Likelihood and phylogenies

Joe Felsenstein

Depts. of Genome Sciences and of Biology, University of Washington

Odds ratio justification for maximum likelihood

$\underbrace{\frac{$| D | the data |
| :--- | :--- |
| H_{1} | |
| Hypothesis 1 | |
| H_{2} | |
| Hypothesis 2 | |
| the symbol for "given" | |}{$\operatorname{Prob}\left(\mathrm{H}_{1}\right)$}$\underbrace{}_{\text {Likelihood ratio }}$| $\operatorname{Prob}\left(\mathrm{D} \mid \mathrm{H}_{1}\right)$ |
| :--- |
| $\operatorname{Prob}\left(\mathrm{D} \mid \mathrm{H}_{2}\right)$ |}$_{\text {Prior odds ratio }}=\underbrace{\frac{\operatorname{Prob}\left(\mathrm{H}_{1} \mid \mathrm{D}\right)}{\operatorname{Prob}\left(\mathrm{H}_{2} \mid \mathrm{D}\right)}}_{\text {Posterior odds ratio }}$

If a space probe finds no Little Green Men on Mars

an optimist
a pessimist

If a space probe finds no Little Green Men on Mars

an optimist
$\frac{4}{1}$
$\frac{1}{4}$

If a space probe finds no Little Green Men on Mars

an optimist
$\frac{4}{1} \times \frac{1 / 3}{1}$
$\frac{1}{4} \times \frac{1 / 3}{1}$
a pessimist

If a space probe finds no Little Green Men on Mars

The likelihood ratio term ultimately dominates

If we see one Little Green Man, the likelihood calculation does the right thing:

$$
\frac{1}{4} \times \frac{2 / 3}{0}=\frac{\infty}{1}
$$

(put this way, this is OK but not mathematically kosher)
If we send n space probes and keep seeing none, the likelihood ratio term is

$$
\left(\frac{1}{3}\right)^{n}
$$

It dominates the calculation, overwhelming the prior.
Thus even if we don't have a prior we can believe in, we may be interested in knowing which hypothesis the likelihood ratio is recommending ...

Likelihood in Simple Coin-Tossing

Tossing a coin n times, with probability p of heads, the probability of outcome ннтнтTTTHTTH is

$$
\mathrm{pp}(1-\mathrm{p}) \mathrm{p}(1-\mathrm{p})(1-\mathrm{p})(1-\mathrm{p})(1-\mathrm{p}) \mathrm{p}(1-\mathrm{p})(1-\mathrm{p}) \mathrm{p}
$$

which is

$$
L=p^{5}(1-p)^{6}
$$

Plotting L against p to find its maximum:

Differentiating to find the maximum:

Differentiating the expression for L with respect to p and equating the derivative to 0 , the value of p that is at the peak is found (not surprisingly) to be $\mathrm{p}=5 / 11$:

$$
\begin{gathered}
\frac{\partial L}{\partial p}=\left(\frac{5}{p}-\frac{6}{1-p}\right) p^{5}(1-p)^{6}=0 \\
5-11 p=0 \\
\hat{p}=\frac{5}{11}
\end{gathered}
$$

A log-likelihood curve

A log-likelihood curve in one parameter

length of a branch in the tree

Its maximum likelihood estimate

A log-likelihood curve in one parameter and the maximum likelihood estimate

length of a branch in the tree
maximum likelihood estimate (MLE)

The (approximate, asymptotic) confidence interval

A log-likelihood curve in one parameter and the maximum likelihood estimate and confidence interval derived from it

Contours of a log-likelihood surface in two dimensions

length of branch 1

Contours of a log-likelihood surface in two dimensions

length of branch 1

Log-likelihood-based confidence set for two variables

length of branch 1

Confidence interval for one variable

length of branch 1

Confidence interval for the other variable

Calculating the likelihood of a tree

If we have molecular sequences on a tree, the likelihood is the product over sites of the data $D^{[i]}$ for each site (if those evolve independently):

$$
L=\operatorname{Prob}(D \mid T)=\prod_{i=1}^{\text {sites }} \operatorname{Prob}\left(D^{[i]} \mid T\right)
$$

With log-likelihoods, the product becomes a sum:

$$
\ln \mathrm{L}=\ln \operatorname{Prob}(\mathrm{D} \mid \mathrm{T})=\sum_{\mathrm{i}=1}^{\text {sites }} \ln \operatorname{Prob}\left(\mathrm{D}^{[\mathrm{i}]} \mid \mathrm{T}\right)
$$

Calculating the likelihood for site i on a tree

Sum over all possible states (bases) at interior nodes:

$$
\begin{aligned}
& L^{(i)}=\sum_{x} \sum_{y} \sum_{z} \sum_{w} \operatorname{Prob}(w) \operatorname{Prob}\left(x \mid w, t_{7}\right) \operatorname{Prob}\left(A \mid x, t_{1}\right) \operatorname{Prob}\left(C \mid x, t_{2}\right) \\
& \times \operatorname{Prob}\left(z \mid w, t_{8}\right) \operatorname{Prob}\left(C \mid z, t_{3}\right) \\
& \times \operatorname{Prob}\left(y \mid z, t_{6}\right) \operatorname{Prob}\left(C \mid y, t_{4}\right) \operatorname{Prob}\left(G \mid y, t_{5}\right)
\end{aligned}
$$

Calculating the likelihood for site i on a tree

We use the conditional likelihoods: $L_{j}^{(i)}(s)$
These compute the probability of everything at site i at or above node j on the tree, given that node j is in state s . Thus it assumes something (s) that we don't know in practice - so we compute these for all states s.

At the tips we can define these quantities: if the observed state is (say) c, the vector of L's is

$$
(0,1,0,0)
$$

If we observe an ambiguity, say R (purine), they are

$$
(1,0,1,0), \quad \text { not } \quad(1 / 2,0,1 / 2,0)
$$

The "pruning" algorithm:

$$
\begin{aligned}
L_{\ell}^{(i)}(s)= & {\left[\sum_{s_{j}} \operatorname{Prob}\left(s_{j} \mid s, v_{j}\right) L_{j}^{(i)}\left(s_{j}\right)\right] } \\
& \times\left[\sum_{s_{k}} \operatorname{Prob}\left(s_{k} \mid s, v_{k}\right) L_{k}^{(i)}\left(s_{k}\right)\right]
\end{aligned}
$$

(Felsenstein, 1973; 1981).

and at the bottom of the tree:

$$
\mathrm{L}_{0}^{(\mathrm{i})}=\sum_{\mathrm{s}} \pi_{\mathrm{s}} \mathrm{~L}_{0}^{(\mathrm{i})}(\mathrm{s})
$$

(Felsenstein, 1973, 1981)
and having gotten the likelihoods for each site:

$$
\mathrm{L}=\prod_{\mathrm{i}=1}^{\text {sites }} \mathrm{L}_{0}^{(\mathrm{i})}
$$

What does "tree space" (with branch lengths) look like?

an example: three species with a clock

when we consider all three possible topologies, the space looks like:

For one tree topology

The space of trees varying all $2 n-3$ branch lengths, each a nonegative number, defines an "orthant" (open corner) of a ($2 \mathrm{n}-3$)-dimensional real space:

Through the looking-glass

Shrinking one of the $n-1$ interior branches to 0 , we arrive at a trifurcation:

Here, as we pass "through the looking glass" we are also touch the space for two other tree topologies, and we could enter either.

Through the looking-glass

Shrinking one of the $n-1$ interior branches to 0 , we arrive at a trifurcation:

Here, as we pass "through the looking glass" we are also touch the space for two other tree topologies, and we could enter either.

Through the looking-glass

Shrinking one of the $n-1$ interior branches to 0 , we arrive at a trifurcation:

Here, as we pass "through the looking glass" we are also touch the space for two other tree topologies, and we could enter either.

Through the looking-glass

Shrinking one of the $n-1$ interior branches to 0 , we arrive at a trifurcation:

Here, as we pass "through the looking glass" we are also touch the space for two other tree topologies, and we could enter either.

The graph of all trees of 5 species

The Schoenberg graph (all 15 trees of size 5 connected by NNI's)

A data example: mitochondrial D-loop sequences

Bovine Mouse Gibbon Orang Gorilla Chimp Human

CCAAACCTGT CCAAAAAAAC CTATACCCAC CCCCACCCGT CCCCATTTAT CCCCATCCAC CCCCACTCAC

CCCCACCATC ATCCAAACAC CCAACTCGAC CTACACCAGC CCATAAAAAC CCATACAAAC CCATACAAAC

TAACACCAAC CAACCCCAGC CTACACCAAT CAACACCAAC CAACACCAAC CAACATTACC CAACACCACT

CCACATATAC AAGCTAAACC AAAAATACCA CCTTACGCAA TAGCCATACA AAGAATATTA CCCCACATAG CACACAGACC CCCCACCTAC TATACCAACC CCCCATCTAA CTCCATCCAA CTCCACCTAA

CACACAAACT TATACAAACT TATACAAATT AACAACCTCC AATAACCTCT AATGACCCCC AACAACCTCC AATAACCTCC

ACATTCCACC AACCTATCCA ACGATACAAA ATCCCTTTCG TCATCAAAAC ATACCTACAA CTACCAAAAT ACACCCCCAA TTATCAAAAC ACACCCCCAA CCGTCAAAAC ACCCCTTCAG CCATCAAAGC ACCCCTCCAA

CACAAAAAAA CTCATATTTA TCTAGATACA AACCACAACA CACAAACAAA TGCCCCCCCA TTCACATCCG CACACCCCCA CATAAACCCA CGCACCCCCA CACAAATTCA TACACCCCTA CACAAACCCG CACACCTCCA

AACTCTTTAA TCTTTATACA ATCTATTAAA ATAACCCATT GACTTTACCG CCAACGCACC ATCCCCAAAA CCAACACACT AACCCTATAA TCAATACGCC AATCTCACAA CCAACACGCC AATCTCATAA CCAACACACC

TACTACTAAA AACTCAAATT TACAACCATA AATAAGACTA CACCTTCCAT ACCAAGCCCC CAACCCCTAA ACCAAACACT CACCCTCAAA GCCAAACACC CACTCTTCAG ACCGAACACC CACCTTCAGA ACTGAACGCC

ААССТТААСА ATTACAATAC TAGACCATCC CCCATCACCC CACATCATCT CACATCATCC CACGTCATCC

CATAAACATA TAAACTCCCA TACCTTCCTA TCTCCTCCCA СТССССТТСА СССССТСТСА CTCCCTCTCA

CCCCAGCCCA ACACCCTTCC ACAAATCCTT TCCCACCAAA TCACCCTCCA TCAAATCCAC GCACGCCAAG CTCTCTACCA ACACCCTAAG CCACCTTCCT АСАССТСААТ ССАССТСССС ACATCTTGAC TCGCCTCTCT ACACCTTAAC TCACCTTCTC

TCAAACGCAC CAAAATCCAA CCAAATACAC CCAAACACAC CCAAACGCAC

TCTAAATACG CACAATTAAT CCCTCCTTCT CCCCCCCTGC CCCCTTCCGC CCTTTCCTAC CCCCCCTCGT

AACTTCACAC ACACACCACA TCAAGCCCAC CCACGTCCAT CCATGCTCAC CCACGTTCAC CTACGCTTAC

AATATACGCA CCATAAATAA
CA
AAATTACACA ACCATTAACC CA
AACTTACACA TACAGAACCA CA
AACCCACACA ACCGAAACAA CA
AATTCACACA AACAATACCA CA
AATTCACGCA AACAACGCCA CA
AATTCGCACA CACAACGCCA

which gives the ML tree

Maximum likelihood tree for the Hasegawa 232-site mitochondrial D-loop data set, with Ts/Tn set to 2, analyzed with maximum likelihood (DNAML)

Models with amino acids

Dayhoff PAM model
Jones-Taylor-Thornton model
specific models for secondary-structure contexts or membrane proteins
Models adapted from Henikoff BLOSUM scoring
But ... how to take DNA sequence into account? Constraints of code?

Codon models

Goldman \& Yang, 1994; Muse \& Gaut, 1994)

Probabilities of change vary depending on whether amino acid is changing, and to what

Covarion models?

(Fitch and Markowitz, 1970)

How to calculate likelihood with rate variation

Easy! Since branch lengths always come into transition probability formulas as $r \times t$, can just multiply lengths of branches by the appropriate factor to calculate the likelihood for a site.
(Branch lengths are usually scaled by assuming a rate of 1 .)

Rate variation among sites

Sites

Rates at different sites:

| Rates | 10.0 | | 0 | | 0 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| of | 2.0 | 0 | | 0 | | 0 | \cdots |

Hidden Markov Model of rate variation among sites
Sites

Hidden Markov chain that assigns rates:

Hidden Markov Models sum up over all paths

The Hidden Markov Chain method sums up likelihoods over all possible paths through the states:

$$
\operatorname{Prob}(\text { Data } \mid \text { tree })=\sum_{\text {paths }} \operatorname{Prob}(\text { Data } \mid \text { tree, path }) \operatorname{Prob}(\text { path })
$$

The rate combination contributing the most:

We can leave behind pointers that allow us to backtrack
This can be done by a dynamic programming algorithm called the Viterbi Algorithm, well-known in the HMM literature.

(Of course, this one might account for only 0.001 of the likelihood)

Forwards-Backwards algorithm (marginal probabilities)

The Forwards-Backwards algorithm can calculate the contribution of one rate at a given site to the overall likelihood (a little different from the Viterbi calculation)

The Gamma distribution, used for rates

A numerical example. Cyochrome B

We analyze 31 cytochrome B sequences, aligned by Naoko Takezaki, using the Proml protein maximum likelihood program. Assume a Hidden Markov Model with 3 states, rates:

category	rate	probability
1	0.0	0.2
2	1.0	0.4
3	3.0	0.4

and expected block length 3.
We get a reasonable, but not perfect, tree with the best rate combination inferred to be

The cytochrome B tree from the above run

(It's not perfect).

Rates inferred from Cytochrome B

Rates inferred from Cytochrome B

References

Likelihood

Edwards, A. W. F. and L. L. Cavalli-Sforza. 1964. Reconstruction of evolutionary trees. pp. 67-76 in Phenetic and Phylogenetic Classification, ed. V. H. Heywood and J. McNeill. Systematics Association Publication No. 6. Systematics Association, London. [The founding paper for parsimony and likelihood for phylogenies, using gene frequencies]
Jukes, T. H. and C. Cantor. 1969. Evolution of protein molecules. pp.
21-132 in Mammalian Protein Metabolism, ed. M. N. Munro. Academic Press, New York. [The Jukes-Cantor model, in one formula and a couple of sentences]
Neyman, J. 1971. Molecular studies of evolution: a source of novel statistical problems. In Statistical Decision Theory and Related Topics, ed. S. S. Gupta and J. Yackel, pp. 1-27. New York: Academic Press. [First paper on likelihood for molecular sequences. Neyman was a famous statistician.] Felsenstein, J. 1973. Maximum-likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Systematic Zoology 22: 240-249. [The pruning algorithm, parsimony is not same as likelihood]
Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17: 368-376. [Making likelihood useable for molecular sequences]

(more references)

Yang, Z. 1994. Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution 10: 1396-1401. [Use of gamma distribution of rate variation in ML phylogenies]
Yang, Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution 39: 306-314. [Approximating gamma distribution in ML phylogenies by an HMM]
Yang, Z. 1995. A space-time process model for the evolution of DNA sequences. Genetics 139: 993-1005. [Allowing for autocorrelated rates along the molecule using an HMM for ML phylogenies]
Felsenstein, J. and G. A. Churchill. 1996. A Hidden Markov Model approach to variation among sites in rate of evolution Molecular Biology and Evolution 13: 93-104. [HMM approach to evolutionary rate variation] Thorne, J. L., N. Goldman, and D. T. Jones. 1996. Combining protein evolution and secondary structure. Molecular Biology and Evolution 13 666-673. [HMM for secondary structure of proteins, with phylogenies]

(more references)

General reading

Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates, Sunderland, Massachusetts. [Book you and all your friends must rush out and buy]
Yang, Z. 2006. Computational Molecular Evolution. Oxford University Press, Oxford. [Well-thought-out book on molecular phylogenies]
Semple, C. and M. Steel. 2003. Phylogenetics. Oxford University Press, Oxford. [Good for a mathematical audience]

