
Bayesian inference & Markov chain Monte Carlo

Note 1: Many slides for this lecture were kindly 
   provided by Paul Lewis and Mark Holder

Note 2: Paul Lewis has written nice ipad/
iphone/Windows software
for demonstrating Markov chain Monte Carlo
idea.  Software is called “MCMCRobot” and is
freely available at the itunes store.  See 
also...
http://www.mcmcrobot.org



Assume we want to estimate a parameter θ
with data X.

Maximum likelihood approach to estimating θ
finds value of θ that maximizes Pr (X | θ).

Before observing data, we may have some idea
of how plausible are values of θ. This idea
is called our prior distribution of θ and we’ll
denote it Pr (θ).

Bayesians base estimate of θ on the posterior
distribution Pr (θ | X).



Pr (θ | X) =
Pr (θ,X)

Pr (X)
=

Pr (X | θ)Pr (θ)
∫
θ Pr (X, θ)dθ

=
Pr (X | θ)Pr (θ)

∫
θ Pr (X | θ)Pr (θ)dθ

=
likelihood× prior

difficult quantity to calculate

Often, determining the exact value of the
above integral is difficult.



Problems with Bayesian approachs in general:

1. Disagreements about philosophy of inference
                                   &
                 Disagreements over priors 
    

2. Heavy Computational Requirements
(problem 2 is rapidly becoming less noteworthy)



Potential advantages of Bayesian phylogeny inference

Interpretation of posterior probabilities of topologies
is more straightforward than interpretation of 
bootstrap support.

If prior distributions for parameters are far 
from diffuse, very complicated and realistic models 
can be used and the problem of overparameterization
can be  simultaneously avoided.

MrBayes software for phylogeny inference is at:

http://mrbayes.sourceforge.net/download.php

RevBayes software is at:   http://revbayes.github.io



Let p be the probability of heads.

Then 1-p is the probability of tails

Imagine a data set X with these
results from flipping a coin

Toss                 1      2     3     4     5     6
Result             H      T    H    T     T    T
Probability    p     1-p    p  1-p  1-p  1-p

P(X|p) = p (1-p)2 4 almost binomial
distribution form
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For integers a and b, Beta density 
B(a,b) is 

P(p)=  (a+b-1)!/((a-1)!(b-1)!) p    (1-p)

where p is between 0 and 1.

Expected value of p is a/(a+b)

Variance of p is ab/((a+b+1)(a+b)  )

	 	 Beta distribution is conjugate prior for 
	 	 	 data from binomial distribution

2

a-1 b-1
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Posterior Mean = 3/(3+5)
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Markov chain Monte Carlo (MCMC) idea
approximates Pr (θ | X) by sampling a large
number of θ values from Pr (θ | X).

So, θ values with higher posterior probability
are more likely to be sampled than θ values
with low posterior probability.



Question: How is this sampling achieved?

Answer: A Markov chain is constructed and
simulated. The states of this chain represent
values of θ. The stationary distribution of this
chain is Pr (θ | X).

In other words, we start chain at some
initial value of θ. After running chain
for a long enough time, the probability of
the chain being at some particular state
will be approximately equal to the posterior
probability of the state.



Let θ(t) be the value of θ after t steps of the Markov chain where

θ(0) is the initial value.

Each step of the Markov chain involves randomly proposing a new

value of θ based on the current value of θ. Call the proposed value

θ∗.

We decide with some probability to either accept θ∗ as our new

state or to reject the proposed θ∗ and remain at our current state.

The Hastings (Hastings 1970) algorithm is a way to make this

decision and force the stationary distribution of the chain to be

Pr (θ | X).

According to the Hastings algorithm, what state should we adopt

at step t + 1 if θ(t) is the current state and θ∗ is the proposed state?



Let J(θ∗|θ(t)) be the “jumping” distribution, i.e. the probability of

proposing θ∗ given that the current state is θ(t).

Define r as

r =
Pr (X | θ∗)Pr (θ∗)J(θ(t)|θ∗)

Pr
(
X | θ(t)

)
Pr

(
θ(t)

)
J(θ∗|θ(t))

With probability equal to the minimum of r and 1, we set

θ(t+1) = θ∗.

Otherwise, we set

θ(t+1) = θ(t).

For the Hastings algorithm to yield the stationary distribution

Pr (θ | X), there are a few required conditions. The most important

condition is that it must be possible to reach each state from any

other in a finite number of steps. Also, the Markov chain can’t be

periodic.



MCMC implementation details:

The Markov chain should be run as long as possible.

We may have T total samples after running our Markov chain.

They would be θ(1), θ(2), . . ., θ(T ). The first B (1 ≤ B < T ) of

these samples are often discarded (i.e. not used to approximate

the posterior). The period before the chain has gotten these B

samples that will be discarded is referred to as the “burn–in”

period.

The reason for discarding these samples is that the early

samples typically are largely dependent on the initial state of

the Markov chain and often the initial state of the chain is

(either intentionally or unintentionally) atypical with respect to

the posterior distribution.

The remaining samples θ(B+1), θ(B+2), . . ., θ(T ) are used to

approximate the posterior distribution. For example, the average

among the sampled values for a parameter might be a good

estimate of its posterior mean.



Markov Chain Monte Carlo and Relatives (some important papers)

CARLIN, B.P., and T.A. LOUIS. 1996. Bayes and Empirical Bayes
Methods for Data Analysis. Chapman and Hall, London.

GELMAN, A., J.B. CARLIN, H.S. STERN, and D.B. RUBIN. 1995.
Bayesian Data Analysis. Chapman and Hall, London.

GEYER, C. 1991. Markov chain Monte Carlo maximum likelihood. Pages
156-163 in Computing Science and Statistics: Proceedings of the 23rd
Symposium on the Interface. Keramidas, ed. Fairfax Station: Interface
Foundation

HASTINGS, W.K. (1970) Monte Carlo sampling methods using Markov
chains and their applications. Biometrika 57:97–109

METROPOLIS, N., A.W. ROSENBLUTH, M.N. ROSENBLUTH, A.H.
TELLER, and E. TELLER. 1953. Equations of state calculations by fast
computing machines. J. Chem. Phys. 21: 1087–1092.



Posterior predictive inference (notice resemblance to
parametric bootstrap)

1. Via MCMC or some other technique, get N sampled parameter
sets θ(1), . . . , θ(N) from posterior distribution p(θ|X)

2. For each sampled parameter set θ(k), simulate a new data set X(k)

from p(X|θ(k))

3. Calculate a test statistic value T (X(k)) from each simulated data
set and see where test statistic value for actual data T (X) is relative
to simulated distribution of test statistic values.



From Huelsenbeck et al.
2003.  Syst Biol
52(2): 131-158



Notation for following pages:

X data

Mi,Mj: Models i and j

θi, θj: parameters for models i and j

p(X|θi,Mi), p(X|θj,Mj): likelihoods



Bayes factor

p(Mi|X)

p(Mj|X)
=

p(Mi)p(X|Mi)/p(X)

p(Mj)p(X|Mj)/p(X)

=
p(Mi)

p(Mj)
× p(X|Mi)

p(X|Mj)

Left factor is called prior odds and right factor is called Bayes factor.

Bayes factor is ratio of marginal likelihoods of the two models.



BFij =
p(X|Mi)

p(X|Mj)

According to wikipedia, Jeffreys (1961) interpretation of BF12 (1
representing one model and 2 being the other):

BF12 Interpretation

< 1 : 1 Negative (supports M2)
1 : 1 to 3 : 1 Barely worth mentioning
3 : 1 to 10 : 1 Substantial
10 : 1 to 30 : 1 Strong
30 : 1 to 100 : 1 Very Strong

> 100 : 1 Decisive



BFij =
p(X|Mi)

p(X|Mj)

Bayes factors hard to compute because marginal likelihoods hard to
compute:

p(X|Mi) =
∫
θi p(X|Mi, θi)p(θi|Mi)dθi

Important point to note from above: Bayes factors depend on priors
p(θi|Mi) because marginal likelihoods depend on priors!



How to approximate/compute marginal likelihood?

p(X|Mi) =
∫
θi p(X|Mi, θi)p(θi|Mi)dθi

Harmonic mean estimator of marginal likelihood (widely
used but likely to be terrible and should be avoided):

1

p(X|Mi)
.=

1

N

N∑
k=1

1

p(X|θ(k)
i ,Mi)

where θ
(k)
i are sampled from posterior p(θi|X,Mi).



Important papers regarding Bayesian Model Comparison ...

Posterior Predictive Inference in Phylogenetics: J.P. Bollback. 2002.  Molecular Biology 
and  Evolution. 19:1171-1180

Harmonic Mean and other techniques for estimating Bayes factors:  Newton and 
Raftery. 1994.  Journal of the Royal Statistical Society. Series B. 56(1):3-48.

Thermodynamic Integration to Approximate Bayes Factors (adapted to molecular 
evolution data):  Lartillot and Philippe. 2006. Syst. Biol. 55:195-207

Improving marginal likelihood estimation for Bayesian phylogenetic 
model selection.  W. Xie, P.O. Lewis, Y. Fan, L. Kao, M-H Chen. 2011. Syst Biol.
60(2):150-160.  

Choosing among partition models in Bayesian phylogenetics. Y. Fan, R. Wu, 
M-H Chen, L Kuo,  P.O. Lewis. 2011. Mol. Biol. Evol. 28(1):523-532.

Markov chain Monte Carlo without likelihoods.  P. Marjoram, J. Molitor, 
V. Plagnol, and  S. Tavare. 2003. PNAS USA. 100(26): 15324-15328.

H. Je�reys. The Theory of Probability (3e). Oxford (1961); p. 432

M.A. Beaumont, W. Zhang, D.J. Balding. Approximate Bayesian Computation in 
Population  Genetics. 2002. Genetics 162:2025-2035.

more 
reliable
ways to 
approximate
marginal
likelihood



Paul Lewis’ MCMC Robot Demo

Proposal scheme:
• random direction
• gamma-distributed step length

(mean 45 pixels, s.d. 40 pixels)
• reflection at edges

Target distribution:
• Mixture of bivariate normal “hills”
• inner contours: 50% of the probability
• outer contours: 95%



MCMC robot rules

Uphill steps are 
always accepted

Slightly downhill steps
are usually accepted

Drastic “off the cliff”
downhill steps are almost
never accepted

With these rules, it is easy to
see that the robot tends to 
stay near the tops of hills



Burn-in

First 100 steps

Note that first few
steps are not at all
representative of the
distribution.

       Starting point



Problems with MCMC approaches:

1. They are difficult to implement.  Implementation 
may need to be clever to be computationally tractable
and programming bugs are a serious possibility.

2. For the kinds of complicated situations that 
biologists face, it may be very difficult to know how 
fast the Markov chain converges to the desired 
posterior distribution.

There are diagnostics for evaluating whether a chain
has converged to the posterior distribution but the
diagnostics do not provide a guarantee of convergence.

A GOOD DIAGNOSTIC : MULTIPLE RUNS !!



Just how long is a long run?
What would you conclude
about the target distri-
bution had you stopped
the robot at this point?

One way to detect this
mistake is to perform

several independent
runs.

Results different among
runs? Probably none of them
were run long enough!



History plots

“Burn in” is over right about here

Important! This is a plot of first 1000 steps, and there
is no indication that anything is wrong (but we know
for a fact that we didn’t let this one run long enough)

“White noise” appearance is a good sign
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Slow mixing

Chain is spending long periods of time
“stuck” in one place

Indicates step size is too large, and most proposed 
steps would take the robot “off the cliff”



The problem of co-linearity

Parameter α

Parameter β

Joint posterior density
for a model having two
highly correlated 
parameters is a narrow 
“ridge”

If we have separate proposals
for α and β, even small steps
may be too large!



Some material on Bayesian model comparison and
hypothesis testing

1. Some Bayesians dislike much hypothesis testing because null
hypotheses often are known a priori to be false and p−value depends
both on “how” wrong null is and on amount of data.

2. Posterior predictive inference for assessing fit of models (see next
pages)

3. Bayes factors for comparing models (see next pages)



The Tradeoff

• Pro: Proposing big steps helps in jumping
from one “island” in the posterior density to
another

• Con: Proposing big steps often results in
poor mixing

• Solution: Better proposals - MCMCMC



Huelsenbeck has found that a technique called Metropolis-Coupled
Markov chain Monte Carlo (i.e., MCMCMC !! or MC  ) suggested
by C.J. Geyer is useful for getting convergence with phylogeny
reconstruction.

The idea of MCMCMC is to run multiple Markov chains in parallel.

One chain will have stationary distribution that is the posterior of
interest.

The other chains will approximate posterior distributions that are
various degrees more smooth that than the posterior distribution of
interest.

Each chain is run separately, except that occasionally 2 chains are 
randomly picked and a proposal to switch the states of these two 
chains is made. This proposal is randomly accepted or reject with 
the appropriate probability

3



Metropolis-coupled Markov chain Monte
Carlo (MCMCMC, or MC3)

• MC3 involves running several chains
simultaneously

• The cold chain is the one that counts, the
rest are heated chains.



What is a heated chain?
• Instead of using R, to make acceptance or

rejection decisions, heated chains use:

• In MrBayes: H = Temperature*(Chain's index)
• The cold chain has index 0
• Heated chains explore the surface more freely
• Occasionally, you propose to switch the positions of 2 of

the chains



Heated chains act as scouts



Phylogeny Priors: For phylogeny inference, parameters
might represent topology, branch lengths, base
frequencies, transition-transversion ratio, etc.

Each parameter needs specified prior distribution.   
For example...

1. All unrooted topologies can be considered equally probable
a priori.  Given topology, all branch lengths between 0 and 
some big number could be considered equally likely a priori

2. All combinations of base frequencies could be considered
equally likely a priori

3. The transition-transversion ratio could have a prior
distribution that is uniform between 0 & some big number.

... and so on.



Moving through Tree Space
Larget Simon Local Move



Moving through Tree Space
Larget Simon Local Move



Moving through Tree Space
Larget Simon Local Move



Moving through Tree Space
Larget Simon Local Move



Moving through parameter space

Using κ (ratio of the 
transition rate to the transversion
rate) as an example of a model
parameter.

Proposal distribution is the uniform
distribution on the interval (κ-δ, κ+δ)

A larger δ means the sampler will 
attempt to make larger jumps 
on average.



Putting it all together
• Start with an initial tree and model

parameters (often chosen randomly).
• Propose a new, randomly-selected move.

Accept or reject the move (Walking).
• Every k generations, save tree, branch

lengths and all model parameters
(Thinning).

• After n generations, summarize the sample
using histograms, means, credibility
intervals, etc. (Summarizing).



Sampling the chain tells us:

• Which tree has the highest posterior
probability?

• What is the probability that “tree X” is
the true tree?

• What values of the parameters are
most probable?



What if we are only interested in one
grouping?

Which of the trees in the MCMC run contained the
clade (e.g. A + C) ?

The proportion of trees with A and C together in
our sample approximates the posterior probability
that A and C are sister to each other.



Split (a.k.a. clade) probabilities
A split is a partitioning of taxa that
corresponds with a particular branch.

Splits are usually represented by strings: asterisks (*)
show which taxa are on one side of the branch, and the
hyphens (–) show the taxa on the other side.



Posteriors of model parameters
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upper = 3.604

mean = 3.234

lower = 2.907




