

- Organization of data into groups
- Groups should be relevant to the question at hand
- Approaches
 - Unsupervised
 - No knowledge of data labels
 - Semi-supervised
 - Some knowledge, e.g. a subset of data labels are known
 - Supervised
 - Technically not clustering (won't go over here, see machine learning)

Linkage criteria

- Given a distance measure...
 - Complete linkage
 - Distance b/n clusters A and B is max(dist(a,b))
 - Single-linkage
 - Distance is min(dist(a,b))
 - Mean-linkage
 - Distance is mean b/n all pairwise relations in A and B

Hierarchical cluster algorithm: Bottom-up

- Let X = {x1, x2, ..., xn} be your data (genes)
 - Initialize clustering level L(0)=0 & counter=0
 - Find min(dist(clust_i, clust_j)) over all pairs i,j of clusters at current level
 - Increment counter (counter=counter+1)
 - Set L(counter)=dist(clust_i,clust_j)
 - Update distance matrix with new cluster in place of old clusters
 - Loop... until all data points are in 1 cluster
- Top down is reverse

K-means clustering

- Given a set of observations with k clusters, determine cluster centers and data point assignments such that the squared distances between cluster centers and data points are minimized (within-cluster sum of squares)
- Optimisation is NP-hard

 Lloyd's algorithm (iterative refinement)
 - Assign, calculate, update... converge when assignments unchanged
- Performance bias towards similarly sized clusters

Which clustering method is 'best'? Depends of what aspect(s) you care about most Best guide is to read method comparisons for gene expression data Thalamuthu et al *Bioinformatics* 22(19):2405 2006 Datta & Datta *Bioinformatics* 19(4): 459 2003 Yeung et al *Bioinformatics* 17(4):309 2001 Song et al *BMC Bioinformatics* 13:328 2012

• Derive a set or list of interesting genes derived from data, make inferences about biological function

- Exercise caution due to arbitrary thresholds and power

• Given sets of genes from external source, assess expression changes of sets in the data

What to	ols are	there?
---------	---------	--------

Name	Organism ^a	Application Type	URL
ADGO	H, M, R, Y	Web server	http://array.kobic.re.kr/ADGO
ASSESS	H, M, R	Octave/Java standalone	http://people.genome.duke.edu/~jhg9/assess/
Babelomics	H, M, R, DM, S, C	Web server	http://www.babelomics.org
Catmap	Н	Perl script	http://bioinfo.thep.lu.se/catmap.html
ErmineJ	H, M, R	Java standalone	http://www.bioinformatics.ubc.ca/ermineJ/
Eu.Gene Analyzer	H, M, R, Y	Windows/Unix standalone	http://www.ducciocavalieri.org/bio/Eugene.htm
FatiScan	H, M, R, Y, B, D, G, C, A, S, DM	Web server	http://fatiscan.bioinfo.cipf.es/
GAZER	H, M, R, Y	Web server	http://integromics.kobic.re.kr/GAzer/index.faces;
GeneTrail	H, M, R, Y, SA, CG, AT	Web server	http://genetrail.bioinf.uni-sb.de/
Global test	NA	R package	http://bioconductor.org/packages/2.0/bioc/html/globaltest.html
GOAL	H, M	Web server	http://microarrays.unife.it
GO-Mapper	H, M, R, Z, DM, Y	Windows standalone, Perl script	http://www.gatcplatform.nl/
GSA	н	R package	http://www-stat.stanford.edu/~tibs/GSA/
GSEA	н	Java standalone, R package	http://www.broad.mit.edu/gsea/
JProGO	Various prokaryotes	Web server	http://www.jprogo.de/
MEGO	н	Windows standalone	http://www.dxy.cn/mego/
PAGE	H, M, R, Y	Python script	From the author (kimsy@kribb.re.kr)
PLAGE	H, M	Web server	http://dulci.biostat.duke.edu/pathways/
SAFE	NA	R package	http://bioconductor.org/packages/2.0/bioc/html/safe.html
SAM-GS	NA	Windows Excel Add-In	http://www.ualberta.ca/~yyasui/homepage.html
T-profiler	Y, CA	Web server	http://www.t-profiler.org/

Nam & Kim, Briefings in Bioinf

Reaction Networks

- Reactions form networks of interactions in the cell.
- They are presented in databases as **biological pathways**.

Biological pathway: "A biological pathway is a series of actions among molecules in a cell that leads to a certain product or change in a cell." – US NHGRI

- Reactions and their participants (proteins, complexes) can appear in multiple pathways; this causes **crosstalk**.
- There are **no canonical pathways** every database, textbook and researcher will differ (sometimes subtly).
- Pathways are **not independent** due to crosstalk, but are often treated as such (e.g. overrepresentation analysis).
- Differ from ontologies/gene sets they describe both what species are involved and how they interact.

