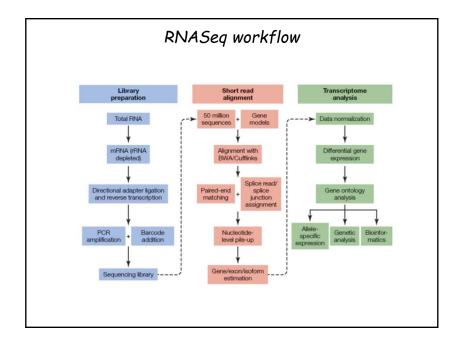


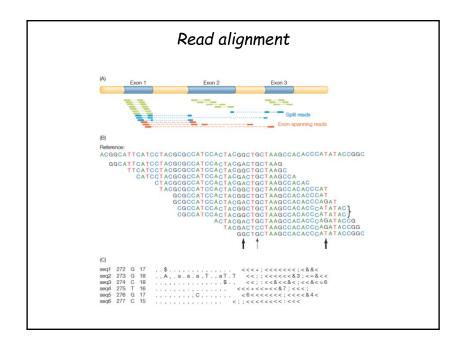
Course Outline

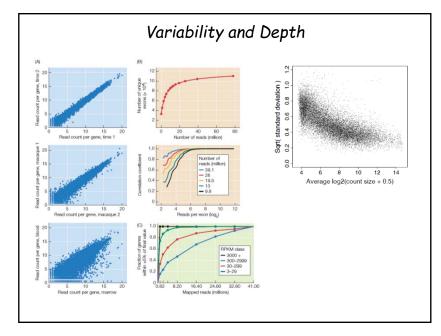
- 1a. Experimental Design and Hypothesis Testing (GG)
- 1b. Normalization (GG)
- 2a. RNASeq (MI)
- 2b. Clustering and Pathways (MI)
- 3a. Lab session qvalue, PCA (GG)
- 3b. Lab session SNM, edgeR (GG)
- 4a. Network Analysis (MI)
- 4b. Lab session WGCNA (MI)
- 5a. Integrative methods (MI)
- 5b. eQTL Analysis (GG)

Applications of Expression Analysis

- 1. Atlases of gene expression for functional annotation
- 2. Identification of differentially expressed genes
- 3. Assembly of networks of co-regulated genes
- 4. Investigation of regulatory mechanisms
- 5. Evolutionary and ecological genomics
- 6. Clinical genomics
- 7. Quantitative basis of complex traits







Microarray vs RNASeq

Advantages of Microarrays

Less expensive

Better sensitivity for low abundance

Computationally simpler

Better-defined statistical properties

Perfectly good for most applications

Disadvantages of Microarrays

Only for humans, model organisms Different platforms give different results Large technical batch effects Sensitivity to polymorphism

Low consistency of analytics among groups

Advantages of RNA-Seq

Disruptive technology

Unbiased by prior gene knowledge

Alternative exon usage

Allele specific expression (ASE)

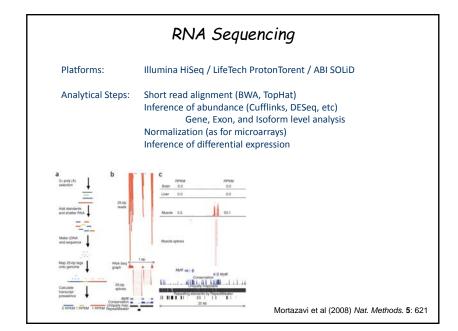
High repeatability

Disadvantages of RNA-Seq

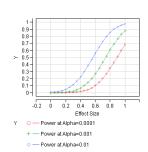
More opportunity to screw up the analysis Oversold resolution of exon level and ASE

Short read alignment biases Sensitivity to polymorphism

Low consistency of analytics among groups



Statistical Power



Power is a function of:

- the sample size
- the magnitude of the difference between classes
- the variance within the classes being compared

Since two of these parameters vary for each gene, Power in a microarray experiment is usually assessed in terms of the effect size (amount of variance explained), not as a magnitude of difference.

But, biologically it is not clear what effect size is important for any given gene.

Levels of Replication

Often you will have a fixed budget that constrains how many arrays can be processed. So your first task is to determine what levels of replication you can afford, and how they will impact statistical power.

Technical Replication:

- RNA preparation (eg. from adjacent biopsies)
- cDNA synthesis and labeling (pooling minimizes outlier effects)
- array hybridization (with commercial arrays, quality generally very high)
- duplicate probes for the same gene

Biological Replication:

Fixed effects:

- gender
- treatment (drug, growth regimen, tissue)
- time of sampling (repeated measures in some cases)
- genotype (IF specifically chosen and resampled)

Random effects

- individual from a population
- field plot

Design Biases

At the design step, avoid confounding biological factors:

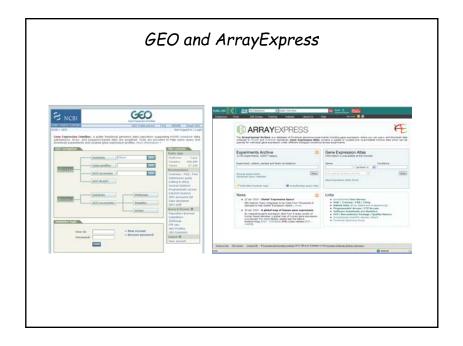
- don't contrast bloods from young males and old females
- don't contrast hearts from normal mice and livers from obese ones as far as possible, balance all biological factors

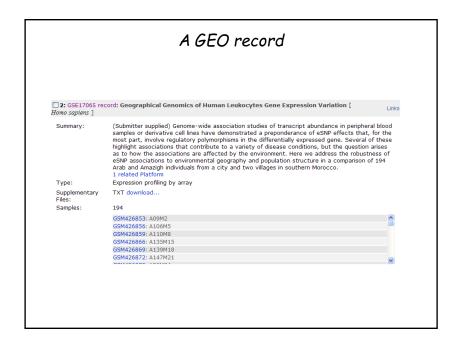
Be aware of the potential for technical confounding:

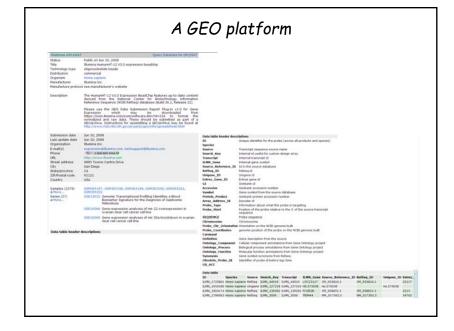
- date of RNA extraction of hybridization
- batch of arrays
- person who did the hybridization
- scanning software

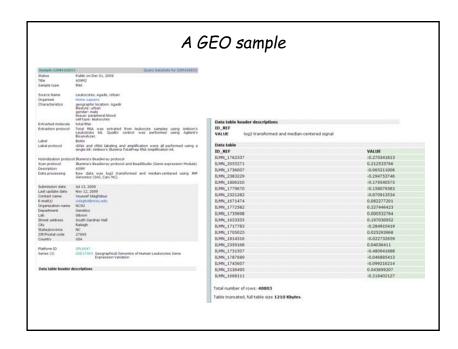
For 2-color arrays, recognize that the *order of hybridization affects power*:

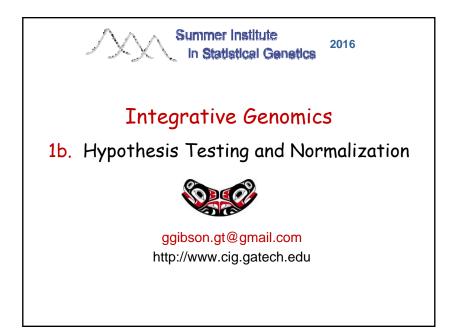
- Reference designs
- Loop designs
- Split-plot designs
- Molecular biologist's designs

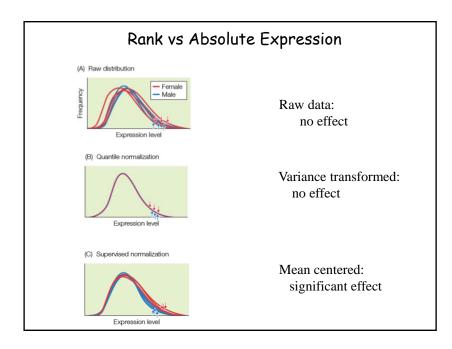


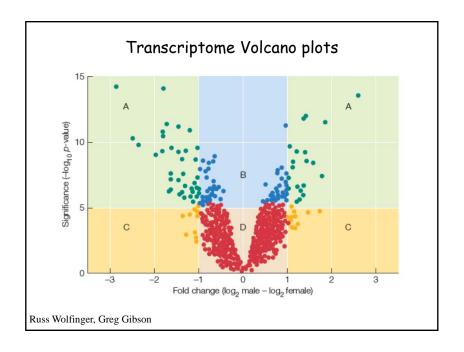


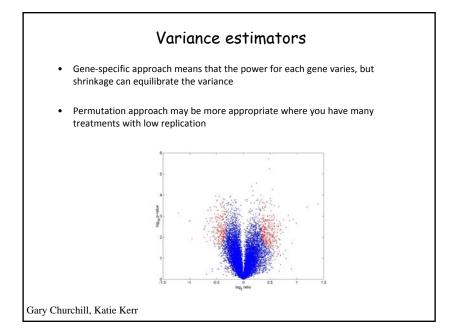


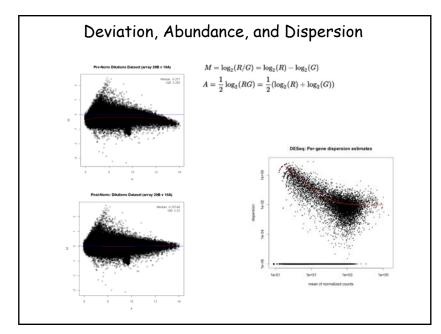


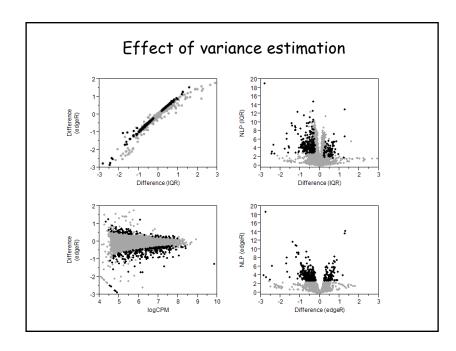












Affymetrix Probe-set normalization

- MAS 5.0 is Affymetrix' weighted average of probes
- DChip (Li and Wong) is an invariant set procedure
- RMA (Irizarry) is a probe-set quantile normalization
- GCRMA also adjusts for probe GC content
- CEL files contain the raw probe intensities
- CDF files match the probe locations to probe-sets
- Popular Bioconductor package is affy

Two-step Analysis

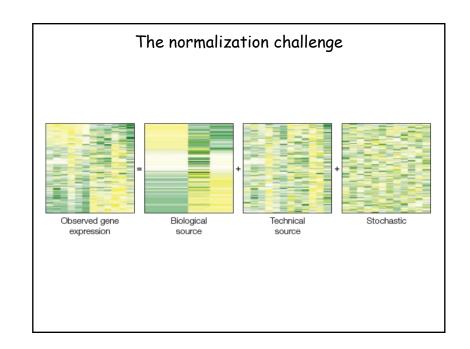
1. Normalize the samples

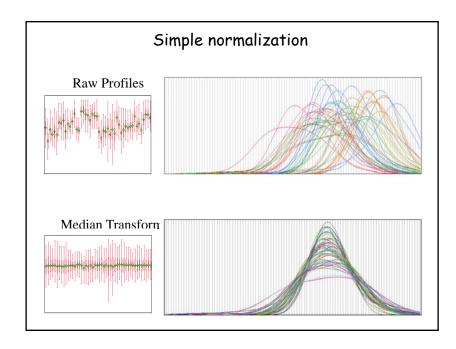
 $\label{eq:log} \mbox{log(fluorescence)} = \mu + \mbox{Array} + \mbox{Residual}$ OR variance transforms, OR supervised methods

2. For each gene, assess significance of treatment effects on the Residual (ie. relative expression level)

Residual =
$$\mu$$
 + Sex + Geno + Treat + Interact + Error

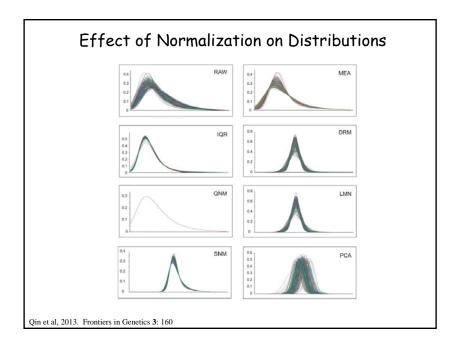
Wolfinger et al, 2001. J Comput Biol 8: 625-637

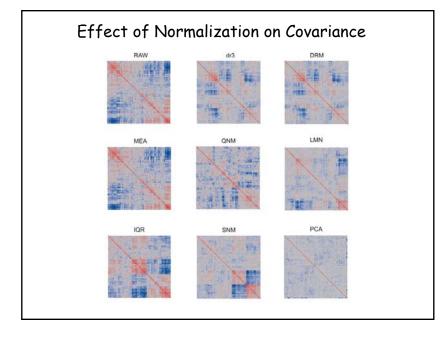


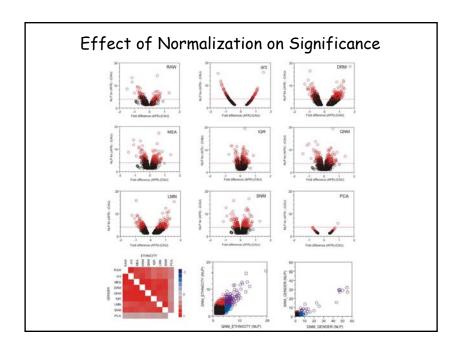


Types of normalization

- Mean or Median transform, simply centers the distribution
 - Something like this is essential to control for overall distributional effects (eg RNA concentration)
- Variance transforms, such as standardization or inter-quartile range
 - Depends on whether you think the overall distributions should have similar variance
- Quantile normalization
 - Transforms the ranks to the average expression value for each rank
- Gene-level model fitting
 - Remove technical or biological effects before model fitting on the residuals
- Supervised normalization
 - $\hbox{-} Optimally estimate the biological effect while fitting technical factors across the entire experiment$







Analytical strategy

- 1. Normalize the samples
- 2. Extract the Principal components of gene expression
- Ask whether the major PC are correlated with technical covariates such as Batch or RNA quality; or with Biological variables of interest
- 4. If they are, renormalize to remove those effects
 - (PEER factor normalization is a Bayesian approach to fitting Surrogate Variables; SVA is a linear modeling approach often performed with COMBAT; SNM is a supervised approach that allows you to retain Biological factors while fitting or removing technical ones)
- 5. As much as possible, analyze the dataset in several different ways to (i) confirm that the findings are not sensitive to your analytical choice, and (ii) gain insight into what may cause differences, eg find confounding factors