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Odds ratio justification for maximum likelihood

D the data
H; Hypothesis 1
H, Hypothesis 2
| the symbol for “given”
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The likelihood ratio term ultimately dominates

If we see one Little Green Man, the likelihood calculation does the right
thing:

1 2/3 o'e
- X 4 = —
4 0 1

(put this way, this is OK but not mathematically kosher)

If we send n space probes and keep seeing none, the likelihood ratio

term is
1 n
3
It dominates the calculation, overwhelming the prior.

Thus even if we don’t have a prior we can believe in, we may be interested
In knowing which hypothesis the likelihood ratio is recommending ...



Likelihood in Simple Coin-Tossing

Tossing a coin n times, with probability p of heads, the probability of
outcome HHTHTTTTHTTH is

pp(1 —p)p(L —p)(1 —p)(1 —p)(1 —p)p(1 —p)(1 —p)p

which is
L=p°(1—p)°

Plotting L against p to find its maximum:

Likelihood
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Differentiating to find the maximum:

Differentiating the expression for L with respectto p and equating the
derivative to O, the value of p thatis at the peak is found (not surprisingly)
tobe p=5/11:



A log-likelihood curve

A log-likelihood curve in one parameter

Ln (Likelihood)

length of a branch in the tree



Ilts maximum likelihood estimate

A log-likelihood curve in one parameter
and the maximum likelihood estimate

Ln (Likelihood)
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The (approximate, asymptotic) confidence interval

A log-likelihood curve in one parameter
and the maximum likelihood estimate and
confidence interval derived from it
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Contours of a log-likelihood surface in two dimensions
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length of branch 1



Contours of a log-likelihood surface in two dimensions

MLE
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length of branch 1



Log-likelihood-based confidence set for two variables

shaded area is the joint confidence interval

length of branch 2

height of this contour is
less than at the peak by an amount
equal to 1/2 the chi—square value with

2 degrees of freedom which is significant at 95% level

length of branch 1



Confidence interval for one variable

length of branch 2
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Confidence interval for the other variable

Jl

length of branch 2

height of this contour is
less than at the peak byl an amount
equal to 1/2 the chi-sqyare value WFh

1 degree of freedom wihjich is signifitant at 95% level

length of branch 1



Calculating the likelihood of a tree

If we have molecular sequences on a tree, the likelihood is the product
over sites of the data Dl! for each site (if those evolve independently):

L = Prob(D|T) = ]] Prob(D|T)

InL = In Prob(D|T) = > In Prob(D|T)



Calculating the likelihood for site 7 on a tree

Y

t are

branch Iengths

(rate X time) t
W 8

Sum over all possible states (bases) at interior nodes:

L) = S"S°3°3 Prob (w) Prob (x| w,t7) Prob (A |x,t;) Prob (C|x,t5)

x Prob (z | w, tg) Prob (C| z, t3)
x Prob (y | z,tg) Prob (C|y,ts) Prob (G |y,ts)



Calculating the likelihood for site 7 on a tree

We use the conditional likelihoods: LJ-(i) (s)

These compute the probability of everything at site i at or above node |
on the tree, given that node j is in state s. Thus it assumes something
(s) that we don’t know in practice — so we compute these for all states s.

At the tips we can define these quantities: if the observed state is (say) C,
the vector of L’'s is
(0,1,0,0)

If we observe an ambiguity, say R (purine), they are

(1,0,1,0), not (1/2,0,1/2,0)



The “pruning" algorithm:
J k

Y %
Vj Vk
l >
Lé')(s) — ZProb (s;|s,vs) Lj(l)(Sj)

x| S Prob (si | s, vii) LY (i)
Sk

(Felsenstein, 1973; 1981).



and at the bottom of the tree:

Lo = > mLy(s)

(Felsenstein, 1973, 1981)

and having gotten the likelihoods for each site:

sites

L= JJ L
=1



What does “tree space" (with branch lengths) look like?

an example: three species with a clock

trifurcation
A B C e
not possibk] ‘

etc.
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when we consider all three possible
topologies, the space looks like:




For one tree topology

The space of trees varying all 2n — 3 branch lengths, each a nonegative

number, defines an “orthant" (open corner) of a (2n — 3)-dimensional real
space:




Through the looking-glass

Shrinking one of the n — 1 interior branches to 0, we arrive at a
trifurcation:

Here, as we pass “through the looking glass" we are also touch the space
for two other tree topologies, and we could enter either.
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Shrinking one of the n — 1 interior branches to 0, we arrive at a
trifurcation:

Here, as we pass “through the looking glass" we are also touch the space
for two other tree topologies, and we could enter either.



The graph of all trees of 5 species

The Schoenberg graph (all 15 trees of size 5 connected by NNI’S)



Bovi ne
Mouse
G bbon
Ora_n?
Gorilla
Chi np
Human

CCAAACCTGI CCCCACCATC
CCAAAAAAAC ATCCAAACAC
CTATACCCAC CCAACTCGAC

TAACACCAAC

CCCCACCCGT
CCCCATTTAT
CCCCATCCAC
CCCCACTCAC

TACTACTAAA
TACAACCATA
CACCTTCCAT
CAACCCCTAA
CACCCTCAAA

CTACACCAGC
CCATAAAAAC
CCATACAAAC
CCATACAAAC

AACTCAAATT
AATAAGACTA
ACCAAGCCCC
ACCAAACACT

AACTCTTTAA
ATCTATTAAA

A data example: mitochondrial D-loop sequences

CCACATATAC AAGCTAAACC AAAAATACCA
CCTTACGCAA TAGCCATACA AAGAATATTA
CCCCACATAG CACACAGACC AACAACCTCC

CCCCACCTAC TATACCAACC AATAACCTCT

CCCCATCTAA
CTCCATCCAA
CTCCACCTAA

TCTTTATACA
ATAACCCATT

GACTTTACCG CCAACGCACC

ATCCCCAAAA

GCCAAACACC AACCCTATAA

CCAACACACT
TCAATACGCC

CACTCTTCAG ACCGAACACC
CACCTTCAGA ACTGAACGCC

CACAAAAAAA CTCATATTTA
TCTAGATACA AACCACAACA
CACAAACAAA TGCCCCCCCA
TTCACATCCG CACACCCCCA
CATAAACCCA CGCACCCCCA
CACAAATTCA TACACCCCTA
CACAAACCCG CACACCTCCA

CCCCAGCCCA ACACCCTTCC

ACACCTCAAT
ACATCTTGAC TCGCCTCTCT
ACACCTTAAC TCACCTTCTC

AATCTCACAA CCAACACGCCC
AATCTCATAA CCAACACACC

TCTAAATACG AACTTCACAC
CACAATTAAT ACACACCACA
CCCTCCTTCT TCAAGCCCAC
CCCCCCCTGC CCACGTCCAT
CCCCTTCCGC CCATGCTCAC
CCTTTCCTAC CCACGITCAC
CCCCCCTCGI CTACGCTTAC

ACAAATCCTT AATATACGCA
TCAAATCCAC AAATTACACA
TCAAACGCAC AACTTACACA
CAAAATCCAA AACCCACACA
CCAAATACAC AATTCACACA
CCAAACACAC AATTCACGCA
CCAAACGCAC AATTCGCACA

CACACAAACT
TATACAAACT
TATACAAATT

ACATTCCACC
ACGATACAAA
TCATCAAAAC
CTACCAAAAT
TTATCAAAAC
CCGTCAAAAC
CCATCAAAGC

AACCTTAACA
ATTACAATAC
TAGACCATCC
CCCATCACCC
CACATCATCT
CACATCATCC
CACGICATCC

CCATAAATAA
ACCATTAACC
TACAGAACCA
ACCGAAACAA
AACAATACCA
AACAACGCCA
CACAACGCCA

AATGACCCCC
AACAACCTCC
AATAACCTCC

AACCTATCCA
ATCCCTTTCG



which gives the ML tree

Orang

Goirilla

Chimp 0.153 0.304

0.07

0.172 0.121 0.336

0.04 -
Humar, 0.106 Gibbon

0.486

In L = -1405.6083

. . . 0.792 0.902
Maximum likelihood tree

for the Hasegawa

232-site mitochondrial
D-loop data set, with

Ts/Tn set to 2, analyzed

with maximum likelihood Mouse
(DNAML) Bovine



Models with amino acids

A CDEFGHI KL MNPOQRSTVWY

l

etc

<< dAdAwnwmmO VZZIC-rX —-—I6GTMMmMmOO>

Dayhoff PAM model

Jones—Taylor-Thornton model

specific models for secondary—structure contexts or membrane proteins
Models adapted from Henikoff BLOSUM scoring

But ... how to take DNA sequence into account? Constraints of code?



Codon models
Goldman & Yang, 1994; Muse & Gaut, 1994)

U C A G
u phe uuu
C phe uucC
U -
A leu=__ UUA ser UCA | ™-stop UAA stop  UGA
G leu UuUG
u leu Cuu
C leu CcucC
C 2
A leu CUA
G leu CUG
U ile AUU
c ile AUC
A
A ile AUA
G met AUG
U val GUU
C val GUC
G
A val GUA
G val GUG
1 w =0

Probabilities of change vary depending on whether amino acid is changing, and to what



Covarion models?

(Fitch and Markowitz, 1970)

[A[G[T[A[A]G[c] A NN G T | Al

A

[ALG[T[A[A[A[G]T] T | A

'\

[ALC] TIA[A R T A[A]G[T[C]A

[ALCME G| T[T[T[A[A[G[T[C[ Al

Which sites are available
for substitutions changes

as one moves along the tree

[ALCME G| T[T[T[A[A[G[T[C[ Al

[~ R G G| T[T[T[A[A[G[T[C] Al




How to calculate likelihood with rate variation

Easy! Since branch lengths always come into transition probability
formulas as r x t, can just multiply lengths of branches by the
appropriate factor to calculate the likelihood for a site.

(Branch lengths are usually scaled by assuming a rate of 1.)



Rate variation among sites

Phylogeny

Rates at different sites:

Rates oL
of 2.0
evolution
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Hidden Markov Model of rate variation among sites

Sites

1 2 3 4 5 6 7 8

CACGACGA
— C GT AACGA
CGAGACGG®G,,
— CAAAACGSG
AAGT GCGC

Phylogeny

Hidden Markov chain that assigns rates:

10.0
Rates OO/})-»OOOOO
of 20 0=0O oooo/o---
evolution

03 O O O O -=0-==0" O



Hidden Markov Models sum up over all paths
The Hidden Markov Chain method sums up likelihoods over

all possible paths through the states:

Prob (Data | tree) = Z Prob(Data| tree, path) Prob(path)
paths

O/O—>O—>O—->O—->O——>O
O O ©c,0\O O O
O O O O O—-0—0

- one path

_________ - another path



The rate combination contributing the most:

We can leave behind pointers that allow us to backtrack

This can be done by a dynamic programming algorithm called the Viterbi
Algorithm, well-known in the HMM literature.

00— 0@ oeoeo
@Y O 0<o‘< <—0/ O
o«o«o«oe®«®«®

(Of course, this one might account for only 0.001 of the likelihood)



Forwards-Backwards algorithm (marginal probabilities)

" V' ‘V \ '%V \ '
\ ’«'@/ \e’»‘( e’»‘/
J)( ‘A‘\ ’ A \\\ "A \\

AT R LTA
NN

The Forwards—Backwards algorithm
can calculate the contribution of one rate
at a given site to the overall likelihood

(a little different from the Viterbi calculation)



The Gamma distribution, used for rates

a=1/4
Cv=2

rate



A numerical example. Cyochrome B

We analyze 31 cytochrome B sequences, aligned by Naoko Takezaki,
using the Proml protein maximum likelihood program. Assume a Hidden
Markov Model with 3 states, rates:

category rate probability

1 0.0 0.2
2 1.0 0.4
3 3.0 0.4

and expected block length 3.

We get a reasonable, but not perfect, tree with the best rate combination
inferred to be



The cytochrome B tree from the above run
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(It's not perfect).
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Rates inferred from Cytochrome B
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Rates inferred from Cytochrome B
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