RNA sequencing

Integrative Genomics module

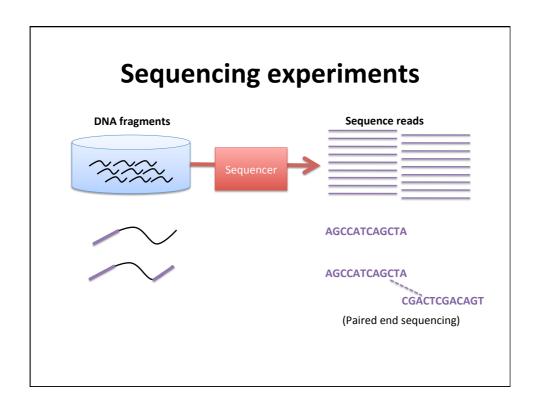
Michael Inouye Centre for Systems Genomics University of Melbourne, Australia

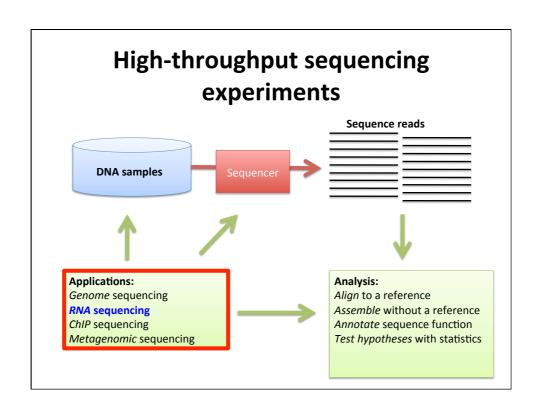
Summer Institute in Statistical Genetics 2016 Seattle, USA

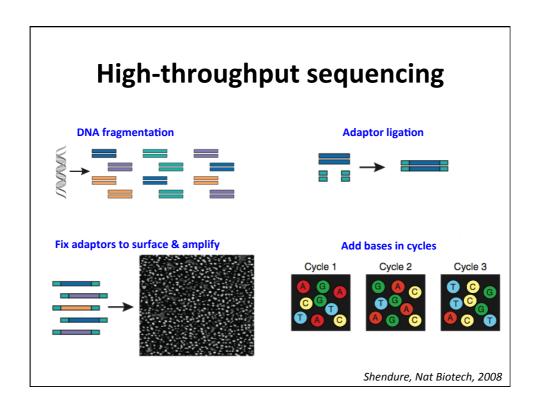
@minouye271 inouyelab.org

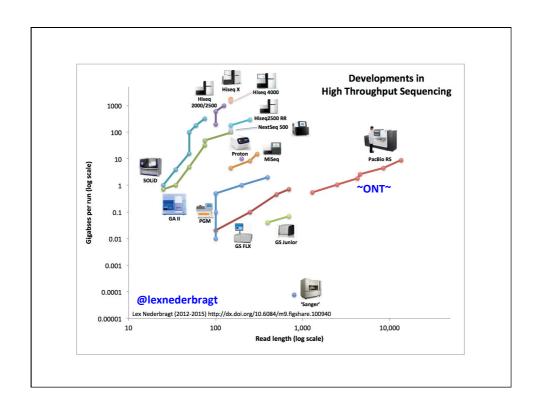
This lecture

- Intro to high-throughput sequencing
- Basic sequencing informatics
- Technical variation vs biological variation
- Normalisation
- Methods to test for DE
- Example: EdgeR









Watch this space

- Many new technologies emerging all the time
- Single cell
- Some day: Long read (1 read -> 1 transcript)
- Review of the latest sequencing technologies
 - Goodwin S et al, Nat Rev Genetics 2016. 17:333-351.

Sequencing read-out

fastq format

@HWI-ST226_0154:5:1101:1452:2196#CTTGTA/1

 $ggggggggegefgggggggcfefdfdggbeggggdae`^^db_ddcedebbZYb[c^[`XZY]]_d]c^bac^ccfbaf[_cTM_VR\]`^[^@HWI-ST226_0154:5:1101:1383:2197\#CTTGTA/1$

 ${\tt GACCGCTACCCAACACCACCGATCCTTACGGTAACGTCATTGCCCAGGGCGGCAGTTTGTCGCTACAGGAGTACACCGGCGATCCGAAGAGCCCGCTG+HWI-ST226_0154:5:1101:1355:2220\#CTTGTA/1$

Sequencing read-out

fastq format

read identifiers

@HWI-ST226 0154:5:1101:1452:2196#CTTGTA/1

- 1 +HWI-ST226_0154:5:1101:1452:2196#CTTGTA/1
- $\tt gggggggggefefdfdggbeggggdae`^^db_ddcedebbZYb[c^[`XZY]]_d]c^bac^ccfbaf[_cTM_VR\]^^[^a, and the control of th$
- 2 +HWI-ST226_0154:5:1101:1383:2197#CTTGTA/1
- 3 +HWI-ST226_0154:5:1101:1355:2220#CTTGTA/1
- 4 +HWI-ST226_0154:5:1101:1262:2242#CTTGTA/1

Sequencing read-out

fastq format

read sequences – strings of DNA bases

@HWI-ST226 0154:5:1101:1452:2196#CTTGTA/1

- 1 +HWI-ST226_0154:5:1101:1452:2196#CTTGTA/1
 - gggggggggggefgggggggggfefdfdggbegggggdae`^^db_ddcedebbZYb[c^[`XZY]]_d]c^bac^ccfbaf[_cTM_VR\]`^[^^ @HWI-ST226 0154:5:1101:1383:2197#CTTGTA/1
- 2 +HWI-ST226 0154:5:1101:1383:2197#CTTGTA/1
- @HWI-ST226_0154:5:1101:1355:2220#CTTGTA/1
- 3 +HWI-ST226_0154:5:1101:1355:2220#CTTGTA/1
- @HWI-ST226_0154:5:1101:1262:2242#CTTGTA/1
- 4 +HWI-ST226_0154:5:1101:1262:2242#CTTGTA/1

Sequencing read-out

fastq format

quality score for each DNA base

@HWI-ST226_0154:5:1101:1452:2196#CTTGTA/1

1 +HWI-ST226_0154:5:1101:1452:2196#CTTGTA/1

@HWI-ST226_0154:5:1101:1383:2197#CTTGTA/1

2 +HWI-ST226_0154:5:1101:1383:2197#CTTGTA/1

@HWI-ST226_0154:5:1101:1355:2220#CTTGTA/1

3 +HWI-ST226_0154:5:1101:1355:2220#CTTGTA/1

4 +HWI-ST226_0154:5:1101:1262:2242#CTTGTA/1

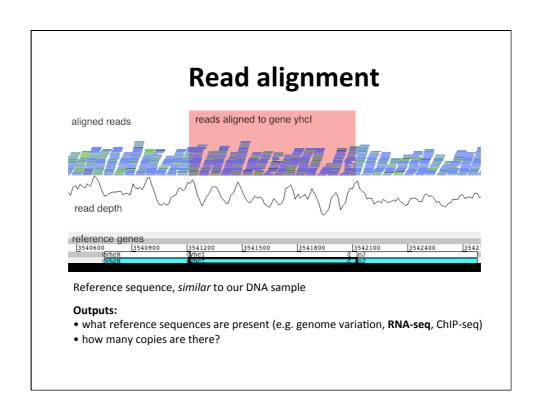
Phred score: $Q = -10 \log_{10} P$ Quality score Prob. error Accuracy 10 1 in 10 90%

1 in 100 99% where P = probability of an error1 in 1000 99.9%

Phred vs read base position Quality scores across all bases (Sanger / Illumina 1.9 encoding) 24 18 15-19 25-29 35-39 45-49 60-69 80-89 100-149 Position in read (bp)

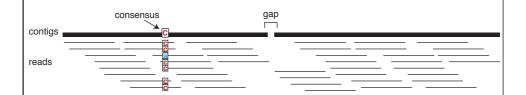
Properties of sequence data to keep in mind

- Data = Strings of bases + quality scores
- Read length
 - Fixed or variable?
 - Short (e.g. 35bp SOLiD) or long (e.g. 500+ bp 454)
- Errors
 - Error rate: how frequent are errors? Phred score distribution?
 - Error profile: what kind of errors are most common?
- Number of reads
 - Millions? Hundreds of millions?
 - How much total sequence? How does that compare to genome size?



Read assembly

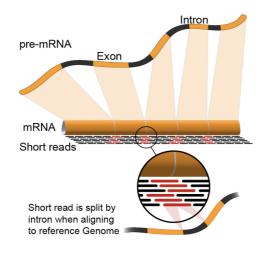
Reference-free, use the new reads alone (*de novo*) to reconstruct what original DNA sample looked like



Genome sequencing: aim to assemble each chromosome **Metagenomics:** aim to assemble DNA fragments from each member of the community

RNA-seq: aim to assemble each mRNA transcript

RNA sequencing (RNAseq)



Input:

cDNA reverse transcribed from mRNA

Represents:

all the messenger RNA transcripts present in a set of cells

(i.e. what is being expressed)

Image: Rgocs (Wikimedia Commons

Differential expression (DE)

- Are observed differences in read counts between groups due to chance or not?
- How is HTS different to arrays?
 - Data is inherently counts
 - Dynamic range is theoretically unbounded
 - Splicing variation can be assessed
 - Analyse at the gene, transcript, exon level?
 - Different technology means different sources of confounding effects and bias

What are sources of technical variation between samples?

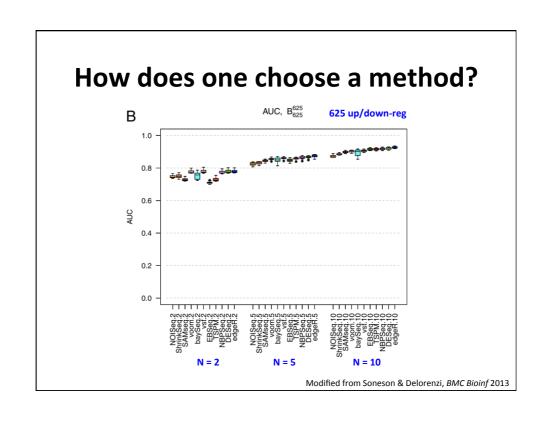
- Sequencing depth
- RNA composition (are some genes very highly expressed in one group and not another?)
- GC content (b/n genes)
- Gene length (b/n genes)
- Classic sources from microarrays

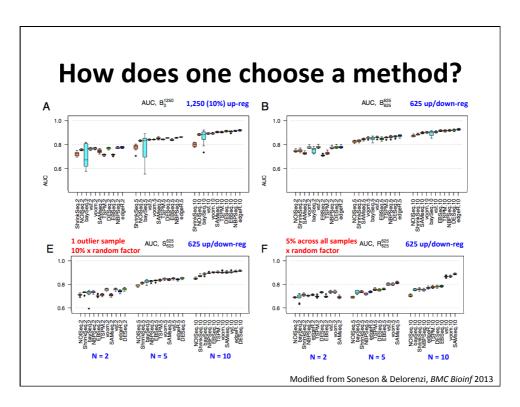
Do you have replicates or not?

- If no replicates, then...
 - It may not be advisable to estimate significance of differences, calculate a rank of fold changes
 - Fisher's exact test or a chi-squared test for 2-by-2 contingency table
 - Do some replicates?
- If there are replicates, then...
 - Inter-library variation can be estimated
 - There are more relatively sophisticated options

Different methods for DE

- Examples
 - EdgeR (Robinson and Smyth)
 - Cufflinks (Trapnell et al)
 - DESeq (Anders & Huber)
 - SAMseq (Li & Tibshirani)
- Many others, more being published regularly





Example: EdgeR

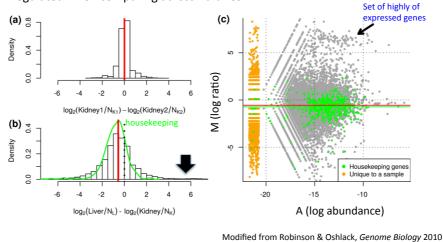
- What are the inputs?
 - A table of counts (matrix)
 - Rows as 'genes'
 - Columns as samples (libraries)
 - A list of group assignments for each sample (vector)

Normalisation

- Explicit scaling by library size
 - TMM normalisation
- Other normalisation factors can be included in model

Normalisation: Trimmed Mean of M-values (TMM)

• A highly expressed gene(s) can make other genes appear falsely downregulated when comparing across libraries



Normalisation: TMM

- How can we correct for this effect?
 - Find set of scaling factors for libraries that minimize the log-fold changes between samples for most genes
 - Estimate the ratio of RNA production of 2 samples (called 1 & 2)

Log expression ratio

$$M_gene = log(\frac{count_gene1/total_reads1}{count_gene2/total_reads2})$$

Log absolute expression

$$A_gene = \frac{1}{2} \log(\frac{count_gene1}{total_reads1} \times \frac{count_gene2}{total_reads2})$$

Normalisation: TMM

- Trimmed Mean of the M values (TMM) is weighted average after removing the upper/lower N% of the data (typically 25% for M, 5% for A)
- · Weight of a gene is the inverse of its estimated variance
- After trimming, calculate the scaling factor for library 1 (compared to library 2) as

$$\log(TMM) = \frac{\sum_{gene_i \in G^*} (weight_gene_i)(M_gene_i)}{\sum_{gene_i \in G^*} weight_gene_i}$$

If there's no RNA composition effect, then TMM = 1

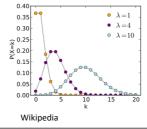
The *effective* library size (TMM x library_size) is then used in all downstream analysis

EdgeR model

- We're interested in read counts for a gene across replicates
- Variation in relative gene abundance is due to biological causes + technical causes
- · Because the data is counts, we'll usually think it's Poisson distributed, and

Total CV² = Technical CV² + Biological CV²

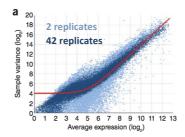
• What is a Poisson distribution?



Expected value = mean (λ) = variance

EdgeR model: Why not use a Poisson?

Assumption that mean = variance is strong



- In RNAseq, observed variation is typically greater than the mean
 - That is, the data is 'overdispersed'
- How can we handle overdispersion?

Alternative: Negative binomial (gamma-Poisson)

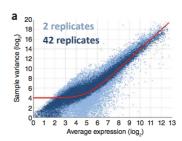
- Assume true expression level of a gene is a continuous variable with a gamma distribution across replicates
 - Implies that the read counts follow a negative binomial distribution (a discrete analogue of gamma)
- NB is parameterised by mean and r (dispersion parameter)
 - Note the extra parameter (compared to Poisson) which handles variance independent of the mean
 - Biological CV is sqrt(r)

EdgeR model: Estimating the dispersion parameter

- Why is this important?
 - Overestimation likely means a conservative DE test
 - Underestimation likely means a liberal DE test
- Many methods
 - Maximum-likelihood (ML)
 - Pseudo-likelihood
 - Quasi-likelihood
 - Conditional ML (if libraries are equal size)
 - Quantile adjusted conditional ML (qCML)
- · Bottom line is a big simulation study was performed
 - HTS data: many genes, means, variances, library sizes
 - qCML was most accurate across all scenarios
 - Robinson & Smyth Biostatistics 2008

EdgeR model

 Genes have different mean-variance relationships, so dispersion isn't same across genes



- Initially edgeR estimates 'common' dispersion across all genes then applies an empirical Bayes approach to shrink genespecific dispersions toward the 'common'
- Why do we care?
 - Allows us to make weaker assumptions about mean-variance and thus makes model more robust to outlier genes

Subramaniam & Hsiao, Nat Imm 2012

Differential expression between 2 groups

- 'Exact' test
 - NULL: mean_A = mean_B (post normalisation pseudo exact)
 - Adjust distributions of counts for different library sizes so they are identical
 - Given the sum of iid NB random variables is NB, the probability of observing counts equal to or more extreme than that observed can be calculated (using NB)
- For experiments with >2 groups, a generalized linear model (GLM) is used and DE is tested using a GLM likelihood ratio test
 - Bullard et al BMC Bioinformatics 2010

Multiple testing

- Each locus is tested independently
 - If 20,000 tests are performed and alpha is set to P<0.05, then we expect at least 1,000 DE loci by chance (0.05 * 20,000)
 - Balance power and false positives
- Control FDR
 - Benjamini-Hochberg algorithm
 - Adjust Pvalues accordingly
- Bonferroni correction

What output are we interested in?

```
Length
logFC
logCPM
PValue
FDR

ENSG00000151503
5605
5.82
9.71
0.00e+00
0.00e+00

ENSG00000096060
4093
5.00
9.94
0.00e+00
0.00e+00

ENSG00000166451
1556
4.66
8.83
1.15e-228
6.31e-225

ENSG00000127954
3919
8.17
7.20
1.00e-209
4.14e-206

ENSG00000162772
1377
3.32
9.74
2.09e-182
6.91e-179

ENSG00000113594
10078
4.08
8.03
5.07e-153
1.39e-149

ENSG00000116133
4286
3.26
8.78
6.33e-148
1.49e-144

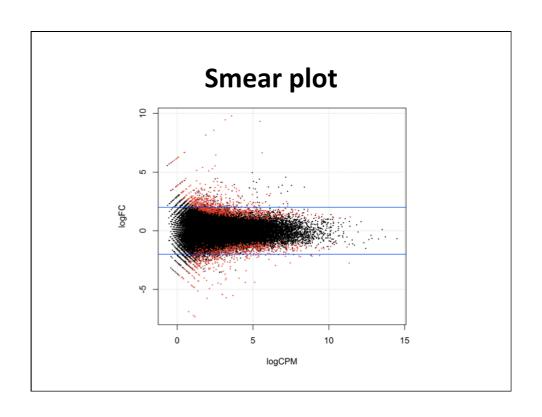
ENSG00000115648
2920
2.63
11.47
2.82e-139
5.81e-136

ENSG00000123983
4305
3.59
8.58
8.38e-138
1.54e-134

ENSG00000116285
3076
4.22
7.35
1.05e-135
1.73e-132
```

CPM - Counts per million (not formally used in edgeR DE)

FPKM (cufflinks) – Fragments Per Kb of transcript per Million mapped reads *inferred using a statistical model*



Further reading

- For workflows and comparison of 2 of the most popular tools (DESeq and edgeR)
 - Anders S et al, Nature Protocols 2013. 8(9): 1765-86.

What haven't I covered?

- Splicing variation/diversity and how to test for differences
- Tools for alignment and assembly
- Novel designs for RNAseq experiments
- Data visualization
- Variant calling and genotyping from RNAseq
- Gene function/ontologies for RNAseq
- Computational limitations