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A log-likelihood curve and its confidence interval
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(This is for the 14-species primates data available for download).
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Constraints on a tree for a clock
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Likelihood-ratio test of molecular clock
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Difference
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−1407.085

df = 5

−1405.608

1.477 χ 2
= 2.954

(non−significant)

(This is for this 7-species subset of the primates data).
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Likelihood surface for three clocklike trees
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(These are “profile likelihoods" as they show the largest likelihood for that
value of x , maximizing over the other branch length in the tree.)

Bootstraps and testing trees – p.5/20



Two trees to be tested using KHT test
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Table of differences in log-likelihood

site
1 2 3 4 5 6 ln L

Tree

I

II

231 232

−1405.61

−1408.80 ...

Diff  ...         +3.19

−2.971 −4.483 −5.673 −5.883 −2.691  ...−8.003 −2.971 −2.691

−2.983 −4.494 −5.685 −5.898 −2.700 −7.572 −2.987 −2.705

+0.012 +0.013 +0.010 −0.431+0.015+0.111 +0.012 +0.010
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Histogram of those differences
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Difference in log likelihood at site

Do sign test, or t-test, or similar nonparametric tests.
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Bootstrap sampling (with mixtures of normals)

θ(unknown) true value of  

(unknown) true distributionempirical distribution of sample

estimate of  θ
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Bootstrap sampling (with mixtures of normals)

Bootstrap replicates

θ(unknown) true value of  

(unknown) true distributionempirical distribution of sample

estimate of  θ

Distribution of estimates of parameters
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Bootstrap sampling (with mixtures of normals)

Bootstrap replicates

θ(unknown) true value of  
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Distribution of estimates of parameters
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Bootstrap sampling (with mixtures of normals)

Bootstrap replicates

θ(unknown) true value of  

(unknown) true distributionempirical distribution of sample
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Distribution of estimates of parameters
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Bootstrap sampling

To infer the error in a quantity, θ, estimated from a sample of points
x1, x2, . . . , xn we can

Do the following R times (R = 1000 or so)
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Bootstrap sampling

To infer the error in a quantity, θ, estimated from a sample of points
x1, x2, . . . , xn we can

Do the following R times (R = 1000 or so)

Draw a “bootstrap sample" by sampling n times with replacement
from the sample. Call these x

∗

1
, x∗

2
, . . . , x∗

n
. Note that some of the

original points are represented more than once in the bootstrap
sample, some once, some not at all.
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Bootstrap sampling

To infer the error in a quantity, θ, estimated from a sample of points
x1, x2, . . . , xn we can

Do the following R times (R = 1000 or so)

Draw a “bootstrap sample" by sampling n times with replacement
from the sample. Call these x

∗

1
, x∗
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sample, some once, some not at all.

Estimate θ from each of the bootstrap samples, call these θ̂∗
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Bootstrap sampling

To infer the error in a quantity, θ, estimated from a sample of points
x1, x2, . . . , xn we can

Do the following R times (R = 1000 or so)

Draw a “bootstrap sample" by sampling n times with replacement
from the sample. Call these x

∗

1
, x∗

2
, . . . , x∗

n
. Note that some of the

original points are represented more than once in the bootstrap
sample, some once, some not at all.

Estimate θ from each of the bootstrap samples, call these θ̂∗
k

(k = 1, 2, . . . , R)

When all R bootstrap samples have been done, the distribution of θ̂∗
i

estimates the distribution one would get if one were able to draw
repeated samples of n data points from the unknown true
distribution.
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Bootstrap sampling of phylogenies
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Bootstrap sampling of phylogenies
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Bootstrap sampling of phylogenies
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Analyzing bootstraps with phylogenies

The sites are assumed to have evolved independently given the tree.
They are the entities that are sampled (the xi). The trees play the role of
the parameter. One ends up with a cloud of R sampled trees.

There are many possible ways. The one I will describe here is the most
useful, but not the only way we could go.
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Analyzing bootstraps with phylogenies

The sites are assumed to have evolved independently given the tree.
They are the entities that are sampled (the xi). The trees play the role of
the parameter. One ends up with a cloud of R sampled trees.

There are many possible ways. The one I will describe here is the most
useful, but not the only way we could go.

To summarize this cloud, we ask, for each branch in the tree, how
frequently it appears among the cloud of trees. We make a tree that
summarizes this for all the most frequently occurring branches. This is the
majority rule consensus tree of the bootstrap estimates of the tree.
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Partitions from branches in an (unrooted) tree

AE | BCDF
E

A
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B

D
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Partitions from branches in an (unrooted) tree
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and so on for all the other external (tip) branches
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The majority-rule consensus tree

Trees:
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How many times each (non−tip) partition of species is found:
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The majority-rule consensus tree
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The majority-rule consensus tree
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The majority-rule consensus tree
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The majority-rule consensus tree

Trees:

AE | BCDF 3
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Majority−rule consensus tree of the unrooted trees:

How many times each (non−tip) partition of species is found:
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Bootstrap sampling of a phylogeny
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In this example, parsimony was used to infer the tree.
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Potential problems with the bootstrap

Sites may not evolve independently
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Sites may not evolve independently

Sites may not come from a common distribution (but you can
consider them to be sampled from a mixture of possible
distributions)
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Potential problems with the bootstrap

Sites may not evolve independently

Sites may not come from a common distribution (but you can
consider them to be sampled from a mixture of possible
distributions)

If do not know which branch is of interest at the outset, a
“multiple-tests" problem means that the most extreme P values are
overstated
P values are biased (too conservative)

Bootstrapping does not correct biases in phylogeny methods
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Delete-half jackknife P values
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In this example, parsimony was used to infer the tree.
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A diagram of the parametric bootstrap

original
data

estimate
of tree

data
set #1

data

data

data

set #2

set #3

set #100

computer
simulation

estimation
of tree

T
1

T

T

2

T
3

100

Bootstraps and testing trees – p.18/20



References
Bootstraps etc.
Efron, B. 1979. Bootstrap methods: another look at the jackknife. Annals of
Statistics 7: 1-26. [The original bootstrap paper]

Margush, T. and F. R. McMorris. 1981. Consensus n-trees. Bulletin of
Mathematical Biology 43: 239-244i. [Majority-rule consensus trees]

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using
the bootstrap. Evolution 39: 783-791. [The bootstrap first applied to
phylogenies]

Zharkikh, A., and W.-H. Li. 1992. Statistical properties of bootstrap
estimation of phylogenetic variability from nucleotide sequences. I. Four
taxa with a molecular clock. Molecular Biology and Evolution 9: 1119-1147.
[Discovery and explanation of bias in P values]

Künsch, H. R. 1989. The jackknife and the bootstrap for general stationary
observations. Annals of Statistics 17: 1217-1241. [The block-bootstrap]

Wu, C. F. J. 1986. Jackknife, bootstrap and other resampling plans in
regression analysis. Annals of Statistics 14: 1261-1295. [The delete-half
jackknife]

Efron, B. 1985. Bootstrap confidence intervals for a class of parametric
problems. Biometrika 72: 45-58. [The parametric bootstrap]

Bootstraps and testing trees – p.19/20



(more references)
Templeton, A. R. 1983. Phylogenetic inference from restriction
endonuclease cleavage site maps with particular reference to the
evolution of humans and the apes. Evolution 37: 221-224. [The first paper
on the KHT test]

Goldman, N. 1993. Statistical tests of models of DNA substitution. Journal
of Molecular Evolution 36: 182-98. [Parametric bootstrapping for testing
models]

Shimodaira, H. and M. Hasegawa. 1999. Multiple comparisons of
log-likelihoods with applications to phylogenetic inference. Molecular
Biology and Evolution 16: 1114-1116. [Correction of KHT test for multiple
hypothesis]

Prager, E. M. and A. C. Wilson. 1988. Ancient origin of lactalbumin from
lysozyme: analysis of DNA and amino acid sequences. Journal of
Molecular Evolution 27: 326-335. [winning-sites test]

Hasegawa, M. and H. Kishino. 1994. Accuracies of the simple methods for
estimating the bootstrap probability of a maximum-likelihood tree.
Molecular Biology and Evolution 11: 142-145. [RELL probabilities]

Bootstraps and testing trees – p.20/20


	A log-likelihood curve and its confidence interval
	Constraints on a tree for a clock
	Likelihood-ratio test of molecular clock
	Likelihood surface for three clocklike trees
	Two trees to be tested using KHT test
	Table of differences in log-likelihood
	Histogram of those differences
	Bootstrap sampling (with mixtures of normals)
	Bootstrap sampling
	Bootstrap sampling of phylogenies
	Analyzing bootstraps with phylogenies
	Partitions from branches in an (unrooted)
tree
	The majority-rule consensus tree
	Bootstrap sampling of a phylogeny
	Potential problems with the bootstrap
	Delete-half jackknife P values
	A diagram of the parametric bootstrap
	References
	(more references)

