, that descend from single, ancestral chromosomes.

Assume two loci with alleles $\{A, a\}$ and $\{B, b\}$
$D=P_{A B}-p_{A} P_{B}=P_{A B} P_{a b}-P_{A B} P_{a B}$
$D^{\prime}=D / \max (\mathrm{D})$
where $\max (\mathrm{D})=\min \left(\mathrm{p}_{\mathrm{A}} \mathrm{p}_{\mathrm{b}}, \mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{B}}\right)$ if $\mathrm{D}>0$ or $\min \left(\mathrm{p}_{\mathrm{A}} \mathrm{p}_{\mathrm{B}}, \mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}}\right)$ if $\mathrm{D}<0$ $r^{2}=D^{2} /\left(p_{A} p_{a} p_{B} p_{b}\right)$.

3. Population Stratification \& Study Design

- Key principle of association studies: select controls from the cases' source population.
- Those individuals who-if they were diseasedwould become cases.
- Otherwise potential for bias (e.g., population stratification) and reduced efficiency.

Population Stratification

- Two populations have different allele frequencies and background rates of disease.
- Can lead to biased association results.

Balding, Nature Reviews Genetics 2010

Population Stratification: Confounding

True Risk Factor

Ethnicity

Example

Study Population: 4,290 Pima and Papago Native Americans

Genetic Variant: Gm 3;5,13, 15 haplotype (Gm system of human immunoglobulin G)

Outcome: Type 2 diabetes
Question: Is the Gm 3; 5,13, 15 haplotype associated with Type 2 diabetes?

Knowler, AJHG, 1998

Population Stratification: Gm3;5,13,14 in admixed sample of

 Native Americans of the Pima and Papago tribesFull heritage Native
American population

Gm3;5,13,14 ~1\% ~99\%
NIDDM prevalence $\sim 40 \%$

Caucasian population

	+	-
Gm3;5,13,14	$\sim 66 \%$	$\sim 34 \%$

NIDDM prevalence ~15\%

Gm3,5,13,14 haplotype	Cases	Controls
+	7.80%	29.00%
-	92.20%	71.00%

Unadjusted for ethnic background Different genotype frequency,
$O R=0.27(95 \% 0.18-0.40)$

Population Stratification: Gm3;5,13,14 in admixed sample of

 Native Americans of the Pima and Papago tribes| Index of NAm heritage | $\begin{aligned} & \text { Gm3;5,13,14 } \\ & \text { haplotype } \end{aligned}$ | | \%
 Diabetes |
| :---: | :---: | :---: | :---: |
| 0 | 65.8\% | | 18.5\% |
| 4 | 42.1\% | | 28.5\% |
| 8 | 1.6\% | | 39.2\% |
| Gm3,5,13,14 haplotype | Cases | Con | trols |
| + | 7.80\% | 29. | 00\% |
| - | 92.20\% | 71.0 | \% |

Adjusted for ethnic background $O R=0.83(95 \% 0.58-1.18)$

Previous result just picked out race/ethnicity!

How can we address the potential bias due to population stratification?

Addressing Population Stratification

- Match on self-reported ethnicity
(Wacholder et al., / Thomas \& Witte, CEBP 2002)
- Family-based studies
(Witte et al., AJE 1999)
- Genomic control
(Devlin and Roeder, Biometrics, 1999)
Adjust test statistics for 'inflation' (bias) using empirical ${ }^{2}$ distribution, comparing median observed to expected (\square hew $=2 \mathrm{bla} / \mathrm{A}$.
- Principal Components
(Price et al., Nat Genet 2006)
Adjust regression for PCs as a proxy for genetic ancestry.

Family-Based Association Studies

Comparison of Designs

- Family-based designs can:
- Be less efficient than population-based designs.
- Require more recruitment efforts

	Rare Recessive High Risk	Common Low Risk	Rare Dominant High Risk
Population-based	100%	100%	100%
Case-sibling	69%	51%	50%
Case-cousin	97%	88%	88%
TDT	231%	102%	101%

Witte et al. AJE 1999

Adjusting for Principal Components

- Maximize variance between subjects using all SNPs.
- Clusters individuals from different populations.

Li et al., Science 2008

PCs Detect Fine Population Structure

Continuum of Assoc Study Designs

Population- "Ethnicity"	PCs	
based	Matched	Adjustment

Population Stratification

Outline

1. Association Approaches
2. Linkage Disequilibrium
3. Population Stratification / Study Design
4. Association Analysis
5. Odds ratios and relative risks
6. Logistic regression
7. Covariates

4. Association Analysis: Genotypes

Locus: chromosomal location that's polymorphic.
Alleles: different variants @ locus

- Each somatic cell is diploid (two copies of each autosome)
- Thus 3 genotypes at locus 4 (use only one strand, often forward): CC, CT, TT

Association Analysis

Genotype	Cases	Controls	OR
CC	A	D	AF/DC
CT	B	E	BF/EC
TT	C	F	1

Simple chi-square test comparing genotype frequencies (2 d.f.) Called a co-dominant analysis

Testing for Association

Observed:			Expected			
Geno	Case	Control	1 Total	OR	Case	Control
CC	A	D	$A+D=n C C$	AF/DC	ncc*ncase/n	$\mathrm{nCC} *$ nCont/n
CT	B	E B	$B+E=n C T$	AE/BD	nCT*nCase/n	$n C T *$ Cont $/ \mathrm{n}$
TT	C	F	$\mathrm{C}+\mathrm{F}=\mathrm{nTT}$	1	nTT*nCase/n	$n T T * n C o n t / n$
Total A+B+C		$\mathrm{D}+\mathrm{E}+\mathrm{F} \quad \mathrm{A}$	$A+B+C+D+E+F$			
	nCase		= n			

Sum (Observed - Expected)^2/Expected. Chi squared with 2 degrees of freedom.

Expected cell count $=$ row_total * column_total / total

Testing for Association

Observed:				Expected	
Geno Case	Control	Total	OR	Case	Control
CC 20	5	25	12	$25 * 35 / 65=13.5$	$25 * 30 / 65=11.5$
CT 10	10	20	3	$20 * 35 / 65=10.8$	$20 * 30 / 65=9.2$
TT 5	15	20	1	$20 * 35 / 65=10.8$	$20 * 30 / 65=9.2$
Total 35	30	65			
=ncase $=$ nCont $=n$					

```
Sum (Observed - Expected) ^2/Expected
        \(=(20-13.5)^{\wedge} 2 / 13.5+(10-10.8)^{\wedge} 2 / 10.8+(5-10.8)^{\wedge} 2 / 10.8\)
        \(+(5-11.5)^{\wedge} 2 / 11.5+(10-9.2)^{\wedge} 2 / 9.2+(15-9.2)^{\wedge} 2 / 9.2\)
        \(=13.7\)
```

P-value $=0.0011 \quad$ Co-dominant model

Genetic Model

Genotype	OR
CC	R
CT	r
TT	1

ORs depend on genetic model
$R=r=1 \quad$ not risk allele
$R>r=1$ recessive
$R=r>1$ dominant
$R=r^{2}>1 \quad \log$ additive
(Assuming positive association)

Testing for Association

Genetic Model

If genetic model known:

- Collapse genotypes into 2×2 table, 1 d.f. test
- Or trend test for log additive
- Use logistic regression: coding; covariates, odds ratios

If genetic model unknown?

- Log-additive is default. Why?
- Could use all three models (dom, rec, log additive).
- Compare fit with the co-dominant (2d.f.) model (LR test).
- Can't use LR test to compare models since not nested.
- Model with best fit and smallest P is best?
- Use permutation test (MAX test).

5. Odds Ratios and Relative Risks

When does the OR estimate the RR?

1. When the disease is "rare"

$$
R R=\frac{\frac{A_{1}}{\left(A_{1}+B_{1}\right)}}{\frac{A_{0}}{\left(A_{0}+B_{0}\right)}}=\frac{q^{+}}{q_{-}}
$$

$\mathrm{q}+$: Incidence in carriers (exposed)
q -: Incidence in non-carriers
(non-exposed)

$$
O R=\frac{\frac{A_{1}}{B_{1}}}{\frac{A_{0}}{B_{0}}}=\frac{\frac{q+}{(1-q+)}}{\frac{q-}{(1-q-)}}=\frac{q+}{q-} * \frac{1-\frac{A_{0}}{\left(A_{0}+B_{0}\right)}}{1-\frac{A_{1}}{\left(A_{1}+B_{1}\right)}}
$$

Odds Ratios and Relative Risks

2. When exposure distribution among the controls is the same as the 'person-time' in the cases' source population.

$$
\begin{gathered}
\frac{\mathrm{I}_{1}}{\mathrm{I}_{0}}=\mathrm{RR} \\
\frac{\mathrm{~A}_{1}}{\mathrm{~T}_{1}}=\mathrm{I}_{1} \quad \mathrm{I}_{0}=\frac{\mathrm{A}_{0}}{\mathrm{~T}_{0}}
\end{gathered}
$$

Let:
T_{1} = Amount of exposed person-time

$$
\frac{\mathrm{B}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{B}_{0}}{\mathrm{~T}_{0}}=\mathrm{r}
$$

$\mathrm{I}_{1}=$ Incident rate of exposed
T_{0} = Amount of unexposed person-time
$\mathrm{I}_{0}=$ Incident rate of unexposed
$r=$ Sampling rate

$$
O R=\frac{\frac{A_{1}}{B_{1}}}{\frac{A_{0}}{\mathrm{~B}_{0}}} * \mathrm{r}=\frac{\frac{\mathrm{A}_{1}}{\mathrm{~T}_{1}}}{\frac{\mathrm{~A}_{0}}{\mathrm{~T}_{0}}}=R \mathrm{R}
$$

6. Logistic Regression

G
$P(D$ 运 $G)=\frac{1}{1+\mathrm{e}^{-(\alpha+\beta G)}}$

G

$$
\log \left[\frac{P}{(1-P)}\right]=\alpha+\beta G
$$

The log odds of disease increases linearly with G.

Interpretation of Coefficients

- The logistic regression coefficients: $\beta=\log (O R)$
- Assume G=1 (carrier), G=0 (non-carrier)

$$
\begin{aligned}
& \log \left[P_{1} /\left(1-P_{1}\right)\right]=\alpha+\beta^{*} 1 \\
& \log \left[P_{0} /\left(1-P_{0}\right)\right]=\alpha+\beta^{*} 0
\end{aligned}
$$

so

$$
\log \left[P_{1} /\left(1-P_{1}\right)\right]-\log \left[P_{0} /\left(1-P_{0}\right)\right]=\beta
$$

or

$$
\log \left[P_{1} /\left(1-P_{1}\right) /\left(P_{0} /\left(1-P_{0}\right)\right)\right]=\log (O R)=\beta
$$

- The OR for the effect of G on disease risk is e^{β}
- For multiple variants, assumes joint effects are multiplicative.

7. Including Covariates in Regression

- Confounders: PCs for population stratification.
- Modifiers: Envt or Genetic interactions.
- Independent predictors?

Zaitlen et al.; Mefford \& Witte, PloS Genet, 2012

Module 18:

Statistical \& Quantitative Genetics of Disease

Lecture 3
 Polygenic models of disease risk Naomi Wray

Aims of Lecture 3

Theory

- Single locus disease model
- Power calculations

Single locus disease model

Single locus disease model:
$G=$ genotype; $D=$ disease; $K=$ overall disease risk in population

	$P(G)$
aa	$(1-p)^{2}$
Aa	$2 p(1-p)$
AA	p^{2}

Single locus disease model

Single locus disease model:
$G=$ genotype; $D=$ disease; $K=$ overall disease risk in population

	$P(G)$	$P(D \mid G)$
aa	$(1-p)^{2}$	f_{0}
Aa	$2 p(1-p)$	$f_{0} R$
AA	p^{2}	$f_{0} R^{2}$

$P($ Disease $)=K=f_{0}(1-p)^{2}+f_{0} R 2 p(1-p)+f_{0} R^{2}=f_{0}(1+p(R-1))^{2}$
$\mathrm{f}_{0}=\mathrm{K} /(1+\mathrm{p}(\mathrm{R}-1))^{2}$

Single locus disease model

Single locus disease model:
$G=$ genotype; $D=$ disease; $K=$ overall disease risk in population

	$\mathrm{P}(\mathrm{G})$	$\mathrm{P}(\mathrm{D} \mid \mathrm{G})$	$\mathrm{P}(\mathrm{D})$ $=\mathrm{P}(\mathrm{D} \mid \mathrm{G}) \mathrm{p}(\mathrm{G})$
aa	$(1-\mathrm{p})^{2}$	f_{0}	$(1-\mathrm{p})^{2} \mathrm{f}_{0}$
Aa	$2 \mathrm{p}(1-\mathrm{p})$	$\mathrm{f}_{0} \mathrm{R}$	$2 \mathrm{p}(1-\mathrm{p}) \mathrm{f}_{0} \mathrm{R}$
AA	p^{2}	$\mathrm{f}_{0} \mathrm{R}^{2}$	$\mathrm{p}^{2} \mathrm{f}_{0} \mathrm{R}^{2}$
			Sum $=\mathrm{K}$

$$
\begin{aligned}
& P(\text { Disease })=K=f_{0}(1-p)^{2}+f_{0} R 2 p(1-p)+f_{0} R^{2}=f_{0}(1+p(R-1))^{2} \\
& f_{0}=K /(1+p(R-1))^{2}
\end{aligned}
$$

Power of association test - case/control

Single locus disease model:
$G=$ genotype; $D=$ disease; $K=$ overall disease risk in population

	$\mathrm{P}(\mathrm{G})$	$\mathrm{P}(\mathrm{D} \mid \mathrm{G})$	$\mathrm{P}(\mathrm{D})$ $=\mathrm{P}(\mathrm{D} \mid \mathrm{G}) \mathrm{p}(\mathrm{G})$	$\mathrm{P}(\mathrm{G} \mid \mathrm{D})$ $=\mathrm{P}(\mathrm{G}) / \mathrm{P}(\mathrm{D})$
aa	$(1-\mathrm{p})^{2}$	f_{0}	$(1-\mathrm{p})^{2} \mathrm{f}_{0}$	$(1-\mathrm{p})^{2} \mathrm{f}_{0} / \mathrm{K}$
Aa	$2 \mathrm{p}(1-\mathrm{p})$	$\mathrm{f}_{0} \mathrm{R}$	$2 \mathrm{P}(1-\mathrm{p}) \mathrm{f}_{0} \mathrm{R}$	$2 \mathrm{p}(1-\mathrm{p}) \mathrm{f}_{0} \mathrm{R} / \mathrm{K}$
AA	p^{2}	$\mathrm{f}_{0} \mathrm{R}^{2}$	$\mathrm{p}^{2} \mathrm{f}_{0} \mathrm{R}^{2}$	$\mathrm{p}^{2} \mathrm{f}_{0} \mathrm{R}^{2} / \mathrm{K}$
			Sum=K	

$$
\begin{aligned}
& P(\text { Disease })=K=f_{0}(1-p)^{2}+f_{0} R 2 p(1-p)+f_{0} R^{2}=f_{0}(1+p(R-1))^{2} \\
& f_{0}=K /(1+p(R-1))^{2}
\end{aligned}
$$

What is power?

When we set up a statistical test

- The null hypothesis is EITHER
- true
- false
- With the data available we EITHER
- reject the null hypothesis
- fail to reject the null hypothesis

	Null hypothesis is true	Null hypothesis is false
Reject the null hypothesis	Type I error False positive	Correct Outcome True positive
Fail to reject the null hypothesis	Correct Outcome True negative	Type Il error False Negative

Power = probability of
rejecting the null hypothesis when the null hypothesis is false
= 1 -probability of failing to reject the null hypothesis when the null hypothesis is false
= 1 - probability(Type II error)

Relative power of a GWAS for a quantitative trait compared to a disease trait

First step:

How to calculate power in an association study?

S. Purcell \& P. Sham, 2001-2009

This site provides automated power analysis for variance components (VC) quantitative trait locus (QT]
If you use this site, please reference the following Bioinformatics article:
Purcell S, Cherny SS, Sham PC. (2003) Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics, 19(1):149-150.

Modules

Genetic Power Calculator

 (Quantitative Case-Control

Total QTL variance	:		0-1)
Dominance : additive QTL effects			0-1)
QTL increaser allele frequency	:		0-1)
Marker Ml allele frequency	:		0-1)
Linkage disequilibrium (D-prime)	:		0-1)
Number of cases	:		>0,
Case lower threshold	:		
Case upper threshold	:		
Control:case ratio	:		>0,
Controls lower threshold	:		
Controls upper threshold	:		
User-defined type I error rate	:		(0.00000000 - 0.5)
User-defined power: determine N (1 - type II error rate)	:		$0-1)$

Genetic Power Calculator
Case - control for discrete traits

```
High risk allele frequency (A) Prevalence
Genotype relative risk Aa Genotype relative risk AA
D-prime
Marker allele frequency (B)
Number of cases
Control : case ratio
\(\square\) \((0-1)\) (0.0001-0.9999) ( >1 ) ( >1)\((0-1)\)
\((0-1)\)
```



```
( \(1=\) equal number of cases and controls)
\(\square\) Unselected controls? (* see below)
\(\begin{array}{lll}\text { User-defined type I error rate } & : 0.05 & (0.00000001-0.5) \\ \text { User-defined power: determine } N & : 0.80(0-1)\end{array}\)
(1 - type II error rate)
```


Process Reset

Created by Shaun Purcell 24.Oct. 2008

Genetic Power Calculator

Case - control for discrete traits

```
High risk allele frequency (A)
Prevalence
Genotype relative risk Aa
Genotype relative risk AA
D-prime
Marker allele frequency (B)
Number of cases
Control : case ratio
```

: . 2
: . 01
1.44
$: 1$
(0-1)
: .2

(0-1)

```
Control : case ratio
\(: 5000(0-10000000)\)
\(: 1\) ( >0 )
( \(1=\) equal number of cases and controls)
```

```
User-defined type I error rate : 0.00000005 (0.00000001 - 0.5)
```

User-defined type I error rate : 0.00000005 (0.00000001 - 0.5)
User-defined power: determine N : 0.80 (0 - 1)
User-defined power: determine N : 0.80 (0 - 1)
(1 - type II error rate)

```
(1 - type II error rate)
```

Case-control statistics: allelic 1 df test (B versus b)
Sample NCP $=28.59$

| Alpha | Power | N cases for 80\% power |
| :--- | :--- | :--- | :--- |
| 0.1 | 0.9999 | 1081 |
| 0.05 | 0.9996 | 1372 |
| 0.01 | 0.9972 | 2042 |
| 0.001 | 0.9802 | 2985 |
| $5 e-08$ | 0.4586 | 6924 |

Power of a case-control study

Power of a disease trait
$p \quad=$ frequency of risk allele in population
$p_{\text {case }} \quad=$ frequency of risk allele in cases
$p_{\text {cont }} \quad=$ frequency of risk allele in controls
$v \quad=$ proportion of a sample of N that are cases
$\bar{p} \quad=$ mean allele frequency across cases and controls

$$
=\vee p_{\text {case }}+(1-v) p_{\text {control }}
$$

Power of association test - case/control

Single locus disease model:
$G=$ genotype; $D=$ disease; $K=$ overall disease risk in population

	$\mathrm{P}(\mathrm{G})$	$\mathrm{P}(\mathrm{D} \mid \mathrm{G})$	$\mathrm{P}(\mathrm{D})$ $=\mathrm{P}(\mathrm{D} \mid \mathrm{G}) \mathrm{p}(\mathrm{G})$	$\mathrm{P}(\mathrm{G} \mid \mathrm{D})$ $=\mathrm{P}(\mathrm{G}) / \mathrm{P}(\mathrm{D})$
aa	$(1-\mathrm{p})^{2}$	f_{0}	$(1-\mathrm{p})^{2} \mathrm{f}_{0}$	$(1-\mathrm{p})^{2} \mathrm{f}_{0} / K$
Aa	$2 \mathrm{p}(1-\mathrm{p})$	$\mathrm{f}_{0} R$	$2 \mathrm{R}(1-\mathrm{p}) \mathrm{f}_{0} R$	$2 \mathrm{p}(1-\mathrm{p}) \mathrm{f}_{0} R / K$
AA	p^{2}	$\mathrm{f}_{0} \mathrm{R}^{2}$	$\mathrm{p}^{2} \mathrm{f}_{0} R^{2}$	$\mathrm{p}^{2} \mathrm{f}_{0} R^{2} / K$
			Sum $=K$	

$P($ Disease $)=K=f_{0}(1-p)^{2}+f_{0} R 2 p(1-p)+f_{0} R^{2}=f_{0}(1+p(R-1))^{2}$
$\mathrm{f}_{0}=\mathrm{K} /(1+\mathrm{p}(\mathrm{R}-1))^{2}$
$\mathrm{p}_{\text {case }}=1 / 2 \mathrm{P}(\mathrm{Aa} \mid \mathrm{D})+\mathrm{p}(\mathrm{AA} \mid \mathrm{D})$ Allele frequency in cases

$$
=f_{0} p R((1-p)+p R) / K=\frac{p R}{(1+p(R-1))}
$$

Find allele frequency in controls in the same way
$\mathrm{p}_{\text {cont }}=\frac{p}{1-K}\left(1-\frac{K R}{(1+p(R-1))}\right)$

Power of a case-control study

Power of a disease trait
$p \quad=$ frequency of risk allele in population
$p_{\text {case }}=$ frequency of risk allele in cases
$p_{\text {cont }} \quad=$ frequency of risk allele in controls
$v \quad=$ proportion of a sample of N that are cases
$\bar{p} \quad=$ mean allele frequency across cases and controls
$=\vee p_{\text {case }}+(1-\mathrm{v}) p_{\text {control }}$
Z-Test statistic of association = test of difference of two proportions =

$$
\frac{p_{\text {case }}-p_{\text {cont }}}{\text { s.e. }(\text { pooled sample } p)}=\frac{p_{\text {case }}-p_{\text {cont }}}{\text { s.e. }(\bar{p})}
$$

$\begin{aligned} X^{2} \text { non-centrality parameter } & =N C P_{01}=\frac{\left(p_{\text {case }}-p_{\text {cont }}\right)^{2}}{\operatorname{var}(\bar{p})} \\ \operatorname{var}(\bar{p}) & =2 \bar{p}(1-\bar{p})\left(\frac{1}{N v}+\frac{1}{N(1-v)}\right)\end{aligned}$

Power of a case-control study

$N C P_{01}=\frac{\left(p_{\text {case }}-p_{\text {cont }}\right)^{2}}{\operatorname{var}(\bar{p})}$
$a=$ significance level - acceptable level of type I error
$\mathrm{t}=\Phi^{-1}\left(\frac{\alpha}{2}\right) \quad$ Normal distribution threshold above which null hypothesis will be rejected Power $=\Phi\left(\sqrt{N C P_{01}}+t\right)$
$N=10000, v=0.5, p=0.2, R=1.2, K=0.01, a=5 e-8, K=0.01$, power $=0.46$
Agrees with the genetic power calculator

Approximate variance explained by a locus

Regression of disease on jth SNP, $\mathrm{x}_{[\mathrm{j}]}=0,1,2$

$$
y_{01}=K+b_{01} x_{[i]}+\varepsilon
$$

When $x[j]=0 \quad \widehat{y_{01}}=K \quad=\mathrm{P}($ Disease \mid Genotype $=\mathrm{aa})$
When $x[\mathrm{j}]=1 \quad \widehat{y_{01}}=K+b_{01} \quad=P($ Disease \mid Genotype $=A a)$
Relative Risk = R= P(Disease | Genotype =Aa)/P (Disease | Genotype =Aa)

$$
=\left(K+b_{01}\right) / K \quad \text { so } \quad b_{01}=K(R-1)
$$

Variance attributable to the locus on the disease scale

$$
\begin{aligned}
& \sigma_{A_{01[j]}^{2}}^{2}=h_{01[j]}^{2} K(1-K)=b_{01}^{2} \operatorname{var}(x)=2 p(1-p) b_{01}^{2} \\
& h_{01[j]}^{2}=2 p(1-p) b_{01}^{2} / K(1-K) \\
& h_{L[j]}^{2}=\frac{(1-K) h_{01[i]}^{2}}{i^{2} K}=\frac{2 p(1-p) b_{01}^{2}}{i^{2} K^{2}}=\frac{2 p(1-p)(R-1)^{2}}{i^{2}}
\end{aligned}
$$

Assumes a population sample not a case control sample

Power of a case-control association study expressed in terms of variance explained by the locus

x^{2} non-centrality parameter $=N C P_{01}=\frac{\left(p_{\text {case }}-p_{\text {cont }}\right)^{2}}{\operatorname{var}(\bar{p})}$
$N C P_{01}=\frac{2 \bar{p}(1-\bar{p})(R-1)^{2} v(1-v) N}{(1-K)^{2}(1+p(R-1))^{2}}$

If R is small then $(1+p(R-1))^{2} \approx 1 \quad$ e.g., $p=0.2, R=1.2,(1+p(R-1))^{2}=1.08$
Variance explained by a locus $=h_{L[j]}^{2} \approx \frac{2 p(1-p)(R-1)^{2}}{i^{2}}$
$N C P_{01} \approx \frac{h_{L[j]}^{2} i^{2} v(1-v) N}{(1-K)^{2}}$

Power of a association study of a quantitative trait

x^{2} non-centrality parameter $=\mathrm{NCP} P_{a r}=\frac{N_{O Q} h_{L[I]}^{2}}{1-h_{L[I]}^{2}}$ When the variance explained is the same in c-c and for quantitative trait
$N C P_{01} \approx \frac{h_{L[j]}^{2} i^{2} v(1-v) N_{01}}{(1-K)^{2}}$

$$
\frac{N C P_{01}}{N C P_{Q T}} \approx \frac{i^{2} v(1-v) N_{01}}{(1-K)^{2} N_{Q T}}
$$

Practical

- Power in case-control study design
- Code of slides 3-6
- Curve function for power in case-control study design

Module 19: Statistical and

Quantitative Genetics of Disease:
Interpreting measures of variation explained; Multivariate analysis

John Witte
Lecture \#4

Outline

1. Measures of Variation Explained
2. Multivariate Analysis

1. Measures of Variation Explained

- Assume we've identified risk variants from single locus models.
- Once discovered, what next?
- Search for more risk variants?
- Focus on their biology?
- Probably both!
- Depends on their overall impact on disease.
- Can assess with a number of measures
- give values between 0 and 100\%

Measures to Assess Impact

- Heritability explained
- Sibling recurrence risk explained
- Log RR: familial risk explained
- Area under the receiver-operating curve (AUC)
- Population attributable fraction (PAF)

Key questions:

- How do these measures compare?
- Do they provide similar info?
- Does genetic architecture of disease impact differences?

Different Messages?

- Results in contrasting and confusing use of these measures.
- Example,
- for Crohn's disease variants in NOD2 reported to explain:
- 1-2\% of heritability
- ~5\% of familial risk
- 18% of the PAF

Heritability Explained

Genotype ${ }^{\text {a }}$

Measures	bb	Bb	BB
General notation			
Population frequency ${ }^{\text {b }}$	$(1-p)^{2}$	2p(1-p)	p^{2}
Genotype risk ${ }^{\text {c }}$	$\mathrm{wbb}_{\text {b }}$	$\mathrm{w}_{\text {в }}$	$\mathrm{W}_{\text {BB }}$
Mean genotype risk (M) ${ }^{\text {d }}$	$(1-p)^{2} w_{\text {bb }}$	$2 \mathrm{p}(1-\mathrm{p}) \mathrm{w}_{\text {Bb }}$	$\mathrm{p}^{2} \mathrm{w}_{\text {BB }}$
Variance of genotype risk (V) ${ }^{\text {d }}$	$(1-p)^{2}\left(w_{b b}-M\right)^{2}$	$2 p(1-p)\left(w_{B b}-M\right)^{2}$	$p^{2}\left(w_{B B}-M\right)^{2}$
Scale-specific genotype risks			
Observed risk ${ }^{\text {e }}$	$k_{b b}$	$k_{b b} R R_{B b}$	$k_{b b} R R_{B B}$
Relative risk	1	$R R_{B b}$	$R R_{B B}$
Log relative risk	0	$\log \left(R_{\text {bı }}\right)$	$\log \left(R R_{B B}\right)$
Liability threshold ${ }^{\text {f }}$	$-\Phi^{-1}\left(1-k_{b b}\right)$	$-\Phi^{-1}\left(1-k_{b b} R R_{B b}\right)$	$-\Phi^{-1}\left(1-k_{b b} R R_{B B}\right)$
Quantitative genetics notation			
Genotype risk	-a	$d=w_{\text {Bb }}-\left(w_{\text {bb }}+w_{\text {BB }}\right) / 2$	$\mathrm{a}=\mathrm{w}_{\text {BB }}-\left(\mathrm{w}_{\text {bb }}+\mathrm{w}_{\text {BB }}\right) / 2$
Deviations from the mean ${ }^{9}$			
Total	$-a-M=-2 p(a+(1-p) d)$	$d-M=a((1-p)-p)+d(1-2 p(1-p))$	$a-M=2(1-p)(a-p d)$
Additive ${ }^{\text {n }}$	-2pa	((1-p)-p) α	2(1-p) ${ }^{\text {a }}$
Dominance	$-2 p^{2} d$	$2 \mathrm{p}(1-\mathrm{p}) \mathrm{d}$	$2(1-p)^{2} d$

Heritability Explained

Heritability: $h^{2}{ }_{\text {L[i] }}=V_{A L[i]} / V_{\text {PL[i] }}=V_{A L[i]} /\left(V_{G L[i]}+1\right)$
where
$V^{*} L[i]=\operatorname{additive}\left({ }^{*}=A\right)$, phenotype $\left({ }^{*}=P\right)$, genetic (*$\left.=G\right)$ variance.

$$
\begin{aligned}
V_{A} & =(1-p)^{2} 4 p^{2} \alpha^{2}+2 p(1-p)((1-p)-p)^{2} \alpha^{2}+p^{2} 4(1-p)^{2} \alpha^{2} \\
& =2 p(1-p) \alpha^{2} \\
\alpha & =a+d((1-p)-p) \text { (ave effect of replacing a } b \text { allele by a } B \text { allele). }
\end{aligned}
$$

$$
V_{D}=(1-p)^{2} 4 p^{4} d^{2}+2 p(1-p) 4 p^{2}(1-p)^{2} d^{2}+p^{2} 4(1-p)^{4} d^{2}
$$

$$
=(2 p(1-p) d)^{2}
$$

$\mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{D}}$ (Applied to liability risk genotypic values.)

Heritability explained: $h_{\text {Li] }} / h_{L}$

Across multiple variants: $\quad h_{L i]} / h_{L}^{2}$
(Falconer \& Mackay 1996)

Heritability Approximation

If we can assume small $R R$ and a multiplicative model $\left(R_{B b}{ }^{2}=\right.$ $R_{B B}$).

Then, $h_{\text {Lapprox }[i]}=2 p(1-p)\left(R_{B b}-1\right)^{2} / x^{2}$
where
$x=$ the mean liability of cases, approximated as z / K
z is the height of the standard normal distribution at the threshold T that truncates the proportion $\mathrm{K}, \mathrm{T}=\Phi^{-1}(1-\mathrm{K})$

Heritability explained: $h^{2}{ }_{\text {Lapprox }[i]} / h_{L}$

Sibling Recurrence Risk Explained

- Proportion of the total sibling risk explained by the risk variants (observed scale).
- Siblings share $\mathrm{V}_{\mathrm{AO}} / 2+\mathrm{V}_{\mathrm{DO}} / 4$ of risk.

$$
\begin{gathered}
\lambda_{S[i]}=1+\frac{V_{A O[i]} / 2+V_{D O}[i] / 4}{K^{2}} \\
V_{A O[i]}=\mathrm{k}_{\mathrm{bb}}^{2} 2^{*} \mathrm{p}(1-\mathrm{p})\left(\mathrm{p}^{*}\left(\mathrm{RR}_{\mathrm{BB}}-\mathrm{RR}_{\mathrm{Bb}}\right)+(1-\mathrm{p})^{*}\left(\mathrm{RR}_{\mathrm{Bb}}-1\right)\right)^{2} \\
\mathrm{~V}_{\mathrm{DO}[i]}=\mathrm{k}^{2}{ }_{\mathrm{bb}} \mathrm{p}^{2}(1-\mathrm{p})^{2}\left(\mathrm{RR}_{\mathrm{BB}}+1-2^{*} \mathrm{RR}_{\mathrm{Bb}}\right)^{2}
\end{gathered}
$$

Sibling risk explained: $\log \left(\lambda_{S[1]}\right) / \log \left(\lambda_{\mathrm{S}}\right)$
Across multiple variants: $\sum \log \left(\lambda_{s[i]}\right) / \log \left(\lambda_{s}\right)$

Log RR: Familial Risk Explained

- More epidemiologic approach.
- Genetic variance attributable to the ith locus on the log risk scale:
$V_{G l o g[i]}=(1-p)^{2} \mathrm{M}^{2}+2 p(1-p)\left(\log \left(R R_{B b}\right)-\mathrm{M}\right)^{2}+p^{2}\left(\log \left(R R_{B B}\right)-\mathrm{M}\right)^{2}$
where M is the mean value of log relative risk, $M=2 p(1-p) \log \left(R R_{B b}\right)+p^{2} \log \left(R R_{B B}\right)$.

$$
V_{G l o g[i]}=2 p(1-p) \log \left(R R_{B b}\right)^{2}
$$

- Multiple alleles, log-risk $\sim N$ with var=2log $\left(\lambda_{S}\right)$
- Variation explained: $\mathrm{V}_{\text {Glog[ij }} / 2 \log \left(\lambda_{\mathrm{s}}\right)$
- Across multiple variants $\sum_{i} \mathrm{~V}_{\text {Glog[i] }} 2 \log \left(\lambda_{s}\right)$

Area Under the Curve

$$
A U C_{L[i]}=\Phi\left(\frac{(x-v) h_{L[i]}^{2}}{\sqrt{h_{L[i]}^{2}\left(1-h_{L[i]}^{2} x(x-T)+1-h_{L[i]}^{2} v(v-T)\right)}}\right)
$$

where
$x=$ mean liability among cases
$v=-x$ * K(1-K)
$\mathrm{T}=$ population threshold (determined from the disease prevalence K)

- Proportion explained: divide risk variant AUC by the maximum attainable AUC for a genetic risk predictor. $\left[\left(A \cup C_{L[i]}-0.5\right) /\left(A \cup C_{M a x}-0.5\right)\right]^{2}$

Application

- Explore how these measures can imply different impacts of genetic variants on disease.
- Calculate them across studies of:
a) Breast cancer
b) Crohn's disease
c) Rheumatoid arthritis
d) Schizophrenia

Results: Breast Cancer

Results: Crohn’s Disease

Results: RA
s6910071, HLA-DRB1E iR=2.88, RAF=0.22

Results: Schizophrenia

What goes into Denominator?

- All measures considered here require specification of a denominator.
- The apparent impact of genetic variants can hinge on the baseline or overall risks.
- Undertake probabilistic sensitivity analyses to explore how results vary across risks.
- Final results in terms of benchmarking, not exact estimates.

Population Attributable Fraction

- Proportion by which disease reduced in a population if exposure to a risk factor(s) was reduced or removed.

$$
\begin{gathered}
P A F=\frac{K-k_{b b}}{K}=1-\frac{k_{b b}}{K} \\
P A F=\frac{2 p(1-p)\left(R R_{B b}-1\right)+p^{2}\left(R R_{B B}-1\right)}{1+2 p(1-p)\left(R R_{B b}-1\right)+p^{2}\left(R R_{B B}-1\right)}
\end{gathered}
$$

- For multiple variants:

$$
P A F_{T o t a l}=1-\prod_{i}\left(1-P A F_{i}\right)
$$

Example of PAF

Nature Genetics 32, 581-583 (2002)
Published online: 4 November 2002| doi:10.1038/ng1021

RNASEL Arg462GIn variant is implicated in up to 13% of prostate cancer cases

Graham Casey $\frac{1}{1}$, Phillippa J. Neville $\frac{1}{1}$, Sarah J. Plummer $\frac{1}{}$, Ying Xiang $\frac{1}{} \frac{1}{}$, Lisa M. Krumroy ${ }^{1}$, Eric A. Klein ${ }^{2}$, William J. Catalona ${ }^{3}$, Nina Nupponen ${ }^{4}$, John D. Carpten ${ }^{4}$, Jeffrey M. Trent ${ }^{4}$, Robert H. Silverman ${ }^{1}$ \& John S. Witte ${ }^{5}$

Population Attributable Fraction

- ~ Order of magnitude larger than other measures.
- As RAF >0.50, PAF only measure that increases.
- When RR and RAF get large, single variant PAF approaches 100\%.
- Examples:
- Breast cancer variant (rs10771399, RR=1.2, RAF = 0.90) PAF=28\%
- Schizophrenia rare variant (CNV at 16p11.2, RR=26, RAF = 0.0003) PAF =1.4\%
- Combined PAF > 90\% (=100\% with $1 / 2$ Crohn's variants)

Computational Anomaly in PAF

- Apparent impact of each additional risk variant depends on which variants have already been incorporated.
- E.g., assume two genetic variants for a disease:
- each with individual $\mathrm{PAF}=0.50$
- combined PAF = 0.75 (=1-(1-0.5) ${ }^{2}$).
- Remove 1 variant disease by $1 / 2$.
- Remove $2^{\text {nd }}$ disease by $1 / 2$ in remaining popln. Or by $1 / 4$ in original population.

PAF curve Depends on SNP Order

Another Issue with PAF...

- Combined PAF not analogous to that obtained by removing an environmental exposure (smoking).
- As the number of known risk loci continues to increase, essentially everyone in the population will carry a number of risk alleles.
- Then any preventative treatment directed at countering the risk loci would have to be applied to the entire population, which seems very unrealistic.

Take Home...

- For common and rare variants of varying penetrance, use heritability explained or the proportion of genetic risk on a log-scale.
- Avoid approximation to the heritability and sibling relative risk because they break down for rare, high-penetrance variants (vastly inflated estimates).
- Issues with AUC, and PAF has a number of undesirable properties.

Outline

1. Measures of Variation Explained
2. Multivariate Analysis

2. Multivariate Analysis

- Single Locus Analysis

$$
\operatorname{logit}(P(D \mid G))=\beta_{0}+G_{l} \beta_{l}, \quad l=1, \ldots, m
$$

- Multiple Loci

$$
\operatorname{logit}(P(D \mid G))=\beta_{0}+G_{1} \beta_{1}+\ldots+G_{m} \beta_{m}
$$

Hierarchical Model

$$
\operatorname{logit}(P(D \mid G))=\beta_{0}+G_{1} \beta_{1}+\ldots+G_{m} \beta_{m}
$$

$$
\begin{aligned}
& \underline{\beta}=\mathbf{Z} \underline{\alpha}+\underline{\delta} \\
& \underline{\delta} \sim \operatorname{MVN}(0, \mathbf{T}), \mathbf{T}=\underline{\tau}^{2} \mathbf{I}
\end{aligned}
$$

Efron \& Morris, 1974
Witte, 1996
Conti and Witte, 2003
Chen and Witte, 2007

Posterior Estimates

- Weighted to reflect precision of ML and prior estimates

$$
\begin{aligned}
& \underline{\tilde{\beta}}=\mathbf{B Z} \underline{\tilde{\alpha}}+(\mathbf{I}-\mathbf{B}) \underline{\hat{\beta}} \\
& \text { where } \underline{\tilde{\alpha}}=\left(\mathbf{Z}^{\prime} \mathbf{W} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{W} \underline{\hat{\beta}} \\
& \text { and } \mathbf{B}=\frac{\mathbf{V}}{\mathbf{V}+\mathbf{T}}, \mathbf{W}=(\mathbf{V}+\mathbf{T})^{-1}
\end{aligned}
$$

Incorporating Additional Info?

- Part of a known pathway?
- Within linkage \association regions?
- Potentially functional?
- Degree of conservation?
- Tagging other SNPs?
- Copy number polymorphism?

Z matrix

			Functional Category					LD sum columns						
\hat{Z}_{n}^{n}	$\begin{aligned} & \text { E } \\ & \text { 蕃 } \\ & \text { B } \end{aligned}$			$\begin{aligned} & \text { en } \\ & \stackrel{E}{E} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	E	$\begin{aligned} & \text { OE } \\ & \text { EO } \end{aligned}$				俞	EOE	$\begin{aligned} & \text { B00 } \\ & \text { E } \\ & 0 \\ & 0 \\ & E \\ & 0 \end{aligned}$	$\begin{aligned} & \text { E } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	或
1	206	21	0	1	0	0	0	1	0	1	0	0	42	4.4
2	4	32	1	0	0	0	0	0	1	1	0	0	31	5.5
3	15	10	0	0	1	0	0	1	1	0	0	0	53	4.3
4	56	15	0	0	0	1	0	0	0	0	0	0	0	3
5	108	14	0	0	1	0	1	0	0	0	0	0	0	
6	340	9	0	0	0	1	0	0	0	0	0	0	0	2
7	356	31	1	0	0	0	0	0	0	2	1	1	84	2

HM Example: SNPs and Expression

- Previous result:
- Linkage to chromosome 1, and association between SNP in chitinase 3-like 2 (CHI3L2) promoter and CHI3L2's expression level
- Genoptypes:
- Affy 500K data, unrelated CEPH individuals
- Prior information:
- Linkage region (\& LOD scores)
- Functionality
- Conservation scores
- Number of SNPs tagged

HM Example Results

Association between SNPs and CHI3L2 on Chr 1

Chen \& Witte, AJHG 2007

2016 Module 18:

 Statistical \& Quantitative Genetics of DiseaseLecture 5
Polygenic models of disease risk Naomi Wray

Aims of Lecture 5

Theory

- To consider polygenic models of genetic risk
- To demonstrate that many polygenic models are consistent with empirical data and that they can be considered equivalent
- To understand the conclusion that the liability threshold model is the model of choice
- To understand the criticisms and controversy of the liability threshold model

Genetic models of disease

Mendelian disease:

- Individuals that possess the mutation get the disease.
- Dominant e.g Huntington's or recessive e.g. Cystic fibrosis Mendelian disease with variable penetrance.
- Only those with the mutation get the disease
- Not everyone with the mutation gets the disease.
- E.g. C9orf72 in Motor Neurone Disease

Compound heterozygote disease.

- Like recessive Mendelian but individuals carry two different rare mutations in the same gene.

Two-hit diseases

- Hypothesized, but examples?

Oligogenic diseases -caused by presence of several genetic risk variants Polygenic diseases - caused by multiple genetic risk variants
Multifactorial diseases- caused by multiple genetic risk variants and other risk factors

Common complex genetic diseases are likely to be polygenic multifactorial

Evidence:

Many risk variants of small effect identified

Implications:

- We all carry risk alleles
- Each affected person may carry a unique portfolio
- Polygenic model can accommodate some people having few loci of larger effect and others having many loci of small effect
- The more loci involved, to be consistent with low prevalence, the probability of disease has to increase steeply with the number of loci.
- The more loci involved, the more likely they have a pleiotropic effect, which would be consistent with them being common in the population
- The more loci involved implies that we are highly robust to perturbations - but this breaks down when the burden of risk factors become too great

Modeling polygenic genetic risk

- "Easiest" to understand by thinking of individual risk loci and how they act together to cause disease
- The frequency of the risk alleles
- Drawn froma distribution
- All the same
- The effect size of the risk alleles
- Drawn froma distribution
- All the same - relative risk associated
- Interaction between risk loci
- Complex
- All act in the same way

GENETIC ARCHITECURE

Basic Model

p = freq of risk allele
1-p = freq of non-risk allele
Assume Hardy- Weinberg equilibrium in the population
Genotype frequencies

$$
\begin{array}{ll}
P(b b) & =(1-p)^{2} \\
P(B b) & =2 p(1-p) \\
P(B B) & =p^{2}
\end{array}
$$

Relative risk associated with one risk allele R
n loci
Theoretical minimum number of risk loci : 0
Theoretical maximum number of risk loci possible: $2 n$
Mean number of risk loci: $2 n p$
Variance in number of risk loci: $2 \mathrm{np}(1-\mathrm{p})$
Range in number of loci expected $2 n p+/-(3.5) \sqrt{ } 2 n p(1-p)^{5-36}$

Visualising common complex genetic diseases Polygenic genetic architecture

- Imagine a disorder underpinned by
- 100 loci : 2 alleles at each locus
- Each risk allele has frequency 0.1

0 risk alleles $=$ yellow
1 risk allele $=$ light blue
2 risk alleles = dark blue
Average person a person carries 2 alleles * 100 loci *0.1 $=20$ ris alleles
Everybody carries some risk alleles
Range in population $\sim 5-36$ (mean $+/-3.5 \mathrm{sd}$)
Polygenic burden : top 1% carry > 33 risk alleles

Visualising variation between individuals for common complex genetic diseases

```
Affected individuals
```


Unaffected individuals

Not all affected individuals carry the risk allele at any particular locus Unaffected individuals carry multiple risk loci
Consequences of risk alleles depend on the genetic and environmental background

How to combine risk loci to explain disease

Additive on disease scale

Multiplicative on disease scale

Constrained multiplicative on disease scale

Multiplicative Odds on disease scale

Liability threshold model

Basic genetic risk model

Single locus disease model:
$G=$ genotype; $D=$ disease; $K=$ overall disease risk in population

	$P(G)$	$P(D \mid G)$	$P(D)=P(D \mid G) p(G)$	$P(G \mid D)=P(G) / P(D)$
aa	$(1-p)^{2}$	f_{0}	$(1-p)^{2} f_{0}$	$(1-p)^{2} f_{0} / K$
Aa	$2 p(1-p)$	$f_{0} R_{B b}$	$2 p(1-p) f_{0} R_{B b}$	$2 p(1-p) f_{0} R_{B b} / K$
AA	p^{2}	$f_{0} R_{B B}$	$p^{2} f_{0} R_{B B}$	$p^{2} f_{0} R_{B B} / K$
			$S u m=K$	

$$
\begin{aligned}
& P(\text { Disease })=K=f_{0}(1-p)^{2}+f_{0} R_{B b} 2 p(1-p)+f_{0} R_{B B} p^{2}=f_{0}(1+p(R-1))^{2} \\
& =f_{0}\left((1-p)^{2}+R_{B b} 2 p(1-p)+R_{B B} p^{2}\right) \\
& f_{0}=K /\left((1-p)^{2}+R_{B b} 2 p(1-p)+R_{B B} p^{2}\right) \\
& \text { if } R_{B b}=R ; R_{B B}=R^{2} \\
& f_{0}=K /(1+p(R-1))^{2}
\end{aligned}
$$

Additive on the disease scale

Probability of disease increases additively/linearly with the number of loci (x) carried.

$$
P(D \mid x=s)=b^{*} R^{*} s
$$

Constraint

$$
\sum_{x=0}^{2 n} P(D \mid x) P(x)=K
$$

$E(P(D \mid x))=E\left(b^{*} R^{*} x\right)=b^{*} R^{*} E(x)=b^{*} R^{*} 2 n p=K$

So $b=K / 2 n p R$

Looking at the additive model

Base
$\mathrm{N}=1 \mathrm{e} 5$
$\mathrm{n}=100$
$R=1.1$
$\mathrm{p}=0.2$
$K=0.01$
\# number of families
\# number of loci
\# relative risk of each risk allele
\# allele frequency of each risk allele
\# probability of disease

Follow up:
Base, $\mathrm{R}=1.5, \mathrm{p}=0.5, \mathrm{~K}=0.1$
Look at maximum probability of disease and consider whether this model will generate an increased risk in relatives

Histogram of \# risk alleles Histogram of probability of dise

onship between \# alleles \& prob
Histogram of \# risk alleles

indA = \# risk alleles

ndR = probability of disease given \# risk a
onship between \# alleles \& prob

Histogram of \# risk alleles

Additive model

- Mathematically tractable
- To achieve additivity of risk loci and correct disease prevalence, does not give high probability of disease with large number of risk loci
- Not consistent with high heritability
- Not consistent with observed risks to relatives
- Can "fudge" the additive model by saying
- $P(D \mid x<n 1)=0$
- $P(D \mid n 1<x<n 2)=$ additive with x
$-P(D \mid x>n 2)=1$

Is non-linear with x
Not mathematically tractable

Multiplicative on the disease scale

Probability of disease increases multiplicatively with the number of risk loci (x)
$P(D \mid x=s)=f_{0} R^{s}$
Multiplicative on the risk scale
When $s=0, P(D \mid x=0)=f_{0}$
Constraint

$$
\sum_{x=0}^{2 n} P(D \mid x) P(x)=K
$$

$E(P(D \mid x))=E\left(f_{0} R^{s}\right)=f_{0}(p R+(1-p))^{2 n}=f_{0}(1+p(R-1) p)^{2 n}=K$

$$
f_{0}=K /(1+p(R-1) p)^{2 n}
$$

Additive on the log risk scale

$$
\log (P(D \mid x=s))=s \log \left(f_{0} R\right)
$$

Looking at the multiplicative model

Base

$$
\begin{aligned}
& N=1 e 5 \\
& n=100 \\
& R=1.1 \\
& p=0.2 \\
& K=0.01
\end{aligned}
$$

Follow up:
Base, K=0.1
Base $K=0.1, R=1.2$
Look at maximum probability of disease and consider whether this model will generate an increased risk in relatives

Add fix

Multiplicative model

- Mathematically tractable
- High probability of disease with large number of risk loci so consistent with high heritability and can be consistent with observed risks to relatives

BUT

- Probability of disease for an individual can be > 1

IF constrain so that max probability of disease is 1
THEN

- $E(P(D \mid x))$ is no longer K
- Need to fudge to retain this property
- Loses mathematical tractability

$K=0.1, p=0.2, R=1.1$

Histogram of \# risk alleles
Histogram of probability of dise

ind $A=\#$ risk alleles

ndR = probability of disease given \# risk a
onship between \# alleles \& prob

Histogram of \# risk alleles

$K=0.1, p=0.2, R=1.2$

Histogram of \# risk alleles
Histogram of probability of dise

onship between \# alleles \& prob
Histogram of \# risk alleles

Epidemiology risk model

Odds(Disease) = P(Disease)/(1-P(Disease))
Odds $($ Disease $\mid \mathrm{X}=\mathrm{s})=\operatorname{Odds}($ Disease $\mid \mathrm{X}=0) \mathrm{Y}^{\mathrm{x}}=C \mathrm{Y}^{\mathrm{x}}$
$s=$ number of risk loci carried by an individuals
Y = odds ratio for each risk locus
$P($ Disease $\mid x=s)=C Y^{s} /\left(1-C Y^{s}\right)$

Good: probability of disease does not exceed 1
Bad: mathematically intractable

Epidemiology risk modelling

- $R=$ risk = probability of disease
- $\log R=y \sim N\left(\boldsymbol{\mu}, \boldsymbol{\sigma}^{2}\right)$
- $\mathrm{R} \sim \operatorname{LogNormal}\left(\boldsymbol{\mu}, \boldsymbol{\sigma}^{2}\right)=\operatorname{LN}\left(\boldsymbol{\mu}, \boldsymbol{\sigma}^{2}\right)$
- $\boldsymbol{\mu}$ is arbitrary but Pharaoh set as $\boldsymbol{\mu}=-\boldsymbol{\sigma}^{2} / 2$, but can also be calculated from disease prevalence K

$$
\begin{aligned}
& \sigma^{2}=\log \left(\lambda_{M Z}\right)=2 \log \left(\lambda_{s i b}\right) \\
& \mu=\log K-\sigma^{2} / 2
\end{aligned}
$$

Epidemiology risk model

$E[R]=K=\int e^{\mu+\sigma x} \phi(x) d x=\cdots=e^{\mu+\sigma^{2} / 2}$
Two relatives, with risk of disease $\mathrm{R}_{1} \mathrm{R}_{2}$
$R_{1}=e^{\mu+\sigma z_{1}}$
$R_{2}=e^{\mu+\rho \sigma z_{1}+\sqrt{ }\left(1-\rho^{2}\right) \sigma z_{2}} \mid$
Probability that both are affected $\mathrm{R}_{1} \mathrm{R}_{2}$
$E\left[\mathrm{R}_{1} \mathrm{R}_{2}\right]=\int R_{1} \phi\left(z_{1}\right) R_{2} \phi\left(z_{2}\right) d z_{1} d z_{2}=\cdots=e^{2 \mu+\sigma^{2}(1+\rho)}$
Recurrence risk $=\lambda_{\text {relative }}=\frac{E\left[\mathrm{R}_{1} \mathrm{R}_{2}\right]}{K^{2}}=e^{\rho \sigma^{2}}$

$$
\begin{aligned}
& \lambda_{M Z}=e^{\sigma^{2}} \\
& \lambda_{s i b}=e^{0.5 \sigma^{2}} \\
& \sigma^{2}=\log \left(\lambda_{M Z}\right)=2 \log \left(\lambda_{s i b}\right) \\
& \mu=\log K-\sigma^{2} / 2
\end{aligned}
$$

Liability threshold model

Doesn't parameterise in terms of number of risk loci
Only parameterises in terms of

- prevalence of disease and heritability of liability

OR

- prevalence of disease and risk to relatives
i.e.
- In terms of total variance explained which could cover a range of genetic architectures

Variance explained by a locus
depends on frequency (p) and effect size(a): $2 p(1-p) a^{2}$
Variance explained is the same for

$$
p=0.1, a=0.1 \quad \text { as for } \quad p=0.5, a=0.06
$$

- BUT is the liability threshold model realistic?

Controversy - the abrupt threshold is not biological

Abstract

"Contrary to the argument regarding the conservatism of the multifactorial threshold model for describing the inheritance of congenital malformations, little biological insight has resulted from the series of tautological, albeit grandiose, mathematical assumptions currently comprising the basis for this hypothesis." Melnick \& Shields

The theoretical foundation of genome-wide association studies

GWAS are founded on the polygenic model of disease liability, which itself arises from an assertion of breathtaking audacity by the godfather of quantitative genetics, DS Falconer. In an attempt to demonstrate the relevance of quantitative genetics to the study of human disease, Falconer, based on work of others before him (for example, [24]), came up with a nifty solution [25]. Even though disease states are typically all-or-nothing, and even though the actual risk of disease is clearly very discontinuously distributed in the population (being dramatically higher in relatives of affected people, for example), he claimed that it was reasonable to assume that there was something called the underlying liability to the disorder that was actually continuously distributed.

Is the abrupt threshold non-biological?

- People are classed as diseased or not disease, any error in this classifcation, contributes of a heritability of <1.
- Wright(1934) showed that 3 vs 4 toes in guinea pigs "cannot correspond to alternate phases of a single factor (=gene)" and used crosses to show several factors ("> 3") underly a physiological threshold
- Fraser (1976) Detailed explanation of the biology consistent with a multifactorial threshold model for cleft palate

No need to invoke abrupt threshold of phenotypic liability - instead use Probability of risk of disease under liability threshold model

Two parameters: disease prevalence and heritability

Probit model can be parameterised in terms of number of risk loci

Curnow (1972) The multifactorial model for the inheritance of liabilty to disease and its implications for risk to relatives. Biometrics
Curnow \& Smith (1975) Multifactorial models for familial diseases in man. J Royal Stat Soc A 138

Controversy - many models fit empirical data

"One cause of scepticism of the liability threshold model was the realization that the empirical data would also fit other models (Morton, '67; Smith, '71), such as a major gene combined with polygenic and environmental variation (Morton and MacLean, '74, a single locus with two alleles, each with incomplete penetrance (Reich et al., '72, or a heterogeneous mixture of cases determined either by a major locus with incomplete dominance and reduced penetrance or by environmental factors (Chung et al., '74, or various combinations of these (Elston and Stewart, '73; Lange and Elston, '75).

This is because the extreme tail of the distribution (which is all one can usually see when diseases are uncommon) are not good indicators of the shape of the main body of the distribution. '

Need risk to disease from relatives of different types of relatives to start to distinguish between models Not easy to collect, large sampling variances

Exchangeable models of disease

- For diseases 0.5\%-2\%
- High heritability
- Requires there be a large variance in risk among individuals. Consequently risk considered as a function of the number of causative alleles has to be steeply increasing.

Which polygenic model to use?

The liability threshold model is the model of choice because

- It is the simplest parameterization that fits the observable data
- It is mathematically tractable
- It makes least assumptions about genetic architecture
"Most models are wrong some models are useful"

Practical 7

1. Additive risk model.
a. Run code
b. Change parameters
2. Multiplicative risk model.
a. Run code
b. Change parameters
3. Logistic risk model.
a. Run code
b. Change parameters
4. Liability threshold model
a. Run code
b. Change parameters

Module 19: Statistical and Quantitative Genetics of Disease: Gene-Environment Interaction John Witte

Lecture \#6: Gene-Environment Interactions

Overview

1. Conventional approaches
2. Case-only GxE
3. Empirical-Bayes case-only / case-control
4. Two-step approaches
5. Gene-sets / pathways
6. Other...

Gene-Environment Interactions

- Difference in the magnitude or direction of effect of an environmental exposure on disease risk in people with different genotypes (or viceversa).
- Effect modification
- Important because it may:
- Identify populations with environmental exposures at increased risk.
- Increase power and/or statistical accuracy.
- Clarify biological mechanisms of disease risk.
- Explain some of the missing heritability.

1. Conventional Analysis

- Assume case-control data.
$\operatorname{Logit}\left(\operatorname{Pr}(D=1 \mid G, C)=\alpha_{0}+\beta_{G} G+\beta_{C} C\right.$
$-\mathrm{D}=$ binary trait or disease outcome
$-G=$ genetic variant (e.g., SNP coded 0,1, 2)
$-C=$ set of potential confounders
$\exp \left(\beta_{G}\right)=$ 'marginal effect' of G on D
- averaging (or marginalizing) over the environmental (E) exposure-specific effects of G.
- E may or may not be included in C

Conventional GxE Model

$$
\operatorname{Logit}(P(D=1 \mid G, E, C))=\alpha_{0}+\beta_{G} G+\beta_{E} E+\beta_{G x E} G x E+\beta_{C} C
$$

$\exp \left(\beta_{G}\right)=$ main effect of G on $D(G=1, E=0)$
$\exp \left(\beta_{\mathrm{E}}\right)=$ main effect of E on $\mathrm{D}(\mathrm{G}=0, \mathrm{E}=1)$
$\exp \left(\beta_{G x E}\right) \exp \left(\beta_{G}\right) \exp \left(\beta_{E}\right)=$ overall effect $(G=1, E=1)$

- For a cohort study, use a log-linear model to estimate relative risks or a proportional hazards model to estimate hazard rate ratios if time-to disease data are available.
- For a quantitative outcome, use linear regression.

Interaction Scale

Multiplicative

Departure from multiplicative effects implies odds-ratios associated with one risk-factor varies by the level of the other risk-factor and vice-versa.

$$
\begin{aligned}
\mathrm{GxE}_{\text {Multp }} & =\exp \left(\beta_{\mathrm{GxE}}\right) \exp \left(\beta_{\mathrm{G}}\right) \exp \left(\beta_{\mathrm{E}}\right) /\left(\exp \left(\beta_{\mathrm{G}}\right) \exp \left(\beta_{\mathrm{E}}\right)\right) \\
& =\exp \left(\beta_{\mathrm{GxE}}\right)=\text { interaction effect }
\end{aligned}
$$

Additive

Departure from additivity implies that absolute risk-reduction associated with removal of one risk-factor depends on the levels of another and vice-versa.

$$
G x E_{A D D}=\exp \left(\beta_{G \times E}\right) \exp \left(\beta_{G}\right) \exp \left(\beta_{E}\right)-\exp \left(\beta_{G}\right)-\exp \left(\beta_{E}\right)+1
$$

Joint effects for two risk factors

Factor V Leiden Mutations, Oral Contraceptive Use, and Venous Thrombosis

Strata	Cases	Controls	OR	
G+E+	25	2	G+E+: 34.7G+E- 6.9	$\begin{aligned} & \mathrm{OR} \text { interaction (mult) } \\ & =\mathrm{OR}_{\mathrm{G}+\mathrm{E}+} / \mathrm{OR}_{\mathrm{G}+\mathrm{E}-} \mathrm{OR}_{\mathrm{G}-\mathrm{E}+} \\ & =34.7 / 6.9 \times 3.7 \\ & =1.4 \end{aligned}$
G+E-	10	4		
			G+E-: 6.9	
G-E+	84	63		$\begin{aligned} & \text { OR }_{\text {Interaction (add) }} \\ & =\mathrm{OR}_{\mathrm{G}+\mathrm{E}+}-\mathrm{OR}_{\mathrm{G}+\mathrm{E}-}-\mathrm{OR}_{\mathrm{G}-\mathrm{E}+}+1 \\ & =34.7-6.9-3.7+1 \\ & =25.1 \end{aligned}$
			$\text { G-E+: } 3.7$ G-E-: Reference	
G-E-	36	100		
Total	155	169		

Testing for Multiplicative GxE Interactions

$$
\operatorname{Logit}(P(D=1 \mid G, E, C))=\alpha_{0}+\beta_{G} G+\beta_{E} E+\beta_{G \times E} G x E+\beta_{C} C
$$

- 1 df test. $\mathrm{H}_{0}: \beta_{\mathrm{GxE}}=0$.
- 2 df test. Joint null $\mathrm{H}_{0}: \beta_{\mathrm{G}}=\beta_{\mathrm{GxE}}=0$.
- 2 df often more powerful than 1 df test.

Controlling Confounding

- When testing GxE interaction, need to consider inclusion of confounders C in the model, but also $G \times C$ and $E \times C$ interactions.
- GxE interaction effects can themselves be confounded by other interactions.
- Potential Confounders: PCAs, etc.

Why so few GxE Interactions detected?

- Limited power.
- Challenges measuring E (both for discovery and replication).
- Model misspecification.
- A number of approaches can increase power.

2. G-E Interaction: Case-Only

Strata	Cases	Controls
G+E+	a	b
G+E-	c	d
G-E+	e	f
G-E-	g	h

Odds Ratio (OR)
$\mathrm{ah} / \mathrm{bg}$
$\mathrm{ch} / \mathrm{dg}$
$\mathrm{eh} / \mathrm{fg}$
1

$\mathrm{OR}_{\text {Interaction }}=\mathrm{OR}_{\mathrm{G}+\mathrm{E}+} / \mathrm{OR}_{\mathrm{G}+\mathrm{E}-} \mathrm{OR}_{\mathrm{G}-\mathrm{E}+}$
$=\mathrm{ah} / \mathrm{bg} /(\mathrm{ch} / \mathrm{dg})(\mathrm{eh} / \mathrm{fg})$
= (ag/ce) / (bh/df)
$=a g / c e$ if no G-E assoc in controls (bh/df = 1).

Case-Only Model

$$
\operatorname{Logit}(P(G=g \mid E, D=1))=\gamma_{0}{ }^{+} \gamma_{G \times E} E
$$

$\exp \left(\gamma_{G \times E}\right)=G x E$ interaction effect

- $\mathrm{H}_{0}: \gamma_{G X E}=0$.
- Wald test asymptotically equivalent to $\mathrm{H}_{0}: \beta_{\mathrm{GXE}}=0$ (assuming log-additive coding for $\mathrm{g}, 0,1,2$).

If G-E are associated in source population, then can give high false positive rate.

Overview

1. Conventional approaches
2. Case-only GxF
3. Empirical-Bayes case-only / case-control
4. Two-step approaches
5. Gene-sets / pathways
6. Other?

3. Empirical-Bayes GxE Test

- Case-only more efficient than case-control, but can give biased results (e.g., if G-E assumption violated).
- Use EB hybrid model to combine case-control and case-only approaches (bias versus efficiency trade-off).

$$
\begin{aligned}
& \quad \beta_{E B}=K\left(\beta_{G X E}\right)+(1-K) Y_{G X E} \\
& \text { where } K=\theta_{G E}^{2} /\left(\sigma_{G X E}{ }^{2}+\theta_{G E}{ }^{2}\right) \\
& \theta_{G E}=G-E \text { association }
\end{aligned}
$$

- If $\theta_{G E} \neq 0$ or if $\sigma_{G X E}{ }^{2}$ is small, larger weight assigned to $\beta_{G X E}$.
- If $\theta_{G E}=0$ (G-E independence), $\gamma_{G x E} \cong \beta_{G X E}$, use $\gamma_{G X E}$ (more efficient).
- $\mathrm{H}_{0}: \beta_{E B}=0$. More power than case-control, helps control type I error from case-only.

Harry Potter's Pedigree

Harry Potter's Pedigree

What About Filch?

4. Two-Step GxE Tests

- Step 1 screen: For each SNP, compute screening test statistic T_{1} and corresponding p-value p_{1}.
- Step 2 test: Prioritize SNPs based on p_{1}, and conduct GxE interaction test T_{2} with corresponding p-value p_{2}.
- Key requirement: T_{1} and T_{2} are independent.

Two Step GxE: Case-Control Data

Step 1:

- Test for marginal D-G association

$$
\operatorname{Logit}\left(\operatorname{Pr}(\mathrm{D}=1 \mid \mathrm{G})=\mathrm{I}_{0}+\mathrm{I}_{\mathrm{G}} \mathrm{G},\right. \text { and/or }
$$

- Test for E-G association
$\operatorname{Logit}\left(\operatorname{Pr}(G \mid E)=d_{0}+d_{E} E\right.$
Step 2:
- Test for GxE interaction, only using SNPs passing Step 1 threshold (fewer comparisons).
- Can use an E Bayes procedure here.
- Additional info from Step 1 increases power by up to 50% over conventional approach.

Hybrid 2-Step Approach

- Step 1: test DG and EG.
- Retain SNPs that pass at least one of these tests.
- Step 2: Apply case-control analysis and test GxE, correcting for the number of SNPs retained from step 1.

Cocktail Method

- Step 1: If $p<$ threshold for EG, assign SNP that p.
- Else, assign SNP from DG (marginal) analysis.
- Step 2:
- If p from DG, then test for GxE using case-only model.
- If p from EG, then test GxE using case-control analysis.
- Use weighted hypothesis testing.

EDGxE Approach

- Step 1: combines the DG and EG tests into single 2 df test.
- Step 2: weighted hypothesis testing of casecontrol analysis.

Power Gains for Two-step

- Assume G has MAF = 0.3, and for E 30\% exposed
- $\exp \left(b_{G}\right)=\exp \left(b_{E}\right)=1.0, \exp \left(b_{G X E}\right)=1.5$.
- For a GWAS, 80% power (alpha $=0.05$)
- For conventional GxE model, N=10,060.
- Two-step approaches:
- D-G screening, N=6,630
- E-G screening, $N=4,472$
- EDGE screening, $\mathrm{N}=3,994$.

Comparison of GxE Tests

A) Moderate interaction with common G and $E\left(O R_{G X E}=1.5, q_{A}=0.23, p_{E}=0.40\right)$

Gauderman et al., 2013
B) Strong interaction with less common G and $E\left(O R_{G \times E}=2.0, q_{A}=0.14, p_{E}=0.10\right)$

Gauderman et al., 2013

Step 2: Weighted hypothesis testing

- Partition SNPs into groups, where higher ranked SNPs have less stringent alpha level.
- B most significant SNPs in step 1 tested in step 2 at significance level ($\alpha / 2$)/B, next 2B at $(\alpha / 4) / 2 B$, next 4B at ($\alpha / 8$)/4B, etc.
- Maintains overall GWAS alpha level, but uses larger alpha level for most promising interactions.

Overview

1. Conventional approaches

2. Case-only GxE
3. Empirical-Bayes case-only / case-control
4. Two-step approaches
5. Gene-sets / rare variants 6. Other?

GxE for Gene Sets / Rare Variants

- Burden and variance components tests.
- Combination of burden and variance component GxE tests.
- Can incorporate GxE term into kernel.

6. Other...

- GxE interactions using Summary Stats
- Analyses stratified by E.
- Then test for differences in G main effects.
- Note: same methods can be applied to GxG interactions.

Epistasis: Gene-Gene Interactions

- Similar issues as with gene-environment interaction (e.g., multiplicative vs additive scale)

- Usually test when g_{1} is from one gene, and g_{2} from another gene (e.g., take GWAS hits)
- Feasible to do all pairwise: plink: --fast-epistasis
- "4.5 billion two-locus tests generated from a 100K data set took just over 24 hours to run" (http://pngu.mgh.harvard.edu/~purcell/plink/)

Example: GWAS of Psoriasis

Figure 1 Plot of genome-wide association results. Genome-wide association results from 523,067 SNPs on chromosomes 1-22 and 12,408 SNPs on the X chromosome using the additive model in SNPTEST. The $-\log _{10} P$ values are thresholded at 10^{-10}. Regions in red are described in Table 2. Regions which have been shown previously to be associated with psoriasis and which replicated in this study are highlighted in green, as described in Table 1.
Take the hits, and follow up on gene-gene interaction test --(nextslide)-->

Example of Gene-Gene Interaction

Figure 3 Statistical interaction between ERAP1 and HLA-C genotypes.
Strange et al. Nature Genetics 2010

Endnote on Interactions

Challenges	Old Approach	Solutions/New Approach
Interaction can be dependent on scale	Only multiplicative scale considered	Consider evaluating interaction on both additive and multiplicative scales
SNP-based analyses can lack power	Single step analysis subject to multiple comparisons burden due to large number of SNPs considered at once	Conduct more efficient 2-step tests
	Single variant approach agnostic to biological information	Conduct gene-based/set-based tests
	Individual studies report results independently	Conduct meta-analysis across studies/cohorts
	Only homogenous populations considered, typically of European decent Individual studies independently measurement	Consider admixture analysis, if appropriate

Gauderman et al., submitted 2016

GxE Software

Program	GxE	Case- only	EB	2-StepAdditive models	
PLINK	X				
GxEScan	X	X		X	
CGEN	X	X	X		X

2016 Module 18:

 Statistical \& Quantitative Genetics of DiseaseLecture 7
Risk profile scores
Naomi Wray

Aims of Lecture 7

1. Calculation of Risk Profile Scores
2. Examples of Use of Risk Profile Scores
3. Statistics to evaluate risk profile scores
a. Nagelkerke's R ${ }^{2}$
b. AUC
c. Decile Odds Ratio
d. Variance explained on liability scale
e. Risk stratification

Polygenic risk profile

Evidence for a polygenic contribution to disease

Risk Profile Scoring

SNP profiling schematic

Visualising variation between individuals for common complex genetic diseases

Affected individuals

Unaffected individuals

- Not all affected individuals carry the risk allele at any particular locus
- Unaffected individuals carry multiple risk loci
- Consequences of risk alleles depend on the genetic and environmental background

Steps 1 - 3 in polygenic risk scoring

1. Identify Discovery sample with genome-wide association analysis summary statistics
2. Identify Target sample with genome-wide genotypes.

- The Target sample should not include individuals closely related to those in the Discovery sample. Results can be inflated if there is overlap between samples.

2. Determine the list of SNPs in common between Discovery and Target samples

Steps 4-7 in polygenic risk scoring as currently commonly applied

4. Construct a clumped SNP list: association p-value informed removal of correlated SNPs,

- e.g. LD threshold of $r^{2}<0.2$ across 500 kb .
- e.g.in the program PLINK:-clump-p1 l-clump-p2 1-clumpr2 0.2-clump-kb 500

5. Limit SNP list to those with association p-value less than a defined threshold

- often several thresholds are considered, i.e., <0.00001,0.0001, $0.001,0.01,0.1,0.2,0.3$ etc.

6. Generate genomic profile scores in the target sample: e.g., sum of risk alleles weighted by Discovery sample log(odds ratio).

- e.g., in PLINK: -score

7. Evaluate

Polygenic Modeling

Calculate polygenic risk score for individual j

$$
\operatorname{Score}_{j}=\frac{\sum_{i=1}^{m} \ln \left(O R_{i}\right) \times S N P_{i j}}{m}
$$

where

- In(ORi) = effect size or 'score’ for $\mathrm{SNP}_{\mathrm{i}}$ from 'discovery' sample
- $S N P_{i j}=\#$ of alleles $(0,1,2)$ for $S N P_{i}, ~ p e r s o n j$ in 'target' sample.
- $m=$ number of SNPs considered in test set

Consider step 4

4. Construct a clumped SNP list: association p-value informed removal of correlated SNPs,

- e.g. LD threshold of $r^{2}<0.2$ across 500 kb .
- e.g.in the program PLINK:-clump-p1 1-clump-p2 1-clump-r2 0.2-clump-kb 500

This step can be improved upon to make it less arbitary

Step 7 in polygenic risk scoring

7. Evaluate efficacy of score predictor.

- Regression analysis:
- $y=$ phenotype, $x=$ profile score.
- Compare variance explained from the full model (with x) compared to a reduced model (covariates only).
- Check the sign of the regression coefficient to determine if the relationship between y and x is in the expected direction.

SNP profiling schematic

Applications of polygenic Risk Profile Scoring

Discovery \& Target samples could be:
A. Same Disorder

- demonstrates polygenicity even in absence of genome-wide significant SNP associations
B. Different disorders
- demonstrates genetic overlap between disorders
A. Target samples are disorder subtypes
- investigates genetic genetic heterogeneity
- think carefully about how the heterogeneity is represented in the Discovery sample if Target and Discovery are the same disease

Example Disorder Sub-types. Discovery: PGC-BPD Target: Postnatal depression in MDD

Postnatal depression - a more homogeneous subtype of depression?

Female only
Same bio-social stressor

- MDD
- MDD Females
- PPD cases / All Controls
- PPD Cases / Screened Controls

Enda
Tania

Byrne
Carillo-Roa
Samantha MeltzerBrody Nick Martin Brenda Penninx

NB. Null result in the ALSPAC community sample measured for PND but not MDD

Applications of polygenic Risk Profile Scoring

Discovery \& Target samples could be:
A. Same Disorder

- demonstrates polygenicity even in absence of genome-wide significant SNP associations
B. Different disorders
- demonstrates genetic overlap between disorders
A. Target samples are disorder subtypes
- investigates genetic genetic heterogeneity
- think carefully about how the heterogeneity is represented in the Discovery sample if Target and Discovery are the same disease
D. Target samples have the same disease as the discovery sample and have environmental risk factors recorded
- investigate GxE
- think carefully about how the environmental risk factor is represented in the Discovery sample

Application of Polygenic Risk Profiling Scores to investigate GxE, e.g., depression and childhood trauma

Peyrot et al (2014) Effect of polygenic risk scores on depression in childhood trauma Biol Psychiatry

Applications of polygenic Risk Profile Scoring

Discovery \& Target samples could be:
A. Same Disorder

- demonstrates polygenicity even in absence of genome-wide significant SNP associations
B. Different disorders
- demonstrates genetic overlap between disorders
A. Target samples are disorder subtypes
- investigates genetic genetic heterogeneity
- think carefully about how the heterogeneity is represented in the Discovery sample if Target and Discovery are the same disease
D. Target samples have the same disease as the discovery sample and have environmental risk factors recorded
- investigate GxE
- think carefully about how the environmental risk factor is represented in the Discovery sample
E. Target samples are recorded for an environmental risk factor
- insight into GxE

Example: E in target sample Discovery: schizophrenia Target: Cannabis use

Figure 2. Mean standardized polygenic risk scores for pairs of twins when neither ($n=272$), one ($n=273$) or both twins ($n=445$) had reported use of cannabis. An ordinal regression reported a significant association ($P=0.001$).

Power et al (2014) Effect of polygenic risk scores on depression in childhood trauma Mol Psychiatry

Factors affecting accuracy of risk prediction

Genetic architecture of the trait - unknown

Sample size of discovery sample - maximise
Sample size of target sample - be sufficiently large (once achieved not so much gained by increasing further)

Variance explained by genetic factors

Evaluating Polygenic Risk Scores

SNP profiling schematic

Statistics to evaluate polygenic risk scoring 1.

1. Nagelkerke's R^{2}

- Pseudo-R22 statistic for logistic regression

http://www.ats.ucla.edu/stat/mult_pkg/faq/general/Psuedo RSquareds.htm

Cox \& Snell R ${ }^{2}$
$=1-\exp \left(\frac{2}{N}\right)($ LogLikelihood $($ Reduced model $)$

- LogLikelihood(Full model))

Full model: y ~ covariates + score Logistic, $\mathrm{y}=$ case/control $=1 / 0$
Reduced model: y ~ covariates
N : sample size
This definition gives R2 for a quantitative trait.
For a binary trait in logistic regression, C\&S R2 has maximum

$$
=1-\exp \left(\frac{2}{N}\right)(\text { LogLikelihood }(\text { Reduced model }))
$$

Nagelkerke's R^{2} divides Cox \& Snell R^{2} by its maximum to give an R^{2} with usual properties of between 0 and 1 .

Problem with Nagelkerke's R^{2}

Statistics to evaluate polygenic risk scoring 2.

2. Area Under Receiver Operator Characteristic Curve

- Well established measure of validity of tests for classifier diseased vs nondiseased individuals
- Nice property - independent to proportion of cases and controls in sample
- Range 0.5 to 1
- 0.5 the score has no predictive value
- Probability that a randomly selected case has a score higher than a randomly selected control

Visualising AUC

- Rank individuals on score
- Start at origin on graph
- Work through list of ranked individuals
- Move one unit along y-axis if next individual is a case
- Move one unit along x-axis is next individual is a control6

5

Problem with AUC

Well recognised as a measure of clinical validity
A measure of how well genomic profile predicts yes/no phenotype
But hides the fact that is should be judged as a measure of analytic validity
A measure of how well genomic profile predicts genotype

The maximum AUC achievable depends on the heritability of the disease

Many useful properties
Problem is genetic interpretation

Statistics to evaluate polygenic risk scoring 3.

3. Odds Ratio

- Good visualisation
- Shows that there could be utility in using high vs low profile risk scores
- But remember case-control samples are 50\% cases
- Would look less impressive if a population sample

Statistics to evaluate polygenic risk scoring 3.

In case control samples

Same data scaled to population risk

Statistics to evaluate polygenic risk scoring 4.

3. R^{2} on liability scale

Linear model
Full model: $y \sim$ covariates + score $\quad y=$ case/control $=1 / 0$
Reduced model: y~ covariates

Calculate R^{2} attributable to score

If target sample is a population sample i.e. prevalence of cases in sample $=$ prevalence of cases in controls
Then R^{2} is a measure of the proportion of variance in case-control status attributable to the genomic risk profile score
$=$ heritability attributable to genomic profile score $h_{G R P S-01}^{2}$ on the disease scale
Convert to liability scale (see lecture 1)

$$
h_{G R P S}^{2}=\frac{h_{G R P S-01}^{2} K(1-K)}{z^{2}}
$$

Statistics to evaluate polygenic risk scoring 4 cont.

3. R^{2} on liability scale cont.

If target sample is a case-control sample
i.e. prevalence of cases in sample >> prevalence of cases in controls

Then R^{2} is a measure of the proportion of variance in case-control status attributable to the genomic risk profile score
$=$ heritability attributable to genomic profile score on the case-control scale

$$
h_{G R S-C C}^{2}
$$

Convert to the liability scale

$$
h_{G R S}^{2}=\frac{h_{G R S-C C}^{2} C}{1+h_{G R S-C C}^{2} C}
$$

Where C is:

$$
C=\frac{K(1-K)}{z^{2}} \frac{K(1-K)}{P(1-P)}
$$

$h_{G R S}^{2}$ is on the same scale as heritability estimated from family studies and GREML SNP-chip heritability

Statistics to evaluate polygenic risk scoring 5.Stratification \& health economics

Population risk of 1%
80% of cases in top 18% of genetic risk

For every 1,000 people treated with intervention could "save" 10 Treat only 18\% = 180 and "save" 8 (4\%)

Number of people treated to save 1 reduced from 100 to 22.5

Area Under ROC

Variance explained by genetic predictor r^{2} (has max h^{2}) Mean phenotypic liability of cases $=\mathrm{i}=\mathrm{z} / \mathrm{K}$ Mean genetic liability of controls $=v=-i K /(1-K)$ Mean liability of cases explained by predictor $=$ ir 2 Mean genetic liability of controls $=v r^{2}$

Variance of genetic predictor in cases $=r^{2}\left(1-r^{2} i(i-t)\right)$
Variance of genetic predictor in controls $=r^{2}\left(1-r^{2} v(v-t)\right)$

Using normal distribution theory can work out
Proportion of cases captured when x\% of population screened

Proportion of population that needs to be screened in order to capture 80% of the cases

Improvement between predictors

Difference in AUC

Net reclassification index

The NRI, as originally proposed, seeks to quantify whether a new marker provides clinically relevant improvements in prediction. In the definition of "net reclassification indices," the risk prediction model with established predictors is called the "old" model. The model that adds the new marker is the "new" model. "Events" are cases-persons who have or will have the disease or outcome in the absence of intervention. "Nonevents" are controls. The formula defining the NRI is ${ }^{4}$

$$
\begin{align*}
\mathrm{NRI}= & P(\text { up } \mid \text { event })-P(\text { down } \mid \text { event })+P(\text { down } \mid \text { nonevent }) \\
& -P(\text { up } \mid \text { nonevent }) . \tag{1}
\end{align*}
$$

Topic of debate Needs more research

Kerr et al (2014) NRI for evaluating risk prediction indices.
$\mathrm{NRI}_{\mathrm{e}}=P($ up \mid event $)-P($ down \mid event $)$
$\mathrm{NRI}_{\mathrm{ne}}=P($ down \mid nonevent $)-P($ up \mid nonevent $)$

Module 18: Statistical and Quantitative Genetics of Disease: Pleiotropy / Co-heritability

John Witte
Lecture 8

Pleiotropy

- From Greek: Pleio (many) and tropic (affecting).

- One gene, multiple traits.

Assessing Pleiotropy

1. Pleiotropy 'look-ups'
2. Meta-analysis (ASSET)
3. Multiphenotype
4. Multilevel pleiotropy
5. Polygenic risk scores
6. Co-heritability

1. Pleiotropy "Look-ups"

2. Meta-Analysis Approach

ASSET

Standard fixed-effects

$$
Z_{\text {meta }}=\sum_{k=1}^{K} \sqrt{\pi_{k}} Z_{k} \quad \text { Where } \quad \begin{aligned}
& Z_{k}=\beta_{k} / \operatorname{se}\left(\beta_{k}\right) \\
& \pi_{k}=n_{k} / \sum_{k=1}^{K} n_{k}
\end{aligned}
$$

Subset-based

$$
Z_{\text {max-meta }}=\max _{s \in S}|Z(s)|
$$

Where $Z(s)=\sum_{k \in S} \sqrt{\pi_{k}(s)} Z_{k}$

3. Multiphenotype Approach

$\left.\begin{array}{c|cccccc} & \text { Prostate } \\ \text { Breast } \\ \text { Testicular }\end{array}\right)$

Multinomial Regression

$$
\operatorname{logit}\left(\operatorname{Pr}\left(\mathbf{Y}_{\mathbf{i}}=1 \mid \mathbf{G}, \mathbf{C}\right)\right)=\alpha_{i}+\mathbf{G}_{\mathbf{i}} \boldsymbol{\beta}_{\mathbf{i}}+\mathbf{C}_{\mathbf{Y}_{\mathbf{i}}}
$$

\mathbf{Y} is multivariate with dimension = \# traits

Test different pleiotropic models by specifying assumptions about the $\boldsymbol{\beta}_{\mathrm{i}}$.

Null Model

Alternative Hypotheses

Alternative Hypotheses

$\left.\begin{array}{ccccccccc} & \text { Prostate } \\ \text { Breast } \\ \text { Testicular }\end{array}\right)$

Alternative Hypotheses

Alternative Hypotheses

MultiPhen: 'Inverse Regression’

MultiPhen: 'Inverse Regression’

- Model selection or shrinkage to detect pleiotropy.
- Explore subsets of traits, select 'best' model that minimizes expected loss of information penalized by model complexity (e.g., AIC, BIC).
- Shrinkage via LASSO (adaptive) to select non-null traits.
2
1

$\begin{aligned} & \text { To } \\ & \stackrel{3}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \text { 岗 } \\ & \stackrel{\sim}{0} \\ & \sim \end{aligned}$	$\begin{aligned} & \overrightarrow{0} \\ & \stackrel{3}{n} \\ & \stackrel{\rightharpoonup}{n} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \frac{3}{0} \\ & \frac{0}{0} \\ & \frac{1}{3} \\ & \frac{0}{3} \\ & 0 \end{aligned}$		$\begin{aligned} & \text { D } \\ & 0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\underset{\substack{5}}{\stackrel{y}{5}}$	$\begin{aligned} & \text { ग्0 } \\ & \stackrel{y}{7} \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$	$\underset{1}{2}$	

Comparison of FDR, ASSET \& MultiPhen

- Traits simulated under additive model (Galesloot et al. 2014)
- Single causal variant with influence on a subset of traits.
- Number of traits:
- Residual correlation between traits:
- Heritability of trait due to variant:
- LD between variant and typed SNP:
- MAF at variant and SNP:
- Number of individuals:

$$
\begin{aligned}
& 4-20 \\
& 0.05-0.3 \\
& 0-0.4 \% \\
& 0.80,0.95 \\
& \quad 0.1,0.2 \\
& 10 \mathrm{~K}-30 \mathrm{~K}
\end{aligned}
$$

Majumdar, Haldar, Witte, Genetic Epi 2016.

Results

specificity
Scenario 8 (choice 2)

Overall pleiotropy:
MultiPhen > ASSET (power)

- Except when all traits associated \& in same direction.
Increases with increasing correlation.

Traits underlying pleiotropy:
FDR > MultiPhen > ASSET (sens/spec)

- Except FDR = MultiPhen when weak correlation
- MultiPhen = ASSET when strong correlation.

Majumdar, Haldar, Witte, Genetic Epi 2016.

4. Multilevel Pleiotropy

Gene / Pathway Priors

Variants / SNPs

Leverage Individual-level Data

5. Polygenic Risk Scores (PRS)

Variants / SNPs

Polygenic Risk Score Pleiotropy

PanCancer PRS in UK Biobank

		Risk Score Profile							
		Bladder	Breast	Colorectal	Endometrial	$\begin{gathered} \text { Esophagus/G } \\ \text { astric } \end{gathered}$	Lung	Prostate	Testicular
	Bladder	-	0.008	0.20	0.27	0.17	0.09	0.67	0.03
	Colon	0.18	0.81	-	0.74	0.59	0.97	0.01	0.01
	Kidney	0.002	0.20	0.46	0.34	0.23	0.07	0.81	0.23
	Lung	0.39	0.66	0.46	0.54	0.03	-	0.31	0.51
	Melanoma	0.32	0.99	0.40	0.04	0.39	0.99	0.54	0.70
	Prostate	0.21	0.63	0.003	0.00001	0.27	0.47	-	0.02
	Rectum	0.72	0.89	-	0.79	0.01	0.01	0.94	0.61
	Testicular	0.02	0.23	0.75	0.0002	0.57	0.21	0.10	-

Negative Association

Positive Association

6. Co-heritability

Co-heritability

Co-heritability

Co-heritability with Summary Statistics

LD Score:
 Distribution of Associated SNPs

QQ-Plot

If a proportion of SNPs associated:
observed = expected (median test statistic)

If observed > expected:
genomicinflation

Due to population stratification?

Genomic Inflation Expected under Polygenic Inheritance

Under null hypothesis:

- Mean test statistic $\left(\lambda_{\text {mean }}\right)=$ median test statistic $\left(\lambda_{\text {median }}\right)$

Under polygenic inheritance (no population stratification):
$\lambda_{\text {mean }}>\lambda_{\text {median }}$
$\lambda_{\text {mean }}$ reflects SNP heritability $\mathrm{h}_{\mathrm{g}}{ }^{2}$
$\lambda_{\text {median }}$ reflects \# causal variants contributing to hg^{2}
Controlling for genomic inflation may remove both pop strat and real effects. How to tell them apart?

Impact of LD on Association

LD among SNPs:

Consider causal SNPs

- More tagging of SNPs, more likely to tag a causal variant.
- If all SNPs equally likely associated given LD status, expect more association for SNPs with more LD 'friends'.
- This is a reasonable assumption under a polygenic genetic architecture.

Expected Value of Summary Stats

$$
l_{j}=\sum_{k \neq j} r_{j k}^{2} \quad \begin{gathered}
\text { LD Score: } \\
\begin{array}{c}
\mathrm{r}^{2} \text { LD between SNP j and } \\
\text { neighboring SNPS }
\end{array}
\end{gathered}
$$

But can't separate out population stratification here.

Expected Value of Summary Stats

Separating $\mathrm{hg}_{\mathrm{g}}{ }^{2}$ and population stratification

Polygenicity vs Population Stratification

GWAS QQ Plot

Regression of association X^{2} statistic on LD score

Co-heritability with Summary Statistics

Cross-trait LD-score Regression

- Use LD Score to estimate the genetic correlations between diseases with summary statistics

2016 Module 18:

 Statistical \& Quantitative Genetics of DiseaseLecture 9
Tying up some ends on risk prediction

Naomi Wray

Aims of Lecture 9

1. Variance explained by genetic factors
2. Factors affecting accuracy of risk prediction
3. Pitfalls of Risk Prediction

Variance explained by genetic factors

Definition of heritabilities

Proportion of variance altributable to genetic factors

From family data and phenotypic records \mathbf{h}^{2}
Proportion of variance attributable to genetic factors accounting for all genetic variants across the frequency spectrum (Lecture 1: Wray)

From genome-wide significant SNP \mathbf{h}^{2-i}
Proportion of variance attributable to a single variant (Lecture 2: Witte)

From genome-wide significant SNP \mathbf{h}^{2}-GWS
Proportion of variance attributable to genome-wide significantSNPs

From genome-wide significant SNP \mathbf{h}^{2}-profile score
Proportion of variance attributable to a set SNPs (Lecture 7: Wray)
From all SNPs $\mathbf{h}^{\mathbf{2}}$-SNP or $\mathbf{h}^{\mathbf{2}}$-chip or $\mathbf{h}^{\mathbf{2}}-\mathrm{g}$
Proportion of variance attributable to common SNPs on SNP chips (GREML;
LDScore; Lecture 8: Witte)

The heritabilities

Figure 4

Variance explained by sets of SNPs e.g., all GWS SNPs

If independent loci then simply sum up estimates from individual SNPs
If not independent need to use set based tests

- Set-based test (--sbat)
- Using GWAS summary data
- Similar as PLINK --set or VEGAS but more accurate and faster
- Working on more powerful improvements
- Can be used for discovery
- e.g. gene-based tests (genome-wide)
- Can be used to test prior hypotheses
- e.g. do all known together explain more variation than expected by chance?

h^{2}-SNP or h^{2}-chip or $h^{2} g$

Purpose:

- Detects the signal contributed from variants that are not genome-wide significant
- Detects if cases are more similar to other cases genomewide than they are to controls without specifying at which loci there are more similar
- Gives an indication of what could be detected as GWS as sample size increases
- Uses data available from currently available data to inform on future experimental design

$h^{2}-S N P$ or h^{2}-chip or $h^{2} g$

Five ways to measure:

- Compare empirical results to simulations - Purcell et al (2009) Nature
- GREML - linear mixed models- GREML Yang et al (2010), Lee et al (2011)
(Visscher \& Goddard SISG Unit)
- Haseman-Elston or PCGC

Haseman \& Elston (1972),
Chen (2014) Frontiers Gen, Golan et al (2014) PNAS

- Transformation of polygenic risk scores -
- LDscore -GWAS summary statistics Dudbridge (2013)
Yang et al (2011) EJHG, Bulik-Sullivan et al (2015) Nat Gen

h^{2}-SNP by simulation to explain these results

Simulations

- Simulations considered a wide range of genetic architectures
- Number risk loci, effect size
- Which genetic architectures generated the same pattern of results we observed with the real data
- Results showed
- Most genetic architectures were not consistent with empirical result
- But many architectures were consisted with the empirical results
- All consistent models pointed to $\mathrm{h}^{2} S N P=\sim 0.3$ for schizophrenia
- Results not consistent with
- Many extremely rare (MAF < 1/10,000) variant

Direct estimation of h^{2}-SNP parallels estimation of h^{2} - the gist

Coefficient of relationship of parent and offspring = $1 / 2$

Estimate of heritability
$=2^{*}$ correlation of offspring and parent

Coefficient of relationship of grandparent and grand-offspring $=1 / 4$

Estimate of heritability
$=4^{*}$ correlation of grandoffspring and grandparent

In real analysis
twiddles and caveats
Coefficient of relationship of individual and distant relative= $1 / r$

Estimate of heritability
= r*correlation between distant relatives on individuals

- But the gist of where the information is coming from

Visualizing where the information is coming from

GREML: $h^{2}-S N P$

- Uses individuals who are unrelated in the classical sense
- Coefficient of relationship < $2^{\text {nd }}$ cousins

How can we get an
accurate estimate when
coefficients of
relationships are so tiny?

Because based on a very large number of pairwise relationships
Sample of 10,000 has $\sim 10,000^{2} / 2=50 \mathrm{M}$

h^{2} vs $h^{2}-S N P$

h^{2}

Proportion of variance attributable to all genetic variants - across whole frequency spectrum

Could be contaminated by nonadditive genetic variance

h^{2}-SNP

Non-additive genetic effects shared by distant relatives are tiny - expect no contamination

Distant relatives unlikely to share environmental effects

Proportion of variance attributable to common genetic variants

Could be contaminated by environmental factors shared by close family members

N=1 anecdote, skepticism check

Table 1. Estimates of genetic correlation between men and women from the bivariate GCTA-GREML analysis using individual-level data for five anthropometric traits.

Trait	Sample size (men versus women)	$\mathrm{hg}_{\mathrm{g}}^{2}$ (Men)		h_{g}^{2} (Women)		r_{g}		
		Est.	SE	Est.	SE	Est.	SE	$P\left(r_{g}=1\right)$
Height	19095 versus 24504	0.447	0.018	0.431	0.015	1.022	0.031	0.483
BMI	19016 versus 24350	0.236	0.019	0.226	0.015	1.011	0.064	0.859
WCadjBMI	13158 versus 15874	0.167	0.026	0.174	0.022	0.774	0.119	0.057
HIPadjBMI	13119 versus 15854	0.231	0.026	0.185	0.022	0.855	0.101	0.149
WHRadjBMI	13115 versus 15846	0.159	0.026	0.182	0.022	0.607	0.112	4.4×10^{-4}

$h_{g}^{2}=$ proportion of phenotypic variance explained by all SNPs used in the analysis. $P\left(r_{\mathrm{g}}=1\right)$: Wald's test P-value against $r_{\mathrm{g}}=1$.
Table 2. Estimates of genetic correlation between men and women from the LDSC regression analysis using summary data for five anthropometric traits.

Trait	Sample size (men versus women)	h_{g}^{2} (Men)		h_{g}^{2} (Women)		r_{g}		$P\left(r_{g}=1\right)$
		Est.	SE	Est.	Est.	Est.	SE	
Height	60505 versus 73073	0.274	0.018	0.261	0.018	0.957	0.023	0.063
BMI	58599 versus 67935	0.167	0.012	0.186	0.010	0.879	0.035	5.9×10^{-4}
WCadjBMI	38361 versus 42727	0.143	0.014	0.110	0.013	0.780	0.071	1.9×10^{-3}
HIPadjBMI	32920 versus 40712	0.162	0.018	0.136	0.015	1.000	0.083	0.999
WHRadjBMI	34594 versus 47463	0.102	0.016	0.093	0.017	0.770	0.108	0.033

$h_{g}^{2}=$ proportion of phenotypic variance explained by all SNPs used in the analysis. HIPadjBMI, BMI-adjusted hip circumference; WCadjBMI, BMI-adjusted waist circumference; WHRadjBMI, BMI-adjusted waist-hip ratio. The samples size shown in this table is the median of the per-SNP sample sizes reported in the summary data. $P\left(r_{\mathrm{g}}=1\right)$: Wald's test P-value against $r_{\mathrm{g}}=1$.

Yang et al (2015) Genome-wide heterogeneity between sexes and populations for
human height and bod mass index. Hum Mol Gen

Table 1. Estimates of genetic correlation between men and women from the bivariate GCTA-GREML analysis using individual-level data for five anthropometric traits.

Trait	Sample size (men versus women)	$\mathrm{hg}_{\mathrm{g}}^{2}$ (Men)		h_{g}^{2} (Women)		r_{g}		
		Est.	SE	Est.	SE	Est.	SE	$P\left(r_{g}=1\right)$
Height	19095 versus 24504	0.447	0.018	0.431	0.015	1.022	0.031	0.483
BMI	19016 versus 24350	0.236	0.019	0.226	0.015	1.011	0.064	0.859
WCadjBMI	13158 versus 15874	0.167	0.026	0.174	0.022	0.774	0.119	0.057
HIPadjBMI	13119 versus 15854	0.231	0.026	0.185	0.022	0.855	0.101	0.149
WHRadjBMI	13115 versus 15846	0.159	0.026	0.182	0.022	0.607	0.112	4.4×10^{-4}

$h_{g}^{2}=$ proportion of phenotypic variance explained by all SNPs used in the analysis. $P\left(r_{g}=1\right)$: Wald's test P-value against $r_{g}=1$.

Supplementary Table 1 Estimates of genetic correlation between men and women from the bivariate
LDSC regression analysis in the combined GWAS data for five anthropometric traits.

	Trait	Sample size (men vs. women)	h^{2} (Men)		h^{2} (Women)		r_{4}		
			Est.	SE	Est.	SE	Est.	SE	$P\left(r_{6}=1\right)$
No adjustment	Height	19095 vs. 24504	0.412	0.042	0.374	0.039	1.006	0.051	0.905
	BMI	19016 vs. 24350	0.196	0.026	0.187	0.026	1.198	0.113	0.079
	WCadiBMI	13158 vs. 15874	0.158	0.037	0.118	0.030	0.986	0.226	0.952
	HIPadiBMI	13119 vs. 15854	0.192	0.046	0.109	0.031	1.000	0.219	0.999
	WHRadiBMI	13115 vs. 15846	0.112	0.038	0.139	0.033	0.593	0.224	0.069
Genomic Control	Height	19095 vs. 24504	0.367	0.038	0.326	0.034	1.006	0.051	0.907
	BMI	19016 vs. 24350	0.180	0.024	0.172	0.024	1.198	0.113	0.079
	WCadiBMI	13158 vs. 15874	0.153	0.036	0.114	0.029	0.986	0.226	0.952
	HIPadjBMI	13119 vs. 15854	0.184	0.044	0.104	0.029	1.000	0.219	0.999
	WHRadiBMI	13115 vs. 15846	0.108	0.037	0.134	0.032	0.593	0.224	0.069

$h_{g}^{2}=$ proportion of phenotypic variance explained by all SNPs used in the analysis. $P\left(r_{8}=1\right)$: Wald test
p-value against $r_{s}=1$.

GREML: h^{2}-SNP for disease

- Observations are on disease scale but heritability is most interpretable on the liability scale
- Use linear regression
- Estimate on observed scale
- Transform to Liability scale via Robertson
Transformation
- Case-control samples are ascertained
- Up date transformation
- Very stringent QC
- Differences between case and control samples may reflect artefacts

Ascertainment in case-control studies

Golan et al (2014) Measuring missing heritability: Inferring the contribution of common variants PNAS

Fig. 1. Distributions of genetic effects, environmental effects, phenotypes, and liabilities in three study designs. In each of A, B, and C, a phenotype is assumed to depend on the sum of a genetic effect and an environmental effect. The scatterplot shows the joint distribution of the genetic and environmental effects, the upper left shows the marginal distributions of the environmental effect, the upper right shows the marginal distributions of the genetic effect, and the lower portion shows the marginal distribution of the phenotype. (A) Quantitative phenotype in a random sample of the population. (B) Disease phenotype in a random sample of the population. (C) Disease trait in a balanced case-control study. Disease phenotypes were simulated under a liability threshold model with disease prevalence of $10 \%(B)$ and $0.1 \%(C)$, with red points indicating affected individuals (liability above the threshold) and black points indicating unaffected individuals (liability below the threshold). In C, the marginal distributions of the genetic and environmental effects no longer are normally distributed, and there is an induced positive correlation between the genetic and environmental effects ($r=0.53$).

Non-normality of liability
Case-control sampling induces GxE correlation
Solution use Haseman-Elston regression regression of phenotype correlation between each pair of individuals and genetic relationship between each pair of individuals
(see also Chen et al, 2013 Estimating heritability of complex traits from GWAS using IBS-based 20 Haseman-Elston regression. Front Genet)

Golan et al (2014) Measuring missing heritability: Inferring the contribution of common variants PNAS

Denote by $Z_{i j}$ the product of the standardized phenotypes:

$$
Z_{i j}=\frac{\left(y_{i}-P\right)\left(y_{j}-P\right)}{P(1-P)}
$$

The variable $Z_{i j}$ can obtain three values:

$$
Z_{i j}= \begin{cases}\frac{1-P}{P} & y_{i}=y_{j}=1 \\ -1 & y_{i} \neq y_{j} \\ \frac{P}{1-P} & y_{i}=y_{j}=0\end{cases}
$$

Regress $Z_{i j}$ on $A_{i j}$ (coefficient of relationship estimated from SNPs)

PCGC regression (phenotype correlationgenotype correlation regression) - general form of Haseman-Elston correction for fixed effects

Their simulation shows substantial underestimation of SNP-heritability from GREML applied to disease traits

NB their simulation strategies exacerbate differences that we see in real data
In the past we have used $\mathrm{H}-\mathrm{E}$ in-house as a check, that all is well with GREML. Usually we see little difference in estimates, but standard errors smaller with GREML.

As sample sizes increase the induced GxE correlation will become more of a problem. See revision when posted of
Loh et al Nature Genetics 2015
Includes updated faster version of PCGC

Golan et al (2014) Measuring missing heritability: Inferring the contribution of common variants PNAS

Fig. 2. Comparison of REML and PCGC regression. (A) REML yields biased estimates for case-control studies of diseases, whereas PCGC regression yields unbiased estimates. We simulated case-control studies for nine combinations of K (prevalence) and P (proportion of cases among overall samples), and for five values of $h^{2}(0.1,0.3,0.5,0.7$, and 0.9$)$. For each combination of parameters, we show the average of 10 heritability estimates obtained by applying the REML method of Lee et al. (10) and PCGC regression to our simulated case-control data. REML produced biased estimates, whereas PCGC regression produced unbiased estimates for all scenarios. The bias of REML estimates increases as both the true heritability and overrepresentation of cases increase. To demonstrate the severity of the bias, consider the scenario of a disease with prevalence of 0.1% in a balanced case-control study (values typical for Crohn's disease or MS). When the true heritability is 50%, the estimated heritability would be 30% on average, as indicated by the black dots. (B) Heritability estimates for case-control studies with increasing sample size. Simulated case-control studies are as previously described, with the prevalence of the disease, the proportion of cases, and the heritability fixed at $1 \%, 30 \%$, and 50%, respectively. The size of simulated studies ranged from 2,000 to 8,000 . The bias of heritability estimates from REML increases with study size, whereas those from PCGC regression estimates remain unbiased. (C) Heritability estimation in the presence of fixed effects. We simulated case-control studies with an additional "sex" covariate, which either has no effect on the disease or increases the relative risk (RR) by twofold or fourfold. The prevalence of the disease in the population was 0.5%, the heritability was set to 50%, and the numbers of cases and controls were equal. Applying REML with or without accounting for the additional covariate resulted in underestimation of the heritability. Moreover, inclusion of the covariate as a fixed effect resulted in even lower estimates of heritability when the effect of the covariate on the phenotype was considerable. By contrast, PCGC regression correctly accounted for the presence of the covariate.

Summary

- Heritability from family records is not expected to be the same as SNP-h ${ }^{2}$
- Five methods to estimate SNP-h²
- GCTA GREML = gold standard
- Methods based on summary statistics are the best starting place
- We are not interested in decimal place accuracy missing heritability
- We should be interested in order of magnitude missing heritability
- What can we learn from the data available now to inform on future experimental design

Risk Prediction ..again

Factors affecting accuracy of risk prediction

Genetic architecture of the trait - unknown

- Number, frequency, effectsize
- How well marker effects are correlated with causal variants (LD)

Sample size of discovery sample - maximise

- how well marker effects are estimated

Sample size of target sample - be sufficiently large (once achieved not so much gained by increasing further)

- Precision of estimation of R 2

Single GWAS- how to split into discovery and target?

Split based on independently collected samples
What is the optimum split?
Equal sample sizes of discovery and target gives maximum power to detect association between discovery and target (Dudbridge).

But with large samples power achieves 1 , so value of increasing target sample is redundant.

Rule of thumb.
Split sample equally into discovery and target until target has ~2000 cases +2000 controls, then add additional samples to discovery.
Then with larger sample sizes the accuracy of the estimation of SNP effects is increased and the accuracy of the GRS for an individual increases

Simulation study demonstrating the impact of sample size and genetic architecture on profile scoring

Figure S8: Impact of increasing sample size on score analysis.

M1-M7 vary in

- proportion of SNPs associated in disease
- distribution of effect sizes
- Frequency distribution

- LD between SNPs and causal variants

SNP profiling schematic

Pitfall 1: No target (=validation) sample

- Report R² or AUC from discovery sample only
- Small n large p problem
- Even under null can get high R^{2} within discovery sample when p >> n

Pitfall 2: Overlapping Discovery \& Target Sample

- Overlapping discovery \& target samples
- Greater similarity between discovery \& target samples than discovery \& true validation samples
- E.g. cross-validation samples
- Not a pitfall, as such, but to be aware

Pitfall 3: Less obvious non-independence

- Cross-validation but select associated SNPs from total sample
- Select SNPs in discovery sample, for those SNPs reestimate effects in the target sample

Selection bias

ARTICLE

Select m 'best' markers out of M in total
'Prediction' in same sample
The Drosophila melanogaster Genetic Reference Panel
~ 15 best markers selected
from 2.5 million markers
$\mathrm{E}\left(R^{2}\right) \gg m / N$
\rightarrow Lots of variation
explained by chance

Practical

Module 18: Statistical and Quantitative Genetics of Disease: Rare Variants and Prediction

John Witte
Lecture 10

Rare Variants

- "Common": MAF > 0.05
- "Less common": 0.05>MAF>0.01
- "Rare": $0.01<\mathrm{MAF}$
- SNP: MAF>0.01 (Single Nucleotide Polymorphism)
- SNV: MAF<0.01 (Single Nucleotide Variant)

Rare Variants

- Previous GWAS focused on chips designed for MAF > 0.05 (most powered for MAF > 0.10)
- Exome arrays
- Sequencing (de novo)

Sequencing Costs have Fallen

Cost per Genome

Analysis of Rare Variants

Focus on a set of k variants

$$
g\left(Y_{i}\right)=\alpha_{0}+\sum_{k} \beta_{k} X_{i k}
$$

- Difficult to model due to sparsity.
- Limited power.

Sample Size for Rare Variants

Rare Variant Tests

- 'Up-weight' analyses for most likely causal variants.
- Burden tests (CAST, Collapsing, WSS).
- Variance component (dispersion) tests (SKAT, SKAT-O, C-alpha).
- Burden tests more powerful when a large percentage of rare variants are causal and have the same sign (direction of association).
- Variance component more powerful when there is a mixture of risk and protective variants, and most rare variants are not causal.

Burden Tests for Rare Variants

$$
g\left(Y_{i}\right)=\alpha_{0}+\gamma\left[\sum_{k} w_{k} X_{i k}\right] .
$$

Where w_{k} defines similarities among the variants for their aggregation / modeling

Estimate the effect of a weighted summary 'score' across each individuals' rare variants on outcome.

Key Aspect: Specifying w_{k}

$$
w_{k}=a_{k} \times s_{k} \times i_{k}
$$

where
a_{k} inverse variance weighting, controls' MAF
s_{k} direction of association; positive / negative
i_{k} Indicators for whether to aggregate

- Overall MAF
- Hard cutpoint (e.g., MAF < 0.01)
- Functional information
- Non-synonymous
- Deleterious (SIFT)

Example: Cohort Allelic Sums Test (CAST)

Aggregate rare variants within three genes

$$
\begin{aligned}
& a_{k}=1 \\
& s_{k}=1 \\
& i_{k}=1 \text { if rare, nonsynonymous }
\end{aligned}
$$

ABCa1, APOA1, or LCAT	$>95 \%$ HDL	$<5 \%$ HDL	OR (p-value)
No ns variants	125	107	1.0
ns variants	3	21	$8.1\left(1 \times 10^{-4}\right)$

Cohen et al., Science 2004;305:869. Morgenthaler Mut Res 2007;615:28.

Difficult to determine best weighting / aggregation scheme a priori

Most approaches make strong assumptions about exchangeability and combination of rare variants for analysis.

Empirical 'Step-Up' Approach

- Data driven aggregation of rare variants
- Consider multiple possible groupings
- Select the "best" grouping (e.g., min P)
- Correct by permutation
- Possible groupings defined by:
- MAF weighting / cutoffs
- Positive or negative associations
- Nonsynonomous
- Deleterious (SIFT)
- All possible subsets, or those contributing most to signal

Variance Components Approach

- SNP-set (Sequence) Kernel Association Test (SKAT) (Wu et al., AJHG 2011).
- Uses flexible weight kernels, which reflect different assumptions underlying the rare variant tests.
- For example, that rarer variants have larger effect sizes.

Test Stats for SKAT vs. Burden

SKAT : $\quad Q_{\rho=0}=\sum_{j=1}^{m} w_{j}^{2}\left[\sum_{i=1}^{n}\left(Y_{i}-\widehat{\mu_{i, 0}}\right) X_{i j}\right]^{2}$ and
Burden: $Q_{\rho=1}=\left[\sum_{j=1}^{m} w_{i} \sum_{i=1}^{n}\left(Y_{i}-\widehat{\mu_{i, 0}}\right) X_{\bar{i}}\right]^{2}$.

Prediction: Ozzy Osbourne!?

cientists to map Ozzy Osbourne's
enetic code to find out how he survived o much substance abuse

- NICK KLOPSIS

ILY NENS WRITER
nday, June 14th 2010, 1:39 PM

Sayles/A.
zzy Osbourne has had many issues relating to drug and alcohol abuse, so scientists are
apping out his genetic code to find out how his body can take it.

Increased risk of:

- Alcohol and cocaine dependence.
- Hallucinations while on marijuana.

Slow to metabolise coffee.

More Info will Improve Prediction

bioRXiv
 THE PREPRINT SERVER FOR BIOLOGY

HOME |

Search

New Results

Deep Sequencing of $\mathbf{1 0 , 0 0 0}$ Human Genomes

(D) Amalio Telenti, Levi T Pierce, William H Biggs, Julia di Iulio, Emily H.M. Wong, Martin

M Fabani, Ewen F Kirkness, Ahmed Moustafa, Naisha Shah, Chao Xie, Suzanne C
Brewerton, Nadeem Bulsara, Chad Garner, Gary Metzker, Efren Sandoval, Brad A
Perkins, Franz J Och, Yaron Turpaz, J. Craig Venter
doi: http://dx.doi.org/10.1101/061663

Precision Medicine Initiative Cohort

Key Features	Framingham Heart Study	Precision Medicine Initiative Cohort Program
Year Started	$\mathbf{1 9 4 8}$	$\mathbf{2 0 1 6}$
Number of Individuals	$\mathbf{5 , 2 0 9 *}$	$\mathbf{1 , 0 0 0 , 0 0 0}$
Age	$\mathbf{3 0 - 6 2}$	All
Ancestry	$>95 \%$ European	Diverse, cross-section of Americans
Medical data obtained	Every 2 yrs at office visit	Real world, real time, via mobile devices, Web
Focus	Heart disease	All medical conditions, health
Data return to participants	No	Yes
Data available for research community	No	Yes
* Initial cohort		

Genetic Prediction

The DNAFit United squad have revealed their genes why not find out how you match up today?

Chromosome 11
Research suggests that elite athletes who rely on the power of fast-twitch fibers in their muscles, like sprinters, share a common genotype. These fibers contain a protein produced by the R allele (version) of the ACTN3 gene.

Possible variations (genotypes) of the ACTN3 gene.

Beneficial for elite power and endurance athletes

Not beneficial for elite power athletes.

```
Genotype
frequency
among elite
power/sprint
athletes and
elite
endurance
athletes.
Confidence
intervals are 95%.
```


Finding any great
Olympic champion normally takes years to determine.

What if we knew a part f the answer when we were born?

See How...
The New York Times Born to Run? Little Ones Get Test for Sports Gene

Genetic Testing for Sneed/Power and Endurance Events

larger image

ATLAS First

Recommended for ages 1 and up.
Description: Our Atlas First product is geared specifically at the youngest of athletes. Doing any type of performance based sport talent identification testing is very difficult below age 6 due to developmental levels of motor skills, strength and eye-hand coordination. Atlas First looks at only genetic markers, specifically the presence of ACTN3. Studies have found that individuals having the variant in both copies of their ACTN3 gene may have a natural predisposition to endurance events, one copy of their ACTN3 gene may be equally suited to for both endurance and sports/power event, neither copy of their ACTN3 gene may have a natural predisposition to sprint/power events. Knowing this information may be helpful, not in eliminating choices for sport activities but adding exposure to a host of team or individual sport events that may come easier to a young athlete.

The test is one of tool of many that can help children realize their athletic potential.

Other Products available through Atlas First

- Height monitoring charts
- Weight monitoring charts
- BMI charts
- Height Prediction Calculator (not genetic)

My 23andMe Results for ACTN3

n me
－My Health and Traits
Browse Raw Data
My Profile
family \＆friends
Compare Genes
Family Inheritance
my ancestors
Maternal Line
Paternal Line
Ancestry Painting
Global Similarity
23andWe
Introduction
My Surveys（15）
Featured Research
community
23andMe Community
account
Genome Sharing
Inbox
Settings
health and traits

＜＜Return to All Clinical Reports｜Disease Risks｜Carrier Status｜Traits｜Recently Updated			
Name ${ }^{\text {－}}$		Outcome	Last Updated
Alcohol Flush Reader	on 次	Does Not Flush	Dec 19， 2007
Bitter Taste Per	on 次	Can Taste	Nov 19， 2007
Earwax Type＞\times		Wet	Nov 19， 2007
Eye Color ${ }^{\text {S }}$ K		Likely Blue	Mar 25， 2008
Lactose Intolera	次	Likely Tolerant	Nov 19， 2007
Malaria Resistan	（Duffy Antigen）$\nsim x$	Not Resistant	Feb 28， 2008
Muscle Perform		Unlikely Sprinter	Nov 19， 2007
Non－ABO Blood	oups	See Report	Mar 25， 2008
Norovirus Resis		Resistant	Jul 23， 2008
Resistance to H	AIDS	Not Resistant	Jan 27， 2008

[^0]| - General advice on having a | - Lifestyle changes | • Individual counselling in primary care and referral to |
| :---: | :--- | :--- |
| healthy lifestyle | - Frequent | secondary or tertiary care |
| - Mammography screening | mammography | - Enhanced screening and surveillance |
| frequency tailored to risk | screening | Chemoprevention and/or endocrine therapy |
| | - Discuss preventive | - Risk-reducing surgery (mastectomy, salpingo-oophorectomy) |
| | therapies | |

| \square | Near or lower than average risk |
| :--- | :--- |$(<15 \%)$

- No family history of breast cancer,	- No family history of
low to moderate polygenic risk,	breast cancer,
and none or few environmental	moderate polygenic
risk factors	risk and several
	environmental risk
	factors

[^1]
[^0]: The genotyping services of 23andMe are performed in LabCorp＇s CLIA－registered laboratory．The results presented here have not been cleared or approved by the FDA but have been analytically validated according to CLIA standards．

[^1]: - Moderate to high polygenic risk with family history of breast cancer and many environmental risk factors, or known BRCA1 and BRCA2 or TP53 mutation carriers for very high risk

