

What does a network look like in terms of data?

	Gene1	Gene2	Gene
Gene1	1	0.75	0.95
Gene2	0.75	1	0.04
Gene3	0.95	0.04	1

Strategies for testing association of a subnet with a phenotype

• Univariate

- For each subnet gene, perform a test

- Eigenvector
 - Calculate 1st principal component
 - With vector of PC1 sample loadings, perform a test
- Multivariate
 - Simultaneously test for association of phenotype with all genes
 - Example: Canonical correlation analysis (CCA)
- Considerations
 - Multiple testing burden
 - Sensitivity and specificity

•	Ritchie et al, <i>Cell Sys</i>	n, i 205 comp bio 20	11
•	Ritchie et al, <i>Cell Sys</i>	1	
		<i>tems</i> 2016	
	General name of		
	test statistic	WGCNA	Calculation
(1)	Module coherence	Proportion of variance explained	$mean\left(\left(cor(g_i^{[t](w)}, Eig_1^{[t](w)})\right)^2\right)$
(2)	Average node contribution	Mean sign-aware module membership	$\boxed{ \textit{mean}\left(\textit{sign}\left(\textit{cor}(g_i^{[d](w)},\textit{Eig}_1^{[d](w)})\right) \cdot \textit{cor}(g_i^{[t](w)},\textit{Eig}_1^{[t](w)})\right) }$
(3)	Concordance of node contributions	Correlation of module membership	$cor\left(cor(g_i^{[d](w)}, Eig_1^{[d](w)}), cor(g_i^{[t](w)}, Eig_1^{[t](w)})\right)$
(4)	Density of correlation structure	Mean sign-aware coexpression	$mean(sign(C^{[d](w)}) \cdot C^{[t](w)})$
(5)	Concordance of correlation structure	Correlation of coexpression	$cor_{i\neq j}(\mathcal{C}^{[d](w)}, \mathcal{C}^{[t](w)})$
(6)	Average edge weight	Mean adjacency	$mean_{i\neq j}(a_{ij}^{[t](w)})$
(7)	Concordance of weighted degree	Correlation of intramodular connectivities	$cor\left(\left(\sum_{i\neq j}^{j}a_{i}\right)^{[d](w)}, \left(\sum_{i\neq j}^{j}a_{i}\right)^{[1](w)}\right)$
0			
()	1		
()			
(7)			a adjacency
(7)			a adjacency cor correlation
(7)			a adjacency cor correlation
()	1		a adjacency cor correlation Sign +/-

