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LECTURE SCHEDULE 
Monday, 18 July           
8:30 10:00 am 1. Population Genetics Framework  (Muir)  
10:00 10:30 am Break 
10:30 12:00  2. Fisher’s Variance Decomposition (Muir)  
      Background reading:    LW Chapter 4     
12:00 1:30 pm Lunch 
1:30 3:00 pm 3. Resemblance  Between Relatives, Heritability (Muir) 
      Background reading:     LW Chapter 7 
3:00 3:30 pm Break 
3:30 5:00 pm  4. Artificial Selection  (Walsh)   

     Background reading:    WL Chapter 13 
      Additional reading:    WL Chapters 14-16 
Tuesday 19 July 
8:30 10:00 am 5. Inbreeding and Crossbreeding (Walsh) 
      Background reading:    LW Chapter 10 
10:00 10:30 am Break 
10:30 12:00  6. Correlated Characters (Walsh) 
      Additional reading:    WL Chapters  
12:00 1:30 pm Lunch 
1:30 3:00 pm 7. Mixed Models, BLUP Breeding Values, Sampling (Muir) 
      Background reading:    LW Chapter 26 
      Additional reading:    WL Chapters 19, 20 
3:00 3:30 pm Break 
3:30 5:00 pm 8. QTL/Association Mapping (Walsh) 
      Background reading:    LW Chapters 15, 16 
Evening  Open session (review, R, etc) 
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8:30 10:00 am 9. Tests for Molecular Signature of Selection (Walsh) 
      Background reading:     
      Additional reading:     
10:00 10:30 am Break 
10:30 12:00   10. More on Mixed Models, BLUP Breeding Values (Muir) 
      Additional reading:    WL Chapters 8 - 10 
    
Website for draft chapters from “Volume 2”:  Walsh & Lynch: Evolution and 
Selection on Quantitative traits  
http://nitro.biosci.arizona.edu/zbook/NewVolume_2/newvol2.html  
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Muir and WalshMuir and Walsh
Lecture 1 

Introduction to Quantitative 
Genetics

Population Genetics Foundation

Quantitative Genetics

• Quantitative Traits
Hallmarks– Hallmarks 

• Continuous variation
• Genetically influenced
• Environmentally influenced

– Height, weight, IQ
• What is the Basis for Quantitative Traits?



Inheritance Mechanisms
– Fluids vs. Particles?

• Fluids (Bloods)
Bl d– Blend

– Continuous Gradations
– Once combined cannot be separated back out

• Particles (Genes: Mendel)
– Discontinuous 
– Once combined can be separate back out

H t d t i• How to determine
– Early experiments by Nilsson-Ehle (1908)
– Wheat seed color
– Crossing lines and segregation ratios
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Hypothesis: 2 loci acting independently and 
cumulatively on one trait?

Dark Red
AABB (4)

White
aabb (0)X

Medium Red
AaBb (2)

Medium Red
AaBb (2)

X

Medium Red
AaBb (2)
AAbb (2)
aaBB (2)

Dark Red
AABB (4)
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aabb (0)

Medium
Dark Red
AABb (3)
AaBB (3)

Pale Red
Aabb (1)
aaBb (1)

1/16 4/16 6/16 4/16 1/16

Gene Effects

Gene 1 Trait 1

Usual Mendelian Concept

Simple Traits

Gene 2 Trait 2

Gene 1 Trait 1

Trait 2

Pleiotropy 

Genetic Correlation
Between Traits

p

Gene 1
Trait 1

Gene 2
Polygenic Trait



What happens to the distribution as the 
number of loci increases?

A continuous distribution emerges

Stability of Distribution
From Previous Example with Wheat

0.365

0 3
0.35
0.4

F2
0.0625

0.25 0.25

0.0625

0
0.05
0.1

0.15
0.2

0.25
0.3

Dark red med DR medium
red

pale red white

What is the expected Distribution of the F3? F4?

Need to know concepts of probability

1. Will it stay the same?
2. Will we see a reduction in variability?
3. Will we see and increase in variability?



Important Concepts of Probability
Compound Events

Pr(A and B)=Pr(A|B)xPr(B)

In General

Two Events are Independent if 
Knowledge of one event tells us nothing about the probability of occurrence of 

the other  event 

Pr(A and B) Pr(A|B)xPr(B)

Pr(A|B) Pr(A)

With Independence

Pr(A and B)=Pr(A)xPr(B)

Pr(A|B)=Pr(A)

and

What is the Consequence of Random 
Mating on Genotypic Frequencies

• Assume a Perfect World
– No Forces Changing Allele frequency

• No: mutation, migration, selection, genetic drift
– Equal Allele Frequencies in the Sexes
– Autosomal Inheritance
– Random Matingg

• Independence of mating preference and genotype
• Mating is at random with respect to genotype



GENERATION 0

• Allow The Genotypic Frequencies To Be 
A A bit V lAny Arbitrary Values

genotypic frequency
P( AA ) = X
P( Aa ) = Y
P( aa ) = Z

h th t X + Y + Z 1such that X + Y + Z = 1

Allele Frequencies

Y2
1+X=)AP(

P(Aa) P(AA) = )A  P( 2
1+

Y2+X)A  P(
p=          

1

P(Aa) P(aa) = ) a P( 2
1+

p + q = 1
  

Y2
1+Z=)a P(

q=         



Frequency of Mating
male genotype

female genotype AA Aa aafemale genotype AA Aa aa
frequency ( X ) ( Y ) ( Z )

AA ( X ) X2 XY XZ

Aa ( Y ) XY Y2 YZ

aa ( Z ) XZ YZ Z2aa ( Z ) XZ YZ Z

Mating: independent of genotype, i.e. random

Pr(A and B)=Pr(A)xPr(B)

Expected genotypic frequencies that result 
from matings (Gen 1).

Possible
Matings

Frequency of
Mating

Expected Frequency of Offspring

AA Aa aaMatings

AA x AA

AA x Aa

AA x aa

Aa x Aa

Mating

X2

2XY

2XZ

Y2
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0

0
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1/2 0

1

1/2 1/4
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2YZ

Z2

/

0

0 0

1/2 1/2

1

Conditional Probabilities given genotypes of parents



GENERATION 1

Y+XY+X
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Generation 2
Frequency of Matings

male genotype
female genotype AA Aa aa

frequency ( p 2 ) ( 2pq  ) ( q 2 )

AA ( p 2 ) p 4 2p 3q p 2q 2

Aa ( 2pq  ) 2p 3q 4p 2q 2 2pq 3

aa ( q 2 ) p 2q 2 2pq 3 q 4

Distributions no longer arbitrary 

Expected genotypic frequencies that result 
from matings (Gen 1).

Possible
Matings

Frequency of
Mating

Expected Frequency of Offspring

AA Aa aaMatings

AA x AA

AA x Aa

AA x aa

Aa x Aa

Mating

1
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0
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0

0

0
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/
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Overall Genotypic Frequencies
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Summary of genotypic frequencies 
by Generation

genotype gen 0 gen 1 gen 2

P( AA ) X p 2 p 2

P( Aa ) Y 2pq 2pq
P( aa ) Z q 2 q 2( ) q q



Hardy-Weinberg Equilibrium
or the Squared Law 

If a population starts with any arbitrary distribution of

( )  +    =   +  ( 2   +  A ap q p pq qAA Aa aa
2 2 2)

genotypes, provided they are equally frequent in the two
sexes, the proportions of genotypes (AA, Aa, aa), with
initial allele frequencies p and q, will be in the proportion

after one generation of random mating and will remain in 
that distribution until acted upon by other forces 

Stability of Distribution
From Previous Example with Wheat
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What is the expected Distribution of the F3? F4?

1. Will stay the same (assumptions?)
2. Will see a reduction in variability (how, where)?
3. Will see and increase in variability(how, where)?



Selfing

0.5
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0.6

0.25
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0.25
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Dark red med DR medium 
red
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Extreme form of non-random mating
Variance in color twice that of randomly mating population

Does inbreeding increase or decrease variability?

Example Population Cage
Introduce 4 males (1 round 
eye and 3 star eye), and 4 
females (1 round and 3 star 
eye).  Assume co-dominance 
of eye shape where 
heterozygotes are square 
eyed.

24

AA

Aa

aa

What are the initial allele frequencies for eye shape?
What are the expected frequencies of eye shapes in G1 and G2 



Allele and Genotypic 
Frequencies

What are the expected frequencies of eye shapes in G1 and G2

AA

Aa

Note same frequency in both sexes

P0A=2/8+1/2(0)=1/4

G1=(1/4A+3/4a)2= 1/16AA 6/16Aa 9/16aa

What are the expected frequencies of eye shapes in G1 and G2 

0

1

M F

0

1 2

Total

0

25

Aa

aa
P1

A=1/16+1/2(6/16)=4/16=1/4

G2= (1/4A+3/4a)2= 1/16AA 6/16Aa 9/16aa
3

0

3

0 0

6

8

What if Organisms Do not Mate But Release 
Gametes or Pollen to Search Out Each Other?

Do the Same Properties Hold?



Fertilization

Given a female gamete carrying the ‘a’ allele, what is the probability it will 
be fertilized by a gamete (pollen) carrying the ‘A’ allele

If not Independence
P(A  | a )= 0 to 1 

If Independence
P(A | a)=P(A)

Incompatibility

What is the Consequence of Random 
Union of Gametes

• Assume a Perfect World
– No Forces Changing Allele Frequency
– Equal Allele Frequencies in the Sexes
– Autosomal Inheritance
– Gametic Independence



GENERATION 0

lets allow the genotypic frequencies to be any 
arbitrary value and the allelee frequencies to bearbitrary value and the allelee frequencies to be 
the appropriate function of those values.

genotypic frequency
P( AA ) = X
P( Aa ) = Y
P( aa ) = Z

such that X + Y + Z = 1

Allele Frequency

Y2
1 + X = )A  P(

          p=         

Y2
1 +  Z= ) a P(

q=

p + q = 1

q         



With Independence

male gamete/frequencymale gamete/frequency
A a

( p  ) ( q  )
female gamete/ A AA Aa
frequency ( p  ) ( p 2 ) ( pq )

a Aa aa
( q  ) ( pq ) ( q 2 )

Random Union of Gametes Produces the Same 
Outcome as Random Mating

What Happens If The Allele Frequencies Are 
Not Equal Between The Sexes?

G ti 0
Male Gamete

FrequencyGeneration 0
Gametic Frequencies

Frequency

Female Gamete

A

A

a
0
mp 0

mq

0
fp 00

fm pp 00
mf qp

AA AaFemale Gamete
frequency

a 0
fq 00

fmqq00
fmqp

AA Aa

Aa
aa

Genotypic Frequencies Generation 1



Gametic Frequencies Produced by 
Adults in First Generation

Frequency of Homozygous Class + ½ frequency of heterozygous class

( )00000011

2
1

mffmfmfm qpqppppp ++==

Frequency of Homozygous Class + ½ frequency of heterozygous class

Because an equal number of both sexes are produced from each mating

Note, because gametic frequencies are now equal in sexes

111 ppp fm ==
33

Generation 2

Generation 1
G ti F i

Male Gamete
Frequency

A a
Gametic Frequencies

Female Gamete
frequency

A

1p 1q

1p ( )2111 ppp = 11qp
AA Aa

Genotypic Frequencies in Generation 2

a 1q ( )2111 qqq =
Aa aa

yp q
11qp

Population in HW by 2nd generation

The one generation delay before reaching HW can be very informative



Example
Introduce 4 males (1 round eye 
and 3 star eye), and 4 females (3 
round and 1 star eye).  Assume 
co-dominance of eye shape 
where heterozygotes are square 
eyed.

AA

Aa 0

1

M F

3

0

35

aa

What are the initial allele frequencies for eye shape?
What are the expected frequencies of eye shapes in G1 and G2 

3 1

Example Cross Between Populations

Population 1 Population 2p
Females 

¾ AA  ¼ aa
Males 

¼ AA  ¾ aa

G1

G0

What are the

G2

Random Mate
What are the 
expected allele 
frequencies, and 
genotypic frequencies 
in each generation?



Generation 1

Population 1 Population 2p
Females 

¾ AA  ¼ aa
Males 

¼ AA  ¾ aa

¾ A

¼ A ¾ a

3/16 AA 9/16 Aa¾ A

¼ a

3/16 AA 9/16 Aa

1/16 Aa 3/16 aa

p1=3/16 + ½(9/16 + 1/16)=8/16= ½ 

G1 Genotypic Freq

G1 Allele Freq

Generation 2

G1Males 
3/16 AA 10/16

G1Females 
3/16 AA 10/16 

Aa 3/16 aa 

½  A ½ a

¼ AA ¼ Aa

3/16 AA 10/16 Aa 
3/16 aa 

½ A ¼ AA ¼  Aa

¼  Aa ¼ aa

p2= ¼ + ½( ¼ + ¼ )= ½ 

G2 Genotypic Freq

G2 Allele Freq

½  A

½ a



Summary
Population 1

Males 
¾ AA ¼ aa

Population 2
Females 

¼ AA ¾ aa
G0

¾ AA  ¼ aa ¼ AA  ¾ aa 

3/16 AA 10/16 Aa 3/16aa
p1= ½  

G1 Genotypic 
Frequencies 
Different

4/16 AA 8/16 Aa 4/16aa

p2 = ½  

G3 ?

G2 Allele 
Frequencies 
Same

Important Example

3/16   AA 4/16 AA

Sample 
Genotype 
Distribution

( ) =222
aA  + ) 2 ( +  =   +  aaAaAA qpqpqp

Too Many

HWE 
Expected 
Distribution

10/16 Aa
3/16   aa

8/16 Aa
4/16aa

Too Many 
heterozygotes 
in Sample

This is also an example of a genomic pattern of recent 
crossing between populations with immigrants of one sex

Question 1: will this pattern affect all loci? (yes and no, why?)
This is said to be a pattern of demography, why?

Question 3: If an equal number of males and females were among the 
migrants, and mating was totally at random, regardless of origin, will there be 
a pattern of excess of heterozygotes?

Question 2:If the immigration only occurs once, will the pattern of 
demography disappear with time? If so, how many generations will it take?



Consider only none native American’s (0), 50% (4), and pure Native American’s (8)

Check if these sub-populations to conform to H-W distributions

Expectations 

heritage Gm/Gm Gm/non non/non Total Pgm Pnon

0/8 7 14 11 32 0 437 0 562

ExpectedObserved

heritage Gm/Gm Gm/non non/non

0/8 6 125 15 75 10 120/8 7 14 11 32 0.437 0.562

4/8 1 144 199 344 0.212 0.787

1 1 68 4195 4264 0.008 0.991

Deviation from Expectation

heritage Gm/Gm Gm/non non/non

heterozygotes 
deviation from 
expectation

0/8 0.87 ‐1.75 0.87

0/8 6.125 15.75 10.12

4/8 15.49 115.01 213.49

1 0.28 69.42 4194.28

4/8 ‐14.49 28.98 ‐14.49 Great Excess
1 0.71 ‐1.42 0.71

•What can you conclude about the sub-population that is 4/8heritage?
•Is this subpopulation 1st, 2nd, or more generations beyond formation? Why?
•Signature of demography, due to hybridization, and will affect entire 
genome



Another Signature of Demography Resulting from
Sampling Across Sub-populations Unknowingly

Population 1
Males and

Population 2
Males and

Sample

Males and 
Females

AA

Males and 
Females

aa

50% AASample 25% AA HWE 
E d

( )  +    =   +  ( 2   +  A ap q p pq qAA Aa aa
2 2 2)50% AA

0% Aa
50% aa

Sample 
Genotype 
Distribution

50% Aa
25% aa

Expected 
Distribution

Too few heterozygotes in 
Sample = Admixture( ) .5 0 .50= 2

1
A =+p

43

Signature of demography, due to 
sampling or admixture, and will affect 

entire genome

Signatures of Demography

• Affects entire genome
• Detected from genotypic distribution, not allelic

P tt f H t t C d t HWE• Pattern of Heterozygotes Compared to HWE
– Too few 

• Admixture
• Solution, separate subpopulations 
• Will not go away with time

T– Too many
• Recent crossing
• Disappears with time

44



HWE and the “so what” question

– HWE establishes the null hypothesis for 
expectations

– Deviations from expectations are where all 
the interesting problems and Issue occur

Lecture 1 Problems

1. Two separate populations of equal size are in equilibrium for the same pair 
of alleles because of random mating within each.  In population I, pA = 0.6, 

hil i l ti II 0 2 ith 1 i h l tiwhile in population II, pA = 0.2, with q = 1 - p in each population.
• (a) If a random sample of females from one population is crossed to a 

random sample of males from the other population, what would be the 
expected genotypic frequencies among the progeny?  If these progeny are 
then allowed to mate at random, what would be the expected allele and 
genotypic frequencies in the next-generation?  What happens to 
heterozygote frequencies between the F1 and F2 generations?

• (b) If equal numbers of both sexes from each population are combined 
d ll d t t t d h t ld b th t d ll l dand allowed to mate at random, what would be the expected allele and 

genotypic frequencies in the next-generation?
• (c) Compare results in part a and b, what conclusions can you draw from 

this.



Muir Lecture 2

Quantitative Traits
Fisher Decomposition

Covariance Between Relatives

• Phenotype (Y) 

Quantitative (Complex) 
Traits

– Continuous (Weight)
– semi-continuous scale (Egg number)
– Some Discrete Traits (Disease Resistance)

• Underlying distribution assumed continuous

• Polygenic (G)Polygenic (G)
• Environmentally Influenced (E)

iii EGY +=
2Can also have GxE interactions where the G changes with E



Variances 

– Genetic sources of variation
• Partially underlie trait variation

I f d f i i l f i i• Inferred from statistical sources of variation
– Statistical Sources of variation

• Variation among and within identifiable 
groups (families)

3

Partitioning sources of variation general case

Classic ANOVA model for two Treatments, A and B, each with 2 levels
Treatment A

ABBAY εμ ++++

A1 A2

B1

B2

Tr
ea

tm
en

t B

interaction effect

)(ijijjiij ABBAY εμ ++++=

Main Effects Random error

4



Treatment A results from alleles from the Father
Treatment B results from alleles from the Mother 

Applied to genetics

Female Parent Allele

M
al

e 
pa

re
nt

 A
lle

le f
1α

m
2α

m
1α

f
2α

Y11 Y12

Y21 Y22 Intra-locus interaction
(dominance)

)(ijij
m
j

f
iijY εδααμ ++++=Model

If we assume allele effects 
from mother are the same as 
from the father (no imprinting)

)(ijijjiijY εδααμ ++++=
5

Allelic effects and intra locus interactions

ijjiijYE δααμ +++=)(Female Parent Allele

Fit model  

0)(E

M
al

e 
pa

re
nt

 A
lle

le 1α

2α

1α

2α

Y11 Y12

Y21 Y22

1p

1p

2p

2p

μα −=∑
=

2

1
11

j
jjYp

μα −=∑
=

2

1
22

j
jjYp

0)( =εE

∑∑=
2 2

i j
ijji Yppμμα −=∑

=

2

1
11

i
iiYp μα −=∑

=

2

1
22

i
iiYp

Questions: 
What is the expected frequency of Y11?
What assumption is being made to find expected frequency?
Will these expectations be valid if there is admixture or recent crossing?

jiijij Y ααμδ −−−=

6



Genetic Variances

( )222 ∑∑
∑== ii

YfYfV i

YfYMean
In General

( )
∑

∑∑
=

−==

i
iiA

iiiiA

p

ff
22

222

2

Variance Additive

ασ

αασ

So

( )22 ∑∑ −== iiiiY YfYfVariance σ

( )

∑∑
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=

−==
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ijjiD

i j
ijijijijD

pp

ff

22

222Variance Dominance

δσ

δδσ

7

Additive Variation

Additive variation=variation due to effects of singleAdditive variation=variation due to effects of single 
alleles

Alleles are passed on in haploid state, thus only the  
effect of a single allele is inherited from one parent

Selection for superior traits (artificial or natural) is basedSelection for superior traits (artificial or natural) is based 
on what can be passed on in the haploid state, i.e. single 
allele effects

Additive variation=useable variation
8



Non-additive Variation
• Dominance Variation

– Due to intra-locus interaction
– Requires both alleles at a locus to express
– Cannot be passed on by one parent
– Not useable for selective breeding

• Epistatic Variation
– Due to inter-locus interactions
– Requires interaction of 2,3, or 4 alleles at two loci
– Not useable for selective breeding

• Yes 2 alleles at different loci (AxA) can be inherited in the 
haploid state but recombination in following generation(s) will 
break up 

9

Example
Genetic Effects, known genotypes

ijjiijYE δααμ +++=)(
In a randomly mating population

Female Parent Allele
3 1

Fit

)(

M
al

e 
pa

re
nt

 A
lle

le 1α

2α

1α

2α

12 10

10 4

4
3

1 =p 4
1

2 =p

( ) ( ) 75.75.101012 4
1

4
3

1 =−+=α
4
3

4
1 ( ) ( ) 25.275.10410 4

1
4
3

2 −=−+=α

0)( =εE

75.1 =α 25.22 −=α ( ) ( ) ( ) ( ) 75.104101012 16
1

16
3

16
3

16
9 =+++=μ

Note: ( ) ( ) 025.275. 4
1

4
3

2211 =−+=+=∑ ααα ppp i
i

i

By construct!
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Genetic Variances
(known genotypes and frequencies)

( ) ( )[ ] 375.325.275.22 2
4
12

4
322 =−+== ∑ iiA pασ ( ) ( )[ ]44∑

i
iiA p

jiijij Y ααμδ −−−=

25.)75(.275.101211 −=−−=δ
75.)25.2()75(.75.10102112 =−−−−== δδ

252)252(275104δ

( ) ( )( ) ( )( ) 5625.25.275.25. 2
16
12

16
62

16
922 =−++−==∑∑

i j
ijjiD pp δσ

25.2)25.2(275.10422 −=−−−=δ

11

Breeding Values
Breeding value (BV) is the breeding worth of an individual
Worth is that which can be passed on by a gamete (haploid)
Could be fitness under natural selection
Could be Risk of genetic disease in human populations (high cholesterol)

Female Parent Allele

al
e 

pa
re

nt
 A

lle
le 1α

2α

1α
2α

Y11 Y12

Y21 Y22

jiijYBV αα +=)(

12

M
a

does not include dominance or other non-additive effects



Additive Genetic Worth of an Individual

jiijYEBV αα +=)(

5.1)25.2()75(.)( 12 −=−+=YEBV
5.4)25.2(2)( 22 −=−−=YEBV

5.1)75(.2)( 1111 ==+= ααYEBV

13

Expected Progeny Difference (EPD)
What is the expected performance of the progeny of two parents whose 
breeding values are EBVa and EBVb? 

Individuals can only pass on main effects, i.e. that passed on by 
hi h i l ll l l I i b

22
ˆ EBVbEBVaY ++= μ

EPD=Expected Progeny Difference=EBV/2

gametes, which are single alleles at a locus.  Interactions cannot be 
passed on by a single individual as they would require 2 alleles at a locus 
to be passed on by gametes

14

p g y

What is the expected performance of an individual that was 
produced by mating Y11 with Y22

25.9
2

5.4
2
5.175.10ˆ =

−
++=Y



Covariance Between Relatives

• Needed to associate genetic source of 
i ith t ti ti l f i tivariance with statistical source of variation

– Used to separate genetic sources of variation 
into 

• Additive vs. non-additive
• Genetic vs. Environmental

• The entire underpinning to quantitative 
genetics 

15

Genetic Covariance

• Relatives are more likely to share alleles 
th l tithan non-relatives
– Sharing Alleles = Identical by Descent (IBD)

• Identically same allele can be traced to an 
ancestor

• Statistical Concept
N t t b f d ith Alik i St t (AIS)– Not to be confused with Alike in State (AIS)

• If two alleles are AIS they maybe IBD
• If two alleles are not AIS then they cannot be IBD

16



Single Parent-offspring Covariance

P1 P2

A A A A

1221 δαα ++=PG

A1A2 A3A4

100% of the time 
parent and offspring 
will share one and only 
one allele)

xxOG 11 δαα ++=½ A1Ax

½ A2Ax xxOG 22 δαα ++=

17

),(
),(),(

2212212
1

1112212
1

xx

xxOP

Cov
CovGGCov

δααδαα
δααδαα

+++++

++++=

Single Parent-offspring Covariance
1-IBD

⎞⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
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12212

11111
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xx

xx

xx

OP

CovCovCov
CovCovCov
CovCovCov

GGCov
δδαδαδ
δααααα
δααααα

1-IBD

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++
+++
+++

+
),(),(),(
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21212212

22222

21121

2
1

xx

xx

xx

CovCovCov
CovCovCov
CovCovCov

δδαδαδ
δααααα
δααααα
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In General: Covariance between effects

⎩
⎨
⎧

= 2
2
1

0
),(

A
jiCov

σ
αα

if i ≠ j, i.e. not IBD

if i = j, i.e. IBD
∑=

i
iiA p 22 2 ασ

0),( =ijiCov δα By construct (residuals are found as 
deviations from main effects)

⎩
⎨
⎧

= 2

0
),( kmijCov δδ

if i j≠ km, i.e. both not IBD

Additivity is a function of single alleles

∑∑= ijjiD pp 22 δσ
⎩
⎨ 2

D
kmij σ if i j= km, i.e. both IBD

Dominance is a function of two alleles at the same locus, it is 
estimated here as the failure of both alleles at that locus to be 
additive.

Question: What is epistasis a function of?

∑∑
i j

jj

19

),(),( 1112212
1

xxOP CovGGCov δααδαα ++++=

Single Parent-offspring Covariance

1-IBD

),( 2212212
1

xxCov δααδαα +++++

( )
( )00000000

00000000),(
211

2
2
1

2
1

+++++++++

++++++++= AOP GGCov

σ

σ

1-IBD

( )00000000 22 +++++++++ Aσ

2
2
1),( AOP GGCov σ=
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Summary Single Parent-Offspring 

Probability of Sharing 

0 IBD alleles

Number of IBD

0

Contribution to variances
00 IBD alleles

1 IBD alleles

2 IBD alleles

0

1

0

0
2

2
1

Aσ

Total covariance=Sum Probability x contribution=

),( OP GGCov

22
DA σσ +

Total covariance Sum Probability x contribution

2
2
1

. AOP σσ =

))(0()1( 222
2
1

. DAAOP σσσσ ++=

21

♂♀

Collateral: Half sibs  

♀
A1A2 A5A6

A3A4

O1 O2

A3

A4

A1 A2

¼¼

¼¼ A5

A6

A1 A2

¼¼

¼¼

),(
21 OO GGCov

22



Collateral: Number of IBD Alleles 

A1A3 A1A4 A2A3 A2A4

Sib O1 possible genotypes

1/4 1/4 1/4 1/4

A1A5 ¼ 1 1 0 0

A1A6 ¼ 1 1 0 0

A A 0 0 1 1po
ss

ib
le

 g
en

ot
yp

es

A2A5 ¼ 0 0 1 1

A2A6 ¼ 0 0 1 1Si
b 

O
2

p

23

Collateral: Half sibs 

Probability of Sharing 

0 IBD alleles

Number of IBD

8/16

Contribution to variances
00 IBD alleles

1 IBD alleles

2 IBD alleles

8/16

8/16

0

0
2

2
1

Aσ

Total covariance=Sum Probability x contribution=

),(
21 OO GGCov

22
DA σσ +

Total covariance Sum Probability x contribution

2
4
12

2
1

16
8 )( AAHS σσσ ==

24



♂♀
Collateral: Full sibs 

A1A2A3A4

O1 O2

A3

A4

A1 A2

¼¼

¼¼ A3

A4

A1 A2

¼¼

¼¼

FSOO GGCov σ=),(
21

25

Collateral: Number of IBD Alleles 

A1A3 A1A4 A2A3 A2A4

Sib O1 possible genotypes

1/4 1/4 1/4 1/4

A1A3 ¼ 2 1 1 0

A1A4 ¼ 1 2 0 1

A A 1 0 2 1po
ss

ib
le

 g
en

ot
yp

es

A2A3 ¼ 1 0 2 1

A2A4 ¼ 0 1 1 2Si
b 

O
2

p

26



Collateral: Full sibs  

Probability of Sharing 

0 IBD alleles

Number of IBD

4/16

Contribution to variances
00 IBD alleles

1 IBD alleles

2 IBD alleles

4/16

8/16

4/16

0
2

2
1

Aσ

Total covariance=Sum Probability x contribution=

22
DA σσ +

),(
21 OO GGCov

( )( ) ( )( ) 2
4
12

2
122

16
42

2
1

16
8

DADAAFS σσσσσσ +=++=

27

Question: genetically, are you more similar to your mother or full sister ?

Probability of Sharing Number of IBD Contribution to variances

Covariance Between Relatives in General
),( yx GGCov

1 IBD alleles

2 IBD alleles

2
2
1

Aσ

Total covariance Sum contributions

22
DA σσ +

xy)1Pr(

xy)2Pr(

xyxyxya )2Pr()1Pr(2
1 += xyxyu )2Pr(=Let

Total covariance=Sum contributions=
22),( DxyAxyyx uaGGCov σσ +=

...),( 2222222 +++++= DDxyADxyxyAAxyDxyAxyyx uuaauaGGCov σσσσσ

With higher order effects (epistasis)

Additive 
relationship
Additive 
relationship

Dominance 
Relationship
Dominance 
Relationship

28



Problem 1
• Falconer (1981) reported a partially dominant gene in the mouse called pg

“pygmy.”  At six weeks of age, it produces the following average weight 
h t iphenotypes in grams:

• + / + : 14, + / pg : 12, pg / pg : 6
•
• (a) What is the additive effect of each “+” substitution?  What would be 

the expected mean, additive and dominance variance in a population with 
p+ = 0.8, qpg = 0.2  under random mating?  ?

•
• (b) If p = q What average effect of an allele substitution? what would(b) If p+  qpg , What average effect of an allele substitution?  what would 

be the mean additive and dominance variance? 

29

+ pg

0.8 0.2 Alpha(i)
+ 0.8 14 12 13.6 0.56 0.25088
pg 0.2 12 6 10.8 -2.24 1.00352

Problem 1a Answer

13.6 10.8 13.04
0 1.2544

Alpha(i) 0.56 -2.24 0
var 0.25088 1.00352 1.2544 2.5088 sig2(a)

Dominance 
0.8 0.2

0 8 0 16 0 640.8 -0.16 0.64
0.2 0.64 -2.56

0.4096 sig2(d)

30



+ pg
0.5 0.5 alpha pqa2

+ 0 5 14 12 13 2 2

Problem 1b Answer
Lesson: Additive genetics 
variance is dependent on 
allele frequencies

+ 0.5 14 12 13 2 2
pg 0.5 12 6 9 -2 2

13 9 11 0 4
alpha 2 -2 0 4
pa2 2 2 4 8 sig2(a)

0.5 0.5
Dominance 0.5 -1 1
dev 0.5 1 -1

1 sig2(d)

31

Problem 2

• Consider the following phenotypes:
• A1A1 = 8 A1A2 = 10 A2A2 = 2
• (a) If p = 0.2, q = 0.8  , What is the effect of an allele substitution?  

what would be the mean additive and dominance variance?   
• (b) If p = 0.8, q = 0.2 What is the effect of an allele substitution?  

What would be the expected mean, additive and dominance 
variance? 

• (c) Considering these results what are the limitations of working• (c) Considering these results, what are the limitations of working 
backward and drawing conclusions about gene action from 
calculations of variance components?

32



+ pg
0.2 0.8 alpha Var

Problem 2a Answer

+ 0.2 8 10 9.6 4.8 4.608
pg 0.8 10 2 3.6 -1.2 1.152

9.6 3.6 4.8 0 5.76
alpha 4.8 -1.2 0 6
var 4.608 1.152 5.76 11.52 sig2(a)

0.2 0.8
Domina
nce 0.2 -6.4 1.6
dev 0.8 1.6 -0.4

2.56 sig2(d)
33

+ pg
0.8 0.2 Alpha(i)

Problem 2b answer

Lesson: All of the genetic variability here  is due to 
non-additive effects.  With natural selection on viability 
and overdominance this is the equilibrium allele 
frequency.  

0.8 0.2 Alpha(i)
+ 0.8 8 10 8.4 0 0
pg 0.2 10 2 8.4 0 0

8.4 8.4 8.4 0 0
Alpha
(i) 0 0 0 0
var 0 0 0 0 sig2(a)

0.8 0.2
Dominance 0.8 -0.4 1.6
dev 0.2 1.6 -6.4

2.56 sig2(d)
34



Muir Lecture 3 
Computation of Additive Relationships

Genetic covariance between relatives
22),( DxyAxyyx uaGGCov σσ +=

H it bilit

xya

Heritability

22  and Hh

1

Covariance Between Relatives x and y

22)( uaGGCov σσ +
Relationship due to 
joint IBD at a locus),( DxyAxyyx uaGGCov σσ +=

Relationship due to additive effects
Depends on pedigree (IBD)

Additive genetic variance
Depends on 

trait 

Non-additive effects cannot be 
passed from parent to 
offspring as a unit (meiosis 
splits pairs) except as clones

Important for heterosis and 
allele frequencies
gene Action

p
crossbreeding programs

2



Recursive Method to Compute 
Additive Relationships axy

• Setup pedigree table from oldest to youngest (parents must 
occur before offspring, genes flow in one direction)

( )
2

,, damsire jiji
jiij

aa
aa

+
==

occur before offspring, genes flow in one direction)
• For parents unknown, assume they are unrelated to each other 

and non-inbred
• Compute following from oldest to youngest

2
1

2
, damsire ii

ii

jj

a
a +=

3

Example 1 

In the following pedigree find the additive 
relationship between all individuals 

A B

C D

4



A B C D

? ? ? ? A B A B

A 1 0 ½ (aAA+aAB) ½ (aAA+aAB)

A B

C D

B

C

D

1

( AA AB)
½ (1+0)= ½ 

½ (aAA+aAB)
½ (1+0)= ½ 

½(aBA+aBB)
½ (0+1)= ½ 

1+ ½ aAB
1+0=1

½ (aBA+aBB)
½ (0+1)= ½ 

½ (aCA+aCB)
½ (½ +½)= ½ 

1+ ½ aABD 1+ ½ aAB
1+0=1

5

?,? ?,? A,B A,B

A B C D

A B

C D

A 1 0 ½ ½ 

B 0 1 ½ ½ 

C ½ ½ 1 ½C ½ ½ 1 ½ 

D ½ ½ ½ 1

6



Example 2  

BA BA

C

Find all relationships note that D is 
the result of mating relatives

D

7

?,? ?,? A,B A,C

A B C D

A 1 0 ½ (aAA+aAB) ½ (aAA+aAC)

BA

C

D
A 1 0 ½ (aAA+aAB) ½ (aAA+aAC)

B sym 1
½ (aBB+aBA)

½ (aBA+aBC)

C sym 1+ ½ aAB ½ (aCC+aAC)

sym
D

sym
1+ ½ aAC

8



?,? ?,? A,B A,C

A B C D

BA

C

D

A 1 0 ½ (1+0)= ½ ½ (1+ ½)=3/4

B 0 1 ½ (0+1)= ½ ½ (0+ ½)=1/4

C [1 ½ (0)] ½C sym [1+ ½ (0)] ½ (1+ ½)=3/4

D sym [1 + ½(½)] =5/4

9

Example 

Given the following pedigree, find all additive relationship and inbreeding 
coefficients.  Assume animals not given are unrelated and not inbred. 
Pedigree From Wright (1922) given in Lynch and Walsh p 139. 

A

B DC E

F
G H

I
J

K
10



A Matrix by Excel
.,. A,. .,. A,. A,. B,C C,D E,. F,G C,H I,J
A B C D E F G H I J K

A 1 0.5 0 0.5 0.5 0.25 0.25 0.25 0.25 0.125 0.1875
B 0.5 1 0 0.25 0.25 0.5 0.125 0.125 0.3125 0.0625 0.1875
C 0 0 1 0 0 0.5 0.5 0 0.5 0.5 0.5
D 0.5 0.25 0 1 0.25 0.125 0.5 0.125 0.3125 0.0625 0.1875
E 0.5 0.25 0 0.25 1 0.125 0.125 0.5 0.125 0.25 0.1875
F 0.25 0.5 0.5 0.125 0.125 1 0.3125 0.0625 0.65625 0.28125 0.46875
G 0.25 0.125 0.5 0.5 0.125 0.3125 1 0.0625 0.65625 0.28125 0.46875
H 0.25 0.125 0 0.125 0.5 0.0625 0.0625 1 0.0625 0.5 0.28125
I 0.25 0.3125 0.5 0.3125 0.125 0.65625 0.65625 0.0625 1.15625 0.28125 0.71875
J 0.125 0.0625 0.5 0.0625 0.25 0.28125 0.28125 0.5 0.28125 1 0.640625
K 0.1875 0.1875 0.5 0.1875 0.1875 0.46875 0.46875 0.28125 0.71875 0.640625 1.140625

amatrix LECTURE EXAMPLE by Excel.xlsx

1. axy is a covariance between individuals due to shared IBD alleles, not a 
probability or a correlation (0<axy<2).  

2. axy=2 x coefficient of relationship (Malecot, 1948)

11

Coefficient of Relationship 
(Malecot, 1948)

p(randomly chosen allele at a 
l i i di id l i IBD ithlocus in individual x is IBD with a 

randomly chosen allele at that 
locus in individual y)

12



Probability IBD non-related individuals

X Y

A1A2 A3A4

coefficient of relationship =p(randomly chosen allele at a locus in individual x is 
IBD with a randomly chosen allele at that locus in individual y)

Random Allele Random Allele

½ A1

¼ 
½ A3

¼ ¼

P(IBD between unrelated individuals)=
P(IBD)= 1/4P(A1=A3)+ 1/4P(A1=A4)+ 1/4P(A2=A3)+ 1/4P(A2=A4)=0
axy=2P(IBD)=0 
this is why off diagonal element are 0 for non-related individuals

½ A2
¼

½ A4

13

What is the coefficient of relationship of 
an individual with itself?

• This is the same as asking what is the 
coefficient of relationship between the 
individual and its clone
– First consider a non-inbred clone

F thi fi d th dditi l ti hi ( )– From this find the additive relationship (axy) 
between non-inbred clones 

14



Probability IBD between non-inbred Clones

X Clone X

A1A2 A1A2

Non inbred means that the P(IBD) within and individual is 0 or P(A1=A2)=0

½ A1
½ A1

Random Allele
Random Allele

¼

Not IBDNot IBD

½ A1½ A1

½ A2
½ A2

P(IBD between Non-Inbred Clones)=1/2
axy=2P(IBD)=1
This is why the diagonal elements in A are 1 for non-inbred individuals

¼ 
½ A2½ A2

15

Next: Consider the other extreme:
What is the coefficient of relationshipWhat is the coefficient of relationship 
between completely inbred clones?
Convert this probability to the additive relationship (axy) between 

perfectly inbred clones 

axy=2P(IBD) 

16



X Clone X

A1A1 A1A1

Completely inbred means both two alleles at a locus are IBD

A1
A1

Random Allele
Random Allele

IBD 100%

P(IBD Perfectly Inbred Clones)=1
axy=2P(IBD)=2 which is the maximum value for a diagonal element in the A matrix
Inbreeding is why some of the diagonal element are > 1 and is a method to 
estimate the inbreeding coefficient  Fx=axx-1.  In this example Fx=2-1=1

17

Additive Relationship Matrix (A)
.,. A,. .,. A,. A,. B,C C,D E,. F,G C,H I,J
A B C D E F G H I J K

A 1 0.5 0 0.5 0.5 0.25 0.25 0.25 0.25 0.125 0.1875
B 0.5 1 0 0.25 0.25 0.5 0.125 0.125 0.3125 0.0625 0.1875
C 0 0 1 0 0 0.5 0.5 0 0.5 0.5 0.5
D 0.5 0.25 0 1 0.25 0.125 0.5 0.125 0.3125 0.0625 0.1875
E 0.5 0.25 0 0.25 1 0.125 0.125 0.5 0.125 0.25 0.1875
F 0.25 0.5 0.5 0.125 0.125 1 0.3125 0.0625 0.65625 0.28125 0.46875
G 0.25 0.125 0.5 0.5 0.125 0.3125 1 0.0625 0.65625 0.28125 0.46875
H 0.25 0.125 0 0.125 0.5 0.0625 0.0625 1 0.0625 0.5 0.28125
I 0.25 0.3125 0.5 0.3125 0.125 0.65625 0.65625 0.0625 1.15625 0.28125 0.71875
J 0.125 0.0625 0.5 0.0625 0.25 0.28125 0.28125 0.5 0.28125 1 0.640625
K 0.1875 0.1875 0.5 0.1875 0.1875 0.46875 0.46875 0.28125 0.71875 0.640625 1.140625

1. What is the inbreeding coefficient for individual K? 
Fk=1.14-1=.14

2. What is the additive relationship between individuals J and K
ajk=.64

3. What is the additive genetic covariance between individuals J and K 
for trait T1? for trait T2? 

22
2

22
1

2

22

11

64.),(

64.),(

),(

TT

TT

AAxyyxT

AAxyyxT

Axyyx

aGGCov

aGGCov

aGGCov

σσ

σσ

σ

==

==

=
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Covariance Between Relatives Can be biased due 
to Common Environmental Effects Ec

Common Maternal
Common Family

Common
Cage or Pen

19

All Types of Resemblance Among Relatives 
Can Be Biased

Relative Pair Cov

)(
2),( xyEAxyyx c

aGGCov σσ +=

Parent-Offspring ).(
2

2
1

OPEA c
σσ +

Half-Sib

Any Set of Relatives 

)(
2

4
1

HSEA c
σσ +

Full-Sib )(
2

2
1

FSEA c
σσ +

20



The extent to which observations are 
correlated due to group ownership is 

the intra-class correlation 

Factor df MS E(MS)

22

2

wb

b
Icr

σσ
σ
+

=
Becomes large when between group differences are large

Becomes small when within group differences are small

)1( −= bSSMS bb

22
bw nσσ +Between

Groups

Within
group

b-1

b(n-1)
2
wσ)1( −= nbSSMS ww

21

Estimating Environmental Correlations 
Due to Group Ownership 

Example: to what extent does social-economic status influence college 
performance

22

2
b

Icr
σσ

σ
+

=
Becomes large when between group differences are large

Sample 1,000 volunteers chosen at random among the Senior class

Data collected: GPA and Income level of parents divided into 10 groups

wb σσ +

If  r=.9, what does this mean?
If r=.1, that does that mean?

22

Becomes small when within group differences are small



What if we make “Groups” as 
Related Individuals (Families)

22

2

wb

b
Icr

σσ
σ
+

=

What does this tell us?
If r=.1 for IQ, does that mean the genetic influences are small for that trait?

Becomes large when between family differences are large

Becomes small when within family differences are small

What if the groups were only loosely related, like second cousin groups

23

So there are 2 factors to consider when interpreting 
this correlation
1) Relatedness within the group
2) The trait being measured

Heritability
A measure of the extent to which differences are 

due to genes
Broad Sense:  Proportion of the phenotypic variation due to 
genetic causesg

2

2
2

Y

GH
σ
σ

=

Narrow Sense:  Proportion of the phenotypic variation due to 
additive genetic effects

2

Useful to determine to what 
extent genetics vs. environment 
impact a trait 

U f l t d t i t h t

2

2
2

Y

Ah
σ
σ

=
Useful to determine to what 
extent directional selection can 
improve a trait 

24



Examples of Heritabilities
Organism Trait h2

Humans
H i ht 0 85>Height 0.85>
Serum IG 0.45

Pigs
Back-fat thickness 0.70
Daily weight-gain 0.30
Litter size 0.05

Fruit flies
Abdominal bristles 0.50
Body size 0 40Body size 0.40
Ovary size 0.30
Egg production 0.20

25

Estimation of Narrow Sense 
Heritability

22

2

2

2
2

εσσ
σ

σ
σ

+
==

G

A

Y

Ah A form of the intraclass
correlation

• Three Approaches
– Regression
– Analysis of Variance: Method of moments
– Probabilistic:

εGY correlation

Probabilistic:
• Maximum Likelihood (ML), REML, Gibbs

• All based on resemblance between 
relatives

26



Regression

Ancestor-Descendent Pairs

2),( Axyyx aGGCov σ=

X

Parent-offspring

Y

Parent offspring
Grand-parent-grand son
Great Uncle-Nephew
Etc

27

Regression
• Francis Galton a half-cousin to C. Darwin 

established the principle of what heestablished the principle of what he 
termed "regression to mediocrity.“
– studied the inheritance of height in humans
– noticed that extremely tall fathers tended to 

have sons shorter than themselves, and 
extremely short fathers tended to have sonsextremely short fathers tended to have sons 
taller than themselves.

– The offspring seemed to regress to the 
median, or "mediocrity.”

28



regression to mediocrity

The regression coefficient later become known as the heritability

European Journal of Human Genetics (2009) 17, 1070–107

29

Ancestor-Descendent Pairs
• First Case

– All pairs have same 
additive relationship

Pair(i) Ancestor Descendent (Y)
p

• Parent-Offspring
– axy=1/2

• Grandparent-
Grandchildren 

– axy=1/4

– Assume Additive Genetic 
Variance Only

Pair(i) Ancestor 
(X)

Descendent (Y)

1 X1 Y1

2 X2 Y2

.
i Xi Yi

n X Y– No Environmental 
Covariance

n Xn Yn

30



2),( Axyyx aGGCov σ=

( )( )1)(ˆ −∑ −= YYXX i
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i iGGvCo

Expected 
covariance

Estimated ( )( )
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Set expected covariance= estimated and solve for additive variance component
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Heritability is the ratio of additive to phenotypic variance

Phenotypic Variance=
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Regression on One Parent: Example Butterfat (kg) 

Parent
Dam

Offspring
Daughter

∑ = 369,1iX ∑ = 279,1iY

∑ = 217,1902
iX ∑ = 447,176iiYX

( )( )

2.150),(ˆ 110
447,176 10

279,1369,1

== −
−

yx GGvCo

( )

2.311ˆ 110
217,1902 10

2369,1

== −
−

Xσ
(X) (Y)
150 132
102 122
129 104
127 103
149 112
133 130

2
1

∴

=xya

133 130
164 140
150 148
124 120
141 168

96.
2.311
4.3002 ==h

( ) 4.3002.1501

2
1

2 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Aσ
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Co-lateral Data (Sibs, Cousins, etc.)

1 1 2 3 2 4 5 6

z12 z13 z21 z22 z23z11

Phenotypic Data Only on Sibs

axy=1/4 among half sibs, axy=0 otherwise

ijiij wfz ++= μ
34



Concept : If a trait is heritable then individuals within a family should be more similar (concordance) 
than individuals between families.  

Below are two traits from the same families, which trait has the higher heritability? 

Trait 1 (e.g. height) Trait 2 (e.g. %fat)

1 2 3 4

Tr
ai

t V
al

ue

1 2 3 4

Tr
ai

t V
al

ue

1 2 3 4

Family
Var(B)=2.5 Var(W)=.5 Var(B)=0 Var(W)=3

1 2 3 4

Family

Vp=Var(B)+Var(W)=3 Vp=Var(B)+Var(W)=3

83.
5.5.2

5.2
=

+
=Icr 0

30
0

=
+

=Icr
35

• The phenotypic covariance among 
members of the same group equals the 
variance between groups

( ) ( )[ ]
),()_( ikij zzfamilywithinCov σ=

Note the i subscript is the same
ijiij wbz ++= μ

36
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The Among Family Variance 
Component

Variance due to Among Family differences= Covariance

wfb σσ =2

Variance due to Among Family differences= Covariance 
within a Family

2
Axywf a σσ =

familyawithinsindividualamongiprelationshgenetic=a

37

If there is no covariance with a group, then the individuals in that group are not 
correlated.  Note that the within group covariance can be zero for 2 reasons: 1) 
the members are not related, or 2) the trait is not influenced by alleles 

family awithin sindividualamongiprelationsh geneticxya

02 =Aσ0=gr

Half Sib
1 1 2 3 2 4 5 6

ijiij wbz ++= μ

z11 z12 z13 z21 z22 z23

within group variation is not justijiij μ
2

)(
22

HSwbz σσσ +=
variation among families 
(circles) is due to 
differences between half 
sib families=covariance 
within half-sib families

within group variation is not just 
a measure of environmental 
variation, but also includes 
genetic variation not accounted 
for by the half-sib covariance

22
4
32

)( εσσσ += AHSw
2

4
12

AHSb σσσ == 38



ANOVA 
Computational Formulas

)1( −= sSSMS bb

22
)( bHSw dσσ +

Factor df MS E(MS)

Among
Families

Within
F ili

s-1

s(d-1)
2

)(HSwσ
)1( −= sdSSMS wwFamilies

( ) )(ww

39

Method of Moments

Set Expected mean squares equal to estimated mean squares and solve

2
4
12

AHSb σσσ ==

d
MSMS wb

b
−

=2σ̂
wHSw MS=2

)(σ̂

22
4
32

)( εσσσ += AHSw

2
)(

2

2

2

2
2

ˆˆ
ˆ4

HSwb

b

P

Ah
σσ
σ

σ
σ

+
≅=
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Example (Half-Sib Families)
Between Family

3kg 2kg 4kg

Family 1

Within Family
2
wσ 2

bσ

3kg4kg 5kg

Family 2

222
wbz σσσ +=
41

Turkey Example
Source df ss ms E(ms)

Among
Family

1 1.5 1.5

Within 
Family

4 4 1

22
)( 3 bHSw σσ +

2
)(HSwσ

( ) 167.315.1ˆ 2 =−=bσ 1ˆ 2
)( =HSwσ

( ) 566.
167.1
167.42 =≅h s.e.=formulas given in notes

Typically very large 42



Bias in Estimates
• The resemblance between relatives can be 

impacted by non-additive effects (dominance and p y (
epistasis) 
– Non-additive effects can occur when relatives share 

more than one IBD allele, i.e. dominance is due to 
shared IBD alleles within a locus and epistasis is due 
to shared IBD alleles between loci.

– The parent-offspring resemblance is least biased for 
estimating narrow sense heritability (h2), but maybe 
i fl t d b A A i t iinflated by AxA epistasis. 

– The resemblance between clones is most biased, 
because it is inflated by all non-additive effects, but is 
the best estimator of broad sense heritability (H2)  

43

Discussion

If for a given trait the broad sense and 
h it bilit f llnarrow sense heritabilites are as follows, 

in each which would be more effective at 
improving the trait, a breeding program, 
improving management, neither or both? 

• H2=.9, h2=.1H .9,  h .1
• H2=.1,  h2=.1
• H2=.9,  h2=.9

44



Answer
• H2=.9,  h2=.1 

– Neither: The high broad sense heritability indicates that there is 
little environmental effects so management does not influencelittle environmental effects so management does not influence.  
Low narrow sense indicates that selective breeding will not be 
very useful.  (cloning will work, but will not improve the trait, only 
reproduce what is there.  Development of inbred lines will 
produce similar effect as cloning)  

• H2=.1,  h2=.1
– Management: low broad sense indicates primarily impacted by 

environment effects, genes are not important.  Hence breeding 
will not work (note: most reproductive traits fall in this category)

• H2=.9,  h2=.9
– Breeding: High narrow sense indicates that selective breeding 

will be very effective and environment does not have much effect 
on the trait (note: human height falls in this category)

45

Problem set 3
• 1. Continuing from the previous problem set, Falconer (1981) reported a 

partially dominant gene in the mouse called pg “pygmy.”  At six weeks of 
th d th f ll i i ht h t i (thage, they produce the following average weight phenotypes in grams (the 

actual weight of the heterozygote was 12, but it was reduced to 10 for this 
example):

• + / + : 14, + / pg : 10, pg / pg : 6
• If the population of mice is randomly mating with p+ = 0.8, qpg = 0.2
• Assuming no Environmental Effects, what are the narrow and broad sense 

heritabilities for this trait? 
• If the environmental variance is 2, what is the narrow and broad sense ,

heritability?

46



Answer 1
A. Assuming no Environmental Effects, what are the narrow and broad sense heritabilities for this trait?

1
919.2
919.2

86.
919.2
51.2

919.20409.51.2

4096.

51.2

2

2

2222

2

2

==

==

=++=++=

=

=

H

h

eDAP

D

A

σσσσ

σ

σ

B. Assuming Environmental Variance=2, what are the narrow and broad sense heritabilities for this trait? 

59.
919.4
919.2

51.
919.4
51.2

919.42409.51.2

4096.

51.2

2

2

2222

2

2

==

==

=++=++=

=

=

H

h

eDAP

D

A

σσσσ

σ

σ
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2. Find the additive relationship matrix for 
the following pedigree

A B C D

E F

G
H

J

48



Answer 

A={1 0 0 0 0.5 0 0.25 0 0.125,
0 1 0 0 0.5 0 0.25 0 0.125,
0 0 1 0 0 0.5 0.5 0.25 0.375,
0 0 0 1 0 0.5 0 0.75 0.375,
0.5 0.5 0 0 1 0 0.5 0 0.25,,
0 0 0.5 0.5 0 1 0.25 0.75 0.5,
0.25 0.25 0.5 0 0.5 0.25 1 0.125 0.5625,
0 0 0.25 0.75 0 0.75 0.125 1.25 0.6875,
0.125 0.125 0.375 0.375 0.25 0.5 0.5625 0.6875 1.0625};
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Lecture 4 
Short-Term Selection 

Response: Breeder’s equation 

Bruce Walsh lecture notes 
Summer Institute in Statistical Genetics 

Seattle, 18 – 20 July 2016 

2 

Response to Selection 

•  Selection can change the distribution of 
phenotypes, and we typically measure this by 
changes in mean 
–  This is a within-generation change 

•  Selection can also change the distribution of 
breeding values 
–  This is the response to selection, the change in 

the trait in the next generation (the between-
generation change) 
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The Selection Differential and the 
Response to Selection 

•  The selection differential S measures the 
within-generation change in the mean 
– S = µ* - µ 

•  The response R is the between-generation 
change in the mean 
– R(t) = µ(t+1) - µ(t) 

4 

S

µo

µ*µp

R

(A)  Parental Generation

(B) Offspring Generation

Truncation selection  
uppermost fraction 

  p chosen 

Within-generation 
change 

Between-generation 
change 



5 

The Breeders’ Equation:  Translating S into R 
Recall the regression of offspring value on midparent value 

Averaging over the selected midparents, 
        E[ (Pf + Pm)/2 ] = µ*,  

E[ yo - µ ] = h2 ( µ� - µ ) = h2 S 

Likewise, averaging over the regression gives 

Since E[ yo - µ ] is the change in the offspring mean, it  
represents the response to selection, giving: 

R = h2 S The Breeders’ Equation (Jay Lush) 

6 

•  Note that no matter how strong S, if h2 is 
small, the response is small  

•  S is a measure of selection, R the actual 
response.  One can get lots of selection but 
no response 

•  If offspring are asexual clones of their 
parents, the breeders’ equation becomes  
–   R = H2 S 

•  If males and females subjected to differing 
amounts of selection, 
–   S = (Sf + Sm)/2 
–  Example:  Selection on seed number in plants -- pollination 

(males) is random, so that S = Sf/2  
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Pollen control 
•  Recall that S = (Sf + Sm)/2 
•  An issue that arises in plant breeding is pollen 

control --- is the pollen from plants that have also 
been selected? 

•  Not the case for traits (i.e., yield) scored after 
pollination.  In this case, Sm = 0, so response only 
half that with pollen control 

•  Tradeoff:  with an additional generation, a number of 
schemes can give pollen control, and hence twice 
the response 
–  However, takes  twice as many generations, so 

response per generation the same  

8 

Selection on clones 
•  Although we have framed response in an outcrossed 

population, we can also consider selecting the best 
individual clones from a large population of different 
clones (e.g., inbred lines) 

•  R = H2S, now a function of the board sense 
heritability.  Since H2 > h2, the single-generation 
response using clones exceeds that using outcrossed 
individuals 

•  However, the genetic variation in the next 
generation is significantly reduced, reducing 
response in subsequent generations 
–  In contrast, expect an almost continual response for several 

generations in an outcrossed population. 
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Price-Robertson identity 
•  S = cov(w,z) 
•  The covariance between trait value z and 

relative fitness (w = W/Wbar, scaled to have 
mean fitness = 1) 

•  VERY! Useful result 
•  R = cov(w,Az), as response = within 

generation change in BV 
–  This is called Robertson’s secondary theorem of 

natural selection 

10 
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Suppose pre-selection mean = 30, and we select top 
5.  In the table zi = trait value, ni =  number of offspring 

Unweighted S = 7,  predicted response = 0.3*7 = 2.1 
offspring-weighted S = 4.69, pred resp = 1.4  

12 

Response over multiple generations 
•  Strictly speaking, the breeders’ equation only holds 

for predicting a single generation of response from 
an unselected base population 

•  Practically speaking, the breeders’ equation is usually 
pretty good for 5-10 generations 

•  The validity for an initial h2 predicting response over 
several generations depends on: 
–  The reliability of the initial h2  estimate 
–  Absence of environmental change between 

generations 
–  The absence of genetic change between the 

generation in which h2 was estimated and the 
generation in which selection is applied 
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(A)

S S

(B)

(C)

S

50% selected 
Vp = 4, S =
 1.6 

20% selected 
Vp = 4, S = 2.8 

20% selected 
Vp = 1, S =
 1.4 

The selection differential is a function of both 
the phenotypic variance and the fraction selected 
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The Selection Intensity, i 
As the previous example shows, populations with the 
same selection differential (S) may experience very 
different amounts of selection 

The selection intensity i provides a suitable measure 
for comparisons between populations, 
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Truncation selection 
•  A common method of artificial selection is truncation 

selection --- all individuals whose trait value is above 
some threshold (T) are chosen. 

•  Equivalent to only choosing the uppermost fraction p 
of the population 

16 

Selection Differential Under 
Truncation Selection 

R code for i:  dnorm(qnorm(1-p))/p!

Likewise,      

S =µ*- µ!
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Truncation selection 
•  The fraction p saved can be translated into an 

expected selection intensity (assuming the trait is 
normally distributed),  
–   allows a breeder (by setting p in advance) to 

chose an expected value of i before selection, and 
hence set the expected response 

p 0.5 0.2 0.1 0.05 0.01 0.005 

i 0.798 1.400 1.755 2.063 2.665 2.892 

 Height of a unit normal at the  
threshold value corresponding to p 

R code for i:  dnorm(qnorm(1-p))/p!

18 

Selection Intensity Version of the Breeders’ 
Equation 

Since h = correlation between phenotypic and breeding 
values, h = rPA 

R = i rPAσA 

Response =  Intensity * Accuracy * spread in Va  

When we select an individual solely on their phenotype, 
the accuracy (correlation) between BV and phenotype is h 
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Accuracy of selection 
More generally, we can express the breeders 
equation as 

R = i ruA σA 

Where we select individuals based on the
 index u (for example, the mean of n of their
 sibs). 

ruA = the accuracy of using the measure u to 
predict an individual's breeding value =  
correlation between u and an individual's BV, A 

20 
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Improving accuracy 
•  Predicting either the breeding or genotypic 

value from a single individual often has low 
accuracy --- h2 and/or H2 (based on a single 
individuals)  is small  
– Especially true for many plant traits with 

high G x E 
– Need to replicate either clones or relatives 

(such as sibs) over regions and years to 
reduce the impact of G x E 

–  Likewise, information from a set of relatives 
can give much higher accuracy than the 
measurement of a single individual 

22 

Stratified mass selection 
•  In order to accommodate the high 

environmental variance with individual plant 
values, Gardner (1961) proposed the method 
of stratified mass selection 
–  Population stratified into a number of different 

blocks (i.e., sections within a field) 
–  The best fraction p within each block are chosen 
–  Idea is that environmental values are more similar 

among individuals within each block, increasing 
trait heritability. 
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Overlapping Generations 

Ry = 
im + if 

Lm + Lf 

h2σp 

Lx = Generation interval for sex x  
    = Average age of parents when progeny are born 

The yearly rate of response is 

Trade-offs:  Generation interval vs. selection intensity: 
If younger animals are used (decreasing L), i is also lower, 
as more of the newborn animals are needed as replacements 

24 

Computing generation intervals 

OFFSPRING Year 2 Year 3 Year 4 Year 5 total 

Number 
(sires) 

60 30 0 0 90 

Number 
(dams) 

400 600 100 40 1140 
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Generalized Breeder’s Equation 

Ry = 
im + if 

Lm + Lf 

ruAσA 

Tradeoff between generation length L and  
accuracy r 

The longer we wait to replace an individual, the more 
accurate the selection (i.e., we have time for progeny 
testing and using the values of its relatives) 

26 
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Permanent Versus Transient 
Response 

Considering epistasis and shared environmental values, 
the single-generation response follows from the  
midparent-offspring regression 

Permanent component  
of response 

Transient component of response --- contributes 
to short-term response.  Decays away to zero 

over the long-term 
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Permanent Versus Transient 
Response 

The reason for the focus on h2S is that this 
component is permanent in a random-mating  
population, while the other components are 
transient, initially contributing to response, but 
this contribution decays away under random mating 

Why?  Under HW, changes in allele frequencies 
are permanent (don’t decay under random-mating), 
while LD (epistasis) does, and environmental 
values also become randomized 



29 

Response with Epistasis 
The response after one generation of selection from 
an unselected base population with A x A epistasis is 

The contribution to response from this single generation 
after τ generations of no selection is  

c is the average (pairwise) recombination between loci 
involved in A x A 

30 

Response with Epistasis 

Contribution to response from epistasis decays to zero as 
linkage disequilibrium decays to zero 

Response from additive effects (h2 S) is due to changes in  
allele frequencies and hence is permanent.  Contribution  
from A x A due to linkage disequilibrium   
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Why breeder’s equation assumption of an unselected base population?   
If history of previous selection, linkage disequilibrium may be present  
and the mean can change as the disequilibrium decays 

For t generation of selection followed by 
τ generations of no selection (but recombination) 

RAA has a limiting 
value given by 

Time to equilibrium a 
function of c 

Decay half-life 

32 

What about response with higher-order epistasis? 

Fixed incremental difference 
that decays when selection 

stops 
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Response in autotetraploids 

•  Autotetraploids pass along two alleles at 
each locus to their offspring 

•  Hence, dominance variance is passed along 
•  However, as with A x A, this depends upon 

favorable combinations of alleles, and these 
are randomized over time by transmission, so 
D component of response is transient. 
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P-O covariance Single-generation 
response 

Response to t generations of 
selection with constant  
selection differential S 

Response remaining after t generations of selection  
followed by τ generations of random mating 

Contribution from dominance 
quickly decays to zero 

Autotetraploids 
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General responses 
•  For both individual and family selection, the 

response can be thought of as a regression of some 
phenotypic measurement (such as the individual 
itself or its corresponding selection unit value x) on 
either the offspring value (y) or the breeding value RA 
of an individual who will be a parent of the next 
generation (the recombination group). 

•  The regression slope for predicting  
–  y from x is  σ (x,y)/σ2(x)  
–  BV RA from x  σ (x,RA)/σ2(x) 

•  With transient components of response, these 
covariances now also become functions of time --- 
e.g. the covariance between x in one generation and 
y several generations later 
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 Maternal Effects: 
Falconer’s dilution model 

 z = G + m zdam + e 

G = Direct genetic effect on character 
G = A + D + I.  E[A] = (Asire + Adam)/2 

maternal effect passed from dam to offspring m zdam is  
just a fraction m of the dam’s phenotypic value 

 m can be negative --- results in the potential for 
 a reversed response 

The presence of the maternal effects means that response 
is not necessarily linear and time lags can occur in response 
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Parent-offspring regression under the dilution model 

In terms of parental breeding values, 

With no maternal effects, baz = h2 

The resulting slope becomes bAz = h2 2/(2-m) 

- 

38 

Parent-offspring regression under the dilution model 
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Response to a single generation of selection 

Reversed response in 1st  
  generation largely due to 
  negative maternal correlation 
  masking genetic gain 

Recovery of genetic response after 
    initial maternal correlation decays 

 h2 = 0.11, m = -0.13  (litter size in mice) 
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20 15 10 5 0 
-1.0 

-0.5 
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m = -0.25 
m = -0.5 

m = -0.75 

 h2 = 0.35 

Selection occurs for 10 generations and then stops 



Additional material 

Unlikely to be covered in class 

41 
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Selection on Threshold Traits 

Assume some underlying continuous value z, the  
liability, maps to a discrete trait. 

z < T      character state zero (i.e.  no disease) 

z > T      character state one (i.e.   disease) 

Alternative (but essentially equivalent model) is a 
probit (or logistic) model, when p(z) =  
Prob(state one | z).  Details in LW Chapter 14. 

Response on a binary trait is a special case of
 response on a continuous trait 
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Frequency of character state on 
in next generation 

Frequency of trait 

Observe: trait values
 are either 0,1. Pop 
mean = q (frequency 
of the 1 trait) 

Want to map from 
q onto the underlying 
liability scale z, where 
breeder’s equation 
Rz = h2Sz holds 

44 

Liability scale Mean liability before selection 

Selection differential 
on liability scale 

Mean liability in next generation 
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qt* - qt is the  
selection differential  
on the phenotypic scale 

Mean liability in next generation 
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Steps in Predicting Response to Threshold Selection 

i)  Compute initial mean µ0 

We can choose a scale where the liability 
z has variance of one and a threshold T = 0 

Hence, z - µ0 is a unit normal random variable 

P(trait) = P(z > 0) = P(z - µ > -µ) = P(U > -µ) 

U is a unit normal 

Define z[q] = P(U < z[q] ) = q.  P(U > z[1-q] ) = q 

For example, suppose 5% of the pop shows the trait. P(U > 1.645) =
 0.05, hence µ = -1.645. Note:  in R, z[1-q] = qnorm(1-q), with
 qnorm(0.95) returning 1.644854 

General result: µ = - z[1-q]  
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Steps in Predicting Response to Threshold Selection 

ii)  The frequency qt+1 of the trait in the next  
generation is just 

qt+1 = P(U > - µt+1 ) = P(U > - [h2S + µt ] ) 
                            = P(U > -  h2S - z[1-q] )  

iii)  Hence, we need to compute S, the selection  
differential for the liability z 

Let pt = fraction of individuals chosen in 
generation t that display the trait 
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- 
- t t q 

S t = π π t = 
φ!( π t ) p t - q t 

1 q 
* 

This fraction does not display 
 the trait, hence z < 0   

When z is normally distributed, this reduces to 

Height of the unit normal density function 
at the point µt 

Hence, we start at some initial value given h2 and 
µ0, and iterative to obtain selection response 

This fraction displays 
 the trait, hence z > 0   
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Initial frequency of q = 0.05.  Select only on adults 
showing the trait (pt = 1) 
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Ancestral Regressions 
When regressions on relatives are linear, we can think of the response as
 the sum over all previous contributions  

For example, consider the response after 3 gens: 

8 great-grand parents 
S0 is there selection 
differential 
β3,0 is the regression 
coefficient for an  
offspring at time 3 
on a great-grandparent 
From time 0 

4 grandparents 
Selection diff S1 
 β3,1 is the regression 
of relative in generation 
3 on their gen 1 relatives 

2 parents 
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Ancestral Regressions 

βT,t = cov(zT,zt) 

More generally, 

The general expression cov(zT,zt), where we keep track of the actual
 generation, as oppose to cov(z, zT-t ) -- how many generations 
separate the relatives, allows us to handle inbreeding, where the 
regression slope changes over generations of inbreeding. 
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Changes in the Variance under Selection 
The infinitesimal model --- each locus has a very small 
effect on the trait. 

Under the infinitesimal, require many generations  
for significant change in allele frequencies 

However, can have significant change in genetic 
variances due to selection creating linkage disequilibrium 

Under linkage equilibrium, freq(AB gamete) =
 freq(A)freq(B) 

With positive linkage disequilibrium, f(AB) > f(A)f(B), so
 that AB gametes are more frequent 

With negative linkage disequilibrium, f(AB) < f(A)f(B),
 so that AB gametes are less frequent 
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Additive variance with LD: 
Additive variance is the variance of the sum of allelic effects, 

Additive variance 

Genic variance: value of Var(A) 
in the absence of disequilibrium 
function of allele frequencies 

Disequilibrium contribution. Requires covariances
 between allelic effects at different loci 
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Key:  Under the infinitesimal model, no  
(selection-induced) changes in genic 
variance  σ2

a  

Selection-induced changes in d change σ2
A, σ2

z , h2 

Dynamics of d:  With unlinked loci, d loses half its value each  
generation (i.e, d in offspring is 1/2  d of their parents, 
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Dynamics of d:  Computing the effect of selection in  generating d 

Consider the parent-offspring regression 

Taking the variance of the offspring given the selected parents gives 

Change in variance from selection 
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Change in d = change from recombination plus 
change from selection 

Recombination Selection 

+ = 

In terms of change in d, 

This is the Bulmer Equation (Michael Bulmer), and it is 
akin to a breeder’s equation for the change in variance 

At the selection-recombination  
equilibrium, 
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Application:  Egg Weight in Ducks 
Rendel (1943) observed that while the change  
mean weight weight (in all vs. hatched) as 
negligible, but their was a significance decrease 
in the variance, suggesting stabilizing selection 

Before selection, variance = 52.7, reducing to 
43.9 after selection. Heritability was h2 = 0.6 

= 0.62 (43.9 - 52.7) = -3.2 
Var(A) = 0.6*52.7= 31.6.  If selection stops, Var(A) 
is expected to increase to 31.6+3.2= 34.8 
Var(z) should increase to 55.9, giving h2 = 0.62 
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Specific models of selection-induced 
changes in variances 

Proportional reduction model: 
constant fraction k of  

variance removed 

Bulmer equation simplifies 
to 

Closed-form solution 
to equilibrium h2 
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Equilibrium h2 under direction 
truncation selection 
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Directional truncation selection 
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Changes in the variance = changes in h2 
and even S (under truncation selection) 

R(t) = h2(t) S(t) 
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Inbreeding 
•  Inbreeding =  mating of related individuals 
•  Often results in a change in the mean of a trait 
•  Inbreeding is intentionally practiced to: 

–  create genetic uniformity of laboratory stocks  
– produce stocks for crossing (animal and plant 

breeding) 
•  Inbreeding is unintentionally generated: 

– by keeping small populations (such as is found 
at zoos) 

– during selection 
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Genotype frequencies under inbreeding 

•  The inbreeding coefficient, F 
•  F = Prob(the two alleles within an individual 

are IBD) -- identical by descent 
•  Hence, with probability F both alleles in an 

individual are identical, and hence a 
homozygote 

•  With probability 1-F, the alleles are 
combined at random 
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Genotype Alleles IBD Alleles not IBD frequency 

A1A1 Fp (1-F)p2 p2 + Fpq 

A2A1 0 (1-F)2pq (1-F)2pq 

A2A2 Fq (1-F)q2 q2 + Fpq 

p A1

A2q

F

F

A1A1

A2A2

p

p A1A1

A2A1
q

A2A1
q

A2A2

Alleles IBD!

1-F 

1-F 

Random mating 

Alleles IBD!
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Changes in the mean under inbreeding 

µF = µ0 - 2Fpqd 

Using the genotypic frequencies under inbreeding, the  
population mean µF under a level of inbreeding F is 
related to the mean µ0 under random mating by 

Genotypes  A1A1   A1A2   A2A2 
      0    a+d      2a 

 freq(A1) = p,   freq(A2) = q!
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•  There will be a change of mean value if dominance is present (d not 0) 

•  For a single locus, if  d > 0, inbreeding will decrease the mean value of
 the  trait.  If  d < 0, inbreeding will increase the mean 

•  For multiple loci, a decrease (inbreeding depression) requires  
directional dominance  ---  dominance effects  di tending to be positive. 

 • The magnitude of the change of mean on inbreeding depends on gene  
frequency, and is greatest when  p = q = 0.5  
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Inbreeding Depression and Fitness 
traits 

Inbred! Outbred!

8 

Inbreeding depression 

Example for maize height 

F2 F3 F4 F5 F6 
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Fitness traits and inbreeding depression 

•  Often seen that inbreeding depression is 
strongest on fitness-relative traits such as 
yield, height, etc. 

•  Traits less associated with fitness often show 
less inbreeding depression 

•  Selection on fitness-related traits may 
generate directional dominance 
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Why do traits associated with fitness 
show inbreeding depression? 

•  Two competing hypotheses: 
–   Overdominance Hypothesis: Genetic variance for fitness is 

caused by loci at which heterozygotes are more fit than both 
homozygotes. Inbreeding  decreases the frequency of 
heterozygotes, increases the frequency of homozygotes, so 
fitness is reduced. 

–   Dominance  Hypothesis:  Genetic variance for fitness is caused 
by rare deleterious alleles that are recessive or partly recessive; 
such alleles persist in populations because of recurrent mutation.  
Most copies of deleterious alleles in the base population are in 
heterozygotes.  Inbreeding increases the frequency of 
homozygotes for deleterious alleles, so fitness is reduced.  
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Inbred depression in largely 
selfing lineages 

•  Inbreeding depression is common in outcrossing 
species 

•  However,  generally fairly uncommon in species with 
a high rate of selfing 

•  One idea is that the constant selfing have purged 
many of the deleterious alleles thought to cause 
inbreeding depression 

•  However, lack of inbreeding depression also means a 
lack of heterosis (a point returned to shortly) 
–  Counterexample is Rice:  Lots of heterosis and 

inbreeding depression 
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Variance Changes Under Inbreeding 

Inbreeding reduces variation within each population 

Inbreeding increases the variation between populations 
(i.e., variation in the means of the populations)  

F = 0 
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F = 1/4 

F = 3/4 

F = 1 

Between-group variance increases with F 

Within-group variance  decreases with F 
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Implications for traits 

•  A series of inbred lines from an F2 population 
are expected to show  
–  more within-line uniformity (variance about the 

mean within a line)  
• Less within-family genetic variation for 

selection 

–  more between-line divergence (variation in the 
mean value between lines) 
• More between-family genetic variation for 

selection 
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Variance Changes Under Inbreeding 

General F = 1 F = 0 

Between lines 2FVA 2VA 0 

Within Lines (1-F) VA 0 VA 

Total (1+F) VA 2VA VA 

The above results assume ONLY additive variance 
i.e., no dominance/epistasis.  When nonadditive 
variance present, results very complex (see WL Chpt 3). 
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Line Crosses:  Heterosis 
When inbred lines are crossed, the progeny show an increase in mean 
for characters that previously suffered a reduction from inbreeding. 

This increase in the mean over the average value of the 
parents is called   hybrid vigor or heterosis 

A cross is said to show heterosis if H > 0, so that the  
F1 mean is larger than the average of both parents.!
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Expected levels of heterosis!

If pi denotes the frequency of Qi in line 1, let pi + δpi denote 
the frequency of Qi in line 2. 

•  Heterosis depends on dominance:  d = 0  = no inbreeding depression and no  
Heterosis. As with inbreeding depression, directional dominance is required for heterosis. 

• H is proportional to the square of the difference in allele frequencies  
between populations.  H is greatest when alleles are fixed in one population and 
lost in the other (so that |δpi| = 1).  H = 0  if  δp = 0. 

• H is specific to each particular cross. H  must be determined empirically, 
since we do not know the relevant loci nor their gene frequencies.  

The expected amount of heterosis becomes!

H F 1 = 
n X 

i = 1 
( ± p i ) 2 d i 

Heterosis declines in the F2 

In the F1, all offspring are heterozygotes.  In the F2,  
random mating has occurred, reducing the frequency  
of heterozygotes.!

As a result, there is a reduction of the amount of  
heterosis  in the F2 relative to the F1, !

Since random mating occurs in the F2 and subsequent 
generations, the level of heterosis stays at the F2 level.!
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Agricultural importance of heterosis 

Crop % planted 
as hybrids 

% yield 
advantage 

Annual 
added 

yield:  % 

Annual 
added 

yield: tons 

Annual land 
savings 

Maize 65 15 10 55 x 106   13 x 106 ha 

Sorghum 48 40 19 13 x 106   9 x 106 ha 

Sunflower 60 50 30 7 x 106   6 x 106 ha 

Rice 12 30 4 15 x 106  6 x 106 ha 

Crosses often show   high-parent heterosis, wherein the  
F1 not only beats the average of the two parents  
(mid-parent  heterosis), it exceeds the best parent. 
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Hybrid Corn in the US 

Shull (1908) suggested objective of corn breeders  
should be to find and maintain the best parental 
lines for crosses 

Initial problem:  early inbred lines had low seed set 

Solution (Jones 1918):  use a hybrid line as the seed  
parent, as it should show heterosis for seed set 

1930’s - 1960’s:  most corn produced by double crosses 

Since 1970’s most from single crosses 
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A Cautionary Tale 

1970-1971 the great  Southern Corn Leaf Blight  almost
 destroyed the whole US corn crop 

Much larger (in terms of food energy) than the great potato
 blight of the 1840’s 

Cause:  Corn can self-fertilize, so to make hybrids either have to
 manually detassle the pollen structures or use genetic tricks that
 cause male sterility. 

Almost 85% of US corn in 1970 had Texas cytoplasm Tcms, a
 mtDNA encoded male sterility gene 

Tcms turned out to be hyper-sensitive to the fungus 
Helminthosporium maydis.  Resulted in over a billion dollars 
of crop loss 

Crossing Schemes to Reduce the 
Loss of Heterosis:  Synthetics 

Take n lines and construct an F1 population by 
making all pairwise crosses 
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Synthetics 

•  Major trade-off 
– As more lines are added, the F2 loss of 

heterosis declines 
– However, as more lines are added, the 

mean of the F1 also declines, as less elite 
lines are used 

– Bottom line:  For some value of n,  F1 - H/n 
reaches a maximum value and then starts 
to decline with n  
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Types of crosses 
•  The F1 from a cross of lines A x B (typically 

inbreds) is called a single cross 
•  A three-way cross (also called a modified 

single cross) refers to the offspring of an A 
individual crossed to the F1 offspring of B x 
C. 
–  Denoted A x (B x C) 

•  A double (or four-way) cross is (A x B) x (C x 
D), the offspring from crossing an A x B F1 
with a C x D F1. 
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Predicting cross performance 

•  While single cross (offspring of A x B) hard to 
predict, three- and four-way crosses can be 
predicted if we know the means for single 
crosses involving these parents 

•  The three-way cross mean is the average mean 
of the two single crosses: 
–  mean(A x {B x C}) = [mean(A x B) + mean(A x C)]/2  

•  The mean of a double (or four-way) cross is the 
average of all the single crosses, 
–  mean({A x B} x {C x D}) = [mean(AxC) + mean(AxD) + 

mean(BxC) + mean(BxD)]/4 

Individual vs. Maternal Heterosis 
•   Individual heterosis   

–   enhanced performance in a hybrid individual 
•   Maternal heterosis   

–  enhanced maternal performance (such as
 increased litter size and higher survival rates of
 offspring) 

–  Use of crossbred dams 
–  Maternal heterosis is often comparable, and can

 be greater than, individual heterosis 



Individual vs. Maternal Heterosis in Sheep traits 

Trait Individual H Maternal H total 

 Birth weight 3.2% 5.1% 8.3% 

Weaning weight 5.0% 6.3% 11.3% 

Birth-weaning 
survival  

9.8% 2.7% 12.5% 

Lambs reared 
per ewe 

15.2% 14.7% 29.9% 

Total weight 
lambs/ewe 

17.8% 18.0% 35.8% 

Prolificacy 2.5% 3.2% 5.7% 

Estimating the Amount of 
Heterosis in Maternal Effects 

z A = z + g 
I 
A + g 

M 
A + g 

M 0 

A 

Contributions to mean value of line A 

Individual
 genetic

 effect (BV) 

Maternal
 genetic

 effect (BV) 

Grandmaternal
 genetic effect (BV) 



z A B = z + 
g 

I 
A + g 

I 
B 

2 
+ g 

M 
B + g 

M 0 

B + h 
I 
A B 

Consider the offspring of an A sire and a B dam 

Individual genetic
 value is the

 average of both
 parental lines 

Maternal and
 grandmaternal

 effects 
from the B mothers 

Contribution
 from (individual) 

heterosis 

z B A = z + 
g 

I 
A + g 

I 
B 

2 
+ g 

M 
A + g 

M 0 
A + h 

I 
A B 

Now consider the offspring of an B sire and a A dam 

Maternal and grandmaternal
 genetic effects for B line 

z A B = z + 
g 

I 
A + g 

I 
B 

2 
+ g 

M 
B + g 

M 0 

B + h 
I 
A B 

Difference between the two line means estimates 
difference in maternal + grandmaternal effects 
in A vs. B 



z A B + z B A 

2 

z A A + z B B 

2 
= h 

I 
A B 

Hence, an estimate of individual heteroic effects is 

z C A B = 2 g 
I 
C + g I A + g I B 

4 + h 
I 
C A + h I C B 

2 + g 
M 
A + g M 

B 
2 + h M 

A B + g M 0 
B + r 

I 
a b 
2 

The mean of offspring from a sire in line C crossed to 
a dam from a A X B cross (B = granddam, AB = dam) 

Average individual genetic value 
(average of the line BV’s) 

New individual
 heterosis of C x AB

 cross 

Genetic maternal effect  
(average of maternal BV for both

 lines) 
Grandmaternal
 genetic effect 

Maternal genetic
 heteroic effect 

“Recombinational loss” --- 
 decay of the F1 heterosis

 in the F2   

z C A B = 
z C A + z C B 

2 
= h 

M 
A B + 

r I a b 
2 

One estimate (confounded) of maternal heterosis 
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Genetic vs. Phenotypic correlations 
•  Within an individual, trait values can be 

positively or negatively correlated, 
–  height and weight -- positively correlated 
–  Weight and lifespan  -- negatively correlated 

•  Such phenotypic correlations can be directly 
measured,  
–  rP denotes the  phenotypic correlation 

•  Phenotypic correlations arise because 
genetic and/or environmental values within 
an individual are correlated. 
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r  P 

P x P y 

The phenotypic values between traits x and y 
within an individual are correlated 

x y 

A r 

A A 

Correlations between the
 breeding values of x and y
 within the individual can

 generate a 
phenotypic correlation 

Likewise, the
 environmental values

 for the two traits within
 the individual could also

 be correlated 

y 

r E 

E x E 
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Genetic & Environmental Correlations 

•  rA = correlation in breeding values (the 
genetic correlation) can arise from 
–  pleiotropic effects of loci on both traits 
–  linkage disequilibrium, which decays over time 

•  rE = correlation in environmental values 
–  includes non-additive genetic effects (e.g., D, I) 
–  arises from exposure of the two traits to the same 

individual environment 
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The relative contributions of genetic and environmental 
correlations to the phenotypic correlation 

If heritability values are high for both traits, then 
the correlation in breeding values dominates the 
phenotypic corrrelation 

If heritability values in EITHER trait are low, then 
the correlation in environmental values dominates the 
phenotypic correlation 

In practice, phenotypic and genetic correlations often  
have the same sign and are of  similar magnitude, but   
this is not always the case 
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Estimating Genetic Correlations 
Recall that we estimated VA from the regression of 
trait x in the parent on trait x in the offspring, 

Trait x in parent 

Trait x in 
offspring 

       Slope =  
(1/2) VA(x)/VP(x) 

VA(x) = 2 *slope * VP(x) 
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Estimating Genetic Correlations 
Similarly, we can estimate VA(x,y), the covariance in the 
breeding values for traits x and y, by the regression of 
trait x in the parent and trait y in the offspring 

Trait x in parent 

Trait y in 
offspring 

       Slope =  
(1/2) VA(x,y)/VP(x) 

VA(x,y) = 2 *slope * VP(x) 
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Thus, one estimator of VA(x,y) is 

VA(x,y)  =  by|x VP(x) + bx|y VP(y) 

2 *by|x * VP(x) + 2 *bx|y * VP(y)  

2 
VA(x,y) = 

Put another way,  
            Cov(xO,yP) = Cov(yO,xP) = (1/2)Cov(Ax,Ay) 

   Cov(xO,xP) = (1/2) VA (x) = (1/2)Cov(Ax, Ax) 
   Cov(yO,yP) = (1/2) VA (y) = (1/2)Cov(Ay, Ay) 

Likewise, for half-sibs, 
 Cov(xHS,yHS) = (1/4) Cov(Ax,Ay) 
 Cov(xHS,xHS) = (1/4) Cov(Ax,Ax) = (1/4) VA (x)  
 Cov(yHS,yHS) = (1/4) Cov(Ay,Ay) = (1/4) VA (y)  

giving 
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Correlated Response to Selection 
Direct selection of a character can cause a within- 
generation change in the mean of a phenotypically 
correlated character. 

Direct selection on 
x also changes the 
mean of y 

* 

+ 

Select All 

X 

Y 

S X 

S Y 
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Phenotypic correlations induce within-generation 
changes  

For there to be a between-generation change, the 
breeding values must be correlated.  Such a change 
is called a correlated response to selection 

Trait y 

Trait x 

Phenotypic values 

Sy 

Sx 



Example 
•  Suppose h2 trait x = 0.5, h2 trait y = 0.3 
•  Select on trait one to give Sx = 10 

– Expected  response is Rx = 5 

•  Suppose Cov(tx,ty) = 0.5, then Sy = 5 
• What is the response in trait 2? 

–  is it CRy = 0.3*5 = 1.5.  NO! 
– Could be positive, negative, or zero 
– Depends on the Genetic correlation

 between traits x and y.  Why?? 
11 
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Trait y 

Trait x 

Phenotypic values 

Rx 

Ry = 0 
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Trait y 

Trait x 

Breeding values 

Rx 

Ry = 0 

Phenotypic values are misleading, what we want are the
 breeding values for each of the selected individuals.  Each  
arrow takes an individual’s phenotypic value into its actual 
breeding value. 
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Trait y 

Trait x 

Breeding values 

Rx 

Ry = 0 
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S S 

Direct selection Indirect selection 
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Predicting the correlated response 

bAy|Ax  = 
Cov(Ax,Ay) 

Var(Ax) 
= rA 

σ(Ax) 

σ(Ay) 

The change in character y  in response to selection 
on x  is the regression of the breeding  value of y  
on the breeding value of x, 

  Ay = bAy|Ax Ax 

where 

 If Rx denotes the direct response to selection on x, 
CRy denotes the correlated response in y, with 

CRy = bAy|Ax Rx  
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We can rewrite CRy = bAy|Ax Rx as follows 

First, note that Rx = h2
xSx = ixhx σA (x)  

Recall that ix = Sx/σP
 (x) is the selection

 intensity on x 

Since bAy|Ax  = rA σA(x) / σA(y),  

We have CRy = bAy|Ax Rx = rA σA (y) hxix  

Substituting σA (y)= hy σP (y) gives our final result:  

CRy =  ix hx hy rA σP (y) 
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CRy =  ix hx hy rA σP (y) 

Noting that we can also express the direct response as 
Rx = ixhx

2 σp (x) 

shows that hx hy rA in the corrected response plays the 
same role as hx

2 does in the direct response.  As a result, 
hx hy rA  is often called the co-heritability 
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Direct vs. Indirect Response 
We can change the mean of x via a direct response Rx 
or an indirect response CRx due to selection on y 

Hence, indirect selection gives a large response when 

• Character y  has a greater heritability than x, and the genetic 
correlation between x  and y is high. This could occur if x is difficult to 
measure with precison but y is not.   

• The selection intensity is much greater for y  than x.  This would be true 
 if y were measurable in both sexes but x  measurable in only one sex. 
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G x E 
The same trait measured over two (or more) environments 
can be considered as two (or more) correlated traits. 

If the genetic correlation | ρ| = 1 across environments and 
the genetic variance of the trait is the same in both 
environments, then no G x E 

However, if |ρ| < 1, and/or Var(A) of the trait varies 
over environments, then G x E present 

Hence, dealing with G x E is a multiple-trait problem 
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Participatory breeding 
The environment where a crop line is developed may 
be different from where it is grown 

An especially important example of this is participatory
 breeding, wherein subsistence farmers are involved in the
 field traits. 

Here, the correlated response is the yield in subsistence 
environment given selection at a regional center, while direct 
response is yield when selection occurred in subsistence 
environment.   Regional center selection works when 
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Dimensions given by rows x columns (r x c) 
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Matrix Multiplication 

In order to multiply two matrices, they must conform 

A r x c  B c x k  = C r x k 
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Matrix Multiplication 
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27 

The Multivariate Breeders’ 
Equation 

Suppose we are interested in the vector R of responses 
when selection occurs on n correlated traits 

Let S be the vector of selection differentials. 

In the univariate case, the relationship between R 
and S was the Breeders’ Equation, R = h2S 

What is the multivariate version of this? 

28 
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The multivariate breeder’s equation 

R = G P-1 S 

R= h2S = (VA/VP) S 
Natural parallels 
with univariate 

breeder’s equation 

 P-1 S = β is called the selection gradient and measures the
 amount of direct selection on a character 

The gradient version of the breeder’s equation is given by R = G β. 
This is often called the Lande Equation (after Russ Lande) 
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Sources of within-generation change in the mean 

Since β = P-1 S, S  = P β,$
giving the j-th element as 

Change in mean from
 phenotypically 

correlated characters
 under direct selection 

 Within-generation
 change in trait j 
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Within-generation change in the mean 

Between-generation
 change (response) 

 in trait j 

Indirect response
 from genetically 

correlated
 characters under
 direct selection 

Response in the mean 
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Example in R 

Suppose you observed a within-generation change of 
-10 for oil, 10  for protein, and 100 for yield. 

What is R?  What is the nature of selection on each 
trait? 
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Enter G, P, and S 

R = G P-1S 
13.6  decrease in oil 
12.3 increase in protein 
65.1 increase in yield 

34 

S versus β :  Observed change versus targets of 
Selection, β = P-1 S, S  = P β,$

 β: targets of selection S: observed within-generation 
change 

Observe a within-generation increase in protein, but the 
actual selection was to decrease it. 
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Quantifying Multivariate Constraints to Response 

Is there genetic variation in the direction of selection? 

Consider the following G and β: 

Taken one trait at a time, we might expect Ri = Giiβi 

Giving R1 = 20, R2 = -40. 
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Constraints Imposed by 
Genetic Correlations 

While β is the directional optimally favored by 
selection, the actual response is dragged off 
this direction, with R = G β. 

What is the true nature of selection on the two traits? 
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What does the actual response look like? 
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Time for a short diversion: 
The Geometry of a matrix 

A vector is a geometric object, leading from the 
origin to a specific point in n-space. 

We can thus change a vector by both rotation and scaling 

Hence, a vector has a length and a direction. 

The length (or norm) of a vector x is denoted by ||x|| 
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The (Euclidean) distance between two vectors x and y 
(of the same dimension) is 

The angle θ between two vectors provides a measure 
for how they differ. 

If two vectors satisfy x = ay (for a constant a), then 
they point in the same direction, i.e., θ = 0 (Note that  
a  < 0 simply reflects the vector about the origin) 

Vectors at right angles to each other, θ = 90o or 270o 

are said to be orthogonal.  If they have unit length as 
well, they are further said to be orthonormal. 
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Matrices Describe Vector transformations 

The action of multiplying a vector x by a matrix A 
generates a new vector y = Ax, that has different 
dimension from x unless A is square.  

Matrix multiplication results in a rotation and a scaling of 
a vector 

Thus A describes a transformation of the original 
coordinate system of x into a new coordinate system. 

Example:  Consider the following G and β: 
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The resulting angle between R and β is given by 

For an angle of θ = 45 o 
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Eigenvalues and Eigenvectors 
The eigenvalues and their associated eigenvectors 
fully describe the geometry of a matrix. 

Eigenvalues describe how the original coordinate 
axes are scaled in the new coordinate systems 

Eigenvectors describe how the original coordinate 
axes are rotated in the new coordinate systems 

For a square matrix A, any vector y that satisfies 
Ay = λy for some scaler λ is said to be an eigenvector 
of A and λ its associated eigenvalue. 
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Note that if  y is an eigenvector, then so is a*y 
for any scaler a, as Ay = λy.  

Because of this, we typically take eigenvectors to 
be scaled to have unit length (their norm = 1) 

An eigenvalue λ of A satisfies the equation 
det(A - λI) = 0, where det = determinant 

For an n-dimensional square matrix, this yields an 
n-degree polynomial in λ and hence up to n unique roots. 

Two nice features: 

det(A) = Πi λi. The determinant is the product of the eigenvalues 

trace(A) = Σi λi. The trace (sum of the diagonal elements) is 
 is the sum of the eigenvalues 
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Note that det(A) = 0 if any only if at least one 
eigenvalue = 0 

For symmetric matrices (such as covariance matrices) 
the resulting n eigenvectors are mutually orthogonal, 
and we can factor A into its spectral decomposition,  

Hence, we can write the product of any vector x and A as 
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Example:  Let’s reconsider a previous G matrix 
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Even though β points in a direction very close of e2, 
because most of the variation is accounted for by e1, 
its projection is this dimension yields a much longer 
vector.  The sum of these two projections yields the 
selection response R. 
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Realized Selection Gradients 

Suppose we observe a difference in the vector of means 
for two populations, R =  µ1 - µ2. 

If we are willing to assume they both have a common 
G matrix that has remained constant over time, then 
we can estimate the nature and amount of selection 
generating this difference by 

β = G-1 R 

Example:  You are looking at oil content (z1) and yield (z2)  
in two populations of soybeans. Population a 
has µ1 = 20 and µ2 = 30, while for Pop 2, µ1 = 10 and 
µ2 = 35.  
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Suppose the variance-covariance matrix has been 
stable and equal in both populations, with 

The amount of selection on both traits to obtain this 
response is 
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MIXED MODEL

• Separates 
Independent variableIndependent variable 
into those that are 
– Fixed Xb
– Random Zu

X=value of each fixed effect
b=linear regression coefficients

Z=incidence matrix of random effect, 
usually a 1 corresponding to each animal
u=estimate of random effects (breeding 

eZuXbY ++=
More importantly model’s the variance structure

value)

2



Fixed and Random Effects

• Fixed Effect
– Inference Space only to those levels
– Herd, Year, Season, Parity, and Sex effect

• Random Effect
– Effect Sampled From A Distribution Of Effects

Inference Space To The Population From– Inference Space To The Population From 
Which The Random Effect Was Sampled

3

Random 
Effect

Gametes

GoodBadSample

Inference is to the genetic worth of the bull (breeding value) 4



Variances In Mixed Models

eZuXbY ++=
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EBV

Estimate the breeding values “u” and fixed effects simultaneously 

The Maximum Likelihood Estimates of b and u give the 
mixed model equations (MME), These are also the Best 
Linear Unbiased Predictors (BLUP)
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Mixed Model Equations
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MME
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Example 1 R code
y= matrix( c(7,

9,
10,
6,

A = matrix( c( 1, 0, 0, .5, 0,
0, 1, 0, .5,.5,
0, 0, 1, 0, .5,
.5,.5,0, 1,.25,
0 5 5 25 1 ) 5 5)9), 5,1)

SigA=2
SigE=2

lam=SigE/SigA

Z = matrix( c(1, 0, 0, 0, 0,
0, 1, 0, 0, 0,
0, 0, 1, 0, 0,
0, 0, 0, 1, 0,
0, 0, 0, 0, 1 ),5,5)

0,.5,.5,.25, 1  ), 5,5)
LHS = rbind( cbind(t(X) %*% X ,  t(X) %*% Z ),

cbind( t(Z) %*% X  , ( t(Z) %*% Z ) + 
(lam * solve(A)) ))

RHS = rbind(t(X) %*% y,
t(Z) %*% y)

C = solve(LHS)

BU = C %*% RHS0, 0, 0, 0, 1   ),5,5)

X = matrix( c( 1,
1,
1,
1,
1),5,1)

BU

yhat=X*BU[1]+BU[2:6]
yhat

14What do you expect if heritability is larger or smaller?



Missing Values (Sex Limited Traits)
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Assume h2=.5
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Example 2 R Code
y= matrix( c(7,

10,
6), 3,1)

SigA=20
SigE=20

LHS = rbind( cbind(t(X) %*% X ,  t(X) %*% Z ),
cbind( t(Z) %*% X  , ( t(Z) %*% Z ) + (lam * 

solve(A)) ))

RHS = rbind(t(X) %*% y,

lam=SigE/SigA

Z = matrix( c(1, 0, 0, 0, 0,
0, 0, 1, 0, 0,
0, 0, 0, 1, 0),3,5

, byrow = TRUE)

X = matrix( c( 1,
1

t(Z) %*% y)

C = solve(LHS)

BU = C %*% RHS

BU

X1 = matrix( c( 1,
1

16

1,
1),3,1)

A = matrix( c(1, 0, 0, .5, 0,
0, 1, 0, .5,.5,
0, 0, 1, 0, .5,
.5,.5,0, 1,.25,
0,.5,.5,.25, 1  ),5,5)

1,
1,
1,
1),5,1)

yhat=X1*BU[1]+BU[2:6]
yhat

Note that breeding values for males are estimated



Extensions of Model
• Inclusion of Dominance and Epistasis

– Dominance 
• Dominance effects are the result of interaction of alleles within a locus• Dominance effects are the result of interaction of alleles within a locus 
• Dominance relationship matrix needed
• Reflects the probability that individuals have the same pair of alleles in 

common at a locus
– Epistasis

• Epistatic genetic effects are the result of interactions between alleles at 
different loci 

• Epistatic relationship matrix needed 
• Reflects the probability that individuals have the same pair of alleles in 

common at different loci (4 possible pairings of 2 alleles at 2 loci)
U f l i b di b t ll t f l i– Useful in crossbreeding programs but generally not useful in pure 
breeding programs

• An individual does not pass on dominance or epistatic effects (without 
inbreeding or cloning), which are a function of both parents

• Exception is Additive x Additive epistasis which is a function of 2 alleles at 
different loci in the same gamete, but dissipates with recombination and/or 
segregation

17

Estimation of Variances Using all Data in a Pedigree

• REML
EM REML iterative process whereby– EM-REML iterative process whereby 

• A value is assumed for additive variance
• Estimates of breeding values found
• Additive variance V(A) is estimated as variance of breeding 

values V(A)=(u’A-1u +stuff)/n
• The new value of V(A) is substituted into the MME
• Estimates of breeding values (u) are foundEstimates of breeding values (u) are found
• The process repeated until convergence

– DF-REML work by trial and error finding a value of 
V(A) that maximize the likelihood

18



Appendix 1

Software packages for estimating 
EBVs, Variance Components, 
GWAS and genomic selectionGWAS and genomic selection

19

Software engineering the mixed model for genome-wide association studies on large 
samples

http://bib.oxfordjournals.org/content/10/6/664/T1.expansion.html

20



R packages
• QTL mapping

– onemap – It is used to generate or rearrange genetic maps
rqtl performs QTL mapping for bi parental populations– rqtl – performs QTL mapping for bi-parental populations

– GAPIT – most common package for Genome-Wide Association 
Mapping

• BLUP (Animal Model)
– pedigree – Generates A matrix from sparse pedigree
– MCMCglmm – Generalized Mixed Models incorporating pedigrees
– pedigreemm - Fit mixed-effects models incorporating pedigrees

• Genomic Selection
– rrBLUP – classic package to perform ridge regression BLUP andrrBLUP classic package to perform ridge regression BLUP and 

GBLUP
– BGLR – whole genome regressions methods of genomic selection
– randomForest – Random Forest Regression (non-parametric GS)
– brnn – Bayesian Regularized Neural Network (non-parametric GS)
– parallel – Allows the use of multiple cores for faster computation

Provided by Alencar Xavier (xaviera@purdue.edu) 21

Appendix 2

SAS IML BLUP Programs

For Examples 1 and 2

22



proc iml;
start main;

y={ 7,
9,

10,
6

lam=1;

Z={1 0 0 0 0,
0 1 0 0 0,
0 0 1 0 0,
0 0 0 1 0,
0 0 0 0 1};6,

9};

X={1,
1, 
1,
1,
1};

0 0 0 0 1};

LHS=((X`*X)||(X`*Z))//((Z`*X)||(Z`*Z+INV(A)#
LAM));

RHS=(X`*Y)//(Z`*Y);
C=INV(HS);

BU C*RHS
A={1 0 0 .5 0,

0 1 0 .5 .5,
0 0 1 0 .5,
.5 .5 0 1 .25,
0 .5 .5 .25 1};

BU=C*RHS;
print C BU;

finish main;
run;
quit;
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Estimates

BU [ ]μ̂b
8.3018868
-0.960813
0.0754717
0.8853411
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â
a

24



proc iml;
start main;

y={ 7,
10,
6};

lam=1;

Z={1 0 0 0 0,
0 0 1 0 0,
0 0 0 0 1};

}

X={1,
1,
1};

A={1 0 0 .5 0,
0 1 0 .5 .5,

LHS=((X`*X)||(X`*Z))//((Z`*X)||(Z`*
Z+INV(A)#LAM));

RHS=(X`*Y)//(Z`*Y);
C=INV(LHS);

BU=C*RHS;0 1 0 .5 .5,
0 0 1 0 .5,
.5 .5 0 1 .25,
0 .5 .5 .25 1};

print C BU;

finish main;
run;
quit;
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Estimates
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-0.64
-0.43
1.07 ⎥
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Appendix 3

Problems

27

Problem 1
A B C D 1

9 13 4 12

E F

G
H

J

2

3

4

11 11

13 9

10

Find the best estimate of the genetic worth of each animal. 
Assume a heritability of .5.  

0
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proc iml;
start main;

y={9,
13,
4,
12,
11,
11,

A={1 0 0 0 0.5 0 0.25 0 0.125,
0 1 0 0 0.5 0 0.25 0 0.125,
0 0 1 0 0 0.5 0.5 0.25 0.375,
0 0 0 1 0 0.5 0 0.75 0.375,
0.5 0.5 0 0 1 0 0.5 0 0.25,
0 0 0.5 0.5 0 1 0.25 0.75 0.5,
0.25 0.25 0.5 0 0.5 0.25 1 0.125 0.5625,
0 0 0 25 0 75 0 0 75 0 125 1 25 0 6875

Answer Problem 1

13,
9,

10};

X={1,
1,
1,
1,
1,
1,
1,
1,
1};

AINV=INV(A);
lam=1;

Z={1 0 0 0 0 0 0 0 0,
0 1 0 0 0 0 0 0 0,
0 0 1 0 0 0 0 0 0,
0 0 0 1 0 0 0 0 0,
0 0 0 0 1 0 0 0 0,
0 0 0 0 0 1 0 0 0,
0 0 0 0 0 0 1 0 0

0 0 0.25 0.75 0 0.75 0.125 1.25 0.6875,
0.125 0.125 0.375 0.375 0.25 0.5 0.5625 0.6875 1.0625};

10.07
-0.31                                 
1.689                                  
-2.28                                  
0.905                                 
1.145                                 
-0.31                                 
0 564

BU=

Answer

1}; 0 0 0 0 0 0 1 0 0,
0 0 0 0 0 0 0 1 0,
0 0 0 0 0 0 0 0 1};

LHS=((X`*X)||(X`*Z))//((Z`*X)||(Z`*Z+AINV#LAM));
RHS=(X`*Y)//(Z`*Y);
C=INV(LHS);
BU=C*RHS;

0.564                                 
-0.19                                 
0.105
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Problem 2: Sex Limited Trait 

A B C D 1
9

12

E F

G H

J

2

3

4

11

13

10

Estimate breeding values for the males.
Assume a heritability of .5.  

0
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proc iml;
start main;

y={9,
12,
11,
13,
10}

A={1 0 0 0 0.5 0 0.25 0 0.125,
0 1 0 0 0.5 0 0.25 0 0.125,
0 0 1 0 0 0.5 0.5 0.25 0.375,
0 0 0 1 0 0.5 0 0.75 0.375,
0.5 0.5 0 0 1 0 0.5 0 0.25,
0 0 0.5 0.5 0 1 0.25 0.75 0.5,
0.25 0.25 0.5 0 0.5 0.25 1 0.125 0.5625,
0 0 0 25 0 75 0 0 75 0 125 1 25 0 6875

Answer Problem 2

10};

X={1,
1,
1,
1,
1};

AINV=INV(A);
lam=1;

Z={1 0 0 0 0 0 0 0 0,
0 0 0 1 0 0 0 0 0,
0 0 0 0 1 0 0 0 0,
0 0 0 0 0 0 1 0 0,
0 0 0 0 0 0 0 0 1};

0 0 0.25 0.75 0 0.75 0.125 1.25 0.6875,
0.125 0.125 0.375 0.375 0.25 0.5 0.5625 0.6875 1.0625};

BU=

Answer
11.03
-0.89
0.247
0.338
0.307

-0.075
0.206
0 587

LHS=((X`*X)||(X`*Z))//((Z`*X)||(Z`*Z+AINV#LAM));
RHS=(X`*Y)//(Z`*Y);
C=INV(LHS);
BU=C*RHS;

0.587
0.023

-0.102
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Lecture 8 
QTL and Association mapping 

Bruce Walsh lecture notes 
Summer Institute in Statistical Genetics 

Seattle, 18 – 20 July 2016 

Part I 
QTL mapping and the use of

 inbred line crosses 
•  QTL mapping tries to detect small (20-40 cM)

 chromosome segments influencing trait
 variation 
–  Relatively crude level of resolution 

•  QTL mapping performed either using inbred
 line crosses or sets of known relatives 
–  Uses the simple fact of an excess of parental

 gametes 

2 
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Key idea:  Looking for marker-trait 
associations in collections of relatives  

If (say) the mean trait value for marker 
genotype MM is statistically different 
from that for genotype mm, then the M/m 
marker is linked to a QTL  

One can use a random collection of such 
markers spanning a genome (a genomic 
scan) to search for QTLs  

4 

Experimental Design:  Crosses 

P1  x  P2 

F1 F1 x F1 

F2 

F2 design 
F1 

B1 

Backcross design 

B2  Backcross design 
F1 

Fk 

F2 

F1 

Advanced intercross 
Design (AIC, AICk) 

RILs = Recombinant 
inbred lines (selfed F1s) 
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Experimental Designs: Marker
 Analysis 

Single marker analysis 

Flanking marker analysis (interval mapping) 

Composite interval mapping 

Interval mapping plus additional markers 

Multipoint mapping 

Uses all markers on a chromosome simultaneously 
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Conditional Probabilities of
 QTL Genotypes 

The basic building block for all QTL methods is 
Pr(Qk | Mj ) --- the probability of QTL genotype 
Qk given the marker genotype is Mj.  

P r ( Q k | M j ) = 
P r ( Q k M j ) 
P r ( M j ) 

Consider a QTL linked to a marker (recombination 
Fraction = c).  Cross MMQQ x mmqq.  In the F1, all 
gametes are MQ and mq 

In the F2, freq(MQ) = freq(mq) = (1-c)/2, 
                freq(mQ) = freq(Mq) = c/2 
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 Hence, Pr(MMQQ) = Pr(MQ)Pr(MQ) = (1-c)2/4 

Pr(MMQq) = 2Pr(MQ)Pr(Mq) = 2c(1-c) /4 

Why the 2?  MQ from father, Mq from mother, OR 
MQ from mother, Mq from father 

Since Pr(MM) = 1/4, the conditional probabilities become 

Pr(MMqq) = Pr(Mq)Pr(Mq) = c2 /4 

Pr(QQ | MM) = Pr(MMQQ)/Pr(MM) = (1-c)2  

Pr(Qq | MM) = Pr(MMQq)/Pr(MM) = 2c(1-c)  

Pr(qq | MM) = Pr(MMqq)/Pr(MM) =  c2 

How do we use these? 
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Expected Marker Means 
The expected trait mean for marker genotype Mj 
is just 

For example, if QQ = 2a, Qq = a(1+k), qq = 0, then in  
the F2 of an MMQQ/mmqq cross, 

• If the trait mean is significantly different for the 
genotypes at a marker locus, it is linked to a QTL 

• A small MM-mm difference could be (i) a tightly-linked 
  QTL of small effect or (ii) loose linkage to a large QTL   
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Linear Models for QTL Detection 
The use of differences in the mean trait value 
for different marker genotypes to detect a QTL  
and estimate its effects is a use of linear models. 

One-way ANOVA. 
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Detection:  a  QTL is linked to the marker if at least  
one of the bi is significantly different from zero 

Estimation: (QTL effect and position):  This requires 
relating the bi to the QTL effects and map position  
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Detecting epistasis 
One major advantage of linear models is their 
flexibility.  To test for epistasis between two QTLs, 
use  ANOVA with an interaction term 
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Detecting epistasis 

• At least one of the ai significantly different from 0 
 ---- QTL linked to first marker set 

• At least one of the  bk significantly different from 0 
 ---- QTL linked to second marker set 

• At least one of the  dik significantly different from 0 
 ---- interactions between QTL in sets 1 and two 

Problem:  Huge number of potential interaction terms 
(order m2, where m = number of markers) 
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Maximum Likelihood Methods  
ML methods use the entire distribution of the data, not 
just the marker genotype means. 

More powerful that linear models, but not as flexible 
in extending solutions (new analysis required for each model) 

Basic likelihood function: 

Trait value given
 marker genotype is

 type j 

This is a mixture model 

14 

Maximum Likelihood Methods  

enter 
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ML methods combine both detection and estimation 
of QTL effects/position. 

Test for a linked QTL given from by the Likelihood 
Ratio (or  LR ) test 

A typical QTL map from a likelihood analysis 
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Interval Mapping with Marker
 Cofactors 

i i+1 i+2 i-1 

Consider interval mapping using the markers i and i+1. QTLs linked
 to these markers, but outside this interval, can contribute (falsely) to
 estimation of  QTL position and effect 

Now suppose we also add the two markers flanking the 
interval (i-1 and i+2) 

Interval being mapped 

18 

i i+1 i+2 i-1 

Inclusion of markers i-1 and i+2 fully account 
for any linked QTLs to the left of i-1 and the 
right of i+2 

Interval mapping + marker cofactors is called  
Composite Interval Mapping (CIM) 

CIM also (potentially) includes unlinked markers to 
account for QTL on other chromosomes. 

CIM works by adding an additional term to the 
linear model, 
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Power and Precision 

While modest sample sizes are sufficient to 
detect a QTL of modest effect (power), large  
sample sizes are required to map it with any 
precision 

With 200-300 F2, a QTL accounting for 5% of 
total variation can be mapped to a 40cM interval 

Over 10,000 F2 individuals are required to map 
this QTL to  a 1cM interval 

20 

Power and Repeatability:  The
 Beavis Effect 

QTLs with low power of detection tend to have their 
effects overestimated, often very dramatically   

As power of detection increases, the overestimation 
of detected QTLs becomes far less serious  

This is often called the Beavis Effect, after Bill 
Beavis who first noticed this in simulation studies. 
This phenomena is also called the winner’s curse in 
statistics (and GWAS)  
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Beavis Effect 
Also called the “winner’s curse” in the GWAS literature 

True value 

Distribution of 
the realized value of an 
effect in a sample 

Significance  
threshold 

High power setting:  Most realizations are to the 
right of the significance threshold.  Hence, the 
average value given the estimate is declared significant  
(above the threshold) is very close to the true value. 
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True value 

In low power settings, most realizations are below 
the significance threshold, hence most of the time the

 effect is scored as being nonsignificant 

Significance  
threshold 

However, the mean of those declared significant 
is much larger than the true mean 

Mean among  
significant results 
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Inflation can be significant, esp. with low power 

Inflation at 
lower power 
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Beavis simulation:  actual effect size is 1.6% of 
variation.  Estimated effects (at significant markers) 

much higher 
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Model selection 
•  With (say) 300 markers, we have (potentially) 300

 single-marker terms and 300*299/2 = 44,850 epistatic
 terms  
–  Hence, a model with up to p= 45,150 possible parameters 
–  2p possible submodels = 1013,600 ouch! 

•  The issue of Model selection becomes very important. 
•  How do we find the best model? 

–  Stepwise regression approaches 
•  Forward selection (add terms one at a time) 
•  Backwards selection (delete terms one at a time) 

–  Try all models, assess best fit 
–  Mixed-model (random effect) approaches 
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Model Selection 

Model Selection: Use some criteria to choose  among a  
number of candidate models.  Weight goodness-of-fit  
(L, value of the likelihood at the MLEs) vs.  number of  
estimated parameters (k) 

AIC = Akaike’s information criterion  
AIC = 2k - 2 Ln(L) 

BIC = Bayesian information criterion (Schwarz criterion) 
BIC = k*ln(n)/n - 2 Ln(L)/n 
BIC penalizes free parameters more strongly than AIC 

For both AIC & BIC, smaller value  is better 
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Model averaging 
Model averaging:  Generate a composite model by weighting 
(averaging) the various models, using AIC, BIC, or other 

Idea:  Perhaps no “best” model, but several models 
all extremely close.  Better to report this “distribution” 
rather than the best one 

One approach is to average the coefficients on the 
“best-fitting” models using some scheme to return 
a composite model 
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Shrinkage estimators 
Shrinkage estimates:   Rather than adding interaction   
terms one at a time, a shrinkage method starts with all 
interactions included, and then shrinks most back to zero.  

Under a Bayesian analysis, any effect is random.  One can 
assume the effect for (say) interaction ij  is drawn from  
a normal with mean zero and variance σ2

ij 

Further, the interaction-specific variances are themselves  
random variables drawn from a hyperparameter distribution,  
such as an inverse chi-square.   

One then estimates the hyperparameters and  uses these  
to predict the variances, with effects with  small variances  
shrinking back to zero, and effects with large variances  
remaining in the model.    
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What is a “QTL” 
•  A detected “QTL” in a mapping experiment

 is a region of a chromosome detected by
 linkage. 

•  Usually large (typically 10-40 cM) 
•  When further examined, most “large” QTLs

 turn out to be a linked collection of locations
 with increasingly smaller effects 

•  The more one localizes, the more subregions
 that are found, and the smaller the effect in
 each subregion 

•  This is called fractionation 
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Limitations of QTL mapping 
•  Poor resolution (~20 cM or greater in most designs

 with sample sizes in low to mid 100’s) 
–  Detected “QTLs” are thus large chromosomal regions 

•  Fine mapping requires either 
–  Further crosses (recombinations) involving regions of

 interest (i.e., RILs, NILs) 
–  Enormous sample sizes   

•  If marker-QTL distance is 0.5cM, require sample sizes
 in excess of 3400  to have a 95% chance of 10 (or
 more) recombination events in sample 

• 10 recombination events allows one to separate
 effects that differ by ~ 0.6 SD 
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•  “Major” QTLs typically fractionate  
–  QTLs of large effect (accounting for  > 10% of the

 variance) are routinely discovered. 
–  However, a large QTL peak in an initial experiment

 generally becomes a series of smaller and smaller
 peaks upon subsequent fine-mapping. 

•  The Beavis effect: 
–  When power for detection is low, marker-trait

 associations declared to be statistically significant
 significantly overestimate  their true effects. 

–  This effect can be very large (order of magnitude)
 when power is low. 

Limitations of QTL mapping (cont) 

II:  
 QTL mapping in Outbred

 Populations 
and Association Mapping 

•  Association mapping uses a set of very dense
 markers in a set of (largely) unrelated
 individuals 

•  Requires population level LD 
•  Allows for very fine mapping (1-20 kB) 
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QTL mapping in outbred
 populations 

• Much lower power than line-cross QTL
 mapping 

•  Each parent must be separately
 analyzed 

• We focus on an approach for general
 pedigrees, as this leads us into
 association mapping 
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General Pedigree Methods 
Random effects (hence, variance component) method 
for detecting QTLs in general pedigrees 

The model is rerun for each marker 
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The covariance between individuals i and j is thus 

Fraction of chromosomal
 region shared IBD 

between individuals i and j. 

Resemblance
 between
 relatives

 correction 

Variance
 explained by
 the region of

 interest 

Variance
 explained by

 the
 background
 polygenes 
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Assume z is MVN, giving the covariance matrix as 

A significant σA
2 indicates a linked QTL. 
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Association & LD mapping 

Mapping major genes (LD mapping) vs. trying to 
Map QTLs (Association mapping) 

Idea:  Collect random sample of individuals, contrast 
trait means over marker genotypes 

If a dense enough marker map, likely population level 
linkage disequilibrium (LD) between closely-linked  
genes 
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D(AB) = freq(AB) - freq(A)*freq(B).   
LD = 0 if A and B are independent.  If LD not zero, 
correlation between A and B in the population 

LD:  Linkage disequilibrium 

If a marker and QTL are linked, then the marker and 
QTL alleles are in LD in close relatives, generating 
a marker-trait association. 

The decay of D:  D(t) = (1-c)t D(0) 
here c is the recombination rate.  Tightly-linked genes 
(small c) initially in LD can retain LD for long periods of 
time 
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Dense SNP Association Mapping 
Mapping genes using known sets of relatives can be 
problematic because of the cost and difficulty in 
obtaining enough relatives to have sufficient power. 

By contrast, it is straightforward to gather large 
sets of unrelated individuals, for example a large 
number of cases (individuals with a particular  
trait/disease) and controls (those without it). 

With the very dense set of SNP markers (dense = 
very tightly linked), it is possible to scan for markers 
in LD in a random mating population with QTLs, simply 
because c is so small that LD has not yet decayed 
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These ideas lead to consideration of a strategy of 
Dense SNP association mapping.   

For example, using 30,000 equally spaced SNP in 
The 3000cM human genome places any QTL within 
0.05cM of a SNP.  Hence, for an association created 
t generations ago (for example, by a new mutant 
allele appearing at that QTL), the fraction of 
original LD still present is at least (1-0.0005)t ~ 
1-exp(t*0.0005).  Thus for mutations 100, 500, 
and 1000  generations old (2.5K, 12.5K, and 25 K 
years for humans), this fraction is 95.1%, 77.8%, 60.6%,  

We thus have large samples and high disequilibrium, 
the recipe needed to detect linked QTLs of small effect  
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Association mapping 
•  Marker-trait associations within a population of unrelated

 individuals 
•  Very high marker density (~ 100s of markers/cM) required 

–  Marker density no less than the average track length of
 linkage disequilibrium (LD) 

•  Relies on very slow breakdown of initial LD generated by a new
 mutation near a marker to generate marker-trait associations 
–  LD decays very quickly unless very tight linkage 
–  Hence, resolution on the scale of LD in the population(s) being studied

 ( 1 ~ 40 kB) 
•  Widely used since mid 1990’s.  Mainstay of human genetics,

 strong inroads in breeding, evolutionary genetics 
•  Power a function of the genetic variance of a QTL, not its mean

 effects 

Manhattan plots 
•  The results for a Genome-wide Association study (or

 GWAS) are typically displayed using a Manhattan
 plot. 
–  At each SNP, -ln(p), the negative log of the p

 value for a significant marker-trait association is
 plotted. Values above a threshold indicate
 significant effects 

–  Threshold set by Bonferroni-style multiple
 comparisons correction 

–  With n markers, an overall false-positive rate of p
 requires each marker be tested using p/n. 

–  With n = 106 SNPs,  p must exceed 0.01/106 or
 10-8 to have a control of 1% of a false-positive   
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Candidate Loci and the TDT 

Often try to map genes by using case/control contrasts,  
also called association mapping. 

The frequencies of marker alleles are measured in both a 
    case sample -- showing the trait (or extreme values) 
    control sample -- not showing the trait 

The idea is that if the marker is in tight linkage, we might 
expect LD between it and the particular DNA site causing 
the trait variation. 

Problem with case-control approach (and association 
mapping in general):  Population  Stratification can give 
false positives. 

46 

Gm+ Total % with diabetes 

Present 293 8% 

Absent 4,627 29% 

When population being sampled actually consists of  several distinct
 subpopulations we have lumped together, marker alleles may provide
 information as to which group an individual belongs.  If there are other
 risk factors in a group, this can create a false association btw marker
 and trait 

Example.  The Gm marker was thought (for biological reasons) to be
 an excellent candidate gene for  diabetes in the high-risk population
 of Pima Indians in the American Southwest.  Initially a very strong
 association was observed: 
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Gm+ Total % with diabetes 

Present 293 8% 

Absent 4,627 29% 

Problem:  freq(Gm+) in Caucasians (lower-risk diabetes 
Population) is 67%, Gm+ rare in full-blooded Pima 

Gm+ Total % with diabetes 

Present 17 59% 

Absent 1,764 60% 

The association was re-examined in a population of Pima 
that were 7/8th (or more) full heritage: 
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Linkage vs. Association 
The distinction between linkage and association 
is subtle, yet critical 

Marker allele M is associated with the trait if 
Cov(M,y) is not 0 

While such associations can arise via linkage, they 
can also arise via population structure. 

Thus, association DOES NOT imply linkage, and
 linkage is not sufficient for association 
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Transmission-disequilibrium test (TDT) 
The TDT accounts for population structure.  It requires 
sets of relatives and  compares the number of times a  
marker allele is transmitted (T) versus not-transmitted  
(NT)  from a marker  heterozygote parent to affected   
offspring.   

Under the hypothesis of no linkage, these values  
should be equal, resulting in a chi-square test for 
lack of fit: 
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Allele T NT χ2  p 

228 81 45 10.29 0.001 

230 59 73 1.48 0.223 

240 36 24 2.30 0.121 

Scan for type I diabetes in Humans.  Marker locus 
D2S152 



Accounting for population structure 

•  Three classes of approaches proposed 
–  1) Attempts to correct for common pop structure

 signal (genomic control, regression/ PC methods)  
–  2) Attempts to first assign individuals into

 subpopulations and then perform association
 mapping in each set (Structure) 

–  3) Mixed models that use all of the marker
 information (Tassle, EMMA, many others) 

•  These can also account for cryptic relatedness in the
 data set, which also causes false-positives. 
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Genomic Control 
Devlin and Roeder (1999).  Basic idea is that association tests (marker
 presence/absence vs. trait presence/absence) is typically done with a
 standard 2 x 2 χ2 test. 

When population structure is present, the test statistic now follows
 a scaled χ2, so that if S is the test statistic, then S/λ ~ χ2

1  (so S ~
 λχ2

1) 

The inflation factor λ is given by 

Note that this departure from a χ2 increases with sample size n 
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Genomic Control 

 λ = 1 + nFST Σk (fk-gk)2 

Assume n cases 
and controls 

Population 
substructure 

Fraction of cases 
in kth population 

Fraction of controls 
in kth population 

Genomic control attempts to estimate λ directly 
from our distribution of test statistics S 
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Estimation of λ 
The mean of a χ2

1 is one.  Hence, since S ~ λχ2
1  and we expect most

 test statistic values to be from the null (no linkage), one estimator of
 λ is simply the mean of S, the mean value of 
the test statistics. 

The problem is that this is not a particular robust estimator, as a
 few extreme values of S (as would occur with linkage!) can inflate
 λ over its true value. 

A more robust estimator is offered from the medium 
(50% value) of the test statistics, so that for m tests 
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Structured Association Mapping 

Pritchard and Rosenberg (1999) proposed 
Structured Association Mapping, wherein 
one assumes k subpopulations (each in Hardy- 
Weinberg). 

Given a large number of markers, one then attempts 
to assign individuals to groups using an MCMC  
Bayesian classifier  

Once individuals assigned to groups, association mapping 
without any correction can occur in each group. 
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Regression Approaches 

A third approach to control for structure is 
simply to include a number of markers, outside 
of the SNP of interest, chosen because they 
are expected to vary over any subpopulations 

How might you choose these in a sample?  Try 
those markers (read STRs) that show the largest 
departure from Hardy-Weinberg, as this is expected 
in markers that vary the most over subpopulations. 
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Variations on this theme (eigenstrat) --- use all of the  
marker information to extract a set of significant 
PCs, which are then included in the model as cofactors 

Mixed-model approaches 
• Mixed models use marker data to  

– Account for population structure 
– Account for cryptic relatedness 

•  Three general approaches: 
– Treat a single SNP as fixed 

• TASSLE, EMMA 

– Treat a single SNP as random 
• General pedigree method 

– Fit all of the SNPs at once 
• GBLUP 

58 
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 Structure plus Kinship Methods 
Association mapping in plants offer occurs by first taking  
a large  collection of lines, some closely related, others  
more distantly related.  Thus, in addition to this collection  
being a series of subpopulations (derivatives from a  
number of founding lines), there can also be additional  
structure within each subpopulation (groups of more  
closely related lines within any particular  lineage).  

Y = Xβ + Sa + Qv + Zu + e 

Fixed effects in blue, random effects in red 

This is a mixed-model approach. The program TASSEL 
runs this model.  
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 Q-K method 

Y = Xβ + Sa + Qv + Zu + e 

 β = vector of fixed effects 

 a = SNP effects 

 v = vector of subpopulation effects (STRUCTURE) 
Qij = Prob(individual i in group j).  Determined 
from STRUCTURE output 

u = shared polygenic effects due to kinship.   
Cov(u) = var(A)*A, where the relationship matrix 
A estimated from marker data matrix K, also called a 
GRM – a genomic relationship matrix 



Which markers to include in K? 

•  Best approach is to leave out the marker
 being tested (and any in LD with it) when
 construction the genomic relationship matrix 
–  LOCO approach – leave out one chromosome

 (which the tested marker is linked to) 

•  Best approach seems to be to use most of
 the markers 

•  Other mixed-model approaches along these
 lines  
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GBLUP 
•  The Q-K method tests SNPs one at a time,

 treating them as fixed effects 
•  The general pedigree method (slides 35-36)

 also tests one marker at a time, treating
 them as random effects 

•  Genomic selection can be thought of as
 estimating all of the SNP effects at once and
 hence can also be used for GWAS 
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BLUP, GBLUP, and GWAS 
•  Pedigree information gives EXPECTED value 

of shared sites (i.e., ½ for full-sibs) 
–  A matrix in BLUP 
–  The actual realization of the fraction of shared 

genes for a particular pair of relatives can be 
rather different, due to sampling variance in 
segregation of alleles 

–  GRM, genomic relationship matrix (or K or marker 
matrix M)  

–  Hence “identical” relatives can differ significantly 
in faction of shared regions 

–  Dense marker information can account for this 
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The general setting 
•  Suppose we have n measured individuals (the n x 1

 vector y of trait values)  
•  The n x n relationship matrix A gives the relatedness

 among the sampled individuals, where the elements
 of A are obtained from the pedigree of measured
 individuals 

•  We may also have p (>> n) SNPs per individual,
 where the n x p marker information matrix M
 contains the marker data, where Mij = score  for SNP
 j (i.e., 0 for 00, 1 for 10, 2 for 11) in individual i.  



Covariance structure of random effects 

•  A critical element specifying the mixed model is the
 covariance structure (matrix) of the vector u of
 random effects 

•  Standard form is that Cov(u) = variance component *
 matrix of known constants 
–  This is the case for pedigree data, where u is typically the

 vector of breeding values, and the pedigree defines a
 relationship matrix A, with Cov(u) = Var(A) * A, the additive
 variance times the relationship matrix 

–  With marker data,  the covariance of random effects are
 functions of the marker information matrix M.   

•  If u is the vector of p marker effects, then Cov(u) =
 Var(m) * MTM, the marker variance times the covariance
 structure of the markers. 

Y = Xβ + Zu + e 

Pedigree-based BV estimation:  (BLUP)   
unx1 = vector of BVs, Cov(u) = Var(A) Anxn 

Marker-based BV estimation:  (GBLUP) 
unx1 = vector of BVs, Cov(u)  = Var(m) MTM (n x n) 

GWAS:  upx1 = vector of marker effects, 
Cov(u)  = Var(m) MMT  (p x p) 

Genomic selection: predicted vector of breeding values  
from marker effects (genetic breeding values),  
GBVnx1 = Mnxpupx1.  
Note that Cov(GBV)  = Var(m) MTM (n x n)  

Many variations of these general ideas by adding 
additional assumptions on covariance structure. 



GWAS Model diagnostics 
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Genomic control λ as a diagnostic tool 

•  Presence of population structure will inflate the λ
 parameter 

•  A value above 1 is considered evidence of additional
 structure in the data 
–  Could be population structure, cryptic relatedness, or both 
–  A lambda value less that 1.05 is generally considered benign 

•  One issue is that if the true polygenic model holds (lots of
 sites of small effect), then a significant fraction will have
 inflated p values, and hence an inflated λ value. 

•  Hence, often one computes the λ following attempts to
 remove population structure.  If the resulting value is
 below 1.05, suggestion that structure has been largely
 removed. 
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P – P plots 

•  Another powerful diagnostic tool is the p-p plot. 
•  If all tests are drawn from the null, then the

 distribution of p values should be uniform. 
–  There should be a slight excess of tests with very

 low p indicating true positives 
•  This gives a straight line of a log-log plot of

 observed (seen) and expected (uniform) p values
 with a slight rise near small values 
–  If the fraction of true positives is high (i.e., many

 sites influence the trait), this also bends the p-p
 plot 
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A few tests 
are significant Great excess of 

Significant tests 

Price et al. 2010 Nat Rev Gene 11: 459 
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Great excess of 
Significant tests 

As with using λ, one should construct p-p following  
some approach to correct for structure & relatedness 
to see if they look unusual.  
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Power of Association mapping 
Q/q is the polymorphic site contributing to trait 
variation, M/m alleles (at a SNP) used as a marker 

Let p be the frequency of M, and assume that 
Q only resides on the M background (complete 
disequilibrium) 

Haloptype Frequency effect 

QM rp a 

qM (1-r)p 0 

qm 1-p 0 
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Haloptype Frequency effect 

QM rp a 

qM (1-r)p 0 

qm 1-p 0 

Genetic variation associated with Q = 2(rp)(1-rp)a2  

~ 2rpa2  when Q rare. Hence, little power if Q rare 

Genetic variation associated with marker M is 
2p(1-p)(ar)2 ~ 2pa2r2  

Effect of m = 0 

Effect of M = ar  

Ratio of marker/true effect variance is ~ r 

Hence, if Q rare within the A class, even less power! 
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Common variants 
•  Association mapping is only powerful for common

 variants   
–  freq(Q) moderate 
–  freq (r) of Q within M haplotypes modest to large 

•  Large effect alleles (a large) can leave small signals. 
•  The fraction of the actual variance accounted for by

 the markers is no greater than ~ ave(r), the average
 frequency of Q within a haplotype class 

•  Hence, don’t expect to capture all of Var(A) with
 markers, esp. when QTL alleles are rare but markers
 are common (e.g. common SNPs, p > 0.05) 

•  Low power to detect G x G, G x E interactions 
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“How wonderful that we have met with a 
paradox.  Now we have some hope of 
making progress”   -- Neils Bohr 
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The “missing heritability” pseudo-paradox 
•  A number of GWAS workers noted that the sum of

 their significant marker variances was much less
 (typically 10%) than the additive variance estimated
 from biometrical methods 

•  The “missing heritability” problem was birthed from
 this observation. 

•  Not a paradox at all 
–  Low power means small effect (i.e. variance) sites

 are unlikely to be called as significant, esp. given
 the high stringency associated with control of
 false positives over tens of thousands of tests 

–  Further, even if all markers are detected, only a
 fraction ~ r (the frequency of the causative site
 within a marker haplotype class) of the underlying
 variance is accounted for. 
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Dealing with Rare Variants 
•  Many disease may be influenced by rare

 variants. 
–  Problem:  Each is rare and thus overall gives a

 weak signal, so testing each variant is out (huge
 multiple-testing problem) 

–   However, whole-genome sequencing (or just
 sequencing through a target gene/region) is
 designed to pick up such variants 

•  Burden tests are one approach 
–  Idea:  When comparing case vs. controls, is there

 an overdispersion of mutations between the two
 categories? 
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Solid = random distribution over cases/controls 
Blue = observed distribution 

A:  Variants only increase disease risk (excess at high values) 

B: Variants can both increase (excess high values) and  
decrease risk (excess low values) --- inflation of the variance 
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C(α) test 
•  Idea:  Suppose a fraction p0 of the sample are

 controls, p1 = 1-p0 are cases.  Note these varies
 are fixed over all variants 

•  Let ni be the total number of copies of a rare
 variant i. 

•  Under binomial sampling, the expected number
 of variant i  in the case group is ~ Bin(p1,ni) 

•  Pool the observations of all such variants over a
 gene/region of interest and ask if the variance in
 the number in cases exceeds the binomial
 sampling variance nip1(1-p1) 
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C(α) test (cont). 
•  Suppose m variants in a region, test statistic is of the

 form 
•   Σi (yi  - nip1)2 - nip1 (1-p1) 
•  yi = number of variant I in cases. 
•  This is observed variance minus binomial prediction 
•  This is scaled by a variance term to give a test

 statistic that is roughly normally distributed 
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Lecture 9: 
Using molecular markers to 

detect selection 

Bruce Walsh lecture notes 
Summer Institute in Statistical Genetics 

Seattle, 18 – 20 July 2016 
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Detecting selection 
•  Bottom line:  looking for loci showing 

departures from the equilibrium neutral 
model 

•  What kinds of selection are of interest? 
•  Time scales and questions 
•  KEY POINTS 

–  False positives very common 
–  MOST selective events will not be detected 
–  Those that are likely represent a rather biased 

sample 
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Negative selection is common 
•  Negative (or purifying) selection is the 

removal of deleterious mutations by selection 
•  Leaves a strong signal throughout the 

genome 
–  Faster substitution rates for silent vs. replacement 

codons 
–  Comparative genomics equates strong sequence 

conservation (i.e., high negative selection) with 
strong functional constraints  

–  The search for selection implies selection OTHER 
than negative 
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Positive selection 
•  An allele increasing in frequency due to 

selection 
–  Can either be a new mutation or a previously 

neutral/slightly deleterious allele whose fitness 
has changed due to a change in the environment. 

–  Adaptation 
•  Balancing selection is when alternative alleles 

are favored by selection when rare 
–  MHC, sickle-cell  

•  The “search for selection” is the search for 
signatures of positive, or balancing, selection 
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Time scales of interest 
•  Ecological 

–  An allele either currently undergoing selection or has VERY 
recently undergone selection 

–  Detect using the nature of genetic variation within a 
population sample 

–  Key:  A SINGLE event can leave a signature 
•  Evolutionary 

–  A gene or codon experiences REPEATED adaptive events 
over very long periods of time 

–  Typically requires between-species divergence data 
–  Key:  Only informs us as to the long-term PATTERN of 

selection over a gene 

6 
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Biased scan for selection 
•  Current/very recent selection at a single site 

requires rather strong selection to leave a 
signature. 
–  Small shifts in allele frequencies at multiple sites 

unlikely to leave signatures 
–  Very small time window (~0.1 Ne generations) to 

detect such an event once it has occurred. 
•  Recurrent selection 

–  Phylogenic comparisons:  Multiple substitution 
events at the same CODON required for a signal 

–  OK for “arms-race” genes, likely not typical 
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•  Recurrent selection at sites OVER a gene 
–  Comparing fixed differences between two species 

with the observed levels of polymorphism 
–  Requires multiple substitutions at different codons 

(i.e., throughout the gene) for any signal 
–  Hence, a few CRITICAL adaptive substitutions can 

occur in a gene and not leave a strong enough 
signal to detect 

–  Power depends on the number of adaptive 
substitutions over the background level of neutral 
substitutions 
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*

* * *

Ongoing, or recent, selection

Sample of a gene from several 
individuals in the same population

Detecting ongoing selection within a population.  Requires 
a population sample, in which we look for inconsistencies of 
the pattern of variation from the equilibrium neutral  
model.  Can detect on-going selection in a single region, 
influencing the pattern of variation at linked neutral  
loci. 
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x *

?

? ?

*

Sample of a gene over several species

Divergence data on a phylogeny.
Repeated positive selection at the same site 

A phylogenic comparison of a sequence over a group 
of species is done on a codon-by-codon basis, looking for 
those with a higher replacement than site rate. 
Requires MULTIPLE substitutions at the same codon over 
the tree 
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* ** *

Fixed differences between two species

Positive selection occurring over
multiple sites within the gene

Comparison of divergence data for a pair of species. 
Requires a background estimate of the expected divergence 
from fixation of neutral sites, which is provided from 
the polymorphism data (I’ll cover this shortly). 
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Key points 
•  Methods for detecting selection   

–  Are prone to false-positives 
•  The rejection of the null (equilibrium neutral model) can 

occur for reasons other the positive/balancing selection, 
such as changes in the population size 

–  Are under-powered 
•  Most selection events likely missed 

–  Detect only specific types of selection events 
•  Ongoing moderate to strong events 
•  Repeated adaptive substitutions in a few codons over a 

phylogeny 
•  Repeated adaptive substitutions over all sites in a gene 



13 

Detecting on-going selection 
•  Excessive allele frequency change/divergence 
•  Selective Sweeps 

–  Reduction in polymorphism around a selected site 
•  Shifts in the allele frequency spectrum 

–  i.e., too many rare alleles 
•  Allelic age inconsistencies 

–  Allele too common relative to its age 
–  Excessive LD in a common allele 
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Excess allele frequency change 

•  Logically, most straightforward 
• Need estimates of Ne, time 
• Need two (or more) time points 
• Generally weak power unless selection 

strong or time between sampling long 
•  Example:  Divergence between breeds 

selected for different goals 
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Five-marker window scans of difference between  
Holstein & Angus breeds (dairy vs. beef selection) 
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Selective sweeps 
•  Classic visual tool to look for potential sites 

under selection 
–  Common approach in the search for 

domestication genes 
•  Positive selection reduces Ne for linked sites 

–  Reduces TMRCA and hence variation 
•  Balancing selection increases Ne for linked 

sites 
–  Increases TMRCA and hence increase variation 
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Neutral

Balancing
selection

Selective
  Sweep

Past 

Present 

Longer TMRCA 

Shorter TMRCA 
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Scanning for Sweeps 

•  Use a sliding window to look at variation 
along a chromosome (or around a candidate 
gene) 

•  Decrease (with respect to some standard) 
consistent with linked site under recent/
ongoing positive selection 

•  Increase consistent with balancing selection 
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Signal of positive 
selection, OR 
reduction in mutation 
rate 

Signal of balancing 
selection, OR 
increase in mutation 
rate 



21 Domestication:  Maize vs. teosinte 

22 

tb1 in maize.  Used  teosinte as a control for 
expected background levels of variation 
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ADH in Drosophila.  Strong candidate for balancing 
selection of the Fast and Slow alleles, due to a single 
aa replacement at the location marked by the arrow 
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Scan of Drosophila genes in Africa (source population) and 
Europe (recently founded population).  Less diversity in 
Europe, but some loci (filled circles) strong candidates for 
a sweep 
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Double-muscle cattle: 
Belgian blue

26 

Reduction in microsatellite copy number variance often used  
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Issues with sweeps 
•  Need sufficient background variation before 

selection for a strong signal 
–  Strong domestication event (e.g. sorghum) can 

remove most variation over entire genome 
–  Inbreeding greatly reduces variation 

•  The signal persists for only a short time   
–   ~ 0.1 Ne generations 
–  Distance for effects roughly 0.01 s/c 

•  Sweep region often asymmetric around 
target site 

•  Hard sweeps can be detected, soft sweeps 
leave (at best)  a weak signal 
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Rapid fixation
under selection

Selection starts at the 
appearance the new mutation

Initially, new mutation is
neutral

drift & 
mutation

Rapid fixation
under selection

A) Hard Sweep B) Soft  Sweep
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Site frequency spectrum tests 

•  A large collection of tests based on 
comparing different measures of variation at 
a target site within a population sample  

•  Tajima’s D is the classic 
•  Problem:  significant result from either 

selection OR changes in population size/
structure (drift, mutation NOT at equilibrium) 
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Under the equilibrium neutral model, multiple ways 
to estimate θ = 4Neu using different metrics of variation 

All should be consistent if model holds. 
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Tajima’s D 

Negative value:  excess number of rare alleles 
consistent with either positive selection OR 
expanding population size 

Positive value:  excess number of common alleles 
consistent with either balancing selection OR 
Population subdivision 
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0.20.0 0.60.4 1.00.8

Allele frequency

0.2

0.4

0.6

0.8

1.0

A
ge

/N

Consistency of allelic age 

Under drift, a common 
allele is an old allele 

Common alleles should 
not be young 
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Starting haplotype

time

freq

Common alleles should have short haplotypes under  
drift -- longer time for recombination to act 

Common alleles with long haplotypes --- good signal 
for selection, rather robust to demography 
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Joint polymorphism-divergence tests 

•  HKA, McDonald-Kreitman (MK) tests 
–  MK test is rather robust to demographic issues 

•  Require polymorphism data from one (or 
more) species, divergence data btw species 

•  Look at ratio of divergence to polymorphism 
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Cool feature:  can estimate # of adaptive substitutions 
= 7 - 17(2/42) = 6 

Robust to most demographic issues 

However, replacement polymorphic sites can overestimate 
neutral rate due to deleterious alleles segregating 
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Strengths and weaknesses 
•  Only detects a pattern of adaptive 

substitutions at a gene. 
–  Require multiple events to have any power 
–  Can’t tell which replacements were selectively-

driven 
•  MK test robust to many demographic issues, 

but NOT fool-proof 
–  Any change in the constraints between processes 

generating polymorphisms and processes 
generating divergence can be regarded as 
evidence for selection   
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KA/Ks tests 
•  THE classic test for selection, requiring gene 

sequences over a known phylogeny 
–  KA = replacement substitution rate 
–  Ks = silent substitution rate  

•  Neutral proxy 
–    ω = KA/Ks 

•   ω > 1:  positive selection. 
–  Problem:  most codons have Ks > KA, so that even 

with repeated adaptive substitutions throughout a 
gene, signal still swamped. 
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Codon-based models 

•  The way around this problem is to analyze a 
gene on a codon-by-codon basis 
–  Such codon-based models assign all (nonstop) 

codons a value from 1 to 61 
–  A model of transition probabilities between all 

one-nucleotide transitions is constructed 
–  Maximum likelihood used to estimate parameters 
–  Model with ω = 1 over all codons contrasted with 

a model where ω > 1 at some (unspecified) set of 
codons. 
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Model easily expanded to allow for several classes of codons 

Can use Baye’s theorem to assign posterior probabilities 
that a given codon is in a given class (i.e., localize sites  
of repeated positive selection 
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Strengths and weaknesses 
•  Strengths 

–  Can assign repeated selection to SPECIFIC 
codons 

–  Requires only single sequences for each species 

•  Weaknesses: 
–  Models can be rather delicate 
–  Can only detect repeated selection at particular 

codons, NOT throughout a gene 
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The spandrels of  
San Marco (Gould  
and Lewontin 1979) 

Very elaborate structure 
DOES not imply  
function nor adaptation 
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Structure vs. function 

•  Molecular biologists are largely conditioned 
to look for function through structure 

•  Problem:  elaborate structures can serve little 
function 

•  Cannot simply assume an adaptive 
explanation because the structure is complex 
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ASPM 

 ω values shown on braches 
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Genomic Selection

• Assumes
Dense markers evenly spaced across the genome– Dense markers evenly spaced across the genome

– Assumes markers are in LD with QTL affecting trait(s) 
of interest

– Each marker accounts for an equal proportion of 
genetic variance (infinitesimal model)

– Genetic Effects are Normally Distributed
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Model
eZuXbY ++=

Mau =
RZGZ'eZuXbY +=++= )()( VV

Guuu == )'()( EV

M is the marker matrix
a is a vector of SNP effects
Note Ma is a vector of summed marker effects
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Guuu )()( EV
LA /'2

*MMG σ=
2
eσIR =

Genomic Relationship Matrix (GRM)

Genomic Relationship Matrix

• Assumes
Alike in State (AIS) alleles were at one time a result of– Alike in State (AIS) alleles were at one time a result of 
a single mutation, thus IBD when traced back in 
evolutionary time
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Compute genomic relationship matrix 
(GRM) from rules of IBD

*2
*GG Aσ=TAk=total allelic relationship at kth locus

TAk=2x coefficient of relationship

4
2

2

1

2

1
∑∑
= == i j

ij

k

I
TA

L

ATAk 2x coefficient of relationship
(Malecot. 1948)

2
*Aσ

Is the additive genetic variance 
associated with the markers for 
the trait

L

TA
G

L

k
k

xy

∑
== 1*

22
* AA σσ <

Note: with low marker density the 
markers may not capture any 
genetic variance
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1 2 1 2 1 2 1 2 1 2
1 2 2 1 1 1 2 1 1 2 2 1 2
2 1 2 1 2 2 2 1 2 1 1
3 1 2 1 1 1 2 1 2 1 2
4 2 2 1 1 2 2 1 1 2 1 3 4 5 6
5 2 1 1 2 2 2 1 1 2 1
6 2 2 1 1 2 2 1 1 2 1

dividuals (X,Y) Total Relationsip=axy
x=1 2 2 1 1 1 2 1 1 2 2

Pedigree
Individual

LOCUS
A B C D E

y=1 2 2 1 1 1 2 1 1 2 2

sum 4 4 2 4 4
hared alleles 2 2 1 2 2 9 1.8

x=1 2 2 1 1 1 2 1 1 2 2
y=2 1 2 1 2 2 2 1 2 1 1

sum 2 2 2 2 0
hared alleles 1 1 1 1 0 4 0.8

AIS G=GRM IBD PEDIGREE A
1 2 3 4 5 6

1 1.8 0.8 1.2 1.6 1.2 1.6 1 0 0.5 0.5 0.5 0.5
2 0.8 1.4 1 1.2 1.2 1.2 0 1 0.5 0.5 0.5 0.52 0.8 1.4 1 1.2 1.2 1.2 0 1 0.5 0.5 0.5 0.5
3 1.2 1 1.2 1.2 1 1.2 0.5 0.5 1 0.5 0.5 0.5
4 1.6 1.2 1.2 1.8 1.4 1.8 0.5 0.5 0.5 1 0.5 0.5
5 1.2 1.2 1 1.4 1.4 1.4 0.5 0.5 0.5 0.5 1 0.5
6 1.6 1.2 1.2 1.8 1.4 1.8 0.5 0.5 0.5 0.5 0.5 1

Parents assumed not related (False) Parents assumed non inbred (false) Full sibs assumed = relationship (false)
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G* Computed Directly from M
code

22=2 1
1 2 1 2 1 2 1 2 1 2 12=1 0

1 2 2 1 1 1 2 1 1 2 2 11=0 -1
2 1 2 1 2 2 2 1 2 1 1
3 1 2 1 1 1 2 1 2 1 2

Individual

LOCUS
A B C D E

4 2 2 1 1 2 2 1 1 2 1
5 2 1 1 2 2 2 1 1 2 1
6 2 2 1 1 2 2 1 1 2 1

M N individuals x p markers M' p markers x N individuals
1 1 -1 0 -1 1 1 0 0 1 0 1
2 0 0 1 0 -1 -1 0 -1 -1 0 -1
3 0 -1 0 0 0 0 1 0 1 1 1
4 1 -1 1 -1 0 -1 0 0 -1 -1 -1
5 0 0 1 -1 0 1 -1 0 0 0 0
6 1 -1 1 -1 0

0.8 -0.2 0.2 0.6 0.2 0.6 1.8 0.8 1.2 1.6 1.2 1.6
-0.2 0.4 0 0.2 0.2 0.2 0.8 1.4 1 1.2 1.2 1.2
0 2 0 0 2 0 2 0 0 2 1 2 1 1 2 1 2 1 1 20.2 0 0.2 0.2 0 0.2 1.2 1 1.2 1.2 1 1.2
0.6 0.2 0.2 0.8 0.4 0.8 1.6 1.2 1.2 1.8 1.4 1.8
0.2 0.2 0 0.4 0.4 0.4 1.2 1.2 1 1.4 1.4 1.4
0.6 0.2 0.2 0.8 0.4 0.8 1.6 1.2 1.2 1.8 1.4 1.8

MM'/5 +1 = G*

dimension nxn
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Coding 
Genomic Relationship Matrix

Genotyp
e

Frequency 012 101 centered

AA (pi)2 2 1 2-2pi

Aa 2pi(1-pi) 1 0 1-2pi

aa (1-pi)2 0 -1 2pi

Mean 1 2pi (1-2pi) 0

Does it make a difference?Does it make a difference?

GBLUP, NO
ssGBLUP, Yes G matrix needs to scaled the same as A matrix

Legarra, A., I. Aguilar, and I. Misztal, 2009 A relationship matrix including full pedigree and 
genomic information. Journal Of Dairy Science 92: 4656-4663.
Chen, C., I. Misztal, I. Aguilar, A. Legarra, and W. Muir, 2011 Effect of different genomic 
relationship matrices on accuracy and scale. Journal Of Animal Science 89: 2673-2679.
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Mixed Model Equations
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NL=5
SigA=5
SigE=20
Lam=SigE/SigA

X = matrix( c(  1,
1,
1,
1,

R code GBLUP

Y = matrix( c(  7,
9,
10,
6,
9,   
11), 6,1)

Z = matrix( c(1, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0,

1,
1  ), 6,1) 

M = matrix( c( 1,-1,0,-1,1,
0,0,1,0,-1,
0,-1,0,0,0,
1,-1,1,-1,0,
0,0,1,-1,0,
1 1 1 1 0) 6 5 b TRUE)
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0, 0, 1, 0, 0, 0,
0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 1),6,6)

1,-1,1,-1,0),6,5,  byrow = TRUE)

G=(1/NL)*M%*%t(M)
GI=solve(G)

r=.00001
I = matrix( c(  1, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0,
0 0 0 1 0 0

Add a Ridge Value to Solve

0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 1),6,6)

ridge=r*I
G1=G+ridge
INVG=solve(G1)
LHS = rbind( cbind(t(X) %*% X     ,  t(X) %*%Z ),

cbind(t(Z) %*% X             ,  t(Z)%*%Z +Lam*INVG))
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RHS = rbind(t(X)%*%Y,
t(Z)%*%Y)

C = solve(LHS)
BU = C %*% RHS
BU



Equivalent Model 
Estimation of Marker effects
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Assumption depends on method
1) (GBLUP, ssGBLUP) Genetic variance associated with 

each marker is equal ⎟⎟
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Each Marker effects is solved for

q
2) (Bayes A) sampled from a t distribution
3) (Bayes B and Bayes C π) from a mixture of distributions 

(null and t)
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NL=5
SigA=5
Sigg=SigA/NL
SigE=20

y = matrix( c(  7,

R Code SNP BLUP

9,
10,
6,
9,   
11), 6,1)

I = matrix( c( 1, 0, 0, 0, 0,
0, 1, 0, 0, 0,
0, 0, 1, 0, 0,
0 0 0 1 0
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0, 0, 0, 1, 0,
0, 0, 0, 0, 1),5,5)

X = matrix( c(  1,
1,
1,
1,
1,
1  ), 6,1)



M = matrix( c( 1,-1,0,-1,1,
0,0,1,0,-1,
0,-1,0,0,0,
1,-1,1,-1,0,
0,0,1,-1,0,
1,-1,1,-1,0),6,5,  byrow = TRUE)) y )

LHS = rbind( cbind(t(X) %*% X ,  t(X) %*%M                          ),
cbind( t(M) %*% X,  t(M)%*%M + (SigE/Sigg)*I))

RHS = rbind(t(X)%*% y,
t(M)%*%y)

C = solve(LHS)

B C %*% RHS

15

Bg = C %*% RHS

Bg
g=Bg[2:6]
U=M%*%g
U Compare Breeding Values with GBLUP

SNP effects=GWAS

Example

missing phenotypes but know genotypes 
d k ff t f ll i t i iand marker effects following training =pure 

genomic selection

16



Loci 1 2 3 4 5
aa AA Aa aa AA

EBV
-1 1 0 -1 1 -0.08491 -0.0456

0.021935
0.012177

Genotype

0.070134
-0.08231
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Problems and relation to  
Association Analysis

• Admixture
– Major problem
– False PositivesFalse Positives
– Spurious Correlations 
– Correlation does not mean Causation

• Partial Solution
– Use Igenstrat to correct for structure
– Use Structure to correct for structure
– Does not correct for phase

• Application : economics 
– 2 stage 
– Use Dense SNP genotyping (60k) on all selected male parentsg yp g ( ) p
– Use low density genotyping  (512) on all selection candidates
– Impute genotypes of female breeders

• Use in Humans to determine disease risk
– Use dense SNP chip for predicton of “risk” or “merit”
– Don’t worry about which markers are most predictive, Use them all
– Solves “missing heritability” issues

18
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