Weighted gene coexpression network
analysis (WGCNA) practical

Integrative Genomics module

Michael Inouye
Centre for Systems Genomics
University of Melbourne, Australia

Summer Institute in Statistical Genetics 2016
Seattle, USA

@minouye271
inouyelab.org

Fos e
THE UNIVERSITY OF

MELBOURNE

Gene co-expression networks

Weighted, undirected
complete gene network Module Topology
— Nodes: genes/probes Correlation

— Edges: |cor(node_i, node_j)|¥ I
¢ Scale-free assumption and [0,1]

Identify subnets (modules/
clusters)

— Typically subnets represent
known biological pathways PN

Edge weights

L N
S P ES

— Various methods and tools for
clustering

6/07/16

What we’re doing today

* Data management and filtering
* Network construction
* Module detection

Module association analysis

Getting started
(if you haven’t already done so)

Setup

First, we installed the WGCNA package. Some its dependencies are in the BioConductor repository
rathern than CRAN. We needed to install these dependencies manually, because install.packages Will
not do it for us:

source("https://bioconductor.org/biocLite.R")
You can answer no ('n') to any prompt that asks to update old packages.
biocLite(c("impute", "preprocessCore", "GO.db", "AnnotationDbi"))

Now we can install WGCNA from CRAN.
install.packages("WGCNA")

6/07/16

Data filtering

First, we will loaded in mouse adipose gene expression data (adapted from Yang X et al, Genome Res.
2006 Aug; 16(8): 995-1004, full multi-tissue set freely available from Sage BioNetworks).

read.matrix <- function(file) {

df <- read.table(file, header=TRUE, row.names=1, sep="\t",
check.names=FALSE)

mat <- as.matrix(df)
Avoid having numeric IDs
rownames (mat) <- pasteO("Probe_", rownames(mat))
colnames(mat) <- paste0("Sample_ ", colnames(mat))
return(mat)

setwd("/Users/minouye/Documents/Courses_Workshops/SISG/2016/prac_WGCNA/
curatedExpressionLiver")

liver_ge <- read.matrix("expression_head2500.txt")

Next, we removed remove probes that failed for >5% of samples, and then samples where >5% of their
assays failed.

Removes probes that have more the 5% of their observations missing
filter_probes <- function(x) {

How many samples are missing for each probe?

nMissing <- apply(x, 2, function(probe) {

sum(is.na(probe))

1)

missingness <- nMissing/nrow(x)

return(x[, missingness <= 0.05])

Removes samples that failed > 5% of their assays
filter_samples <- function(x) {
How many samples are missing for each probe?
nMissing <- apply(x, 1, function(sample) {
sum(is.na(sample))
1)
missingness <- nMissing/ncol(x)
return(x[missingness <= 0.05,])

liver_ge_fil <- filter_ samples(filter_ probes(liver_ge))

6/07/16

Then we imputed the remaining missing observations using the K-nearest neighbours algorithm in the
impute package:

This package is a dependency of WGCNA so we have installed it already.
library(impute)

if (any(is.na(liver_ge_fil)))
liver_ge_fil imp <- impute.knn(liver_ge_fil)$data

anyNA(liver_ge_fil)
anyNA(liver_ge_fil imp)

To reduce the burden of computation for the purposes of software testing we will only analyse the top few
thousand most variable and most connected probes. This is standard practice when performing weighted
gene coexpression network analysis on computers with limited resources (Ghazalpour et al., 2006).

Following Ghazalpour et al., first we first get the top 1,000 most varying probes in the liver tissue:

most_varying <- function(ge, topN=1000) {
standard_deviation <- apply(ge, 1, sd)
sorted <- sort(standard_deviation, decreasing=TRUE)
sorted_names <- names(sorted)
topN_names <- sorted_ names[seq_len(topN)]
return(topN_names)

top_varying <- most_varying(liver_ge_fil imp)
liver_ge_fil imp topl000 <- liver_ge_fil_ imp[top_varying,]

6/07/16

Network inference

Next we will infer the interaction networks. If we want to use NetRep, we need to save both the correlation
structure (coexpression), as well as the interaction network (adjacency matrix) inferred through WGCNA:

library(WGCNA)
Warning: package 'WGCNA' was built under R version 3.2.3
calculate_coexpression <- function(ge) {

coexpression <- cor(t(ge), method="pearson")

}

infer_network <- function(coexpression) {
First pick the soft threshold to use to define the interaction network
sft <- WGCNA::pickSoftThreshold(abs(coexpression), dataIsExpr=FALSE)
if (is.na(sft$powerEstimate)) {
sft$powerEstimate <- 1
warning("Could not satisfy the scale-free topology criterion")
}
network <- abs(coexpression)“sft$powerEstimate

}

liver_coexpression <- calculate_coexpression(liver_ge fil imp topl000)
liver_network <- infer network(liver_coexpression)

What'’s it doing?

* Calculate Pearson correlation coefficients
between all pairs of genes

* Use a power transform to satisfy scale-free
topology criteria (select soft power threshold)

* |nfer a network where

— Nodes: Genes

— Edges: Pearson correlations raised to the selected
power

6/07/16

Next we will identify tightly coexpressed modules in the liver tissue network.

detect_modules <- function(ge, network) {
Calculate the distance between probes based on their topological similarity:
i.e. the strength of their coexpression as well as the similarity of their
patterns of coexpression to all other probes
probe_dist <- WGCNA::TOMdist (network)
dimnames (probe_dist) <- dimnames(network)

Hierarchically cluster based on this distance metric
dendro <- hclust(as.dist(probe_dist), method="average")

Detect modules. “cutreeDynamic™ is a function in the “dynamicTreeCut”
package, which is loaded in by the “WGCNA®™ package.

module_labels <- cutreeDynamic(dendro, distM = probe_dist)

names (module_labels) <- colnames(network)

Merge similar modules
merged <- mergeCloseModules(t(ge), module_labels, relabel=TRUE)
module_labels <- merged$colors

return(module_labels)

liver_modules <- detect_modules(liver_ge_fil imp topl000, liver_ network)

What'’s it doing?

* Goal: Get the most coherent gene subnetworks as possible

* Instead of using the correlation-based edges, WGCNA is
calculating a distance measure called topological similarity
(TOM):

N1 (DNN ()| +ay e .
— - 7Y if
ti = min{IN @LIN ()} +1-a; i#] 1)
1 ifi =j.

where N(i) denotes the set of direct neighbors of i excluding i itself and || denotes the number of elements
(cardinality) in its argument. The quantity [N(i) N N(j)| measures the number of common neighbors that
nodes i and j share whereas |V, (i) gives the number of neighbors of i. The topological overlap £ assumes a
minimal value of 0 if there is no direct linkage between the two nodes and if they share no common direct
neighbors. It assumes a maximum value of 1 if there is a direct link between the two nodes and if one set of
direct neighbors is a subset of the other. The fact that #; is bounded between 0 and 1 is used in the
definition of the topological overlap based dissimilarity measure (see Eq. 4).

Yip & Horvath, BMC Bioinf 2007

6/07/16

What'’s it doing?

* Hierarchical clustering of TOM matrix

* Move through the dendrogram with a
dynamic cutting algorithm

Haight

Yip & Horvath, BMC Bioinf 2007

Each probe is now assigned a (numeric) module label:

table(liver_modules)

liver_modules

0 1 2 3 4 5 6 7

395 168 166 93 61 59 32 26

Where “0” corresponds to the network “background”: all genes that did not cluster into coexpression
module.

6/07/16

Saving the data

Finally, we will save the data for processing with NetRep:

Create the directory to store the data in.
dir.create("test_data")

write.matrix <- function(x, file) {
write.csv(x, file, quote=FALSE)

write.vector <- function(x, file, col.names) {
column_matrix <- t(t(x))
colnames (column matrix) <- col.names
write.csv(column_matrix, file, quote=FALSE)

NetRep requires the probes to be columns, so we will transpose when

saving

write.matrix(t(liver_ge_ fil imp topl000), "test_data/liver_expression.csv")
write.matrix(liver_coexpression, "test_data/liver_ coexpression.csv")

write.matrix(liver_ network, "test_data/liver_network.csv")

write.vector(liver_modules, "test_data/liver_ modules.csv", col.names="Module")

Phenotype association analysis

MEs <- moduleEigengenes(t(liver_ge_fil_imp_vary), liver_modules)

names (MEs$varExplained) <- colnames(MEs$eigengenes)
MEs$varExplained

add in sample names to the eigengenes.
rownames (MEs$eigengenes) <- colnames(liver_ge_£il_imp_vary)

pheno<-read.table("pheno.txt", header=TRUE)
data<-cbind(pheno,MEs$eigengenes)

plot(data$MEO,data$pheno)
plot(data$ME6,datas$pheno,xlab="module summary expression",ylab="phenotype levels", pch=20)

summary(lm(pheno ~ ME6, data=data))
abline(intercept,slope,col="red", lwd=2) 8 o
S

r
&
s

phenotype levels

0.10

0.00
L
o

module summary expression

6/07/16

References

Ghazalpour, A., Doss, S., Zhang, B., Wang, S., Plaisier, C., Castellanos, R., Brozell, A., Schadt, E.E.,
Drake, T.A., Lusis, A.J., et al. (2006). Integrating genetic and network analysis to characterize genes
related to mouse weight. PLoS Genet. 2, 1182-1192.

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis.

BMC Bioinformatics 9, 559.

Yang, X., Schadt, E.E., Wang, S., Wang, H., Amold, A.P., Ingram-Drake, L., Drake, T.A., and Lusis, A.J.
(2006). Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 16,
995- 1004.

Special thanks to Scott Ritchie
Network inference adapted from his script

6/07/16

