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Applications of Expression Analysis

Atlases of gene expression for functional annotation
Identification of differentially expressed genes
Assembly of networks of co-regulated genes
Investigation of regulatory mechanisms

Evolutionary and ecological genomics

Clinical genomics

Quantitative basis of complex traits
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Read alignment Variability and Depth
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Microarray vs RNASeq

Advantages of Microarrays

Less expensive

Better sensitivity for low abundance
Computationally simpler
Better-defined statistical properties
Perfectly good for most applications

Disadvantages of Microarrays

Only for humans, model organisms
Different platforms give different results
Large technical batch effects

Sensitivity to polymorphism

Low consistency of analytics among groups

Advantages of RNA-Seq

Disruptive technology

Unbiased by prior gene knowledge
Alternative exon usage

Allele specific expression (ASE)
High repeatability

Disadvantages of RNA-Seq

More opportunity to screw up the analysis
Oversold resolution of exon level and ASE
Short read alignment biases

Sensitivity to polymorphism

Low consistency of analytics among groups
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RNA Sequencing

Platforms: Illumina HiSeq / LifeTech ProtonTorent / ABI SOLID

Analytical Steps:  Short read alignment (BWA, TopHat)
Inference of abundance (Cufflinks, DESeq, etc)
Gene, Exon, and Isoform level analysis
Normalization (as for microarrays)
Inference of differential expression

Mortazavi et al (2008) Nat. Methods. 5: 621
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Statistical Power Levels of Replication
1

09 -~

E? £ v Often you will have a fixed budget that constrains how many arrays can be processed. So your
N 32 F first task is to determine what levels of replication you can afford, and how they will impact

04 N i statistical power.

03 7

0z ara

n; Technical Replication:

— - RNA preparation (eg. from adjacent biopsies)

o002 ED":n SD‘ZE 0e - cDNA synthesis and labeling (pooling minimizes outlier effects)

Y ©— Poweral Alpha=0.0001 - array hybridization (with commercial arrays, quality generally very high)
- duplicate probes for the same gene

-+ — Power at Alpha=0.001

— Power at Alpha=0.01
Biological Replication:

Fixed effects: - gender
- treatment (drug, growth regimen, tissue)
- time of sampling (repeated measures in some cases)
- genotype (IF specifically chosen and resampled)

Power is a function of:
- the sample size
- the magnitude of the difference between classes
- the variance within the classes being compared
Random effects - individual from a population
Since two of these parameters vary for each gene, Power in a microarray - field plot
experiment is usually assessed in terms of the effect size (amount of variance
explained), not as a magnitude of difference.
But, biologically it is not clear what effect size is important for any given gene.
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Design Biases GEO and ArrayExpress

At the design step, avoid confounding biological factors:
- don’t contrast bloods from young males and old females
- don’t contrast hearts from normal mice and livers from obese ones
as far as possible, balance all biological factors

Be aware of the potential for technical confounding:
- date of RNA extraction of hybridization
- batch of arrays
- person who did the hybridization
- scanning software

[S

For 2-color arrays, recognize that the order of hybridization affects power: y )
- Reference designs —— B p—
- Loop designs | o i .t 4 e ==
- Split-plot designs
- Molecular biologist’s designs
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Homo sapiens ]

Summary:

Type:

Supplementary
Files:

samples:

A GEO record

[12: GSE17065 record: Geographical ics of Human Leukocy Gene Expression Variation [

Links

(Submitter supplied) Genome-wide association studies of transcript abundance in peripheral blood
samples or derivative cell lines have demonstrated a preponderance of eSNP effects that, for the
most part, involve regulatory polymorphisms in the differentially expressed gene. Several of these

highlight associations that contribute to a variety of disease conditions, but the guestion arises
as to how the associations are affected by the environment. Here we address the robustness o
eSNP associations to environmental geography and population structure in a comparison of 194
Arab and Amazigh individuals from a city and two villages in southern Morocco.

1 related Platform

Expression profiling by array

TXT download...

194

G5M426853: ADOM?2

GSM426856: A106M5
G5M426859: A110M8
GS5M426866: A135M15
G5M426869: A130M18
GSM426872: A147M21

f

-3

[£3
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A GEO platform

Greg Gibson

e




Module 5, Lecture 1

A GEO sample

size 1210 Kiytes
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Rank vs Absolute Expression

(A) Raw distribution

- Male

Raw data:
no effect

Frequency

¥
Expression level

(B) Quantile normalization

Ly
Expression levt:‘l

(C) Supervised normalization

AN

Expression level

Mean centered:
significant effect
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Variance transformed:
no effect
."3
)
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Transcriptome Volcano plots
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Variance estimators

Gene-specific approach means that the power for each gene varies, but
shrinkage can equilibrate the variance

Permutation approach may be more appropriate where you have many
treatments with low replication

Gary Churchill, Katie Kerr

Deviation, Abundance, and Dispersion

M = logy (R/G) = logy (R) — Jogy (G)

1 1
A= 31083 (RG) = 3 (log3 (K) + 1og3(G))

DESeq: Par-gens disperaion sstimates

Paatorm: Dousons Datanst faray 200 ¥ 104

Greg Gibson
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Effect of variance estimation AffymeTr'ix Probe-set normalization
20
1 . ] . e MAS 5.0 is Affymetrix” weighted average of probes
2% o £ g 3% e ) e DChip (Li and Wong) is an invariant set procedure
5% '/ 2 A Y e RMA (Irizarry) is a probe-set quantile normalization
: : : %i ¢ GCRMA also adjusts for probe GC content
¢ CEL files contain the raw probe intensities
R . ig ’ ¢ CDF files match the probe locations to probe-sets
Mmoo 14

1249
P A e Popular Bioconductor package is affy

Difference
(edgeR)
NLF (edgeR)
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logCPM Difference (edgeR)
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Two-step Analysis

1. Normalize the samples

log(fluorescence) = u + Array + Residual

The normalization challenge

OR variance transforms, OR supervised methods

2. For each gene, assess significance of treatment effects on
the Residual (ie. relative expression level)

[

Residual = p + Sex + Geno + Treat + Interact + Error

Wolfinger et al, 2001. J Comput Biol 8: 625-637

Greg Gibson

Observed gene

expression

Biological
source

Technical

source

Stochastic
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Simple normalization Types of normalization

Raw Profiles

ittt

e Mean or Median transform, simply centers the distribution

- Something like this is essential to control for overall distributional effects (eg RNA concentration)

e Variance transforms, such as standardization or inter-quartile range

- Depends on whether you think the overall distributions should have similar variance

e Quantile normalization

- Transforms the ranks to the average expression value for each rank

e Gene-level model fitting

Median Transforn

- Remove technical or biological effects before model fitting on the residuals

e Supervised normalization

- Optimally estimate the biological effect while fitting technical factors across the entire experiment
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Effect of Normalization on Distributions
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Qin et al, 2013. Frontiers in Genetics 3: 160

Effect of Normalization on Covariance
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Effect of Normalization on Significance Analytical strategy

1. Normalize the samples

i ’ 2. Extract the Principal components of gene expression

" 7 | . Ask whether the major PC are correlated with technical covariates such as Batch or
N . i £ ol RNA quality; or with Biological variables of interest

4. If they are, renormalize to remove those effects

e L " T vy (PEER factor normalization is a Bayesian approach to fitting Surrogate Variables;

| SVA is a linear modeling approach often performed with COMBAT;

SNM is a supervised approach that allows you to retain Biological factors while
N 7 fitting or removing technical ones)

5. As much as possible, analyze the dataset in several different ways to (i) confirm that
the findings are not sensitive to your analytical choice, and (ii) gain insight into what may
cause differences, eg find confounding factors
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