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8:30 10:00 am 1. Population Genetics Framework (Muir)
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10:30 12:00 2. Fisher's Variance Decomposition (Muir)
Background reading: LW Chapter 4

12:00 1:30 pm Lunch

1:30 3:00 pm 3. Resemblance Between Relatives, Heritability (Muir)
Background reading: LW Chapter 7

3:00 3:30 pm Break

3:30 5:00 pm 4. Artificial Selection (Walsh)
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Additional reading: WL Chapters 14-16
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8:30 10:00 am 5. Inbreeding and Crossbreeding (Walsh)
Background reading: LW Chapter 10

10:00 10:30 am  Break

10:30 12:00 6. Correlated Characters (Walsh)
Additional reading: WL Chapters

12:00 1:30 pm Lunch

1:30 3:00 pm 7. Mixed Models, BLUP Breeding Values, Sampling (Muir)
Background reading: LW Chapter 26
Additional reading: WL Chapters 19, 20

3:00 3:30 pm Break

3:30 5:00 pm 8. QTL/Association Mapping (Walsh)
Background reading: LW Chapters 15, 16

Evening Open session (review, R, etc)



Wednesday, 20 July

8:30 10:00 am 9. Tests for Molecular Signature of Selection (Walsh)
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Additional reading:
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10:30 12:00 10. More on Mixed Models, BLUP Breeding Values (Muir)
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http://nitro.biosci.arizona.edu/zbook/NewVolume_2/newvol2.html
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Muir and Walsh
Lecture 1
Introduction to Quantitative

Genetics
Population Genetics Foundation

Quantitative Genetics

e Quantitative Traits

— Hallmarks

» Continuous variation

» Genetically influenced

» Environmentally influenced
— Height, weight, 1Q

* What is the Basis for Quantitative Traits?




Inheritance Mechanisms

— Fluids vs. Particles?
* Fluids (Bloods)

— Blend Tl

— Continuous Gradations -

— Once combined cannot be separated back out
* Particles (Genes: Mendel)

— Discontinuous

— Once combined can be separate back out

* How to determine . \
— Early experiments by Nilsson-Ehle (1908) NN

— Wheat seed color \‘\

— Crossing lines and segregation ratios

F2 Blending?
1.11
Would
Blending
Explain this?
4

What Mode of Inheritance Would Explain This?




Hypothesis: 2 loci acting independently and

cumulatively on one trait?

Dark Red White
AABB (4) aabb (0)
Medium Red Medium Red
AaBb (2) AaBb (2)
Dark Red Medium Medium Red Pale Red White
AirBB i Dark Red AaBb (2) Aabb (1) aabb (0)
“) AABD (3) AAbD (2) aaBb (1)
AaBB (3) aaBB (2)
1/16 4116 6/16 4116 116
Usual Mendelian Concept
Gene 1 Trait 1 Simple Traits

Trait 2

Gene 2

Trait 1 Pleiotropy

Gene 1
\ Genetic Correlation
Trait 2 Between Traits

Gene 1
 * Trait 1 Polygenic Trait

Gene 2




What happens to the distribution as the

number of loci increases?
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A continuous distribution emerges
Stability of Distribution
From Previous Example with Wheat
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What is the expected Distribution of the F3? F4?

1. Will it stay the same?
2. Will we see a reduction in variability?
3. Will we see and increase in variability?

Need to know concepts of probability




Important Concepts of Probability
Compound Events

In General

Pr(A and B)=Pr(A|B)xPr(B)

With Independence

Two Events are Independent if
Knowledge of one event tells us nothing about the probability of occurrence of
the other event

Pr(A|B)=Pr(A)
and

Pr(A and B)=Pr(A)xPr(B)

What is the Consequence of Random
Mating on Genotypic Frequencies

» Assume a Perfect World
— No Forces Changing Allele frequency
» No: mutation, migration, selection, genetic drift
— Equal Allele Frequencies in the Sexes
— Autosomal Inheritance

— Random Mating
* Independence of mating preference and genotype
» Mating is at random with respect to genotype




GENERATION O

» Allow The Genotypic Frequencies To Be

Any Arbitrary Values
genotypic frequency
P(AA) = X
P(Aa) = Y
P(aa) = Z

suchthat X+ Y+Z=1

Allele Freguencies
P(A)=P(AA)+3 P(Aa)

P(A)=X+1)Y
=p
P(a)=P(aa)+3 P(Aa)
P(a)=2+1Y
=0

p+q:1




Freqguency of Mating

male genotype
female genotype AA Aa aa
frequency (X) (Y) (2)
AA (X) X2 XY Xz
Aa (Y) XY Y2 YZ
aa (2) Xz YZ Via

/

Mating: independent of genotype, i.e. random
Pr(A and B)=Pr(A)xPr(B)

Expected genotypic frequencies that result

from matings (Gen 1).
Expected Frequency of Offspring

vaings | ey A i =
AA X AA X2 1 0 0
AA X Aa 2XY 1/2 1/2 0
AA X aa 2XZ 0 1 0
Aa x Aa vz 1/4 12 14
Aa x aa 2YZ 0 1/2 12

1
aa x aa 72 0,\ o 0 -

Conditional Probabilities given genotypes of parents




GENERATION 1

)=L(X*)+3(2XY) +5(Y*)
=X+ XY +1Y?
=(x+3v Y

P(AA

offsping

=[P(A) s |
Because
P(A)=X+1Y=p
Therefore for generation 1
P( AAoffspring ) = pz

P(Aaoffsping) :%(ZXY) +1(2XZ) +%(YZ ) +%(2YZ)
=XY+2XZ+iY? +YZ
=2 X+1Y ) Z+1Y)
=2pq
Y2)+1(2YZ)+1(Z?)
Y2 +YZ+2Z?
2
Z+1Y)
2

P( aaoffsping ) = %

1
o — &= ™




Generation 2
Frequency of Matings

male genotype
female genotype AA Aa aa

frequency | 4(P?)  (2pq)  (9?)

AA (p?) p* 2p3q p’q?
Aa (2pq)/| 2p°q 4p?q? 2pq°
aa (q? p?q? 2pg? q’

Distributions no longer arbitrary

Expected genotypic frequencies that result

from matings (Gen 1).
Expected Frequency of Offspring

Vaings | | apaeney of M he -
AA X AA p* 1 0 0
AA X Aa 4pq 1/2 112 0
AA X aa 2p20? 0 1 0
Aa x Aa 4p2qP 1/4 172 1/4
Aa X aa 4pg? 0 1/2 1/2
aa x aa q* 0 0 !




Overall Genotypic Frequencies
P(AAn) =1(P*) + 1) (4p%0)+ 1 (4p°0°)
=p*+2p’q+p°q’
= p*( p* +2pg+q? )
=p’(p+q) =p*(1)
= p2
P( Aa-offs,ping ) = qu

- N2
P( aa'offsping) = q

Summary of genotypic frequencies
by Generation

genotype gen O genl gen 2

P(AA) X p° p°
P(Aa) Y 2pq 2pq
P(aa) z q° q°




Hardy-Weinberg Equilibrium
or the Squared Law
If a population starts with any arbitrary distribution of
genotypes, provided they are equally frequent in the two

sexes, the proportions of genotypes (AA, Aa, aa), with
initial allele frequencies p and g, will be in the proportion

(v =5 2
Pa t+ 0; = paa *(2Pp0)a t+ Uia

after one generation of random mating and will remain in
that distribution until acted upon by other forces

Stability of Distribution

From Previous Example with Wheat
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What is the expected Distribution of the F3? F4?

1. Will stay the same (assumptions?)
2. Will see a reduction in variability (how, where)?
3. Will see and increase in variability(how, where)?




Selfing

0.6

0.5

0.5

0.4

0.3 0.25 0.25

0.2 |
0.1 |
0 0

Dark red med DR medium palered white
red

Extreme form of non-random mating
Variance in color twice that of randomly mating population

Does inbreeding increase or decrease variability?

Example Population Cage

Introduce 4 males (1 round

eye and 3 star eye), and 4 'o@., 2
females (1 round and 3 star AN g}&» S S
eye). Assume co-dominance @ N
of eye shape where 38 Q! & s
heterozygotes are square AN é ”@? %,'?.\” 33“'.%
eyed. Q= N ‘,&

S

¢
e m
Q@ What are the initial allele frequencies for eye shape?
Q,'R Aa What are the expected frequencies of eye shapes in G1 and G2
o)

Q?% aa

24




Allele and Genotypic
Frequencies

What are the expected frequencies of eye shapes in G1 and G2

Note same frequency in both sexes

M F Total
& O po=2/8+1/2(0)=1/4
A AA 1 1 2
@, G1=(1/4A+3/4a)?= 1/16AA 6/16Aa 9/16aa
%!Qh Aa 0 0 0

P1,=1/16+1/2(6/16)=4/16=1/4

@% aa 3 3 6
! G2= (1/4A+3/42)2= 1/16AA 6/16Aa 9/16aa

25

What if Organisms Do not Mate But Release
Gametes or Pollen to Search Out Each Other?

Do the Same Properties Hold?




Fertilization

Given a female gamete carrying the ‘a’ allele, what is the probability it will
be fertilized by a gamete (pollen) carrying the ‘A’ allele

If Independence
P(A]a)=P(A)

If not Independence
P(Ala)=0to1l

Incompatibility

What is the Consequence of Random
Union of Gametes

« Assume a Perfect World
— No Forces Changing Allele Frequency
— Equal Allele Frequencies in the Sexes
— Autosomal Inheritance
— Gametic Independence




GENERATION O

lets allow the genotypic frequencies to be any
arbitrary value and the allelee frequencies to be
the appropriate function of those values.

genotypic frequency

P(AA) = X
P(Aa) = Y
P(aa) = Z

suchthat X +Y+Z=1

Allele Frequency
P(A)=X+ 1Y
=P
P(a):Z+%Y
=q

p+q=1




With Independence

male gamete/frequency
A a
(p) (a)
female gamete/ A AA Aa
frequency (p) (p?) (pa)
a Aa aa
(a) (pa) (9®)

Random Union of Gametes Produces the Same
Outcome as Random Mating

What Happens If The Allele Frequencies Are
Not Equal Between The Sexes?

Male Gamete

. Frequenc
Generation 0 A areney
Gametic Frequencies a
0

P q’
0 0 40 0.0
A pf pm p f pf qm

Female Gamete AA Aa

frequency Genotypic Frequencies Generation 1

0 0 0 040
a 0 | Pud GG

aa
Aa




Gametic Frequencies Produced by
Adults in First Generation

Frequency of Homozygous Class + Y2 frequency of heterozygous class

1 1 0.0 1 0 ~0 0.0
P = P} = po P+ (poa? + pay)
Because an equal number of both sexes are produced from each mating

Note, because gametic frequencies are now equal in sexes

P =P =p'

33

Generation 2

Male Gamete

Frequency
Generation 1 A 3
Gametic Frequencies pl .
1 1l _( 1)2 141
A D pp =(p p'g
Female Gamete AA Aa

frequenc
d y Genotypic Frequencies in Generation 2

141 1.1 1)
g’ q'gt=(q!)

Aa aa
Population in HW by 2" generation

1

a (

The one generation delay before reaching HW can be very informative




Example

Introduce 4 males (1 round eye

and 3 star eye), and 4 females (3 N >0
round and 1 star eye). Assume 0.0@* @,ﬁ .\@”
. 7‘;.-
co-dominance of eye shape ( AL
where heterozygotes are square (3.@~ ;' s
eyed. % TR Oys
ks

F

S V] 3
Q}Q;j@\\ Aa O 0
%?.?S aa 3 1

What are the initial allele frequencies for eye shape?
What are the expected frequencies of eye shapes in G1 and G2

35

Example Cross Between Populations

Population 1 Population 2
GO Females Males
¥ AA Viaa YaAA ¥ aa

N -

l «—— Random Mate

What are the
expected allele
frequencies, and
genotypic frequencies
in each generation?




Generation 1

Population 1
Females

% AA Vi aa

Ya A

Population 2
Males
YaAA ¥ aa

/

Ysa

Ya A 3/16 AA

Yaa 1/16 Aa

P,=3/16 + ¥4(9/16 + 1/16)=8/16= ¥

9/16 Aa
G1 Genotypic Freq
3/16 aa

G1 Allele Freq

Generation 2

G1lMales
3/16 AA 10/16
Aa 3/16 aa

GlFemales
3/16 AA 10/16 Aa
3/16 aa

e

¥ a

% A
Y A Ya AA
Y2 a Y4 Aa

P,= Va+ Ya( Ya+ Ya)= Y

Ya Aa
G2 Genotypic Freq
Ys aa

G2 Allele Freq




Summary

Population 1
GO Males
Y2 AA Yiaa

Population 2
Females
VaAA % aa

Genotypic
Gl —
3/16 AA 10/16 Aa 3/16aa Frequencies
p,= Y2 Different
G2 4/16 AA 8/16 Aa 4/16aa Allele
/ Frequencies
p, =Y Same
G37?
Important Example
Sample HWE
Genotype (Pa+d, ) = Piu+(2pQ) s +0% = Expected
Distribution Distribution
3/16 AA Too Many 4/16 AA
10/16 Aa heterOZngteS 8/16 Aa
3/16 aa in Sample 4/16aa

This is also an example of a genomic pattern of recent
crossing between populations with immigrants of one sex

Question 1: will this pattern affect all loci? (yes and no, why?)
This is said to be a pattern of demography, why?

Question 2:If the immigration only occurs once, will the pattern of
demography disappear with time? If so, how many generations will it take?

Question 3: If an equal number of males and females were among the
migrants, and mating was totally at random, regardless of origin, will there be
a pattern of excess of heterozygotes?




Am. | Hum. Gemet, 43:520-526, 1988

GmP51314 and Type 2 Diabetes Mellitus: An Association in
American Indians with Genetic Admixture

William C. Knowler,” Robert C. Williams,T'$ David . Pettitt,” and Arthur G. Steinberg§

Distribution of Gm**/%.14 Haplotype Frequencies According to Indian Heritage in
Residents of the Gila River Indlan Community

INDIAN HERITAGE

No. oF Gu¥513.14 (Eighths)

HarroTyres 0 1 2 3 4 5 6 7 8 Total (%)
L 11 ] 4 19 199 4 72 123 4,195 4,627 (94.0)
1. 14 0 8 4 144 0 27 13 68 278 (5.7)

2 ... 7 0 6 0 1 0 0 0 1 15(.3)
Total .......... 32 0 18 23 344 4 99 136 4264 4,920 (100.0)

Consider only none native American’s (0), 50% (4), and pure Native American’s (8)

Check if these sub-populations to conform to H-W distributions

Expectations

Observed Expected
heritage|Gm/Gm Gm/non non/non | Total Pgm Pnon heritage Gm/Gm Gm/non  non/non
0/8 7 14 11 32 0437 0.562 0/8 6.125 15.75 10.12
48 | 1 144 | 199 | 344 0212 0787 4/8 1549 | 115001 | 213.49
1 1 68 | 4195 |4264 0008  0.991 L 028 6942 | 419428
Deviation from Expectation
heterozygotes
deviation from
heritage | Gm/Gm | Gm/non | non/non expectation
0/8 0.87 -1.75 0.87
4/8 -14.49 28.98 -14.49 Great Excess
1 0.71 -1.42 0.71

*What can you conclude about the sub-population that is 4/8heritage?
«Is this subpopulation 1st, 2", or more generations beyond formation? Why?
*Signature of demography, due to hybridization, and will affect entire

genome




Another Signature of Demography Resulting from
Sampling Across Sub-populations Unknowingly

Sample
Population 1 Population 2
g Males and @ Males and +§q |
oS . les
Reyemalesalsly) Sema 3
@‘Q AA %l;-.}{\ O@é aa

" /

2
Sample g‘@t 50% AA (p} +0,) = pha +(200)m + G5 2506 AA
Genotype 0% Aa 50% Aa

bl ’
DIStI’Ibut|0%% 50% aa Too few heterozygotes in 25% aa
Py =.50+1(0)=.5 Sample = Admixture

Signature of demography, due to
sampling or admixture, and will affect
entire genome

HWE
Expected
Distribution

43

Signatures of Demography

 Affects entire genome

» Detected from genotypic distribution, not allelic
» Pattern of Heterozygotes Compared to HWE

—Too few
* Admixture
 Solution, separate subpopulations
» Will not go away with time
— Too many
» Recent crossing
 Disappears with time

a4




HWE and the “so what” question

— HWE establishes the null hypothesis for
expectations

— Deviations from expectations are where all
the interesting problems and Issue occur

Lecture 1 Problems

1. Two separate populations of equal size are in equilibrium for the same pair
of alleles because of random mating within each. In population I, p, = 0.6,
while in population I, p, = 0.2, with g = 1 - p in each population.

e (a) Ifarandom sample of females from one population is crossed to a
random sample of males from the other population, what would be the
expected genotypic frequencies among the progeny? If these progeny are
then allowed to mate at random, what would be the expected allele and
genotypic frequencies in the next-generation? What happens to
heterozygote frequencies between the F, and F, generations?

« (b) If equal numbers of both sexes from each population are combined
and allowed to mate at random, what would be the expected allele and
genotypic frequencies in the next-generation?

¢ (c) Compare results in part a and b, what conclusions can you draw from
this.




Muir Lecture 2

Quantitative Traits
Fisher Decomposition
Covariance Between Relatives

Quantitative (Complex)

Traits
« Phenotype (Y)

— Continuous (Weight)
— semi-continuous scale (Egg number)

— Some Discrete Traits (Disease Resistance)
 Underlying distribution assumed continuous

 Polygenic (G)
« Environmentally Influenced (E)
Y, =G, +E

Can also have GxE interactions where the G changes with E




Variances

— Genetic sources of variation

* Partially underlie trait variation

* Inferred from statistical sources of variation
— Statistical Sources of variation

+ Variation among and within identifiable
groups (families)

Partitioning sources of variation general case

Classic ANOVA model for two Treatments, A and B, each with 2 levels
Treatment A

A A,

Treatment B

intei?tion effect

Main Effects Random error




Applied to genetics

Treatment A results from alleles from the Father
Treatment B results from alleles from the Mother

Female Parent Allele

f f
ﬁ a, a,
< m
a
c 1 Y11 Y12
(]
—
g
o Yar Y22 Intra-locus interaction
< (dominance)

_ f m

If we assume allele effects .
from mother are the same as Yij = U + 0(i + aj + 5ij + g(ij)
from the father (no imprinting)

5
Allelic effects and intra locus interactions
Fit model
Female Parent Allele E(Yij ) =H + (Zi + aj + 5ij
Pi P E(e)=0
o o, )
2 2
< Py a, Y Yi2 a1=ijY1j—y
8 Y Y. -3
o P, a, 21 22 az—ijYzj—y
© j=1
=
2 2 2 2
alzzpiYil_/u 0‘2=ZpiYiz—ﬂ /1=ZZ P P;Y;;
i=1 i=1 | ]
Questions: 5”. :Yij —pU-a;—a;

What is the expected frequency of Y11?
What assumption is being made to find expected frequency?

Will these expectations be valid if there is admixture or recent crossing?




Genetic Variances
Mean=Y => f,
Variance =0y = Y fY? - (Z fiY; )2

In General

So
Additive Variance =02 =3 fa?- (Y fa, f
o =23 paf
Dominance Variance=o = > > f.67 —(Z £,6,f
]

O-l% :ZZ pipjé‘ijz
i

Additive Variation

Additive variation=variation due to effects of single
alleles

Alleles are passed on in haploid state, thus only the
effect of a single allele is inherited from one parent

Selection for superior traits (artificial or natural) is based
on what can be passed on in the haploid state, i.e. single
allele effects

Additive variation=useable variation




Non-additive Variation

* Dominance Variation
— Due to intra-locus interaction
— Requires both alleles at a locus to express
— Cannot be passed on by one parent
— Not useable for selective breeding
 Epistatic Variation
— Due to inter-locus interactions
— Requires interaction of 2,3, or 4 alleles at two loci

— Not useable for selective breeding

* Yes 2 alleles at different loci (AxA) can be inherited in the
haploid state but recombination in following generation(s) will

break up o
Example
Genetic Effects, known genotypes
In a randomly mating population Fit
Female Parent Allele E(Y”) =p+a; +a;+ 5ij
Py =7 P, = E(e)=0

P o, 2,
2
SR 12 10 a, =3(12)+1(10)-10.75=.75
[
0T a, 10 4 | g, =2(10)+1(4)-10.75=-2.25
©
=

o, =.75 a,=-225 p=2(12)+2(10)+2(10)+L(4)=10.75

Note: Z Pia; = Py + P, =%(-75)+%(— 2.25) 0

By construct!




Genetic Variances
(known genotypes and frequencies)
o2 =23 pa? =22 (75 ++(-2.25)|=3.375
Oy =Yy —p—a; —a,
S, =12-10.75-2(.75) = —.25
S, = 8, =10-10.75—(.75)— (—2.25) =.75
S,, =4-10.75-2(~-2.25) = -2.25

o5 =22 PP;0; =55 (=25) +(EN75)" + (G N-2.25)" =.5625
i

Breeding Values

Breeding value (BV) is the breeding worth of an individual

Worth is that which can be passed on by a gamete (haploid)

Could be fithess under natural selection

Could be Risk of genetic disease in human populations (high cholesterol)

Female Parent Allele

o . o
© 1 2
<
a

c 1 Y4 Yi2
)

—

8

o a, Yo Yoo
©

=

BV(Y,) = +a,
‘\

does not include dominance or other non-additive effects




Additive Genetic Worth of an Individual

EBV (Y;) = +a,
EBV(Y,)=a,+a, =2(.75) =15
EBV(Y,,) = (.75) +(-2.25) = -1.5
EBV(Y,,) =—2(-2.25) =-4.5

Expected Progeny Difference (EPD)

What is the expected performance of the progeny of two parents whose
breeding values are EBVa and EBVb?

Individuals can only pass on main effects, i.e. that passed on by
gametes, which are single alleles at a locus. Interactions cannot be
passed on by a single individual as they would require 2 alleles at a locus
to be passed on by gametes

EBVa EBVb
+ +
2 2

EPD=Expected Progeny Difference=EBV/2

Y=u

What is the expected performance of an individual that was
produced by mating Y11 with Y22

\?:10.75+%+$=9.25




Covariance Between Relatives

* Needed to associate genetic source of
variance with statistical source of variation
— Used to separate genetic sources of variation
into
 Additive vs. non-additive
» Genetic vs. Environmental
» The entire underpinning to quantitative
genetics

Genetic Covariance

» Relatives are more likely to share alleles
than non-relatives

— Sharing Alleles = Identical by Descent (IBD)

* Identically same allele can be traced to an
ancestor

« Statistical Concept
— Not to be confused with Alike in State (AIS)
« If two alleles are AIS they maybe IBD
« If two alleles are not AlS then they cannot be IBD




Single Parent-offspring Covariance

P1 P2

Gr=ay+a,+0,

100% of the time
parent and offspring

will share one and only
one allele)

VA, Go =, +a,+0,

72 Ah, Gy =a, +a, +06,

Single Parent-offspring Covariance
-1BD

Cov(G,,G,) = %Cov(a1+/a2\+1§;,‘al +a,+6,)

1
+5Cov(a, +a, + 01,0, +a, + 5,,)

1-IBD
Cov(e,, ;) +Cov(ery, @, ) + Cov(ey, 9, ) +
Cov(G;,Gy) =3| Cov(e,, o) + Cov(er,, ) + Cov(e,, 0,,) +
Cov(d,,,,)+Cov(d,,,a,)+Cov(d,,,d,,)
Cov(ey, @,)+Cov(ey, a,) +Cov(ey, 0,,) +
+%| Cov(ar,, ,) + Cov(er,, a,) + Cov(a,, 0,,) +
Cov(o,,,a,) +Cov(o,,, e, )+ Cov(d,,,0,,)




In General: Covariance between effects

O ifi #j, i.e. not IBD

COV(CXI y CZJ) = o'i = ZZ piaiz

2
%GA ifi=}j,i.e. IBD
Additivity is a function of single alleles

Cov(ai , é‘ij ) — () By construct (residuals are found as

deviations from main effects)

O  ifij#km, ie. both not IBD

Cov(j:0m) =1 o5 =Y Y ppid

GD if i j= km, i.e. both IBD

Dominance is a function of two alleles at the same locus, it is
estimated here as the failure of both alleles at that locus to be

additive.

Question: What is epistasis a function of?

Single Parent-offspring Covariance

1-IBD
Cov(G,,G,) = %Cov(ai+/a2+\512,‘al ta,+35,)

+5Cov(ay, +a, + 05,0, +a, +0,,)
1-IBD
Cov(Gp,Go) =4 (502 +0+0+0+0+0+0+0+0)
+%(O+O+O+%a,§+0+0+0+0+0)
Cov(G,,G,) =102
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Summary Single Parent-Offspring

Number of IBD Probability of Sharing Contribution to variances

0 IBD alleles 0 0

11BD alleles 1 io}

2 IBD alleles 0 oci+ol
Cov(G;,G,)

Total covariance=Sum Probability x contribution=

Opo = (1)%0-/?\ + (0)(05\ + Gé)

_ 1,2
Opo =30

21

Collateral: Half sibs

¥ d ¥

AA, AA, AsA
Oy O,
I e
As Y Y As % Va
A, Y

Ae Vi Vi

Cov(Gy,, Gy, )

22




Collateral: Number of IBD Alleles

Sib O, possible genotypes

AA, [AA,  |AA  |AA,
1/4 1/4 1/4 1/4
g
g AAsy, |1 1 0 0
(0]
2 |AAsy, |1 1 0 0
éﬁ% AAsy |0 0 1 1
% [AAsy, |0 0 1 1

23

Number of IBD
0 IBD alleles
1 I1BD alleles

2 IBD alleles

Collateral: Half sibs

Probability of Sharing Contribution to variances
8/16 0
2
8/16 700
0 2 2
O + Op

Cov(Go,, Go,)

Total covariance=Sum Probability x contribution=

— (8152 _12
Ous = (1) 304 =504

24




Collateral: Full sibs

Q 3

AA, AA,
0, 0,
PR A A
Ay % % A, Y%
A, Vi Y o
4 74 A A, Vi Vi

Cov(G, ,Gp,) = T

25

Sib O, possible genotypes

Collateral: Number of IBD Alleles

Sib O, possible genotypes

AA, AA, AA |AA,
1/4 1/4 1/4 1/4
AA;., |2 1 1 0
AA, |1 2 0 1
AA;, |1 0 2 1
AAsy, |0 1 1 2

26




Collateral: Full sibs

Number of IBD Probability of Sharing Contribution to variances
0 IBD alleles 4/16 0

11BD alleles 8/16 io}

2 IBD alleles 4/16 or+ol

COV(GO1 ) GOZ ) Total covariance=Sum Probability x contribution=

— (21,2 (i)(z 2)_1 2 1 2
O'Fs—(ls)(zo'A)"' 6 \0ATOp)=30,150p

Question: genetically, are you more similar to your mother or full sister ?

27

Covariance Between Relatives in General

Cov(G,,G,)
Number of IBD Probability of Sharing Contribution to variances
11BD alleles Pr(),, io%
2 IBD alleles Pr(2), ci+ol

Let a,, = > Pr(l)Xy +Pr(2) Xy U, = Pr(2)Xy

Total covariance=Sum contributions=
Additive

2 2 Dominance
relationship Cov(G,, Gy) =8,,0,tU,0p

Relationship
With higher order effects (epistasis)

_ 2 2 2 2 2 2 2
Cov(GX,Gy) =8,0, +U, 05 +3,,0,, +2 Oap +UyOpp + e

28
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Problem 1

Falconer (1981) reported a partially dominant gene in the mouse called pg

“pygmy.” At six weeks of age, it produces the following average weight

phenotypes in grams:

(a)

(b)

What is the additive effect of each “+” substitution? What would be
the expected mean, additive and dominance variance in a population with
p. = 0.8, gpy = 0.2 under random mating? ?

+/+:14,

+/pg:12,

pPg/pg:6

If p, = d,q , What average effect of an allele substitution? what would
be the mean additive and dominance variance?

29

Problem 1a Answer

P9

0.8 0.2
+ 0.8 14 12 13.6
pg 0.2 12 6 10.8
13.6 10.8 13.04
Alpha(i) 0.56 -2.24 0
var 0.25088 1.00352 1.2544

Dominance

0.8 0.2

0.8 -0.16 0.64

0.2 0.64 -2.56
0.4096

Alpha(i)
0.56
2.24

0

sig2(d)

0.25088
1.00352

1.2544

2.5088 sig2(a)

30




Problem 1b Answer

Pg
0.5 0.5 alpha
+ 0.5 14 12 13 2
pg 0.5 12 9 -2
13 11 0
alpha 2 -2 0
pa? 2 2 4
0.5 0.5
Dominance 0.5 -1 1
dev 0.5 1 -1
1 sig2(d)

Lesson: Additive genetics
variance is dependent on

allele frequencies

pgaZ

2
2
4

sig2(a)

31

» Consider the following phenotypes:
. AA =8AA=10AA, =2

Problem 2

« (a)lfp=0.2,g=0.8 , What is the effect of an allele substitution?

what would be the mean additive and dominance variance?

 (b)Ifp=0.8,qg=0.2 What is the effect of an allele substitution?

What would be the expected mean, additive and dominance

variance?
* (c) Considering these results, what are the limitations of working

backward and drawing conclusions about gene action from
calculations of variance components?

32




Problem 2a Answer

P9
0.2 0.8 alpha Var
+ 0.2 8 10 9.6 48 4.608
pg 0.8 10 2 3.6 -1.2 1.152
9.6 3.6 4.8 0 5.76
alpha 4.8 -1.2 0 6
var 4608 1.152 5.76 11.52 sig2(a)
0.2 0.8
Domina
nce 0.2 -6.4 1.6
dev 0.8 1.6 -0.4
2.56 sig2(d)

33

Problem 2b answer

Lesson: All of the genetic variability here is due to
non-additive effects. With natural selection on viability
and overdominance this is the equilibrium allele

frequency.
P9
0.8 0.2 Alpha(i)
+ 0.8 8 10 8.4 0 0
pg 0.2 10 2 8.4 0 0
8.4 8.4 8.4 0 0
Alpha
0] 0 0 0 0
var 0 0 0 sig2(a)
0.8 0.2
Dominance 0.8 -0.4 1.6
dev 0.2 1.6 -6.4
2.56 sig2(d)
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Muir Lecture 3

Computation of Additive Relationships

8,
Genetic covariance between relatives

Cov(G,,G,) =a,0x+U,0p
Heritability

h?and H?

Covariance Between Relatives x and y

/ / Relationship due to

_ 2 joint IBD at a locus
Cov(G,,G,)=a,,0,+ uxyap\
Non-additive effects cannot be

passed from parent to
offspring as a unit (meiosis

Relationship due to additive effec
Depends on pedigreeA(IBD)

Additive genetic variance splits pairs) except as clones
Depends on
trait Important for heterosis and
allele frequencies crossbreeding programs

gene Action




Recursive Method to Compute
Additive Relationships a,

e Setup pedigree table from oldest to youngest (parents must
occur before offspring, genes flow in one direction)

For parents unknown, assume they are unrelated to each other
and non-inbred

e Compute following from oldest to youngest

_ (ai’jsire + aivjdam )
ij Ji 2
a.

aii :1+ Isire’idam
2

Example 1

In the following pedigree find the additive
relationship between all individuals




[“><[5 2 2 ?2 2 A B A B
C D \A/ \B/ \C[ \D/
1 0 Y2 (apptang) 1
Y (1+0)= % e M
1 Yo(agat+agg) 1
RO o)
1+%a v,
140=1 v Efa/fﬂz)cf )1/2
1+ Y2 a,,
1+0=1
?7? ?°? A,B A,B
M A B C D
C D
A 1 0 5 %
B 0 1 Y5 %
C % % 1 5
D s s Y 1




Example 2

A B
\4 / Find all relationships note that D is
c the result of mating relatives
D
7
Y 22 27 AB A,
e VY v
A B C D
D
A 1 0 | Y2(apatans) | 72 (Aaatanc)
% (agpta
B sym 1 * (Bas*a0n) 2 (Agatagc)
C sym 1+ Y a,g Y5 (cctanc)
sym
D 1+ Y% anc




o /8 27?2 2,2 AB A,C
e Vv Y
A B C D
D
A 1 0 | %L(1+0)=Y | % (1+ %2)=3/4
B 0 1| %L0+1)=% | ¥ (0+%)=1/4
C sym [1+ %2 (0)] Yo (1+ Y2)=3/4
D sym [1 + Y5(Y5)] =5/4
9
Example

Given the following pedigree, find all additive relationship and inbreeding
coefficients. Assume animals not given are unrelated and not inbred.
Pedigree From Wright (1922) given in Lynch and Walsh p 139.

= |
\/ _—
~ 7

10




AR -"IOTMOO >

A Matrix by Excel

- A,. A,. A,. B,C Cc,D E,. F.G CH 1,J
A B D E F G H | J K
1 0.5 0 0.5 0.5 0.25 0.25 0.25 0.25 0.125 0.1875
0.5 1 0 0.25 0.25 0.5 0.125 0.125 0.3125 0.0625 0.1875
0 0 1 0 0 0.5 0.5 0 0.5 0.5 0.5
0.5 0.25 0 1 0.25 0.125 0.5 0.125 0.3125 0.0625 0.1875
0.5 0.25 0 0.25 1 0.125 0.125 0.5 0.125 0.25] 0.1875
0.25 0.5 0.5 0.125 0.125 1 0.3125 0.0625| 0.65625 0.28125| 0.46875
0.25 0.125 0.5 0.5 0.125 0.3125 1 0.0625| 0.65625 0.28125 0.46875
0.25 0.125 0 0.125 0.5 0.0625 0.0625 1 0.0625 0.5| 0.28125
0.25 0.3125 0.5 0.3125 0.125( 0.65625 0.65625 0.0625| 1.15625 0.28125 0.71875
0.125 0.0625 0.5 0.0625 0.25[ 0.28125 0.28125 0.5 0.28125 1| 0.640625
0.1875 0.1875 0.5 0.1875 0.1875| 0.46875 0.46875 0.28125| 0.71875 0.640625( 1.140625
amatrix LECTURE EXAMPLE by Excel.xIsx
a,y is a covariance between individuals due to shared IBD alleles, not a
probability or a correlation (0<a,,<2).
a,,=2 x coefficient of relationship (Malecot, 1948)
1

Coefficient of Relationship

(Malecot, 1948)

p(randomly chosen allele at a
locus in individual x is IBD with a
randomly chosen allele at that

locus in individual y)

12




Probability IBD non-related individuals

coefficient of relationship =p(randomly chosen allele at a locus in individual x is
IBD with a randomly chosen allele at that locus in individual y)

X
Random|Allele Random |Allele
Yo
%A, 72 A
v, Ya
%A, V2 Ay

Yo

P(IBD between unrelated individuals)=
P(IBD)= 1/4P(A,=Az)+ 1/4P(A,=A,)+ 1/4P(A,=A,)+ 1/4P(A,=A,)=0
a,,=2P(IBD)=0

this is why off diagonal element are 0 for non-related individuals
13

What is the coefficient of relationship of
an individual with itself?

* This is the same as asking what is the
coefficient of relationship between the
individual and its clone
— First consider a non-inbred clone

— From this find the additive relationship (a,,)
between non-inbred clones

14




Probability IBD between non-inbred Clones
Non inbred means that the P(IBD) within and individual is 0 or P(A;=A,)=0
X Clone X

Random Allele Random Allele

Ya
VA, YA,
><
VA, & Y2 A,
Ya
P(IBD between Non-Inbred Clones)=1/2

a,,=2P(IBD)=1
This is why the diagonal elements in A are 1 for non-inbred individuals

15

Next: Consider the other extreme:
What is the coefficient of relationship
between completely inbred clones?

Convert this probability to the additive relationship (a,,) between
perfectly inbred clones

a,,=2P(IBD)

16




Completely inbred means both two alleles at a locus are IBD

X Clone X

Random|allele Random Allele

A
Ar IBD 100% '

P(IBD Perfectly Inbred Clones)=1

a,,=2P(IBD)=2 which is the maximum value for a diagonal element in the A matrix
Inbreeding is why some of the diagonal element are > 1 and is a method to
estimate the inbreeding coefficient F,=a-1. In this example F =2-1=1

17

Additive Relationship Matrix (A)

A B C D

m
T|<
®

J K
A 1 0.5 0 0.5 0.5 0.25 0.25 0.25 0.125 0.1875
B 0.5 1 0 0.25 0.25 0.5 0.125 0.3125 0.0625 0.1875
C 0 0 1 0 0 0.5 0.5 0.5 0.5 0.5
D 0.5 0.25 0 1 0.25 0.125 0.5 0.3125 0.0625 0.1875
E 0.5 0.25 0 0.25 1 0.125 0.125 0.125 0.25 0.1875
F 0.25 0.5 0.5 0.125 0.125 1 0.3125 0.65625 0.28125| 0.46875
G 0.25 0.125 0.5 0.5 0.125 0.3125 1 0.65625 0.28125| 0.46875
H 0.25 0.125 0 0.125 0.5 0.0625 0.0625 0.0625 0.5/ 0.28125
| 0.25 0.3125 0.5 0.3125 0.125| 0.65625 0.65625 1.15625 0.28125( 0.71875
J 0.125 0.0625 0.5 0.0625 0.25| 0.28125 0.28125 0.28125 1| 0.640625
K 0.1875 0.1875 0.5 0.1875 0.1875| 0.46875 0.46875 0.71875 0.640625| 1.140625

1. What is the inbreeding coefficient for individual K?

F=1.14-1=.14
2. What is the additive relationship between individuals J and K

a,=.64

jk
3. What is the additive genetic covariance between individuals J and K
1o oo
for trait T1? for trait T27 Cov(G,.G,) = axyo“i

Cov;,(G,.G,) =a,,04 =.640,

Cov;,(G,.G,)=a,04, =640, .




Covariance Between Relatives Can be biased due
to Common Environmental Effects E,

W s

Common
Cage or Pen

19

All Types of Resemblance Among Relatives
Can Be Biased

Relative Pair Cov
. 2
Any Set of Relatives Cov(G,,G,) =2a,,04 + 0 ()
. 152
Parent-Offspring 20AT Ok (Po)
1.2 +
Half-Sib 290A T O (hs)

1 2
Full-Sib 20a T O (rs)

20




The extent to which observations are

correlated due to group ownership is
the intra-class correlation

O—; Becomes large when between group differences are large
e =— 2
Oy + (o2 Becomes small when within group differences are small
Factor df MS E(MS)
Between 2 2
b-1 = _

Groups MS, =SS, /(b-1) o,+ n Oy,
Within (72

b(n-1) MS,, =SS, /b(n—1) w
group ’1

Estimating Environmental Correlations
Due to Group Ownership

Example: to what extent does social-economic status influence college
performance

Sample 1,000 volunteers chosen at random among the Senior class
Data collected: GPA and Income level of parents divided into 10 groups
O—; Becomes large when between group differences are large
r —
1

c 2 2
Oy + (o2 Becomes small when within group differences are small

If r=.9, what does this mean?
If r=.1, that does that mean?

22




What if we make “Groups” as
Related Individuals (Families)

Gs Becomes large when between family differences are large
r —

le ™ 2 2
O, + Oy Becomes small when within family differences are small

What does this tell us?
If r=.1 for 1Q, does that mean the genetic influences are small for that trait?
What if the groups were only loosely related, like second cousin groups

So there are 2 factors to consider when interpreting
this correlation

1) Relatedness within the group

2) The trait being measured

23

Heritability
A measure of the extent to which differences are
due to genes

Broad Sense: Proportion of the phenotypic variation due to
genetic causes

2 Useful to determine to what
H? = Oc extent genetics vs. environment
2 impact a trait
oy P

Narrow Sense: Proportion of the phenotypic variation due to
additive genetic effects

02 Useful to determine to what
h2 = _/; extent directional selection can
Oy improve a trait

24




Examples of Heritabilities

Organism ___ Trait h?2
Humans
Height 0.85>
Serum IG 0.45
Pigs
Back-fat thickness 0.70
Daily weight-gain 0.30
Litter size 0.05
Fruit flies
Abdominal bristles 0.50
Body size 0.40
Ovary size 0.30
Egg production 0.20

25

Estimation of Narrow Sense
Heritability

he_Th__On A form of the intraclass
9 GetO, correlation
» Three Approaches
— Regression
— Analysis of Variance: Method of moments
— Probabilistic:

* Maximum Likelihood (ML), REML, Gibbs

» All based on resemblance between
relatives

26




Regression

Ancestor-Descendent Pairs

«— X

Cov(G,,G,) =a,0n

Grand-parent-grand son
Great Uncle-Nephew
Y Etc

J Parent-offspring

27

Regression

* Francis Galton a half-cousin to C. Darwin
established the principle of what he
termed "regression to mediocrity.*

— studied the inheritance of height in humans

— noticed that extremely tall fathers tended to
have sons shorter than themselves, and
extremely short fathers tended to have sons
taller than themselves.

— The offspring seemed to regress to the
median, or "mediocrity.”

28




regression to mediocrity

RATE OF REGRESSION IN HEREDITARY STATURE.

Fig. (a}

HEIGHT DEVIATE
in in
inchas inches
72 H : | +4

When Mid-Parents are taller than mediocity, e
their Children tend to be shoruse than they. 11
7 H H +3
70 f H +2
69 H H +1
Bt
68 H.  ax o
67 H H
[ -2
&5 3 .
' When Mid Fapents aré'shorter than mediocrity, H -3
¥ their Children tend to be taller than they.
64 H -4

European Journal of Human Genetics (2009) 17, 1070-107

The regression coefficient later become known as the heritability

29

Ancestor-Descendent Pairs

First Case

— All pairs have same
additive relationship
« Parent-Offspring
- a,=12
e Grandparent-
Grandchildren
- a,~1/4
— Assume Additive Genetic
Variance Only

— No Environmental
Covariance

Pair(i) | Ancestor Descendent (Y)
X)

1 X3 Y,
X2 Y2

n X, Y,

30




Expected Cov(GX ’ Gy) = axyo-i

covariance
Estimated ~ (X =X)Y-Y)
Covariance COV(GX , Gy) - ”ITI

Set expected covariance= estimated and solve for additive variance component
Cov(G,,G,)=Cov(G,,G,)

2 _ (X=X )Y -Y)

a‘><yO-A n-1
~2 1 (X =X)(%-Y)
O-A - n-1

aXy

31

Heritability is the ratio of additive to phenotypic variance

~2
h? = Za
~2
Oy

Phenotypic Variance= O x = =

HZ n-1
52 n (x.—X ) T \2
65 |ay ) X o) IL(X,-X)

32




Regression on One Parent: Example Butterfat (kg)
X, =1369  2.Yi=1279

Parent Offspring )
Dam Daughter Z Xi= 190,217 Z XY = 176,447
(%) ) (1,369 2
~2 190,217 29~
150 132 Ox =— 1 —=3112
102 122 - _(1369)(1,279)
Col(G,,G,) = 176'44710—7110 ~150.2

129 104
127 103 a, =1
149 112 -
133 130 1
164 140 ol = [1j(150.2) =300.4

2
150 148

300.4

124 120 h? — — 96
141 168 311.2

33

Co-lateral Data (Sibs, Cousins, etc.)

3
e O O O

Phenotypic Data Only on Sibs

axy=1/4 among half sibs, a,=0 otherwise

Zy = p+ f. + W

34




Concept : If a trait is heritable then individuals within a family should be more similar (concordance)
than individuals between families.
Below are two traits from the same families, which trait has the higher heritability?

Trait 1 (e.g. height) Trait 2 (e.g. %fat)
0

o %

8_ ;

o 4 @
0

Trait Value
Trait Value
coodomoco

coocodmdoo o
cocopmoco
cocodmocoo

1 3 4 1 2 3 4
Family Family

35

» The phenotypic covariance among
members of the same group equals the
variance between groups

:y+Q+mj

Note the i subscript is the same

Cov(within _ family) = o(z;, ;)

:O-[(/'l+bi+Wij)’(lu+b'+wik)]
=o(b,b,)+olb,w, )+G(W b)+0(WU,W )

ijr i

_ 2
=0y 36




The Among Family Variance
Component

Variance due to Among Family differences= Covariance
within a Family

O'r? = Oyt
_ 2
Ow = axyo-A
a,, = genetic relationship among individuals within a family

If there is no covariance with a group, then the individuals in that group are not
correlated. Note that the within group covariance can be zero for 2 reasons: 1)
the members are not related, or 2) the trait is not influenced by alleles

r,=0 o2=0 ¥

Z; =u+b + W

1] within group variation is not just
variation among families 2 2 a measure of environmental
(circles) is due to O, =0y T Oyns) variation, but also includes
differences between half genetic variation not accounted

sib families=covariance for by the half-sib covariance
within half-sib families

2 _ 1 2 2 3 2 2
O,. =0 ==0 — 38
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ANOVA
Computational Formulas

Factor df MS E(MS)
Amon 2 2
i NS MS, =S5, /(s-1) Tuhs) T Ao,
Within o2

- _ _ w(HS
Families s(d-1) MS, =$8,,/d(s-1) (HS)

39

Method of Moments

Set Expected mean squares equal to estimated mean squares and solve

b d O\w(Hs) = w
2 _ _ 1.2 2 _3 2 2
O, =O0hs =304 OwHs) = 20AT 0,
2 ~2
h2 = Oa o 4o,

2 = ~2 | A2
Op Oy +Oyns)

40




Example (Half-Sib Families)

@@Qﬁ

Within Family 0

AL

Between Family

Family 1

T s

o’ —0'b+0

Turkey Example

Source |df |ss ms |E(ms)

Amon 1 |15 15 2 2
Nd O sy +30%

Family

Within |4 |4 1 o2

Family w(HS)

52 =(1.5-1)/3=.167  Oups) =1

4(.167)
1.167

h? =~

=.566

s.e.=formulas given in notes

Typically very large
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Bias in Estimates

» The resemblance between relatives can be
impacted by non-additive effects (dominance and
epistasis)

— Non-additive effects can occur when relatives share
more than one IBD allele, i.e. dominance is due to
shared IBD alleles within a locus and epistasis is due
to shared IBD alleles between loci.

— The parent-offspring resemblance is least biased for
estimating narrow sense heritability (h?), but maybe
inflated by AXA epistasis.

— The resemblance between clones is most biased,
because it is inflated by all non-additive effects, but is
the best estimator of broad sense heritability (H?)

43

Discussion

If for a given trait the broad sense and
narrow sense heritabilites are as follows,
in each which would be more effective at
improving the trait, a breeding program,
improving management, neither or both?

. H2=.9, h2=.1

. H2=.1, h2=.1

. H2=.9, h2=.9

a4




Answer

e H2=9, h2=1
— Neither: The high broad sense heritability indicates that there is
little environmental effects so management does not influence.
Low narrow sense indicates that selective breeding will not be
very useful. (cloning will work, but will not improve the trait, only
reproduce what is there. Development of inbred lines will
produce similar effect as cloning)

e H2=1, h2=1
— Management: low broad sense indicates primarily impacted by

environment effects, genes are not important. Hence breeding
will not work (note: most reproductive traits fall in this category)

e H2=9, h2=9
— Breeding: High narrow sense indicates that selective breeding

will be very effective and environment does not have much effect
on the trait (note: human height falls in this category)

45

Problem set 3

e 1. Continuing from the previous problem set, Falconer (1981) reported a
partially dominant gene in the mouse called pg “pygmy.” At six weeks of
age, they produce the following average weight phenotypes in grams (the
actual weight of the heterozygote was 12, but it was reduced to 10 for this
example):

. +/+:14, +/pg: 10, pg/pg:6

« If the population of mice is randomly mating with p+=0.8, g?9 =0.2

¢ Assuming no Environmental Effects, what are the narrow and broad sense
heritabilities for this trait?

« |f the environmental variance is 2, what is the narrow and broad sense
heritability?

46




Answer 1

A. Assuming no Environmental Effects, what are the narrow and broad sense heritabilities for this trait?

ci=251
0'[2) =.4096
Ué = O'i +0,§ + a'e2 =2.51+.409+0=2.919
he =251 _ gg
2.919
HZ = 2.919 -1
2.919
B. Assuming Environmental Variance=2, what are the narrow and broad sense heritabilities for this trait?
o2=251
o2 =.4096
ot =0l +0ol+0?=251+.409+2=4.919
he= 2L _ g
4.919
2.919
H?="""_-159
4.919 47

2. Find the additive relationship matrix for
the following pedigree

\/
.

G
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Answer

0.125,
0.125,
0.375,
0.375,
0.25,

0

A={1

0.25
0.75

0.5 0.5

0

0.25 0.75

0.5 0.251

0.125 0.5625,

0

0.5

0.25 0.25

0.6875,

0.75 0.125 1.25

0.25 0.75 O
0.125 0.125 0.375 0.375 0.25 0.5 0.5625 0.6875 1.0625}
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Lecture 4
Short-Term Selection
Response: Breeder’s equation

Bruce Walsh lecture notes

Summer Institute in Statistical Genetics
Seattle, 18 — 20 July 2016

Response to Selection

e Selection can change the distribution of
phenotypes, and we typically measure this by
changes in mean

— This is a within-generation change
e Selection can also change the distribution of
breeding values

— This is the response to selection, the change in
the trait in the next generation (the between-
generation change)



The Selection Differential and the
Response to Selection

¢ The selection differential S measures the
within-generation change in the mean

-S=u -
* The response R is the between-generation
change in the mean

— R(t) = w(t+1) - u(t)

(A) Parental Generation

Truncation selection
uppermost fraction
p chosen

Within-generation
change

(B) Offspring Generation

Between-generation
change




The Breeders’ Equation: Translating S into R

Recall the regression of offspring value on midparent value

2
yo = up + h° ( —5 — 1P

Averaging over the selected midparents,
E[ (P;+ P.,)/2]=u*,
Likewise, averaging over the regression gives

Ely,-w]l=h?(ux-u)="h?S

Since E[ y, - u ] is the change in the offspring mean, it
represents the response to selection, giving:

R=h2S The Breeders' Equation (Jay Lush)

e Note that no matter how strong S, if h? is
small, the response is small

® S is a measure of selection, R the actual
response. One can get lots of selection but
no response

e |f offspring are asexual clones of their
parents, the breeders’ equation becomes
~ R=H2S

e |f males and females subjected to differing
amounts of selection,

_ S=(S;+S.)/2

— Example: Selection on seed number in plants -- pollination
(males) is random, so that S = S/2



Pollen control

e Recall that S = (S5, +S.)/2

* An issue that arises in plant breeding is pollen
control --- is the pollen from plants that have also
been selected?

e Not the case for traits (i.e., yield) scored after
pollination. In this case, S, = 0, so response only
half that with pollen control

e Tradeoff: with an additional generation, a number of
schemes can give pollen control, and hence twice
the response

— However, takes twice as many generations, so
response per generation the same

Selection on clones

* Although we have framed response in an outcrossed
population, we can also consider selecting the best
individual clones from a large population of different
clones (e.g., inbred lines)

e R = HZ2S, now a function of the board sense
heritability. Since H? > h?, the single-generation
response using clones exceeds that using outcrossed
individuals

e However, the genetic variation in the next
generation is significantly reduced, reducing
response in subsequent generations

— In contrast, expect an almost continual response for several
generations in an outcrossed population.



Price-Robertson identity

e S =cov(w,2z)
e The covariance between trait value z and

relative fitness (w = W/Wbar, scaled to have
mean fitness = 1)

VERY! Useful result
R = cov(w,A,), as response = within
generation change in BV

— This is called Robertson’s secondary theorem of
natural selection

Correcting for Reproductive Differences: Effective Selection Differentials

In artificial selection experiments, Sis usually estimated as the difference between themean
of the selected adults and the sample mean of the population before selection. Selection
need not stop at this stage. For example, strong artificial selection to increase a character
mightbe countered by natural selection due to a decrease in the fertility of individuals with
extreme character values. Biases introduced by such differential fertility can be removed
by randomly choosing the same number of offspring from each selected parent, ensuring
equal fertility.

Alternatively, biases introduced by differential fertility can be accounted for by using
effective selection differentials, S,,

”,,
S, = LZ (%) (25 — p1=) (10.8)
i=1

where 2; and n; are the phenotypicvalue and total number of offspring of the ith parent, n,,
the number of parents selected to reproduce, 7 the average numberof offspring for selected
parents, and . is the mean before selection. If all selected parents have the same number
of offspring (n; = m for all ), then S, reduces to S. However if there is variation in the
number of offspring n; among selected parents, S. can be considerably different from S.
This corrected differential is also referred to as the realized selection differential.



Suppose pre-selection mean = 30, and we select top
5. In the table z; = trait value, n;= number of offspring

i % n; ni/n
| 45 | 0.3125
2 40 2 0.6250
3 35 3 0.0375
4 33 5 1.563
5 32 5 1.563

1 &/ n
—_ — ) 2z = 34.69
([ :Zz:l ( n ) !

Hence. S, = 4.69. for an expected response of I = (.3 4.69 = 1.4. In this case. not
using the effective differential results in an overestimation of the expected response.

Unweighted S = 7, predicted response = 0.3*7 = 2.1
offspring-weighted S = 4.69, pred resp = 1.4

Response over multiple generations

 Strictly speaking, the breeders’ equation only holds
for predicting a single generation of response from
an unselected base population

* Practically speaking, the breeders’ equation is usually
pretty good for 5-10 generations

e The validity for an initial h? predicting response over
several generations depends on:

— The reliability of the initial h? estimate

— Absence of environmental change between
generations

— The absence of genetic change between the
generation in which h? was estimated and the
generation in which selection is applied



The selection differential is a function of both
the phenotypic variance and the fraction selected

20% selected
V_=1,S=
50% selected 20% selected 1p,4
Vp=4,S= Vp=4,S=2.8
1.6

The Selection Intensity, i

As the previous example shows, populations with the
same selection differential (S) may experience very
different amounts of selection

The selection intensity i provides a suitable measure
for comparisons between populations,




Truncation selection

e A common method of artificial selection is truncation

selection --- all individuals whose trait value is above
some threshold (T) are chosen.

e Equivalent to only choosing the uppermost fraction p

of the population

Individuals Individuals
culled allowed to
reproduce
T-p .
|
” T P

Selection Differential Under

Truncation
Individuals Individuals
culled allowed to
reproduce
1-p .
b
B T Uk
Likewise, =5 _
a

Selection

S=u*-u

R code for i: dnorm(gnorm(1l-p))/p



Truncation selection

* The fraction p saved can be translated into an
expected selection intensity (assuming the trait is
normally distributed),

— allows a breeder (by setting p in advance) to
chose an expected value of i before selection, and
hence set the expected response

. . Height of a unit normal at the
S '»9(3 [1 _p]) D threshold value corresponding to p

P 0.5 0.2 0.1 0.05 0.01 | 0.005

[ 0.798 | 1.400 | 1.755 | 2.063 | 2.665 | 2.892

R code fori: dnorm(gnorm(1-p))/p

Selection Intensity Version of the Breeders'
Equation
S

R=h?S =h? — op =1 h?2 Tp
(‘TI)

Since hZOP = (OZA/OZP) Op = OA(OA/OP) =h Oa

R:IhOA

Since h = correlation between phenotypic and breeding
values, h = rp,

Response = Intensity * Accuracy *

When we select an individual solely on their phenotype,
the accuracy (correlation) between BV and phenotype is h



Accuracy of selection

More generally, we can express the breeders
equation as

R= | FUAO'A

Where we select individuals based on the
index u (for example, the mean of n of their

sibs).

r,a = the accuracy of using the measure u to
predict an individual's breeding value =
correlation between u and an individual's BV, A

19

Example 10.4.  Progeny testing. using the mean of a parent’s offspring to predict the
parent’s breeding value. is an alternative predictor of an individual’s breeding value. In
this case. the correlation between the mean 2 of n offspring and the breeding value A of

(. A n , 4 — b2
W, A) = . where a= -
Al ’ n -+ a e 2

From Equation 10.11. the response to selection under progeny testing is

P n ) h2n
=ia, —io Ay | —m ——
A n+a A 44+ h2(n—1)

Note that for very large n that the accuracy approaches one. Progeny testing gives a

the parent is

larger response than simple selection on the phenotypes of the parents (mass selection)

n o1 . 4—h?
T T T

. - 2 !
In particular, n > 4, 5, and 7, for i* = 0.1, 0.25, and 0.5. Also note that the ratio of
response for progeny testing ( R,,Ij to mass selection ( [2),.) is just

R;,, - 1 /IQN - n
Rms W\ 4+02(n—1) \4+h2(n-1)

which approaches 1/ for large n.

when




Improving accuracy

* Predicting either the breeding or genotypic
value from a single individual often has low
accuracy --- h? and/or H? (based on a single
individuals) is small

— Especially true for many plant traits with
high Gx E

— Need to replicate either clones or relatives
(such as sibs) over regions and years to
reduce the impact of G x E

— Likewise, information from a set of relatives
can give much higher accuracy than the

measurement of a single individual
21

Stratified mass selection

® |n order to accommodate the high
environmental variance with individual plant
values, Gardner (1961) proposed the method
of stratified mass selection

— Population stratified into a number of different
blocks (i.e., sections within a field)

— The best fraction p within each block are chosen

— Idea is that environmental values are more similar
among individuals within each block, increasing
trait heritability.

22



Overlapping Generations

L, = Generation interval for sex x
= Average age of parents when progeny are born

The yearly rate of response is

im T 2
P

R =
oL+ L

Trade-offs: Generation interval vs. selection intensity:

If younger animals are used (decreasing L), i is also lower,

as more of the newborn animals are needed as replacements
23

Computing generation intervals

OFFSPRING | Year 2 Year 3 Year 4 Year 5 total
Number 60 30 0 0 90
(sires)
Number 400 600 100 40 1140
(dams)
2-60+3-30
= — =9
Ls 60 + 30 sl

L 2-400 +3-600+4-100+5-40 ]1
d = 400 + 600 + 100 + 40 T

24



Generalized Breeder’s Equation

I+
m f
_ ruaOa
Ry =
L. + L

Tradeoff between generation length L and
accuracy r

The longer we wait to replace an individual, the more
accurate the selection (i.e., we have time for progeny

testing and using the values of its relatives) .

Example10.8. As an example of the tradeoff between accuracy and generation intervals,
consider a trait with #%2 = 0.25 and selection only on sires. One scheme is to simply
select on the sire's phenotype, which results in a sire generation interval of 1.5 vears.
Alternatively, one might perform progeny testing to improve the accuracy of the selected
sires. This results in an increase of the sire generation interval to (sav) 2.5 vears. Suppose
in both cases, the dam interval is steady at 1.5 years.

Since the intensity of selection and additive genetic variation are the same in both schemes,
the ratio of response under mass selection to response under progeny testing is just

R(Sire phenotype)  p(A. Sire phenotype) /( Ly + Ly)

R (progeny mean) B (A, progeny mean]l,f"[ Ls+ La)

Here, p( A. Sire phenotype) = h = V.25 = 0.5, with generation intervals Ly + L4 =
1.541.5 = 3. With progeny testing, (Example 10.4)

n n
(A, progeny mean) = = ‘
n+a n+15

as @ = (4 — h?)/(h?) = 15, with a total generation interal of Ly + Lg = 2.541.5 = 4.
Hence.

R(progeny mean) B n_ /) 3 n

If (say) 1 = 2 progeny are tested per sire, this ratio is 1.95. giving a much larger rate of
response under sire-only selection. For n = 12, the ratio is exactly one, while for a very
large number of offspring tested per sire, the ratio approaches 2/3. or a 1.5-fold increase in
the rate of response under progeny testing, despite the increase in sire generation interval.



Permanent Versus Transient
Response

Considering epistasis and shared environmental values,
the single-generation response follows from the
midparent-offspring regression

oo S [03, AA
R=h*S5+ —,(ﬁ_;l -+ % +-+ n—'.’,E.\n‘» .E,, ) + Of Eli'l??x~£"'.:l>
gz 2 ) v

R f . . Response from shared
' esponse from epistasis .
Breeder's P P environmental effects

Equation

Transient component of response --- contributes
to short-term response. Decays away to zero
over the long-term

Permanent component
of response

27

Permanent Versus Transient
Response

The reason for the focus on h?S is that this
component is permanent in a random-mating
population, while the other components are
transient, initially contributing to response, but

this contribution decays away under random mating

Why? Under HW, changes in allele frequencies
are permanent (don't decay under random-mating),
while LD (epistasis) does, and environmental

values also become randomized
28



Response with Epistasis

The response after one generation of selection from
an unselected base population with A x A epistasis is

2
R=S <l12 — ﬁ"f‘)
202

The contribution to response from this single generation
after T generations of no selection is

R(14+7)=S <;,2 +(1— dr&)

202

c is the average (pairwise) recombination between loci
involved in A x A

29

Response with Epistasis

.
R(1+7)=3S (h? +(1- «)T—”*‘*})
202

Response from additive effects (h? S) is due to changes in
allele frequencies and hence is permanent. Contribution
from A x A due to linkage disequilibrium

Contribution to response from epistasis decays to zero as
linkage disequilibrium decays to zero

30



Why breeder’s equation assumption of an unselected base population?
If history of previous selection, linkage disequilibrium may be present
and the mean can change as the disequilibrium decays

For t generation of selection followed by
T generations of no selection (but recombination)

R(t+7)=1th%*S

Raa has a limiting
value given by

Time to equilibrium a
function of c

4
c=005 —»
c=0.1
3
Z 12
g c=1/2
2 2
w
o~
=4
1
— Response under
1o epistasis
0
0 1 2 3 4 5 6 7

~ ! 2
Raa= tlim Raalt) =~ (5 UAé)
o . p

t, Generation of selection

+(1—¢)" Raa(t)

20

—1In(2)
In(1 —¢)
Decay half-life

trja =

2
1 g 744
c 202

Fixed incremental difference
that decays when selection
stops

What about response with higher-order epistasis?

So?(A') /o2, AA
R(1) 0.500
Limit 1.000

% R(1)/limit 50.0

AAA AAAA AAAAA
.250 0.125 0.063
333 0.143 0.067
5.0 87.5 93.8



Response in autotetraploids

* Autotetraploids pass along two alleles at
each locus to their offspring

* Hence, dominance variance is passed along

* However, as with A x A, this depends upon
favorable combinations of alleles, and these
are randomized over time by transmission, so
D component of response is transient.

33

Autotetraploids

P-O covariance Single-generation
response
02 ()"‘Z 02
( \ 7 A > D ~ 2 D

R(t) =th?S + Rp(t
Response to t generations of (¢) "S5 + Rp(t)

selection with constant
selection differential S 3 1\* 0%
Rp(t)=5S5|1-1|5 .

W

Response remaining after t generations of selection
followed by t generations of random mating

th?S + (tl/"".g)r Rp(t)
<

Contribution from dominance
quickly decays to zero 34



General responses

e For both individual and family selection, the
response can be thought of as a regression of some
phenotypic measurement (such as the individual
itself or its corresponding selection unit value x) on
either the offspring value (y) or the breeding value R,
of an individual who will be a parent of the next
generation (the recombination group).

* The regression slope for predicting
— y from xis o (x,y)/0%(x)
— BV R, from x o (x,R,)/0%(X)

e With transient components of response, these
covariances now also become functions of time ---

e.g. the covariance between x in one generation and
y several generations later

Maternal Effects:

Falconer's dilution model

z=QG + + e

G = Direct genetic effect on character
G=A+D+1 E[A] = (Aje + Agam)/2

maternal effect passed from dam to offspring is
just a fraction m of the dam’s phenotypic value

The presence of the maternal effects means that response
is not necessarily linear and time lags can occur in response

m can be negative --- results in the potential for
a reversed response



Parent-offspring regression under the dilution model

In terms of parental breeding values,

44('1(1"77'1 flSiTG
E ( 20 | Adam, Asire, Cda.m) = 9 + 9 + M Zdam

Regression of BV on phenotype

A=pa+ba(z--pz)+e

The resulting slope becomes b,, = h? 2/(2-m)

With no maternal effects, b,, = h?

37

Parent-offspring regression under the dilution model

With maternal effects, a covariance between BV
. . 9 ) \
and maternal effect arises, with capr =moa /(2 —m)

The response thus becomes

“

) h?
+m | + Ssire ;
2—m

A,U-: = Sdam <

2 m

38



Response to a single generation of selection

h2 =0.11, m = -0.13 (litter size in mice)

0.10 9

0.05 1

-0.05 4

Cumulative Response to Selection
(in terms of S)
(=]
8

Recovery of genetic response after
/ initial maternal correlation decays

Reversed response in 1st
generation largely due to

negative maternal correlation
masking genetic gain

Generation

39

Selection occurs for 10 generations and then stops

Cumulative Response (in units of S)

h? =0.35

0 5 10 15 20
Generation

40



Additional material

Unlikely to be covered in class

41

Selection on Threshold Traits

Response on a binary trait is a special case of
response on a continuous trait

Assume some underlying continuous value z, the
liability, maps to a discrete trait.

z<T character state zero (i.e. no disease)

z>T  character state one (i.e. disease)

Alternative (but essentially equivalent model) is a
probit (or logistic) model, when p(z) =
Prob(state one | z). Details in LW Chapter 14.

42



Threshold T =0
Character & | O Character

Observe: trait values
absent present .
are either 0,1. Pop
Before selection
mean = q (frequency
of the 1 trait)
! P
z J-'-t

Frequency of trait
After selection
Want to map from

g onto the underlying

%= ”iy/‘\

* . o]
: Ht liability scale z, where
After reproduction breeﬁzer Sheqléatlon
Hiyg = ”t+h28t RZ = SZ olas

/

|
Hi4+q Frequency of character state on
in next generation 43

Threshold T =0

Character & | o Character
absent present
Before selection
9
Llablllty scale @ Hi ) Mean liability before selection

After selection

Selection differential @

on liability scale

After reproduction
Mir) = By +hs,
|
P+
. ol . . 44
Mean liability in next generation

t+1

z



Threshold T =0

Character & | o Character
absent present

Before selection

After selection

After reproduction

Meet = py+hlsy

z

P+
Mean liability in next generation

45

Steps in Predicting Response to Threshold Selection

i) Compute initial mean y,
P(trait) =Pz>0) =P@z-u > -w) = P(U > -u)
U is a unit normal

Hence, z - ug is a unit normal random variable

We can choose a scale where the liability
z has variance of one and a threshold T =0

General result: u = -z,

For example, suppose 5% of the pop shows the trait. P(U > 1.645) =
0.05, hence w = -1.645. Note: in R, Zpyq = , with
gnorm(0.95) returning 1.644854 46



Steps in Predicting Response to Threshold Selection

i) The frequency g, of the trait in the next
generation is just

PU > - [h2S + w,])

Qt+1 = P(U > - Witq ) =
= P(U > - hZS - Z[»]_q])

iii) Hence, we need to compute S, the selection
differential for the liability z

Let p, = fraction of individuals chosen in
generation t that display the trait

ui = (1 —po)E(z

z 2 0, p)

2 < 0,p) +peE(2

i =1 —p)E(z|z<0,p) + peE(2] 2 > 0, py)

.-* A

This fraction does not display This fraction displays
the trait, hence z < 0 the trait, hence z >0

When z is normally distributed, this reduces to

St=1 =1¢(Trt) pt: =
“a 17 q

Height of the unit normal density function
at the point u,

Hence, we start at some initial value given h? and
g, and iterative to obtain selection response

47
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Initial frequency of g = 0.05. Select only on adults
showing the trait (p, = 1)

225 [ 100

2.00 ] F 90

175 ] S 9 (80 3
:
| 1.50 ] 5
= - =
5 ] 60 )
5 125 i s
= 50 >
° 1.00 1 i §
5 o g
Al
3 0.5 [30 £
2 ] =
©n 0.50 0 &

025 ] F 10

0.00 T T T T O

0 5 10 15 20 25
Generation
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Ancestral Regressions

When regressions on relatives are linear, we can think of the response as
the sum over all previous contributions

For example, consider the response after 3 gens:

R(3) =8 03050 +408315 +208325

. A r,
8 great-grand parents 2 parents
Sy is there selection 4 grandparents
differential Selection diff S,

B3 o is the regression
coefficient for an
offspring at time 3

on a great-grandparent
From time O

B3 1 is the regression
of relative in generation
3 on their gen 1 relatives

50



Ancestral Regressions

More generally,

T-1
RT) =3 2" 67,5, B = cov(zr.z)
t=0
The general expression cov(z,z), where we keep track of the actual
generation, as oppose to cov(z, zr,;) -- how many generations
separate the relatives, allows us to handle inbreeding, where the
regression slope changes over generations of inbreeding.

Unless 2 /3,4 remains constant as t increases, the contribution to cumulative response
from selection on adults in generation 7 changes over time. For example, when loci are
strictly additive (no dominance or epistasis), 0 (7 + t.7) = 27 0% (7) and thus 2 3, , , =
h?, the standard resultfrom the breeders’ equation. However, unless 2 o (7 +t.7) remains
constant, any response contributed decays. Hence any term of o (7 +t. 7) that decreases
by more than 1/2 each generation contributes only to the transient response.

Changes in the Variance under Selection

The infinitesimal model --- each locus has a very small
effect on the trait.

Under the infinitesimal, require many generations
for significant change in allele frequencies

However, can have significant change in genetic
variances due to selection creating linkage disequilibrium

Under linkage equilibrium, freq(AB gamete) =
freq(A)freq(B)

With positive linkage disequilibrium, f(AB) > f(A){(B), so
that AB gametes are more frequent
With negative linkage disequilibrium, f(AB) < f(A)(B),

so that AB gametes are less frequent
52



Additive variance with LD:

Additive variance is the variance of the sum of allelic effects,

Genic variance: value of Var(A)
in the absence of disequilibrium
function of allele frequencies

n :
o2 ( (a(lkh | “I_ZA 1)) _ QZUZ G”ikl) y JZU(“[H‘”IRI)
k=1 ? k=1 k<j A
: i n
=2 ( kk%’* 4 Z ("jk
k=1 M k<j
2 2
........................ > T4 T, { d‘...

Additive variance
Disequilibrium contribution. Requires covariances

between allelic effects at different loci
53

Key: Under the infinitesimal model, no
(selection-induced) changes in genic
variance o2,

Selection-induced changes in d change 02, 62,, h?

o3 (t) = of +oh +oh(t) = oF +d(1)

PN
9
b
e
o
—
~
—

(t)
(t) o +d(t)

. o
h%(t) = =
o

[V}

¢

Dynamics of d: With unlinked loci, d loses half its value each
generation (i.e, d in offspring is 1/2 d of their parents,

d(t
d(t +1) = - f-) )
e 54




Dynamics of d: Computing the effect of selection in generating d

Consider the parent-offspring regression

h? h?

Zo = M T(:m — ) 5 (zf —p) te

4
ol (1— h—) o?
2 ~

Taking the variance of the offspring given the selected parents gives

a?(z,) = $ [02(.‘.,’,’1) + azil.:})] + o2
rt o, rtY o,
— 57[0: } ()(fr“)] + (l — .’_T) o
h-
a, ?r)(ﬁ )
Change in variance from selection 55

Change in d = change from recombination plus
change from selection

o d(t) ht 1) 404
(i 4 — - — [t I t - 2
d(t +1) = = + 5 5(o?) = e+ %) }-_E ) 5 (USH:.)
Recombination Selection
Ad(t) = Aa'f”:, = Adi(t)
In terms of change in d, __d) R, ()
- 2 2 N “z(t)

This is the Bulmer Equation (Michael Bulmer), and it is
akin to a breeder’s equation for the change in variance

At the selection-recombination o
H H et d=h*s(c?)
equilibrium, N



Application: Egg Weight in Ducks

Rendel (1943) observed that while the change
mean weight weight (in all vs. hatched) as
negligible, but their was a significance decrease
in the variance, suggesting stabilizing selection

Before selection, variance = 52.7, reducing to
43.9 after selection. Heritability was h? = 0.6

d=h"0(07) =0.62(43.9 - 52.7) = -3.2

Var(A) = 0.6*52.7= 31.6. If selection stops, Var(A)
is expected to increase to 31.6+3.2= 34.8

Var(z) should increase to 55.9, giving h? = 0.62 57
Specitic models of selection-induced
changes in variances

Proportional reduction model: o2 = (1—r)o?
constant fraction k of
variance removed 5(0?) = 0% — 0? = —ro?
I ’1|t) "',2. 2
Bulmer equation simplifies dt 1) == =gt oal)
to dt) ko2 +d(t)]?
T2 2 g 4d)
Closed-form solution = =l VIR (1= ).
. . |

to equilibrium h? 2r (1 - h?)

58



Disruptive Selection Stabilizing Selection

. Pz,
AN - N

Saved culled

Directional Truncation Selection: Uppermost (or lowermost) p saved

p= s (y Cus) _ I p]) =7 (7= 21p)

p p

Stabilizing Truncation Selection: Middle fraction p of the distribution saved

- 22 Cuppepm) 221w
P

DisruptiveTruncation Selection: Uppermost and lowermost p/2 saved

2¢ (211-p/21) *1-ps2
P

K=—

Equilibrium h? under direction
truncation selection

e h2=075
» —
= 0.71 - ______—————”‘—__
B
= 0.67
= 2
E 0‘5_— __________ l! _:1)15_() ___________________ —
-]
=
2 041
]|
S Al
03 h2=025
0.2 : , - - -
0 20 40 60 80 100

Fraction saved, p (in percentage) o



Directional truncation selection

=T (7= %)

Example 13.2. Suppose directional truncationselection is performed (equally onbothsexes)
on a nommally distributed character with fo =100, h?2 = 0.5, and p = 0.20 (the upper 20
percent of the population is saved). From nommal distribution tables,

Pr(U <0.84) = 0.8, hence 20.5) = 0.84
Likewise, evaluating the unit normal gives ¢(0.84) = 0.2803, so that (Equation 10.26a)
7=(0.84)/p = 0.2803/0.20 = 1.402
From Equation 13.15b, the fraction of variance removed by selection is
k= 1.402(1.402 — 0.84) = 0.787.
Hence, Equation 13.12 gives

d(t) [50 + d(t) ]2

1t = —-0.3

dit+1) == N 00T a0
Generation 0 1 2 3 4 5 X
d(t) 0.00 —9.84 —11.96 —12.45 —12.56 —12.50 —12.59
rr%1 (1) 50.00  40.16 38.04 37.55 3744 3741 37.41
h2(t) 0.50 0.45 0.43 0.43 0.43 0.43 0.43

Changes in the variance = changes in h?
and even S (under truncation selection)

R(t) = h2(t) S(t)

How does this red uction in 024 infl
selection 7 is unchanged (being
and rr'f change over time, E

nee the per-generation change in mean, I?(#)? Since the
tirely a function of the fraction p of adults saved), but h?
Gtion 10.6b gives the response as

R(t) = /,2( 1.40202(t) /o2 + d(t) = 1.402 h2(t) /100 + d(t)

Response dedines from aninitial value of R =1.4- 05 10= 7 to an asympotic per-generation

valueof [? = 1.4- 0.43 /8741 =5.6. Thus ifwe simply used the Breeders’ equation to predict
change in mean over several generations without accounting for the Bulmer effect, we would
have overestimated the expected responseby 25 percent.
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Lecture 5
Inbreeding and
Crossbreeding

Bruce Walsh lecture notes

Summer Institute in Statistical Genetics
Seattle, 18 — 20 July 2016

Inbreeding

Inbreeding = mating of related individuals
Often results in a change in the mean of a trait
Inbreeding is intentionally practiced to:

— create genetic uniformity of laboratory stocks

— produce stocks for crossing (animal and plant
breeding)

Inbreeding is unintentionally generated:

— by keeping small populations (such as is found
at zoos)

— during selection



Genotype frequencies under inbreeding

e The inbreeding coefficient, F

e F = Prob(the two alleles within an individual
are IBD) -- identical by descent

* Hence, with probability F both alleles in an
individual are identical, and hence a
homozygote

e With probability 1-F, the alleles are
combined at random

AIIeIesIBDy /CFI)v
AR T AIAL

y Random matlng A A

Alleles IBD A2A?

Genotype | Alleles IBD | AllelesnotIBD | frequency

AA, Fp (1-F)p? p? + Fpq
ALA, 0 (1-F)2pq (1-F)2pq
AA Fq (1-F)g? 9 + Fpq




Changes in the mean under inbreeding

Genotypes A A AA, ALA,
0 a+d 2a

freq(A;) = p, freq(A) = q

Using the genotypic frequencies under inbreeding, the
population mean ug under a level of inbreeding F is
related to the mean p, under random mating by

Ur = U - 2Fpgd

For k loci, the change in mean is

k
HEF = Ho — 2FZ Pigidi = py — BF
Here B is the reduction in mean under

complete inbreeding (F=1) , where B=2 Z Pigi d;

e There will be a change of mean value if dominance is present (d not 0)

e Forasingle locus, if d >0, inbreeding will decrease the mean value of
the trait. If d <0, inbreeding will increase the mean

* For multiple loci, a decrease (inbreeding depression) requires
directional dominance --- dominance effects d; tending to be positive.

* The magnitude of the change of mean on inbreeding depends on gene

frequency, and is greatest when p =q=0.5
6



Inbreeding Depression and Fitness
traits

Example for maize height



Fitness traits and inbreeding depression

e Often seen that inbreeding depression is
strongest on fitness-relative traits such as
yield, height, etc.

e Traits less associated with fitness often show
less inbreeding depression

e Selection on fitness-related traits may
generate directional dominance

Why do traits associated with fitness
show inbreeding depression?

* Two competing hypotheses:

— Overdominance Hypothesis: Genetic variance for fitness is
caused by loci at which heterozygotes are more fit than both
homozygotes. Inbreeding decreases the frequency of
heterozygotes, increases the frequency of homozygotes, so
fitness is reduced.

— Dominance Hypothesis Genetic variance for fitness is caused
by rare deleterious alleles that are recessive or partly recessive;
such alleles persist in populations because of recurrent mutation.
Most copies of deleterious alleles in the base population are in
heterozygotes. Inbreeding increases the frequency of
homozygotes for deleterious alleles, so fitness is reduced.



Inbred depression in largely
selting lineages

* Inbreeding depression is common in outcrossing
species

e However, generally fairly uncommon in species with
a high rate of selfing

* One idea is that the constant selfing have purged
many of the deleterious alleles thought to cause
inbreeding depression

e However, lack of inbreeding depression also means a
lack of heterosis (a point returned to shortly)

— Counterexample is Rice: Lots of heterosis and
inbreeding depression

Variance Changes Under Inbreeding

Inbreeding reduces variation within each population

Inbreeding increases the variation between populations
(i.e., variation in the means of the populations)

EDIEHIEH

F=0



Between-group variance increases with F

Within-group variance decreases with F

Implications for traits

* A series of inbred lines from an F, population
are expected to show

— more within-line uniformity (variance about the
mean within a line)

* Less within-family genetic variation for
selection

— more between-line divergence (variation in the
mean value between lines)

® More between-family genetic variation for
selection



Variance Changes Under Inbreeding

General F=1 F=0

Between lines 2FV, 2V, 0

Within Lines (1 —F) \/A 0 VA

Total (1+F)V, [2V, |V,

The above results assume ONLY additive variance
i.e., no dominance/epistasis. When nonadditive
variance present, results very complex (see WL Chpt 3).

Line Crosses: Heterosis

When inbred lines are crossed, the progeny show an increase in mean
for characters that previously suffered a reduction from inbreeding.

This increase in the mean over the average value of the
parents is called hybrid vigor or heterosis

WP + P>
2

A cross is said to show heterosis if H > 0, so that the
F; mean is larger than the average of both parents.

Hp = HF1 —



Expected levels of heterosis

If p; denotes the frequency of G, in line 1, let p; + dp; denote
the frequency of Q; in line 2.

The expected amount of heterosis becomes

n
Hr = ) (6pi)?ds
=1
 Heterosis depends on dominance: d =0 = no inbreeding depression and no

Heterosis. As with inbreeding depression, directional dominance is required for heterosis.

e H is proportional to the square of the difference in allele frequencies

between populations H is greatest when alleles are fixed in one population and
lost in the other (so that 18pl = 1). H =0 if 3p = 0.

e H is specific to each particular cross. H must be determined empirically,
since we do not know the relevant loci nor their gene frequencies. 17

Heterosis declines in the F,

In the F,, all offspring are heterozygotes. In the F,,
random mating has occurred, reducing the frequency
of heterozygotes.

As a result, there is a reduction of the amount of
heterosis in the F, relative to the F,,

+ op)2d |H

Since random mating occurs in the F, and subsequent
generations, the level of heterosis stays at the F, level.



Agricultural importance of heterosis

Crosses often show high-parent heterosis, wherein the

F, not only beats the average of the two parents

(mid-parent heterosis), it exceeds the best parent.

Crop % planted % yield Annual Annual Annual land
as hybrids | advantage added added savings
yield: % yield: tons
Maize 65 15 10 55 x 10¢ 13 x 10¢ ha
Sorghum 48 40 19 13 x 106 9 x 10%ha
Sunflower 60 50 30 7 x 108 6 x 10%ha
Rice 12 30 4 15 x 106 6 x 10%ha

Hybrid Corn in the US

19

Shull (1908) suggested objective of corn breeders
should be to find and maintain the best parental
lines for crosses

Initial problem: early inbred lines had low seed set

Solution (Jones 1918): use a hybrid line as the seed

parent, as it should show heterosis for seed set

1930's - 1960's: most corn produced by double crosses

Since 1970’'s most from single crosses

20




A Cautionary Tale

1970-1971 the great Southern Corn Leaf Blight almost
destroyed the whole US corn crop

Much larger (in terms of food energy) than the great potato
blight of the 1840’s

Cause: Corn can self-fertilize, so to make hybrids either have to
manually detassle the pollen structures or use genetic tricks that
cause male sterility.

Almost 85% of US corn in 1970 had Texas cytoplasm Tems, a
mtDNA encoded male sterility gene

Tems turned out to be hyper-sensitive to the fungus

Helminthosporium maydis. Resulted in over a billion dollars
of crop loss

Crossing Schemes to Reduce the
Loss of Heterosis: Synthetics

Take n lines and construct an F, population by
making all pairwise crosses

Allow random mating from the F, on to produce a
synthetic population

Fo> = F

H/n
1

21

Hp, =Hp | 1—— Only 1/n of heterosis

n lost vs. 1/2

22



Synthetics

® Major trade-off

— As more lines are added, the F, loss of
heterosis declines

— However, as more lines are added, the
mean of the F, also declines, as less elite
lines are used

— Bottom line: For some value of n, F, - H/n
reaches a maximum value and then starts
to decline with n

23

Types of crosses

* The F, from a cross of lines A x B (typically
inbreds) is called a single cross

e A three-way cross (also called a modified
single cross) refers to the offspring of an A
individual crossed to the F1 offspring of B x
C

— Denoted A x (B x C)

e A double (or four-way) cross is (A x B) x (C x
D), the offspring from crossing an A x B F,
witha Cx D F,.

24



Predicting cross performance

* While single cross (offspring of A x B) hard to
predict, three- and four-way crosses can be
predicted if we know the means for single
crosses involving these parents

® The three-way cross mean is the average mean
of the two single crosses:

— mean(A x {B x C}) = [mean(A x B) + mean(A x C)]/2

e The mean of a double (or four-way) cross is the

average of all the single crosses,

— mean({A x B} x {C x D}) = [mean(AxC) + mean(AxD) +
mean(BxC) + mean(BxD)]/4

25

Individual vs. Maternal Heterosis

e Individual heterosis
— enhanced performance in a hybrid individual

e Maternal heterosis

— enhanced maternal performance (such as
increased litter size and higher survival rates of
offspring)

— Use of crossbred dams

— Maternal heterosis is often comparable, and can
be greater than, individual heterosis



Individual vs. Maternal Heterosis in Sheep traits

Trait Individual H | Maternal H total
Birth weight 3.2% 5.1% 8.3%
Weaning weight 5.0% 6.3% 11.3%
Birth-weaning 9.8% 2.7% 12.5%
survival
Lambs reared 15.2% 14.7% 29.9%
per ewe
Total weight 17.8% 18.0% 35.8%
lambs/ewe
Prolificacy 2.5% 3.2% 5.7%

Estimating the Amount of
Heterosis in Maternal Effects

Contributions to mean value of line A

| M M ©
ZA=Z 1T Ogan tOa + On

I N

Individual Maternal Grandmaternal

genetic genetic genetic effect (BV)
effect (BV) effect (BV)



Consider the offspring of an A sire and a B dam

Individual genetic

value is the Contribution
average of both from (individual)
parental lines heterosis

\ \
| |
ZAB=2+L_;(£+9'§/I +gg/lo+h,|A\B

N

Maternal and
grandmaternal
effects
from the B mothers

| |
+ OB M M © |
ZAB=Z+L2q—+g3 + g + hag

Now consider the offspring of an B sire and a A dam

L
4 BTGB

+ +h
5 AB

ZB A

Difference between the two line means estimates
difference in maternal + grandmaternal effects
in Avs. B



Hence, an estimate of individual heteroic effects is

ZAB + ZBA — ZAA + ZBB N
= NaB
2 2

The mean of offspring from a sire in line C crossed to
a dam from a A X B cross (B = granddam, AB = dam)

Genetic maternal effect

Average indiVi?Uil glenetic value (average of maternal BV for both
average of the line BV's i
( 9 ) lines) Grandmaternal
\ \ genetic effect
\
| | | | | M M I
20c + ga t+ OR h + h + o T
ZC AB = . + CA2 cB . 9A 295+hXB+g|\B/|+ ;b
New individual Maternal genetic /
heterosis of C x AB heteroic effect
cross “Recombinational loss” ---
decay of the F, heterosis

in the F,
One estimate (confounded) of maternal heterosis

ZCA + ZCB M rab
ZC AB = > = hag +—;




Lecture 6:
Selection on
Multiple Traits

Bruce Walsh lecture notes
Summer Institute in Statistical Genetics
Seattle, 18 — 20 July 2016

Genetic vs. Phenotypic correlations

Within an individual, trait values can be
positively or negatively correlated,

— height and weight -- positively correlated

— Weight and lifespan -- negatively correlated

Such phenotypic correlations can be directly
measured,

— rpdenotes the phenotypic correlation
Phenotypic correlations arise because

genetic and/or environmental values within
an individual are correlated.



The phenotypic values between traits x and y
within an individual are correlated

Ay A
'E Likewise, the
A environmental values
for the two traits within
Correlations between the the individual could also
breeding values of x and y be correlated
within the individual can
generate a

phenotypic correlation

Genetic & Environmental Correlations

e r, = correlation in breeding values (the

genetic correlation) can arise from
— pleiotropic effects of loci on both traits
- linkage disequilibrium, which decays over time

e r. = correlation in environmental values
— includes non-additive genetic effects (e.g., D, 1)

— arises from exposure of the two traits to the same
individual environment



The relative contributions of genetic and environmental
correlations to the phenotypic correlation

rp =rAhx hy +7E \/(l—h%)(l — h%)

If heritability values are high for both traits, then
the correlation in breeding values dominates the
phenotypic corrrelation

If heritability values in EITHER trait are low, then
the correlation in environmental values dominates the
phenotypic correlation

In practice, phenotypic and genetic correlations often
have the same sign and are of similar magnitude, but
this is not always the case 5

Estimating Genetic Correlations

Recall that we estimated V, from the regression of
trait x in the parent on trait x in the offspring,

Slope =
(1/2) VA(X)/Vp(x)
Trait x in
offspring

Va(x) = 2 *slope * Vp(x)

Trait x in parent



Estimating Genetic Correlations

Similarly, we can estimate V,(x,y), the covariance in the
breeding values for traits x and y, by the regression of
trait x in the parent and trait y in the offspring

Slope =
(1/2) VA(X,y)/Vp(x)
Traity in
offspring ° Valx,y) = 2 *slope * Vp(x)

Trait x in parent

Thus, one estimator of V,(x,y) is

2 *bylx * VP(X) +2 *bxly * VP(y)
2

VA(XIy) =
giving
Valxy) = by, Ve(x) + by, Vily)

Put another way,

Cov(xp,yp) = Covlyo,xp) = (1
Cov(xg,xp) = (1/2) V5 (X)

Covlyo,yp) = (1/2) VA (y)

/2)Cov(AA)
(1/2)CoviA,, A)
(1/2)Cov(A,, A)

Likewise, for half-sibs,
Cov(xys,yns) = (174) Cov(A,,
Cov(xys,xys) = (1/4) Cov(A,,

Ay

A
A)
Covliyys,yus) = (174) Cov(A, A

<



Correlated Response to Selection

Direct selection of a character can cause a within-
generation change in the mean of a phenotypically
correlated character.

Y Select All

_— Direct selection on

Sy s : / ’ x also changes the
= < + mean of y

Phenotypic correlations induce within-generation
changes

Phenotypic values

Trait y > * . )
[ ] SX
Trait x

For there to be a between-generation change, the
breeding values must be correlated. Such a change
is called a correlated response to selection



Example

* Suppose h? trait x = 0.5, h? traity = 0.3
e Select on trait one to give S, = 10
— Expected response is R, = 5
* Suppose Cov(t,t) = 0.5, then S, =5
* What is the response in trait 27
—is it CRy =0.3*5=1.5. NO!
— Could be positive, negative, or zero

— Depends on the Genetic correlation
between traits x and y. Why??

Phenotypic values

Traity .

R=O °

Trait x



Phenotypic values are misleading, what we want are the
breeding values for each of the selected individuals. Each
arrow takes an individual’s phenotypic value into its actual
breeding value.

Breeding values

Breeding values

Traity

e R

R,=0
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Direct selection Indirect selection

Predicting the correlated response

The change in character y in response to selection
on x is the regression of the breeding value of y
on the breeding value of x,

Ay - bAyIAx Ax
where 2__.
Cov(A A) o(A)
bAyIAx = =Ta
Var(A,) o(A)

If R, denoteé the direct reif,ponse to selection on x,
CRy denotes the correlated response in y, with

CRy - bAyle Rx



We can rewrite CR, = by R, as follows

First, note that R, = h?2,S, =i h, 0, (x)

T

Recall that i, = S,/0p
(x) is the selection
intensity on x

Since bayac = ra 0a(X) / OalY),
We have CR, = bpya, Ry =14 04 (y) h,i,
Substituting o, (y)= h, o5 (y) gives our final result:

CR, = i h, hyraop(y)

CR,= i, h, hy rp Op (Y)

Noting that we can also express the direct response as
R, = ith,* o, (x)

shows that h, h, r, in the corrected response plays the
same role as h,? does in the direct response. As a result,
h, hyra is often called the co-heritability



Direct vs. Indirect Response

We can change the mean of x via a direct response R,
or an indirect response CR, due to selection ony

CRx tyraocaxhy iyrahy

Rx ix hx oax 1x hx

Hence, indirect selection gives a large response when

wyrahy >i1x hx

* The selection intensity is much greater for y than x. This would be true
if y were measurable in both sexes but x measurable in only one sex.

® Charactery has a greater heritability than x, and the genetic
correlation between x and y is high. This could occur if x is difficult to
measure with precison but y is not. 19

GxE

The same trait measured over two (or more) environments
can be considered as two (or more) correlated traits.

If the genetic correlation | pl = 1 across environments and
the genetic variance of the trait is the same in both

environments, then no G x E

However, if Ipl < 1, and/or Var(A) of the trait varies
over environments, then G x E present

Hence, dealing with G x E is a multiple-trait problem

20



Participatory breeding

The environment where a crop line is developed may
be different from where it is grown

An especially important example of this is participatory
breeding, wherein subsistence farmers are involved in the
field traits.

Here, the correlated response is the yield in subsistence
environment given selection at a regional center, while direct

response is yield when selection occurred in subsistence
environment. Regional center selection works when

wyrahy >i1x hx

21

Matrices

a b e f o 7
A:(c d) B:(g h) C_<J>

Dimensions given by rows x columns (r x c)

The identity matrix I, T — (é (1))

2x2

22



Matrix Multiplication

_ ae+bg
~ \ce+dg cf—l—dh

In order to multiply two matrices, they must conform

A B

rxc cxk

=C

rxk
23

Matrix Multiplication
_[a D (e f _ (¢
A_<c d) B_<g h) C (J)

_ (ae+cf eb+df _(az’—l—bj)
BA_(ga—i—ch gd+dh> AC= {1

The identity matrix I serves the role of one in

matrix multiplication: AL =A, IA= A

24



The Inverse Matrix, Al

For a square matrix A, define the Inverse of A, A*, as
the matrix satisfying

ATA = AA T =T

For A:(Z 2) Al :(_dc _ab)
/'

If this quantity (the determinant)
is zero, the inverse does not exist.

The inverse serves the role of
division in matrix multiplication

Suppose we are trying to solve the system Ax = ¢ for x.

A1 Ax = A'c. Note that A”? Ax = Ix = x, giving x = A ¢

26



The Multivariate Breeders’
Equation

Suppose we are interested in the vector R of responses
when selection occurs on n correlated traits

Let S be the vector of selection differentials.

In the univariate case, the relationship between R
and S was the Breeders’ Equation, R = h?S

What is the multivariate version of this?

27

S1 Ry

S R
s=|"" R=| .

Sn R,

02(22) 0(21,22)

b= (0(21,22) 0%(22) )

(UUz(Az) o(Aj, Ag))

G={on,4)  02(4)

28



The multivariate breeder’s equation

R=GP'S
L\ A\
S

R=h2S = (V,/V,)

Natural parallels
with univariate
breeder’s equation

P1S = [} is called the selection gradient and measures the
amount of direct selection on a character

The gradient version of the breeder’s equation is given by R = G f3.
This is often called the Lande Equation (after Russ Lande)

29

Sources of within-generation change in the mean

Since p=P'S,S =P,

giving the j-th element as

Change in mean from
phenotypically

correlated characters
under direct selection

Si =a2(Pj) Bi + Y o(Pj, B) Bi

Change in mean i£g
from direct
selection on trait |

Within-generation
change in trait j

30



Within-generation change in the mean

Sj =o(Pj)Bj + Y, o(Pj, P) Bi
i3]

Response in the mean Indirect response
) from genetically
Between—generatlon correlated
change (re§p9nse) characters under
In trait direct selection

2
R; =0®(A;) B+ D o(Aj, As) B
i
Response from direct
selection on trait j

_ Correlated response
Direct response 4

Example in R

Consider three of these traits, z; = oil content, zo = protein content, and z3 = yield. For
these characters, Brim et al. estimated the covariance matrices as

287.5 4774 1266 128.7 160.6 492.5
P=14774 935 2303 |, G = | 160.6 2546 707.7

1266 2303 5951 492.5 707.7 2103

Suppose you observed a within-generation change of
-10 for oil, 10 for protein, and 100 for yield.

What is R? What is the nature of selection on each
trait?

32



Enter G, P, and S
1> P<-matrix(c(287.5,477.4,1266,477.4,935,2303,1266,2303,5951), nron=3)

>P

11 [2] LL3]
[1,] 287.5 477.4 1266
[2,] 477.4 935.0 2303
[3,] 1266.6 2303.0 5951

> G<-matrix(c(128.7,160.6,492.5,160.6,254.6,707.7,492.5,707.7,2103), nrow=3)

>0
L1 L2 3]
[[1,] 128.7 160.6 492.5
[2,] 160.6 254.6 707.7
[3,] 492.5 707.7 2103.0
> S<-matrix(c(-10,10,100), nrow=3)

>S5
[.1]
[1,] -10
[2,] 10
[3,] 100
R=GPIS
> G %% solve(P) %*% S 13.6 decrease in ol
[1] : . :
[1,] -13.57729 12.3 increase in protein
B 6 tar 65.1 increase in yield
33
S versus 3 : Observed change versus targets of
Selection, p=P'S,S =Pp,
. — 2 PD. : ) :
S; =0a°(P;) Bj + E o(Pj, B) Bi
i£]
> solve(P) %*% S > S
[,1] [, 1]
[1,] -2.708160 'f1,] -10
[2,] -1.431756 <—> [2,] 10
[3,] 1.147009 [3,] 100
B: targets of selection S: observed within-generation
change

Observe a within-generation increase in protein, but the
actual selection was to decrease it. 34



Quantifying Multivariate Constraints to Response

Is there genetic variation in the direction of selection?

Consider the following G and B:

10 20 2
G:(:zo 40)* 52(—1)

Taken one trait at a time, we might expect R; = G;f;
Giving R, = 20, R, = -40.

What is the actual response? 0
R=GgB= (0>

35

Constraints Imposed by
Genetic Correlations

While B is the directional optimally favored by
selection, the actual response is dragged off
this direction, with R = G .

Example: Suppose
10 0 -—10 0D 5
S:(—m)’ P:(—m 40)’ G:(5 10)

What is the true nature of selection on the two traits?

~1
- 0 —10 10 0.43
p=P S:P:(—m 40) (—10):(—0.14>

36



What does the actual response look like?

weeo-(2 £)(58)- (),

Direction of
response

Direction favored
by selection

37

Time for a short diversion:
The Geometry of a matrix

A vector is a geometric object, leading from the
origin to a specific point in n-space.

Hence, a vector has a length and a direction.

We can thus change a vector by both rotation and scaling

The length (or norm) of a vector x is denoted by |Ixl|

HXH = Il?%—l—{l?g—}—"'—l—{l?Q — vVxTx

n

38



The (Euclidean) distance between two vectors x and y
(of the same dimension) is

2 2 T T
Ix=yl* = > _(zi=yi)* = (x=y)" (x=y) = (y=%)" (y—x)
i=1
The angle 6 between two vectors provides a measure
for how they differ.

If two vectors satisfy x = ay (for a constant a), then
they point in the same direction, i.e., 6 = 0 (Note that
a < 0 simply reflects the vector about the origin)

Vectors at right angles to each other, 6 = 90° or 270°
are said to be orthogonal. If they have unit length as
well, they are further said to be orthonormal.

39

Matrices Describe Vector transformations

Matrix multiplication results in a rotation and a scaling of
a vector

The action of multiplying a vector x by a matrix A
generates a new vector y = Ax, that has different
dimension from x unless A is square.

Thus A describes a transformation of the original
coordinate system of x into a new coordinate system.

Example: Consider the following G and f:

0-(3%) () neor ().



The resulting angle between R and B is given by

_ _B'R3
cosO=1Ra = V2

Foranangle of 6 =45°? Ap-GB

41

Eigenvalues and Eigenvectors

The eigenvalues and their associated eigenvectors
fully describe the geometry of a matrix.

Eigenvalues describe how the original coordinate
axes are scaled in the new coordinate systems

Eigenvectors describe how the original coordinate
axes are rotated in the new coordinate systems

For a square matrix A, any vector y that satisfies
Ay = Ay for some scaler A is said to be an eigenvector
of A and A its associated eigenvalue.

42



Note that if y is an eigenvector, then so is a*y
for any scaler a, as Ay = Ay.

Because of this, we typically take eigenvectors to
be scaled to have unit length (their norm = 1)

An eigenvalue A of A satisfies the equation
det(A - Al) = 0, where det = determinant

For an n-dimensional square matrix, this yields an
n-degree polynomial in A and hence up to n unique roots.

Two nice features:
det(A) = IT, A, The determinant is the product of the eigenvalues

trace(A) = =, A\.. The trace (sum of the diagonal elements) is

is the sum of the eigenvalues s

Note that det(A) = O if any only if at least one
eigenvalue = 0

For symmetric matrices (such as covariance matrices)

the resulting n eigenvectors are mutually orthogonal,
and we can factor A into its spectral decomposition,

A = Alele?—l—)\gegeg—l—- . -—l—)\neneg

Hence, we can write the product of any vector x and A as

Ax = AlelelTa: 4+ )\zezegw + -4 /\nenegzc
= A1Proj(xoner) + A2Proj(xonez) + - - - + ApProj(xoney)
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Example: Let's reconsider a previous G matrix

4—-—X 2
-2 2=

=(A4-N2-A)—(-2°=X-6A+4=0

|G — )| =

The solutions are
M =34+V5~5236 A =3—V5~0.764

The corresponding eigenvectors become

o ~ 0851 o, ~ 0526
1=\ 0526 27\ 0.851

45

Ap=Gp Ap

b Aieq
Aqproj(p,eq)
£9
lzez

Even though f points in a direction very close of e,,
because most of the variation is accounted for by e,
its projection is this dimension yields a much longer
vector. The sum of these two projections yields the

selection response R.

A2 proj(p,e2)

46



Realized Selection Gradients

Suppose we observe a difference in the vector of means
for two populations, R = p, - u,.

If we are willing to assume they both have a common
G matrix that has remained constant over time, then
we can estimate the nature and amount of selection
generating this difference by

B=G'R

Example: You are looking at oil content (z;) and yield (z,)
in two populations of soybeans. Population a

has w, = 20 and u, = 30, while for Pop 2, u, = 10 and

u, = 35.

47

Fere 20 — 10 10
R= (30—35) a ( —5)

Suppose the variance-covariance matrix has been
stable and equal in both populations, with

20 —10
G =
—10 40
The amount of selection on both traits to obtain this
response is

(2 5) (9)-(%)
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Muir Lecture 7
Introduction to Mixed Models, BLUP Breeding Values and REML
Estimates of Variance Components

References
Searle, S.R. 1971 Linear Models, Wiley

Schaeffer, L.R., Linear Models and Computer Strategies in Animal
Breeding

Schaeffer, LR
http://www.aps.uoguelph.ca/~Irs/ABModels/NOTES/vcBAYES.pdf
Lynch and Walsh Chapter 26

Mrode, R.A. Linear Models for the Prediction of Animal Breeding Values

MIXED MODEL

» Separates
Independent variable
into those that are
— Fixed X b X=value of each fixed effect

b=linear regression coefficients

— Random Z u Z=incidence matrix of r.andom effect,.
usually a 1 corresponding to each animal

u=estimate of random effects (breeding
value)

Y=Xb+Zu+e

More importantly model’s the variance structure




Fixed and Random Effects

» Fixed Effect
— Inference Space only to those levels
— Herd, Year, Season, Parity, and Sex effect
« Random Effect
— Effect Sampled From A Distribution Of Effects

— Inference Space To The Population From
Which The Random Effect Was Sampled

Random
Effect

o
o

Gametes

A
\
a “
\f \ |
Bad Good

Sample

Inference is to the genetic worth of the bull (breeding value) 4




Variances In Mixed Models
Y=Xb+Zu+e V(b)=0
Vu)=E(uu)=G
V(e)=E(ee')=R
V(Y)=V(Xb+Zu+e)=ZGZ'+R

EBV

Estimate the breeding values “u” and fixed effects simultaneously

The Maximum Likelihood Estimates of b and u give the
mixed model equations (MME), These are also the Best
Linear Unbiased Predictors (BLUP)

Mixed Model Equations

XR™X XR1'Z b B XR1Y
ZR'X ZR'Z+G™|u ZR1'Y
Simplifications If ~ R=1c’

Substitute R :[iz} Then multiply both equation by 02
o, e

X'X XZ b] [XY
ZX ZzZ+cGH|u| |ZY




Simplifications

XX XZ b| | XY
ZX ZZ+o:Gh|u| |ZY

Assuming Additivity (G = AG; G* :izA‘l
XX XZ b| | XY
1 1 0-2 _1 = '
Z X ZZ+éA 7Y
Only Estimate of Ratio is Needed Only inverse is needed
7] Example 1
9
volio] @ 1! © |2] (10) 3 b=[u]
6 \\//\\//
19 6) 4 9 5
1] 10 0 0 0] [a,] e,
1 01000 a, e,
X=|1 Z=0 01 0O u=|a, e=|e,
1 00010 a, e,
1 000 0 1] a, | &
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9

X'Z=[1 111 1]

X'X=5

|
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7 1 © [2] (10) 3 1004%0
\ / N / 0103 3
A=[0 0 1 0 %
© ©F 13014
07 7 %1
Assume heritability=.5 _ _
21 0 -1 0
. 2 1 3 1 -1
%=1 ZZ+ZA"=|0 L 5 0 -1
Ja Oa
-1 -1 0 3 O
0 -1 -1 0 3
XX XZ bl [ XY
ZX ZZ+Z=A M |\ul |ZY
- o
9
XY= 111 1]10 o
Z'Y =10
6
6
L9 9|

X'Y =[41]

12




MME

5 1 1 1 1 17wl [41]
1 5 3 0 -1 0fa| (7

1 3 3 3 -1 -1ja|_

1 0 &£ 2 0 -1|a| |10
1 -1-10 3 0/a]| |6

1 0 -1 -1 0 3]a 9

(&)

13
y= matrix( c(7 A = matrix( ¢( 1,0,0, 5,0,

9o 0,1,0, 5,5,

10 0,0,1,0, 5,

6 ’ .5,.5,0, 1,.25,

9551) 0,5,5,25,1 ),5,5)
SigA=2 o LHS = rbind( cbind(t(X) %*% X , t(X) %*% Z),
Sige=2 cbind( (2) %*% X , (1(Z) %% Z) +

(lam * solve(A)) )
lam=SigE/SigA
e RHS = rbind(t(X) %*% v,
Z=matrix(c(1,0,0,0,0, t(2) %*% y)

0,1,0,0,0,

0,0,1,0,0, C = solve(LHS)

0,0,0,1,0,

0,0,0,0,1 )5,5) BU = C %*% RHS
X =matrix( c(1, BU

1
1 yhat=X*BU[1]+BU[2:6]
1 yhat
1),5,1)
14

What do you expect if heritability is larger or smaller?




Missing Values (Sex Limited Traits)

Note that breeding values for males are estimated

Generation
1 @ 1 M (10) 3
\ / 100 20
i1
2 © 4 M 0103
5 - A=0 0 1 0 1
€ 11091 ¢
— 2 2 4
Y =[10 _ b =[]
e=e R [
6 _es 31
— a2
10000 y= a, Assume h2=.5
_ Z=/0 01 0O
X= a,
0 0010
L _3.5 ] 15
Example 2 R Code
y= matrix( c(7, LHS = rbind( cbind(t(X) %*% X, t(X) %*% Z),
10, chind( t(Z) %*% X , (t(Z) %*% Z) + (lam *
6), 3,1) solve(A)) ))
SigA=20
SigE=20 RHS = rbind(t(X) %*% v,
t(Z) %*% y)
lam=SigE/SigA
C = solve(LHS)
Z = matrix( c(1, 0, 0, 0, O,
0,0,1,0,0, BU = C %*% RHS
0,0,0,1,0)35
, byrow = TRUE) BU
X = matrix( c( 1, X1 = matrix( c( 1,
1, 1,
1),3.1) 1,
A= matrix( c(1, 0, 0, .5, 0, 1,
0,1,0,.5,5, 1),5,1)
0,0,1,0, .5,
.5,.5,0, 1,.25, yhat=X1*BU[1]+BU[2:6]
0,.5,.5,.25,1 ),5,5) yhat
16




Extensions of Model

 Inclusion of Dominance and Epistasis
— Dominance
« Dominance effects are the result of interaction of alleles within a locus
« Dominance relationship matrix needed

« Reflects the probability that individuals have the same pair of alleles in
common at a locus

— Epistasis
« Epistatic genetic effects are the result of interactions between alleles at
different loci
« Epistatic relationship matrix needed
* Reflects the probability that individuals have the same pair of alleles in
common at different loci (4 possible pairings of 2 alleles at 2 loci)
— Useful in crossbreeding programs but generally not useful in pure
breeding programs
* Anindividual does not pass on dominance or epistatic effects (without
inbreeding or cloning), which are a function of both parents
« Exception is Additive x Additive epistasis which is a function of 2 alleles at

different loci in the same gamete, but dissipates with recombination and/or
segregation

17

Estimation of Variances Using all Data in a Pedigree

* REML

— EM-REML iterative process whereby
» Avalue is assumed for additive variance
» Estimates of breeding values found

» Additive variance V(A) is estimated as variance of breeding
values V(A)=(u'Alu +stuff)/n

The new value of V(A) is substituted into the MME
Estimates of breeding values (u) are found
» The process repeated until convergence

— DF-REML work by trial and error finding a value of
V(A) that maximize the likelihood

18




Appendix 1

Software packages for estimating
EBVs, Variance Components,
GWAS and genomic selection

19

Software engineering the mixed model for genome-wide association studies on large

samples
http://bib.oxfordjournals.org/content/10/6/664/T1.expansion.html

Build  Build Number
Flexible Automatic Sample Population Kinship Kinship of
modeling GWAS  size structure from from Random

pedigree marker Effects

Program Web address (http) Availability

TASSEL WWw. maizegenetics.net Free No Yes S Yes Yes Yes 1
SAS WIWW.525.Com Licensed Yes Yes 5 Yes Yes Yes =1
MP . Www_jmp.com'software/genomics Licensed Yes Yes NA Yes NA Yes =1
Genomics

ASREML  www.vsni.co.uk/software/asreml Licensed Yes Yes NA Yes Yes No =1
MTDFREML aipl arsusda gov/curtvtmtdfreml html  Free Yes No L Yes Yes No =1
DMU www.dmu.agrsd.dk Free Yes No L Yes Yes No =1
QxPak E;:lads.uga.edu TISIACY HEWPIOSEIS Yes Yes L Yes Yes No =1
WOMBAT  agbu.une edu an/~kmeyer/wombat Free Yes NA L Yes Yes No =1
EMMA(R) mouse.cs.uda edu/emma Free No Yes M No No Yes 1

20




R packages

* QTL mapping
— onemap - Itis used to generate or rearrange genetic maps
— rqtl — performs QTL mapping for bi-parental populations
— GAPIT — most common package for Genome-Wide Association
Mapping
* BLUP (Animal Model)
— pedigree — Generates A matrix from sparse pedigree
— MCMCglmm — Generalized Mixed Models incorporating pedigrees
— pedigreemm - Fit mixed-effects models incorporating pedigrees
» Genomic Selection

— rrBLUP — classic package to perform ridge regression BLUP and
GBLUP

— BGLR — whole genome regressions methods of genomic selection
— randomForest — Random Forest Regression (non-parametric GS)
— brnn — Bayesian Regularized Neural Network (non-parametric GS)
— parallel — Allows the use of multiple cores for faster computation

Provided by Alencar Xavier (xaviera@purdue.edu)

Appendix 2

SAS IML BLUP Programs

For Examples 1 and 2

22




proc iml; lam=1;

start main;
Z={10000,
y={7, 01000,
9, 00100,
10, 00010,
6, 00001}
9%
LHS=((X*X)|[|(X *2))I((Z *X)||(Z *Z+INV(A)#
X={1, LAM));
1,
1, RHS=(X"*Y)/I(Z"*Y);
1, C=INV(HS);
1}
BU=C*RHS;
A={1 0 0.5 O, print C BU;
0105 .5
0010 .5 finish main;
5501 .25 run;
0.5.5.25 1}; quit, 23
Estimates
BU b [/}]
53018868 .
-0.960813 ) a
0.0754717 a,
0.8853411 — U=|4,
-1.062409 a,
0.5529753/ &

24




proc iml; lam=1;
start main;
Z={10000,
y={7, 00100,
10, 00001}
6};
LHS=((X™*X)|[(X*2)/I((Z"*X)||(Z"*
X={1, Z+INV(A)#LAM)):
1,
1}; RHS=(X"*Y)/I(Z"*Y);
C=INV(LHS):
A={1 0 0.5 O,
010.5 .5 BU=C*RHS;
0010 .5 print C BU;
5501 .25
0.5.5.25 1}; finish main;
run,
quit;
25
Estimates
b=|u
784 — ] [ﬂ ]
4
-0.64 éz
-0.43 A
1.07 U=|4
-0.97 a,
0.32 a

26




Appendix 3

Problems

27

Problem 1

Find the best estimate of the genetic worth of each animal.
Assume a heritability of .5.

28




Answer Problem 1

proc iml;
start main;
A={1 0 0 0 0.5 0 0.25 0 0.125,
y={9 0 1 0 0 0.5 0 0.25 0 0.125,
13 0 0 1 o 0 0.5 0.5 0.25 0.375,
4 ’ 0 0 0 1 0 0.5 0 0.75 0.375,
12 0.5 05 0 o 1 0 05 0 0.25,
11, 0 0 05 05 0 1 0.25 0.75 0.5,
ll, 0.25 0.25 0.5 0 0.5 0.251 0.125 0.5625,
13' 0 0 0.25 0.75 0 0.75 0.125 1.25 0.6875,
9' 0.125 0.125 0.375 0.375 0.25 0.5 0.5625 0.6875 1.0625};
10}
AINV=INV(A) ;
x={1, lam=1; Answer
1, 10.07
1, z={1 00000000, 0.1
1, 010000000, 1689
1, 001000000, -é28
1, 000100000, 0505
1, 000010000, BU=  1.145
1, o0ooo0o001000, _631
1}; 000000100, 0564
0o000O0O0OO010O0, _619
000000O0O0 13}; 0.105
LHS=((X*X) | 1 (X *2))77 ((Z>*X) | | (Z™*Z+AINVHLAM))
RHS=(X"*Y)//(Z"*Y);
C=INV(LHS);
BU=C*RHS;
29
1
A 8]
E 11 2
3
4

J 10

Estimate breeding values for the males.
Assume a heritability of .5.

30




proc iml;
start main;

y={9,
12,
11,
13,
10}

Answer Problem 2

A={1 0 0 0 0.5 0 0.25 0 0.125,
0 1 0 0 0.5 0 0.25 0 0.125,
0 0 1 0 0 0.5 0.5 0.25 0.375,
0 0 0 1 0 0.5 0 0.75 0.375,
0.5 0.5 0 0 1 0 0.5 0 0.25,
0 0 0.5 0.5 O 1 0.25 0.75 0.5,
0.25 0.25 0.5 O 0.5 0.251 0.125 0.5625,
0 0 0.25 0.75 0 0.75 0.125 1.25 0.6875,
0.125 0.125 0.375 0.375 0.25 0.5 0.5625 0.6875 1.0625};
AINV=INV(A); Answer
lam=1; 11.03
-0.89
z=<{1 00000000, 0.247
ooo0o100000, 0.338
o0oo0o0010000, 0.307
000000100, BU= -0.075
0000O0O0OO 1}; 0.206
0.587
LHS=((XT*X) | 1 (X™*2)) /7 ((Z"*X) | | (Z~*Z+AINVHLAM)) ; 0.023
RHS=(X"*Y)//(Z"*Y); -0.102
C=INV(LHS);
BU=C*RHS;

31




Lecture 8
QTL and Association mapping

Bruce Walsh lecture notes

Summer Institute in Statistical Genetics
Seattle, 18 — 20 July 2016

Part |
QTL mapping and the use of
inbred line crosses

e QTL mapping tries to detect small (20-40 cM)
chromosome segments influencing trait
variation

— Relatively crude level of resolution
e QTL mapping performed either using inbred
line crosses or sets of known relatives

— Uses the simple fact of an excess of parental
gametes



Key idea: Looking for marker-trait
associations in collections of relatives

If (say) the mean trait value for marker
genotype MM is statistically different
from that for genotype mm, then the M/m
marker is linked to a QTL

One can use a random collection of such
markers spanning a genome (a genomic
scan) to search for QTLs

Experimental Design: Crosses

RILs = Recombinant

inbred lines (selfed F;s) Advanced intercross
l Design (AIC, AIC))
Fy



Experimental Designs: Marker
Analysis

Single marker analysis

Flanking marker analysis (interval mapping)

Composite interval mapping

Interval mapping plus additional markers

Multipoint mapping

Uses all markers on a chromosome simultaneously
5

Conditional Probabilities of
QTL Genotypes

The basic building block for all QTL methods is
Pr(Q, | M;) --- the probability of QTL genotype
Q, given the marker genotype is M..

.\ _ Pr(QkM;j)
Pr(leMJ)— PF(MJ)
Consider a QTL linked to a marker (recombination

Fraction = ¢). Cross MMQQ x mmqg. In the F1, all
gametes are MQ and mq

In the F2, freq(MQ) = freq(mq) = (1-¢)/2,
freq(mQ) = freq(Mq) = ¢/2



Hence, Pr(MMQQ) = Pr(MQ)Pr(MQ) = (1-c)?/4
Pr(MMQq) = 2Pr(MQ)Pr(Mgq) = 2¢(1-c) /4
Pr(MMqq) = Pr(Mg)Pr(Mq) = c?/4

Why the 2?7 MQ from father, Mg from mother, OR
MQ from mother, Mq from father

Since Pr(MM) = 1/4, the conditional probabilities become
Pr(QQ | MM) = Pr(MMQQ)/Pr(MM) = (1-c)?
Pr(Qq | MM) = Pr(MMQgq)/Pr(MM) = 2¢(1-c)
Pr(qg | MM) = Pr(MMqq)/Pr(MM) = ¢?

How do we use these? 7

Expected Marker Means

The expected trait mean for marker genotype M,
Is just .
pm, = Y pQ, Pr(Qr | M;)
k=1
For example, if QQ = 2a, Qq = a(1+k), ggq = 0, then in
the F2 of an MMQQ/mmqq cross,

('“?"”z’” T /l‘mm)/iz — (’1(1 —_ 2()

e |f the trait mean is significantly different for the
genotypes at a marker locus, it is linked to a QTL

e A small MM-mm difference could be (i) a tightly-linked

QTL of small effect or (ii) loose linkage to a large QTL



Linear Models for QTL Detection

The use of differences in the mean trait value
for different marker genotypes to detect a QTL
and estimate its effects is a use of linear models.

One-way ANOVA.

Value of trait in kth
individual of marker

genotype type i

\
Zik = W+ 7{); + €ik

Effect of marker
genotype i on trait
value

Zik = W+ b + €

Detection: a QTL is linked to the marker if at least
one of the b, is significantly different from zero

Estimation: (QTL effect and position): This requires
relating the b, to the QTL effects and map position



Detecting epistasis

One major advantage of linear models is their
flexibility. To test for epistasis between two QTLs,
use ANOVA with an interaction term

z=p+a; +bx + dix + €
/

Effect from marker genotype
at first marker set (can be > 1 loci)

Effect from marker genotype
at second marker set

Interaction between marker genotypes i in 1st
marker set and k in 2nd marker set

11

Detecting epistasis

Z=p+a + b+ dir + €

* At least one of the a, significantly different from O
---- QTL linked to first marker set

e At least one of the b, significantly different from O
---- QTL linked to second marker set

¢ At least one of the d, significantly different from O
--—- interactions between QTL in sets 1 and two

Problem: Huge number of potential interaction terms

(order m2, where m = number of markers) 0



Maximum Likelihood Methods

ML methods use the entire distribution of the data, not
just the marker genotype means.

More powerful that linear models, but not as flexible
in extending solutions (new analysis required for each model)

Basic likelihood function:

Trait value given N
marker genotype is (z| M) = Z o(z, pa, ,0%) Pr(Qr| M;)
type ) k=1

This is a mixture model

Maximum Likelihood Methods

Probability of QTL genotype
k given marker genotype

j --- genetic map and linkage

\1 phase enter : here

o

N
M; ) Z o(z, uQ, ,0°) Pr(Qr| Mj)
k=1

-

Distribution of trait value given
QTL genotype is k

is normal with mean ug,. (QTL
effects enter here)

Sum over the N possible
linked QTL genotypes

‘ »'«



ML methods combine both detection and estimation
of QTL effects/position.

Test for a linked QTL given from by the Likelihood
Ratio (or LR) test

Maximum of the likelihood
under a no-linked QTL

/ model

IR — —o max lr(2z)

max {(z)
Maximum of the

The LR score is often plotted by £ull likelihood

trying different locations for the
QTL (i.e., values of c¢) and computing
a LOD score for each ll

LOD(c) = —log,g [ max /r(z) ] _ LR(¢) _ LR(¢)

max ((z,c¢) | 2Inl0 461

A typical QTL map from a likelihood analysis

Estimated QTL location

Support interval .-

L.LOD score

N W A N
T

f—
T
\
A)
\
‘«
)
'
[
'
)
|
/
i
f

Chromosome position
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Interval Mapping with Marker
Cofactors

Consider interval mapping using the markers i and i+1. QTLs linked
to these markers, but outside this interval, can contribute (falsely) to
estimation of QTL position and effect

i-1 i i+1 i+2

Interval being mapped

Now suppose we also add the two markers flanking the

interval (i-1 and i+2) 17

i-1 [ i+1 i+2
<€— I I . >
Inclusion of markers i-1 and i+2 fully account

for any linked QTLs to the left of i-1 and the
right of i+2

Interval mapping + marker cofactors is called
Composite Interval Mapping (CIM)

CIM works by adding an additional term to the
linear model,

CIM also (potentially) includes unlinked markers to
account for QTL on other chromosomes. 18



Power and Precision

While modest sample sizes are sufficient to
detect a QTL of modest effect (power), large
sample sizes are required to map it with any
precision

With 200-300 F,, a QTL accounting for 5% of
total variation can be mapped to a 40cM interval

Over 10,000 F, individuals are required to map
this QTL to a 1cM interval

Power and Repeatability: The
Beavis Effect

QTLs with low power of detection tend to have their
effects overestimated, often very dramatically

As power of detection increases, the overestimation
of detected QTLs becomes far less serious

This is often called the Beavis Effect, after Bill
Beavis who first noticed this in simulation studies.

This phenomena is also called the winner’s curse in
statistics (and GWAS)

20



Beavis Effect

Also called the "winner’s curse” in the GWAS literature

Distribution of
the realized value of an

|
|
|
|
|
| effect in a sample
|

v

True value

I
Significance
threshold

High power setting: Most realizations are to the

right of the significance threshold. Hence, the

average value given the estimate is declared significant
(above the threshold) is very close to the true value.

In low power settings, most realizations are below
the significance threshold, hence most of the time the
effect is scored as being nonsignificant

Significance
threshold

v

True value

N
Mean among
significant results

However, the mean of those declared significant
is much larger than the true mean

21
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Observed /actual effect for a detected QTL

100

L
Inflation at
10 L4 <«
lower power
.
®
L
o'oe
®
)
1
1 10 100

Inflation can

50

40

Detected QTLs (%)
8

20

10

Power (%)

be significant, esp. with low power

23

«€— Actual = 1.6%

0 5 w 15 20 25 30 35
Estimated percentage of total variance

Beavis simulation: actual effect size is 1.6% of
variation. Estimated effects (at significant markers)

much higher

24



Model selection

e With (say) 300 markers, we have (potentially) 300
single-marker terms and 300*299/2 = 44,850 epistatic
terms

— Hence, a model with up to p= 45,150 possible parameters
— 2P possible submodels = 1073690 ouch!

* The issue of Model selection becomes very important.
* How do we find the best model?

— Stepwise regression approaches
e Forward selection (add terms one at a time)
e Backwards selection (delete terms one at a time)

— Try all models, assess best fit
— Mixed-model (random effect) approaches

25

Model Selection

Model Selection: Use some criteria to choose among a
number of candidate models. Weight goodness-of-fit
(L, value of the likelihood at the MLEs) vs. number of
estimated parameters (k)

AIC = Akaike’s information criterion
AIC = 2k - 2 Ln(L)

BIC = Bayesian information criterion (Schwarz criterion)
BIC = k*In(n)/n - 2 Ln(L)/n
BIC penalizes free parameters more strongly than AIC

For both AIC & BIC, smaller value is better
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Model averaging

Model averaging: Generate a composite model by weighting
(averaging) the various models, using AIC, BIC, or other

|dea: Perhaps no “best” model, but several models
all extremely close. Better to report this “distribution”
rather than the best one

One approach is to average the coefficients on the
“best-fitting” models using some scheme to return
a composite model

27

Shrinkage estimators

Shrinkage estimates: Rather than adding interaction
terms one at a time, a shrinkage method starts with all
interactions included, and then shrinks most back to zero.

Under a Bayesian analysis, any effect is random. One can
assume the effect for (say) interaction ij is drawn from
a normal with mean zero and variance 0%

Further, the interaction-specific variances are themselves
random variables drawn from a hyperparameter distribution,
such as an inverse chi-square.

One then estimates the hyperparameters and uses these
to predict the variances, with effects with small variances
shrinking back to zero, and effects with large variances
remaining in the model. 28



Whatisa "QTL"

e A detected “QTL" in a mapping experiment
is a region of a chromosome detected by
linkage.

Usually large (typically 10-40 cM)

When further examined, most “large” QTLs
turn out to be a linked collection of locations
with increasingly smaller effects

® The more one localizes, the more subregions
that are found, and the smaller the effect in
each subregion

This is called fractionation
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Limitations of QTL mapping

e Poor resolution (~20 cM or greater in most designs
with sample sizes in low to mid 100’s)
— Detected "QTLs" are thus large chromosomal regions

* Fine mapping requires either

— Further crosses (recombinations) involving regions of
interest (i.e., RILs, NILs)

— Enormous sample sizes

e If marker-QTL distance is 0.5cM, require sample sizes
in excess of 3400 to have a 95% chance of 10 (or
more) recombination events in sample

* 10 recombination events allows one to separate
effects that differ by ~ 0.6 SD
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Limitations of QTL mapping (cont)

* “Major” QTLs typically fractionate
— QTLs of large effect (accounting for > 10% of the
variance) are routinely discovered.

— However, a large QTL peak in an initial experiment
generally becomes a series of smaller and smaller
peaks upon subsequent fine-mapping.

e The Beavis effect:

— When power for detection is low, marker-trait
associations declared to be statistically significant
significantly overestimate their true effects.

— This effect can be very large (order of magnitude)
when power is low.
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Il
QTL mapping in Outbred
Populations
and Association Mapping

e Association mapping uses a set of very dense
markers in a set of (largely) unrelated
individuals

* Requires population level LD
* Allows for very fine mapping (1-20 kB)
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QTL mapping in outbred
populations

® Much lower power than line-cross QTL
mapping

e Each parent must be separately
analyzed

* We focus on an approach for general
pedigrees, as this leads us into
association mapping

General Pedigree Methods

Random effects (hence, variance component) method
for detecting QTLs in general pedigrees

Genetic effect of
chromosomal region
of interest

Trait value for f ’
individual i > %i = [T A; + A +e;

The model is rerun for each marker
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zi=p+ Ai + A, + e

The covariance between individuals i and j is thus

Variance Resemblance
explained by between
the region of relatlvgs

interest correction

\ /

D) D)
0(2i,25) = Rij 04 + 20,5 024

;

AN

Fraction of chromosomal

region shared IBD Vari.ance
between individuals i and j. eXP'i';ed by
e
background
polygenes

Assume z is MVN, giving the covariance matrix as

V=Roi+Aoy +10¢
Here

1 fori=j 1 fori=j
Ro={h o2 au={y, i
i for i # j 20;; fori#j

Estimated from marker Estimated from

data the pedigree

The resulting likelihood function is

1 1 _
0(z| p,0%4,0%,02) = ————m— exp —§(z—u)TV Yz —p)

NCoRN

A significant 6,2 indicates a linked QTL.
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Association & LD mapping

Mapping major genes (LD mapping) vs. trying to
Map QTLs (Association mapping)

Idea: Collect random sample of individuals, contrast
trait means over marker genotypes

If a dense enough marker map, likely population level
linkage disequilibrium (LD) between closely-linked
genes

37

LD: Linkage disequilibrium

D(AB) = freq(AB) - freq(A)*freq(B).
LD = 0O if A and B are independent. If LD not zero,
correlation between A and B in the population

If a marker and QTL are linked, then the marker and
QTL alleles are in LD in close relatives, generating
a marker-trait association.

The decay of D: D(t) = (1-¢)t D(0)

here c is the recombination rate. Tightly-linked genes
(small ¢) initially in LD can retain LD for long periods of
time
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Dense SNP Association Mapping

Mapping genes using known sets of relatives can be
problematic because of the cost and difficulty in
obtaining enough relatives to have sufficient power.

By contrast, it is straightforward to gather large
sets of unrelated individuals, for example a large
number of cases (individuals with a particular
trait/disease) and controls (those without it).

With the very dense set of SNP markers (dense =
very tightly linked), it is possible to scan for markers
in LD in a random mating population with QTLs, simply
because c is so small that LD has not yet decayed
39

These ideas lead to consideration of a strategy of

For example, using 30,000 equally spaced SNP in

The 3000cM human genome places any QTL within
0.05cM of a SNP. Hence, for an association created

t generations ago (for example, by a new mutant

allele appearing at that QTL), the fraction of

original LD still present is at least (1-0.0005)t ~
1-exp(t*0.0005). Thus for mutations 100, 500,

and 1000 generations old (2.5K, 12.5K, and 25 K
years for humans), this fraction is 95.1%, 77.8%, 60.6%,

We thus have large samples and high disequilibrium,
the recipe needed to detect linked QTLs of small effect
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Association mapping

Marker-trait associations within a population of unrelated
individuals

Very high marker density (~ 100s of markers/cM) required

— Marker density no less than the average track length of
linkage disequilibrium (LD)

Relies on very slow breakdown of initial LD generated by a new

mutation near a marker to generate marker-trait associations

— LD decays very quickly unless very tight linkage

— Hence, resolution on the scale of LD in the population(s) being studied
(1~ 40kB)

Widely used since mid 1990’s. Mainstay of human genetics,
strong inroads in breeding, evolutionary genetics

Power a function of the genetic variance of a QTL, not its mean
effects

41

Manhattan plots

® The results for a Genome-wide Association study (or

GWAS) are typically displayed using a Manhattan

plot.

— At each SNP, -In(p), the negative log of the p
value for a significant marker-trait association is
plotted. Values above a threshold indicate
significant effects

— Threshold set by Bonferroni-style multiple
comparisons correction

— With n markers, an overall false-positive rate of p
requires each marker be tested using p/n.

— With n = 10° SNPs, p must exceed 0.01/10° or
108 to have a control of 1% of a false-positive
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Candidate Loci and the TDT

Often try to map genes by using case/control contrasts,
also called association mapping.

The frequencies of marker alleles are measured in both a
case sample -- showing the trait (or extreme values)
control sample -- not showing the trait

The idea is that if the marker is in tight linkage, we might
expect LD between it and the particular DNA site causing
the trait variation.

Problem with case-control approach (and association
mapping in general): Population Stratification can give
false positives.

45

When population being sampled actually consists of several distinct
subpopulations we have lumped together, marker alleles may provide
information as to which group an individual belongs. If there are other
risk factors in a group, this can create a false association btw marker
and trait

Example. The Gm marker was thought (for biological reasons) to be
an excellent candidate gene for diabetes in the high-risk population
of Pima Indians in the American Southwest. Initially a very strong
association was observed:

Gm* Total % with diabetes

Present 293 8%

Absent 4,627 29%
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Gm* Total % with diabetes
Present 293 8%
Absent 4,627 29%

Problem: freq(Gm*) in Caucasians (lower-risk diabetes
Population) is 67%, Gm* rare in full-blooded Pima

The association was re-examined in a population of Pima
that were 7/8th (or more) full heritage:

Gm* Total % with diabetes
Present 17 59%
Absent 1,764 60%

Linkage vs. Association

The distinction between linkage and association

is subtle, yet critical

Marker allele M is associated with the trait if

Cov(M,y) is not O

While such associations can arise via linkage, they

can also arise via population structure.

Thus, association DOES NOT imply linkage, and

linkage is not sufficient for association
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Transmission-disequilibrium test (TDT)

The TDT accounts for population structure. It requires
sets of relatives and compares the number of times a
marker allele is transmitted (T) versus not-transmitted
(NT) from a marker heterozygote parent to affected

offspring.

Under the hypothesis of no linkage, these values
should be equal, resulting in a chi-square test for

lack of fit:

Scan for type | diabetes in Humans.

Xtd —

(T~ NT)?

(T + NT)
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Marker locus

D25152
Allele T NT X2 P
228 81 45 10.29 0.001
230 59 73 1748 0.223
240 36 14 2.30 0.121
, (81— 45)2
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Accounting for population structure

* Three classes of approaches proposed

— 1) Attempts to correct for common pop structure
signal (genomic control, regression/ PC methods)

— 2) Attempits to first assign individuals into
subpopulations and then perform association
mapping in each set (Structure)

— 3) Mixed models that use all of the marker
information (Tassle, EMMA, many others)

* These can also account for cryptic relatedness in the
data set, which also causes false-positives.
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Genomic Control

Devlin and Roeder (1999). Basic idea is that association tests (marker
presence/absence vs. trait presence/absence) is typically done with a
standard 2 x 2 %2 test.

When population structure is present, the test statistic now follows
a scaled y?, so that if S is the test statistic, then S/A ~ %2, (so S ~

7¥X21)

The inflation factor A is given by

A=1+nFgr 2k (fk'9k)2

Note that this departure from a x? increases with sample size n
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Genomic Control

Assume n cases
and controls Fraction of cases

\ in kth population

)\ = 1 + nFST Zk (fk_gk)z

Population \

substructure Fraction of controls
in kth population

Genomic control attempts to estimate A directly

from our distribution of test statistics S
53

Estimation of A

The mean of a ¥?; is one. Hence, since S ~ Ayx?; and we expect most
test statistic values to be from the null (no linkage), one estimator of
A is simply the mean of S, the mean value of

the test statistics.

The problem is that this is not a particular robust estimator, as a
few extreme values of S (as would occur with linkage!) can inflate
A\ over its true value.

A more robust estimator is offered from the medium
(50% value) of the test statistics, so that for m tests

medium (S1, -+ 3. 5m)
0.456

A=
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Structured Association Mapping

Pritchard and Rosenberg (1999) proposed
Structured Association Mapping, wherein

one assumes k subpopulations (each in Hardy-
Weinberg).

Given a large number of markers, one then attempts
to assign individuals to groups using an MCMC
Bayesian classifier

Once individuals assigned to groups, association mapping
without any correction can occur in each group.
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Regression Approaches

A third approach to control for structure is
simply to include a number of markers, outside
of the SNP of interest, chosen because they
are expected to vary over any subpopulations

How might you choose these in a sample? Try
those markers (read STRs) that show the largest
departure from Hardy-Weinberg, as this is expected
in markers that vary the most over subpopulations.

56



Indicator (O / 1) Variable
for SNP genotype k. Typically
k=3,i.e. AA, Aaaa

m

n
y=p+Y G Mp+Y ~ibj+e
k=1 =1

Significant g indicates m unlinked markers Thaf
marker-trait association vary across subpopulations.
bj = marker genotype indicator
SNP marker variable

under consideration

Variations on this theme (eigenstrat) --- use all of the
marker information to extract a set of significant

PCs, which are then included in the model as cofactors
57

Mixed-model approaches

* Mixed models use marker data to
— Account for population structure
— Account for cryptic relatedness

* Three general approaches:

— Treat a single SNP as fixed
e TASSLE, EMMA

— Treat a single SNP as random
* General pedigree method

— Fit all of the SNPs at once
e GBLUP
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Structure plus Kinship Methods

Association mapping in plants offer occurs by first taking
a large collection of lines, some closely related, others
more distantly related. Thus, in addition to this collection
being a series of subpopulations (derivatives from a
number of founding lines), there can also be additional
structure within each subpopulation (groups of more
closely related lines within any particular lineage).

Y=XB+Sa+Qv+Zu+e

Fixed effects in blue, random effects in red

This is a mixed-model approach. The program TASSEL
runs this model. 59

Q-K method
Y=Xp+Sa+Qv+Zu+e

[} = vector of fixed effects

a = SNP effects

v = vector of subpopulation effects (STRUCTURE)
Q; = Prob(individual i in group j). Determined
from STRUCTURE output

u = shared polygenic effects due to kinship.
Cov(u) = var(A)*A, where the relationship matrix
A estimated from marker data matrix K, also called a

GRM - a genomic relationship matrix
60



Which markers to include in K?

* Best approach is to leave out the marker
being tested (and any in LD with it) when
construction the genomic relationship matrix

— LOCO approach - leave out one chromosome
(which the tested marker is linked to)

* Best approach seems to be to use most of
the markers

e Other mixed-model approaches along these
lines
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GBLUP

e The O-K method tests SNPs one at a time,
treating them as fixed effects

* The general pedigree method (slides 35-36)
also tests one marker at a time, treating
them as random effects

e Genomic selection can be thought of as
estimating all of the SNP effects at once and
hence can also be used for GWAS
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BLUP, GBLUP, and GWAS

e Pedigree information gives EXPECTED value
of shared sites (i.e., V2 for full-sibs)
— A matrix in BLUP

— The actual realization of the fraction of shared
genes for a particular pair of relatives can be
rather different, due to sampling variance in
segregation of alleles

— GRM, genomic relationship matrix (or K or marker
matrix M)

— Hence “identical” relatives can differ significantly
in faction of shared regions

— Dense marker information can account for this
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The general setting

* Suppose we have n measured individuals (the n x 1
vector y of trait values)

* The n x n relationship matrix A gives the relatedness
among the sampled individuals, where the elements
of A are obtained from the pedigree of measured
individuals

e We may also have p (>> n) SNPs per individual,
where the n x p marker information matrix M
contains the marker data, where M; = score for SNP
j (i.e., 0 forQO, 1 for 10, 2 for 11) in individual i.



Covariance structure of random effects

A critical element specifying the mixed model is the
covariance structure (matrix) of the vector u of
random effects

e Standard form is that Cov(u) = variance component *
matrix of known constants

— This is the case for pedigree data, where u is typically the
vector of breeding values, and the pedigree defines a
relationship matrix A, with Cov(u) = Var(A) * A, the additive
variance times the relationship matrix

— With marker data, the covariance of random effects are
functions of the marker information matrix M.

e If uis the vector of p marker effects, then Cov(u) =
Var(m) * MTM, the marker variance times the covariance
structure of the markers.

Y=XB+Zu+e

Pedigree-based BV estimation: (BLUP)
U, = vector of BVs, Cov(u) = Var(A) A,

Marker-based BV estimation: (GBLUP)
U, = vector of BVs, Cov(u) = Var(m) M™ (n x n)

nx

GWAS: ug, = vector of marker effects,
Cov(u) = Var(m) MMT (p x p)

Genomic selection: predicted vector of breeding values
from marker effects (genetic breeding values),

GBan1 - Mnx Upx1-

Note that Cov(GBV) = Var(m) MTM (n x n)

Many variations of these general ideas by adding
additional assumptions on covariance structure.



GWAS Model diagnostics
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Genomic control A as a diagnostic tool

Presence of population structure will inflate the A
parameter

A value above 1 is considered evidence of additional
structure in the data
— Could be population structure, cryptic relatedness, or both
— Alambda value less that 1.05 is generally considered benign

One issue is that if the true polygenic model holds (lots of
sites of small effect), then a significant fraction will have
inflated p values, and hence an inflated A value.

Hence, often one computes the A following attempts to
remove population structure. If the resulting value is
below 1.05, suggestion that structure has been largely
removed.
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P — P plots

* Another powerful diagnostic tool is the p-p plot.
e |f all tests are drawn from the null, then the
distribution of p values should be uniform.

— There should be a slight excess of tests with very
low p indicating true positives

* This gives a straight line of a log-log plot of
observed (seen) and expected (uniform) p values
with a slight rise near small values

— If the fraction of true positives is high (i.e., many
sites influence the trait), this also bends the p-p

plot
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70



b Stratification without unusually
differentiated markers

Observed (~logP)
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©
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o
|

'
|

N
|

¢ Stratification with unusually
differentiated markers

Observed (~logP)

T T
2 -

Expected (-logP)

Great excess of
Significant tests

N

T T
2 - 6

Expected (logP)

As with using A, one should construct p-p following

some approach to correct for structure & relatedness

to see if they look unusual.
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Power of Association mapping

Q/q is the polymorphic site contributing to trait
variation, M/m alleles (at a SNP) used as a marker

Let p be the frequency of M, and assume that
Q only resides on the M background (complete
disequilibrium)

Haloptype Frequency | effect
QM rp a
qM (1-nNp
gm 1-p 0
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Haloptype Frequency | effect
QM rp a
qM (1-nNp
gm 1-p 0

Effectofm =0

Effect of M = ar

Genetic variation associated with Q = 2(rp)(1-rp)a?
~ 2rpa? when Q rare. Hence, little power if Q rare

Genetic variation associated with marker M is
2p(1-p)(ar)? ~ 2pa?r?

Ratio of marker/true effect variance is ~ r

Hence, if Q rare within the A class, even less power!
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Common variants

- freq(Q) moderate
— freq () of Q within M haplotypes modest to large

Association mapping is only powerful for common
variants

Large effect alleles (a large) can leave small signals.
The fraction of the actual variance accounted for by

the markers is no greater than ~ ave(r), the average
frequency of Q within a haplotype class

Hence, don’t expect to capture all of Var(A) with

markers, esp. when QTL alleles are rare but markers
are common (e.g. common SNPs, p > 0.05)

Low power to detect G x G, G x E interactions
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"How wonderful that we have met with a
paradox. Now we have some hope of
making progress” -- Neils Bohr

The case of the missing heritability | |
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The “missing heritability” pseudo-paradox

e A number of GWAS workers noted that the sum of
their significant marker variances was much less
(typically 10%) than the additive variance estimated
from biometrical methods

e The "missing heritability” problem was birthed from
this observation.

* Not a paradox at all

— Low power means small effect (i.e. variance) sites
are unlikely to be called as significant, esp. given
the high stringency associated with control of
false positives over tens of thousands of tests

— Further, even if all markers are detected, only a
fraction ~ r (the frequency of the causative site
within a marker haplotype class) of the underlying

variance is accounted for.
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Dealing with Rare Variants

e Many disease may be influenced by rare
variants.

— Problem: Each is rare and thus overall gives a
weak signal, so testing each variant is out (huge
multiple-testing problem)

— However, whole-genome sequencing (or just
sequencing through a target gene/region) is
designed to pick up such variants

* Burden tests are one approach

— Idea: When comparing case vs. controls, is there
an overdispersion of mutations between the two
categories?
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Cla) test

ldea: Suppose a fraction p, of the sample are
controls, p; = 1-p, are cases. Note these varies
are fixed over all variants

Let n, be the total number of copies of a rare
variant i.

Under binomial sampling, the expected number
of variant i in the case group is ~ Bin(p4,n))

Pool the observations of all such variants over a
gene/region of interest and ask if the variance in
the number in cases exceeds the binomial
sampling variance np,(1-p;)
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C(a) test (cont).

Suppose m variants in a region, test statistic is of the
form

2 (y; - mipa)? - nipy (1-py)

e y. = number of variant | in cases.

This is observed variance minus binomial prediction

This is scaled by a variance term to give a test
statistic that is roughly normally distributed
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Lecture 9:
Using molecular markers to
detect selection

Bruce Walsh lecture notes
Summer Institute in Statistical Genetics
Seattle, 18 — 20 July 2016

Detecting selection

Bottom line: looking for loci showing
departures from the equilibrium neutral
model

What kinds of selection are of interest?

Time scales and questions
KEY POINTS

— False positives very common
— MOST selective events will not be detected

— Those that are likely represent a rather biased
sample



Negative selection is common

e Negative (or purifying) selection is the
removal of deleterious mutations by selection

® | eaves a strong signal throughout the
genome

— Faster substitution rates for silent vs. replacement
codons

— Comparative genomics equates strong sequence
conservation (i.e., high negative selection) with
strong functional constraints

— The search for selection implies selection OTHER
than negative

Positive selection

e An allele increasing in frequency due to
selection

— Can either be a new mutation or a previously
neutral/slightly deleterious allele whose fitness
has changed due to a change in the environment.

— Adaptation

e Balancing selection is when alternative alleles
are favored by selection when rare
— MHC, sickle-cell

* The “search for selection” is the search for
signatures of positive, or balancing, selection



Time scales of interest

¢ Ecological

— An allele either currently undergoing selection or has VERY
recently undergone selection

— Detect using the nature of genetic variation within a
population sample

— Key: A SINGLE event can leave a signature
e Evolutionary

— A gene or codon experiences REPEATED adaptive events
over very long periods of time

— Typically requires between-species divergence data

— Key: Only informs us as to the long-term PATTERN of
selection over a gene

Table 8.1,  Overview of diffemnt approaches for detecting positive or balancing selection

Method Required Tata Timescale

Methods for detecting ongoing / recent selecton
Allele frequency change Fopulation sample from two {or more) time points  Eoological

Allele frequency divergence  Samples from two {or more) populations Emological
Excessive LD Folymorphism data from single population Enological
Allele frequency spectriom Tolymorphism data from single population Enological

Methods for detected repeated positive selection over multiple sites in the same gene
Folymorphiom /divergence  Tolymorphism and divergence data Eoological / Evolutionary
ratos from two {or more) populations
Methods for detected repeated positive selection over a single site {2 g. codon) in multiple species
Silent/replacement mtios Divergence data from a number of species Evolutionary




Biased scan for selection

e Current/very recent selection at a single site
requires rather strong selection to leave a
signature.

— Small shifts in allele frequencies at multiple sites
unlikely to leave signatures

— Very small time window (~0.1 Ne generations) to
detect such an event once it has occurred.

e Recurrent selection

— Phylogenic comparisons: Multiple substitution
events at the same CODON required for a signal

— OK for “arms-race” genes, likely not typical

e Recurrent selection at sites OVER a gene

— Comparing fixed differences between two species
with the observed levels of polymorphism

— Requires multiple substitutions at different codons
(i.e., throughout the gene) for any signal

— Hence, a few CRITICAL adaptive substitutions can
occur in a gene and not leave a strong enough
signal to detect

— Power depends on the number of adaptive
substitutions over the background level of neutral
substitutions



Sample of a gene from several

individuals in the same population
32 3 O 3 I B

T
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Ongoing, or recent, selection

Detecting ongoing selection within a population. Requires
a population sample, in which we look for inconsistencies of
the pattern of variation from the equilibrium neutral

model. Can detect on-going selection in a single region,
influencing the pattern of variation at linked neutral

loci.

Sample of a gene over several species

xrrrrrj - Xrrrrijy - -Cterrrriy ECLTTT]

NS

Divergence data on a phylogeny.
Repeated positive selection at the same site

A phylogenic comparison of a sequence over a group

of species is done on a codon-by-codon basis, looking for
those with a higher replacement than site rate.

Requires MULTIPLE substitutions at the same codon over
the tree



Fixed differences between two species
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Positive selection occurring over
multiple sites within the gene

Comparison of divergence data for a pair of species.
Requires a background estimate of the expected divergence
from fixation of neutral sites, which is provided from

the polymorphism data (I'll cover this shortly).

Key points

e Methods for detecting selection

— Are prone to false-positives

* The rejection of the null (equilibrium neutral model) can
occur for reasons other the positive/balancing selection,
such as changes in the population size

— Are under-powered
* Most selection events likely missed
— Detect only specific types of selection events
¢ Ongoing moderate to strong events
* Repeated adaptive substitutions in a few codons over a

phylogeny
* Repeated adaptive substitutions over all sites in a gene



Detecting on-going selection

Excessive allele frequency change/divergence

Selective Sweeps
— Reduction in polymorphism around a selected site

Shifts in the allele frequency spectrum
— i.e., too many rare alleles

Allelic age inconsistencies
— Allele too common relative to its age
— Excessive LD in a common allele

Excess allele frequency change

e | ogically, most straightforward
e Need estimates of N, time
* Need two (or more) time points

* Generally weak power unless selection
strong or time between sampling long

e Example: Divergence between breeds
selected for different goals



Example 9.1. Angus and Holstein represent breeds of Bos taurus thathave been selected,
respectively, for beef and milk production. As such, might would expect allele frequency dif-
ferences between the breeds, some of which repmsent differential selecion an milk and beef
traits. Prasad et al. (2008) uses 355 SNP maikers on chromosome 19 (BT19) and another 175
SNPs on chiomosome 29 (BT29) to search for significant allele frequency differencesbetween
these breeds. They used a five marker sliding window; cam puting the difference between the
mean allele frequency in Holsteins and the mean frequency in Angus. Significantly positive
values indicate potential alleles selected for milk producton, while significantnegatives val-
ues suggests alleles potentially selected for beef producton. Figure 9.1 shows the result for
chramosome 19. The authorsused a pemmutationtestto access the significance, with the species
label for any given marker randomly assigned, and the difference for each five-markerwin-
dow scored, generating an empirical distribution under the null hypothesis of breed-effects.
Deviations above the upper significance line show alleles at a significanfly higher frequency
in Holsteins and deviations below the lower significance lineindicates alleles that are signif-
icanfly more frequency in Angus. The authors were able to relate these locations to locations
of QTLs for various milk and beef production traits. Example 9.8 discusses Hayes et al. (2008),
who also examine allele frequency differences between these two breeds.

PTA type, Structural soundness, teat
13.16 Mo} placement, udder attachment and udder
. composite index (20.04-32.04 Mb)

Protenn and Protein % (

v Foot angle & structural

v k/ soundness (32.04—
m [\ 38.89 Mb), Milk &
Brotein Vield (13.16—
j 38.89 Mb)

Rallng_average_frequency
318
a2m
3362

3% [ K

Y Pasition (Mb)

Marbling score (6.16-18.29  \Marbing score (6.16-15.29 Marbiing score (26.22-38.89 Mb), meat tendemess

Mb), hot carcass weight Mb), hot carcass weight (6.79— (26.28—41.21; 34.22-38.89 Mb). retall product yield

(6.79-28.77) 28.77) & body weight at castration (34.22-38.22 Mp), hot
carcass weight (34.22-38.89 Mb)

Five-marker window scans of difference between
Holstein & Angus breeds (dairy vs. beef selection)
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Selective sweeps

* Classic visual tool to look for potential sites
under selection

— Common approach in the search for
domestication genes

e Positive selection reduces Ne for linked sites
— Reduces TMRCA and hence variation

e Balancing selection increases Ne for linked
sites
— Increases TMRCA and hence increase variation

Past
/ /
Neutral Selective
Sweep
Balancing Shorter TMRCA
Present selection

Longer TMRCA



Scanning for Sweeps

e Use a sliding window to look at variation
along a chromosome (or around a candidate
gene)

* Decrease (with respect to some standard)
consistent with linked site under recent/
ongoing positive selection

¢ Increase consistent with balancing selection

Signal of positive
selection, OR

reduction in mutation
rate
@
L

Signal of balancing
selection, OR
increase in mutation
rate
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© Scientific American Library

Domestication: Maize vs. teosinte
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500 bp

tb1 in maize. Used teosinte as a control for
expected background levels of variation
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Double-muscle cattle:
Belgian blue

Reduction in microsatellite copy number variance often used

Example9.2: Themyostatingene (GDF-5)1s anegatve regulatorof skeletal muscle growth.
Mutations in this gene underie the excessive muscle developmentin double-muscled (DM)
breeds of cattle, such as Belgian Blue, Astunana de los Valles, and Piedmontese. Wiener et
al. (2003) com pared microsatellite variation as a function of the distance of the marker fram
GDF-81in DM and non-DM breeds. For DM breeds, measures of variation decreased relative to
nan-DM breeds as they approached the GDF-8 locus. While this approach cleardy indicates a
genamic region underselection, the authors expessed skepticism aboutits ability tofine-map
the target of selection (i.e., localize it wath high precision within this region). At first glance,
this seemssurprising given that CDF-8 variants have amajor effect an the selected phenotype
(beef production). However, the authors note that Belgian Elue was a dual purpose (milk and
beef) breed untl the 1950's, and thatin both Belgian Elue and Piedmantese ther are records
of this mutation that pre-date World War One, and hence predate the intensive selection on
the double-muscled phenotype. By contrast, they found that the selectivesignal is strongerin
Astunana, where thefirst definiive appearance of the mutation was significantiylater. Thus, in
both Belgian Elue and Piedmonteseselechon on this gene resulted ina softsweep (adaptaton
fram preexising mutations), while in Astunana the tme between the initial appearance of
the mutation and strang selection on itwas much shorter, resulting in amore traditonal hamd
sweep (adaptation fram a newmutation).
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Issues with sweeps

Need sufficient background variation before
selection for a strong signal

— Strong domestication event (e.g. sorghum) can
remove most variation over entire genome

— Inbreeding greatly reduces variation

The signal persists for only a short time
— ~ 0.1 Ne generations

— Distance for effects roughly 0.01 s/c

target site

Sweep region often asymmetric around

* Hard sweeps can be detected, soft sweeps

leave (at best) a weak signal

A) Hard Sweep

[ ] C ] [

Rapid fixation T
under selection
C ]

Selection starts at the

appearance the new mutation
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B) Soft Sweep

Rapid fixation
under selection

e ) [T ]

e T
e, \V

Initially, new mutation is
neutral
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Site frequency spectrum tests

e A large collection of tests based on
comparing different measures of variation at
a target site within a population sample

e Tajima’s D is the classic

e Problem: significant result from either
selection OR changes in population size/
structure (drift, mutation NOT at equilibrium)

29

Under the equilibrium neutral model, multiple ways
to estimate 6 = 4N_u using different metrics of variation

Statistic Expected Value Sample Vanance

S = number of E[S] = an¥ 0%(S) = an 0+ bp#?
segmregaling sites
. 2 n+1 2 2(n? 4+ n 4 3)
I = average number of Elk] =48 a* (k) =40 + 6= '
8 g s 3(n—1) On(n—1)

pairwise differences

n

. . 5 n 2a 1
1) = number of singletans Enl=# — at(ng) =40 1 + 6* [ o
n n

n—1 (n—1)72

where

n—1 1 n—1 1
n = Z = and by = Z = (9.3)
i=1 ! i=1 !
- S -~ - -1
bs==. o=k  G,=2——y

(n n

All should be consistent if model holds.
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Tajima’s D

B — Bs

,/tl];,g + )'[;52

1 n+1 1 ;
(4] EE — —
b anp \3(n—1) (I o

1 2+ n+3) u+2+ b
1f"-" B b,,

D =

’,IJ .
on(n —1) i a2

Negative value: excess number of rare alleles
consistent with either positive selection OR
expanding population size

Positive value: excess number of common alleles
consistent with either balancing selection OR
Population subdivision .

Consistency of allelic age

10 .
E(t) = —AN —— In(a)
)
0.8
Z
g)o 0.6
< Under drift, a common
0.4 allele is an old allele
02
Common alleles should
not be young

0.0 02 04 06 08 10
Allele frequency
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Example 9.4. The mutation CCR5-532 destroys the CCRS receptor which is also used by
the HIV vits, leading to significant resistance against HIV infection. This deletions occurs
at frequencies up to 14% in Burasia, butis absent in Afnicans, Native Amencans and East
Asians. Assuming a frequency of 2 = .10 and an effective population size N, = 5000 for
Caucasians, Stephens et al. (1998) used Equation 9.1 to estimate the age of this allele, based
onits frequency, as

r log(a) 4. 5000 ).1 log(0.1)

f— —4N,
1 0.0

= 5116 generatians

Anindependentestimate of ageis offered by the variation inhaploty pes among all sequences
cartying thismutation. The § mutationisin strang disequilibrium with allele 215at the AFMB
STR marker, to the extend that 84.8% (39 of 46) of the sampled 4 mutations have the §32-215
haplotype. Cleady, the § mutation at CCRS amse on a chromosome carrying the 215 allele.
The recombination fraction between CCRS and AFMB was estimated by Stephens et al. (1998)
tobe ¢ = 0.006. Using a calculatonidentical to thatused inlinkage disequilibrium mapping
(LW Chapter 14), the probability p of a haplotype remaining intact after 7 generations of
recombination with fracion cisjustp = (1 — ¢)7, or

T = —log(p)/c = — log(0.848) /0.006 = 27.5 generations

Stephens et al. (1998) took these gmat dispantes between age estimates as an indicator of
strong selection on the § mutation, generating much ahigher frequency (underdrift) for d that
expected fraom its age. Assumingit originated a single mutation, they estimated the selection
coefticient to be between 20% and 40%, depending an assumptions about dominance.

Starting haplotype

freq

time
Common alleles should have short haplotypes under
drift -- longer time for recombination to act

Common alleles with long haplotypes --- good signal

for selection, rather robust to demography 9



Joint polymorphism-divergence tests

e HKA, McDonald-Kreitman (MK) tests

— MK test is rather robust to demographic issues

* Require polymorphism data from one (or
more) species, divergence data btw species

* Look at ratio of divergence to polymorphism

35

Example 9.5. MecDonald and Kreitman (1991) examined the Adh (Alcohol dehydrogenase)
locus in the sibling species Drosophila melmogaster and D. simulans, as well as an outgroup D.
yacuba. With this gene, they contrasted replacement (non-synonymous) and silent (synony-
mous) sites. Equation 9.2b indicates that the ratio of number of polymorphisms to number
of fixed sites should be the same for both categones. This is a simple association test, and
significance can be assessed using eithera 2 approximation or (much better) Fisher’s exact
test which accomm odates small numbers (bel ow five) in the observed table entnies. Of the 24
fixed differences, 7 were replacement and 17 synonymous. The total number of palymorphic
sites segregating in either species was 44, 2 of which were replacement and 42 synonym ous.
The resulting association table becomes
Fixed Polymorphic
Synonymous 17 42
Replacement 7 2

Fisher’s exact tests gives a p value of 0.0073, showing a highly significant lack of fit to the
neutral equilibium model.

Cool feature: can estimate # of adaptive substitutions
=7-17(2/42) = 6
Robust to most demographic issues

However, replacement polymorphic sites can overestimate

neutral rate due to deleterious alleles segregating %



Strengths and weaknesses

* Only detects a pattern of adaptive
substitutions at a gene.
— Require multiple events to have any power

— Can't tell which replacements were selectively-
driven

* MK test robust to many demographic issues,
but NOT fool-proof

— Any change in the constraints between processes
generating polymorphisms and processes
generating divergence can be regarded as
evidence for selection
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Example 9.A6: An example in some of the potential difficulties in interpreting the re-
sults of a McDonald-Kreitman testis seen in Harding et al. (2000), who examined the hu-
man Melanocortin 1receptor (MCIR), a key regulatory gene in pigmentation. Com paring the
canonical MC1R haplotype inhumans with a sequence from Chimp found 10nonsynonymous
(replacement) and 6 synonymous (silent) substitutions. An Afncan population sam ple found
zero nonsynanymous and 4 synonymous polymorphisms. The resul ing DPRS table becomes

Fixed (Human-Chimp) Palymorphic (Afsican)
Silent 6 4
Replacement 10 0

Fisher’s exact testgives a p value 0f 0.087, close to significance. Talken on face value, one might
assume that this dataim plies that the majority of the nonsynanymous substitutions between
human and chimp were selectively-driven. However, the authors also had data from popu-
lations in Europe and East Asia, which showed ten nonsynonymous and three synonym ous
palymorphisms, giving the DPRS table as

Fixed (Human-Chimp) Paymorphic (Europe/East Asia)
Silent 6 3
Replacement 10 10

with a corresponding p value of 0.453. The authors suggest that the correct interpretation
of these datais very stingent purifying selection due to increased functional constraints in
Afncan populations, with a release of constraints in Europe and East Asian. Asiansin Papua
New Guinea and India also showed very strong functional constraints, again consistent with
amodel of selection for protection against high levels of UV.



Ka/K, tests

e THE classic test for selection, requiring gene
sequences over a known phylogeny
— K, = replacement substitution rate

— K, = silent substitution rate
* Neutral proxy

* o> 1: positive selection.

— Problem: most codons have K, > K,, so that even
with repeated adaptive substitutions throughout a

gene, signal still swamped.

Example 9.6. One ofthe classic early exam ples ofusing sequence datatodetect signatures of
posifive selectionis the work of Hughes and Nei (1988, 1989) onmice and human major his to-
com patibili ty com plex (MHC) Class [ and Class II1oci. These loa are highly palymorphicand
are invalved in antigen-recognition. Hughes and Nei com pared the ratio of synonymous to
nonsynonymous nucleotide substitution rates in the putative antigen-recognition sites versus
the rest of these genes. For both classes of lodi, they found a significant excess of nonsynany-
mous substitutions in the recognition sites and a significant deficiency of such substitutions
elsewhere. Ifboth types of substitutions are neutral, the rates persite are expected tobe roughly
equal. If negative selection is acting, the expectation is that the synonym ous substitution rate
would be significanly higher (reflecting removal of deleterious nonsynonymous mutations,
as these change amino acids). However, if positive selection is common for many new muta-
tions, then one would expect to see an excess of nonsynonymous substitutions. The observed
patterns for both Class I and Il loal were consistent with positive selection within that part
of the gene coding for the antigen recognition site and purifying selection for the rest of the
gene.

Alarge number of studies pnor to Hughes and Nei found that an excess of nonsynoanymous
substitutions is by far the norm for almost all genes, implying that most nonsynonymous
changes are selected against. Indeed, when one simply looks over an entire Class I (or II)
MHC gene, this pattern is also seen. The insight of Hughes and Nei was to use data on
protein structure to specifically focus on the putative antigen-binding site, and com pare this
region with the rest of the gene as an internal control. Further, there has to be a consistent
pattern of new mutations being favored at the same few sites for such a signature to appear.
A single favorable new mutation here and there through the evolution of a gene, when set
against the background ofmost nonsynonymous mutants being deleterious, will still leave an
overall signature of a vast excess of synonymous substitutions. Hughes and Nei concluded
that a significant number of the new mutations that appear within the antigen-binding site
areindeed favorable.
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Codon-based models

* The way around this problem is to analyze a
gene on a codon-by-codon basis

— Such codon-based models assign all (nonstop)
codons a value from 1 to 61

— A model of transition probabilities between all
one-nucleotide transitions is constructed

— Maximum likelihood used to estimate parameters

— Model with w = 1 over all codons contrasted with
a model where m > 1 at some (unspecified) set of
codons.
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0 If i and j differ at more than one position
T for a synonymous transversion
Gij = { KT for a synonymous transition forl <i.j <61
W r a nonsynonymous transversion
‘_l fo t
wrm; for a nonsynonymous transition

AGC”
CAC" O K Tage AAA

* W
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Model easily expanded to allow for several classes of codons

0 If7 and j differ at more than one position
Tj for a synonymous transversion
q,.(_f) = { KT; for a synonymous transition

wr,  for anonsynonymous transversion
w®pm;  for anonsynonymous transition

0 deleterious class
MR ] neutral class
w > 1 positively-selected class

Can use Baye's theorem to assign posterior probabilities

that a given codon is in a given class (i.e., localize sites
of repeated positive selection

Pr(D|w;)Pr(classi)  Pr(D|w;)Pr(classi)
Pr(D) ¥ Pr(D|w;)Pr(class i)

Pr(class i | D) =

Example 9.B. Bishop et al. (2000) examined the class I chifinase genes from 13 species of
mainly North Amencan Arabis, a crucifer closely related to Arabidopsis. Chifinase genes are
thought to be invalved in pathogen defense, as they destroy the chitin in cell walls of fungi.
Many fungi have evolved resistance to certain chifinases, so these genes are excellent targets
for repeated cycles of evolution. The authors found that phylogenies estimated by different
methods all yielded similar results. Codon evolution models estimated that between 64 and
77% of replacement substitutions were deleterious, with 5-14% advantageous. These favored
sites had an estimated value ofw = 6.8. Using the criteria of a posterior probability of mem-
bership in the advantageous dass in excess of 0.95 (i.e. Pr(selective dass | D) = 0.95), 15
putative sites were located. Seven of these sites invalved only one altemative substitution,
which evolved multiple times over the phylogeny. The authors had access to the three di-
mensional structure of chitinase, which shows a distinctive deft, thoughtto be the active site.
Mapping putative sites of positive selection onto this structure, the authors found a signifi-
cant excess of sites duster at the dleft, as opposed to the rest of the protein (28% of cleft sites
versus 19% elsewhere). This exam ple shows the power of combining this approach with solid
biological data, and also care in checking the robustness of the methods by doing the analysis
over slighfly different phylogenies.

Class | Chitinase (Arabis)
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Strengths and weaknesses

e Strengths

— Can assign repeated selection to SPECIFIC

codons

— Requires only single sequences for each species

¢ \Weaknesses:

B. napus

— Models can be rather delicate

— Can only detect repeated selection at particular
codons, NOT throughout a gene
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The spandrels of
San Marco (Gould
and Lewontin 1979)

Very elaborate structure
DOES not imply
function nor adaptation

&

4
—

!

o

Structure vs. function

e Molecular biologists are largely conditioned
to look for function through structure

e Problem: elaborate structures can serve little
function

e Cannot simply assume an adaptive
explanation because the structure is complex
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Example 9.7. Humans show dramatic expansion of brain size with respect to most mam-
mals, with this increase in (relative) size usually assumed to be corrected with increased
cognitive abilities. Pnmary microcephaly is a condition in humans resul ing in small heads,
but othernormal features. Nonfunctional alleles at the genes microcephalin and ASPM (abnor-
mal spindle-like microcephaly associated) both display the microcephaly phenotypes, witha
typical individual having abrain size of around 400 em? (versus the normal 1400 am®,) com-
parable to thatin early hominids. Not surprising, several studies have looked for selection
on these genes within the primate lineage. Zhang (2003) inferred a K, /K, ratio of 1.03 on
the branch from the human-chimp common ancestor to humans, but a ratio of 0.66 on the
branch from this ancestor to chimps. Values of 0.43 to 0.29 were found along otherbranches in
mammals, suggested positive selection along the human lineage. Evans et al. (2004a) also ex-
amined ASPM overalarger phylogeny ranging from new woild monkeys through humans.
Accelerated (K, /K, > 1) rates of evolution were seen between gibbons and the ancestor
the great apes, and a large acceleration (K, /K, = 1.44) was seen on the linkage from the
human/chimp ancestor to humans. Evams et al. also performed a McDonald-Kreitman test
(Example 9.5), comparing the paymorphisms within humans to the divergence since the
human-chimp common ancestor, finding

Fixed Polymorphic
Synonymous 7 10
Replacement 19 6

Fisher’s exact testgives a pvalue 0f0.01, withan excess of around 15 replacement substitutions
over what is expected from the replacement/synonymous rato seen in the palymorphism
data.
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w values shown on braches

U Human ]

Chimpanzee
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Gibbon :l Lesser ape

0.38 Macaque :| Old World monkey

0.44

Owl monkey :l New World monkey

ASPM
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Building on these strong observations of selectionleading to thehumanlineage, Mekel-Bobrov
etal. (2005) and Evans etal. (2005) searched for ongoing selection in these two genes, and found
strong signals in each. Evans et al (2005) found that the microcephalin gene had one haplotype
(associated with a replacement substitution) at much higher frequencies than the others, with
extended linkage disequilibnum and small intra-allelic variation. Indeed, using intra-allelic
variation, the age of this haplotype was estimated at 37 thousand years (with a range of 14 to
60 thousand). Young alleles at high frequencies are hallmark indicators of positive selection
(Example 9.4). Extensive coalescent simulations using a variety of population structures all
gave high levels of significance to these results. The exact pattern, pethaps evenmore stnking,
was seen by Mekel-Bobrov et al. with ASPM: a common haplotype with long LD and a very
recent estimated ongin (5,800 years). Again, coalescent simulations of neutral dnft under a
variety of proposed models of human population growth and expansion showed these results
to be highly significant. Together, these studies strongly suggested on-going selectionin these
two genes. They gathered a significant amount of attention, not the least of which was do to
the finding that the putative adaptive haplotypes were in higher frequencies in Europe and
Asia relative to Afnica, and the connection that is often drawn between cognition and brain
size.
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Although Evans etal. (2005) cautioned that “it remains formally possible that an unrecognized
function of microcephalin outside the brain is actually the substrate of selection”, many inter-
preted the above data as an adaptive response in intelligence. After all, two functional genes
that both influence brain size, a presumed correlate of intelligence, coupled with a history of
past, and ongoing, selection does indeed suggesta case forselection onintelligence. This view,
however, was quickly dispelled. Tim pson et al (2007) and Mekel-Bobrov et al. (2007) showed
in large sample sizes (900 and 2400, respectively) that there was no correlation between the
putative adaptive halplotypes and increased intelligence. Any on-going selection on these
genes does not appear to correlate with any selection forinereased cognition. Currant et al.
(2006) further noted that spatial models of growth were not considered, and hereitis possible
to see the above patterns for mutations that arise along the leading lead of a recent population
expansion.
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Lecture 10 Genomic Selection
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Genomic Selection

* Assumes
— Dense markers evenly spaced across the genome

— Assumes markers are in LD with QTL affecting trait(s)
of interest

— Each marker accounts for an equal proportion of
genetic variance (infinitesimal model)

— Genetic Effects are Normally Distributed




Model
Y=Xb+Zu+e

V(Y)=V(Xb+Zu+e)=2ZGZ'+R

M is the marker matrix

u= Ma a is a vector of SNP effects
Note Ma is a vector of summed marker effects

Vu)=E(uu')=G

G — O'i*MMI/ L Genomic Relationship Matrix (GRM)

R=1Ic’

Genomic Relationship Matrix

 Assumes

— Alike in State (AIS) alleles were at one time a result of
a single mutation, thus IBD when traced back in
evolutionary time




Compute genomic relationship matrix
(GRM) from rules of IBD

TA,=total allelic relationship at k" locus
TA,=2x coefficient of relationship
(Malecot. 1948)

*

G=0.G

2
O p

Is the additive genetic variance
associated with the markers for
the trait

2 2
Ope <Oy

Note: with low marker density the
markers may not capture any
genetic variance

5
LOCUS
A B C D E Pedigree
Individual 1 2 1 2 1 2 1 2 1 2
1 2 2 1 1 1 2 1 1 2 2 1
2 1 2 1 2 2 2 1 2 1 1
3 1 2 1 1 1 2 1 2 1 2
4 2 2 1 1 2 2 1 1 2 1 3 4 5
5 2 1 1 2 2 2 1 1 2 1
6 2 2 1 1 2 2 1 1 2 1
dividuals (XY) Total [elationsip=axy
x=1 2 >< 2 1 1 1 2 1 >< 1 2 2
y=1 2 2 1 1 1 2 1 1 2 2
sum 4 4 2 4 4
hared alleles 2 2 1 2 2 9 1.8
FEEDSS I  I IS BRI R b
y=2 1 2 1 2 2 1 2 1 1
sum 2 2 2 2 0
hared alleles 1 1 1 1 0 4 0.8
AlS G=GRM IBD PEDIGREE A
1 2 3 4 5 6
1 1.8 0.8 1.2 1.6 1.2 1.6 1 0 0.5 0.5 .5 0.5
2 08 1.4\ RS EIRSCENNEIR /0 1 0% ofs /Eo).s N5
3 1.2 1.2 1.2 1 1.?\ /8’5 0.5 1 5 0.5 0.5
4 1.6 1.2 1.2 1.8 1. > 0.5 0.5 0.5 0.5 0.5
5 1.2 1.2 d 1.4 1.4 > 5 0.5 0.5 .5 1 0.5
6 1.6 1.2 1. 1.8 1.4 1. \0\.5 0.5 0.5 .5 5 1

Parents assumed not related (False)

Parents assumed non inbred (false)

Full sibs assum&d = relationship (false)




G* Computed Directly from M

LOCUS code
A B 9 D E 22=2 1
Individual 1 2 1 2 1 2 1 2 1 2 12=1 0
1 2 2 1 1 1 2 1 1 2 2 11=0 -1
2 1 2 1 2 2 2 1 2 1 1
3 1 2 1 1 1 2 1 2 1 2
4 2 2 1 1 2 2 1 1 2 1
5 2 1 1 2 2 2 1 1 2 1
6 2 2 1 1 2 2 1 1 2 1
M N individuals x p markers M p markers x N individuals
1 1 -1 0 -1 1 1 0 0 1 0 1
2 0 0 1 0 -1 -1 0 -1 -1 0 -1
3 0 -1 0 0 0 1 0 1 1 1
4 1 -1 1 -1 0 -1 0 0 -1 -1 -1
5 0 0 1 -1 0 1 -1 0 0 0 0
6 1 -1 1 -1 0
0.8 -0.2 0.2 0.6 0.2 0.6 1.8 0.8 1.2 1.6 12 1.6
-0.2 0.4 0 0.2 0.2 0.2 0.8 1.4 1 1.2 1.2 1.2
0.2 0 0.2 0.2 0 0.2 1.2 1 1.2 1.2 1 1.2
0.6 0.2 0.2 0.8 0.4 0.8 1.6 1.2 1.2 1.8 1.4 1.8
0.2 0.2 0 0.4 0.4 0.4 1.2 1.2 1 1.4 1.4 1.4
0.6 0.2 0.2 0.8 0.4 0.8 1.6 1.2 1.2 1.8 1.4 1.8
MM/5 "+ = G*
dimension nxn
7

Coding
Genomic Relationship Matrix

AA (pi) 2 1 2-2p,
Aa 2p(1-py) 1 0 1-2p;
aa (1-p;)? 0 -1 2p,
Mean 1 2p, (1-2p) o

Does it make a difference?

GBLUP, NO
ssGBLUP, Yes G matrix needs to scaled the same as A matrix

Legarra, A., . Aguilar, and |. Misztal, 2009 A relationship matrix including full pedigree and
genomic information. Journal Of Dairy Science 92: 4656-4663.

Chen, C., I. Misztal, I. Aguilar, A. Legarra, and W. Muir, 2011 Effect of different genomic
relationship matrices on accuracy and scale. Journal Of Animal Science 89: 2673-2679.




Mixed Model Equations

XRX  XRZ }{b}z{XRY}

ZR*X ZR?Z+G* ZRY

R = IO'2 M (n individuals x p markers)
f ¢ M(n,p)M’(p.n)
G=0c.MM'/L MM'(n,n)

XX X7Z bl XY
' ' 092 ' —1 =
zX 2z+2=MM /L) | o7 2y

Simplifications |

2.
9
o Example
1 100 0 0 0] u,]
9 1 010000 0,
10 1
v=|] x| be loo1000 Y
=Y 7 = —| 3
6 y | b=lkl 000100 "7
9 1 000010 Uy
11} 1] 00000 1 U, |
1 -1 0 -1 1] .
8 -2 2 6 2 6
0010 -1 2 4 0 2 2 2
|0 -1 0 0 O ' 2 0 220 2 62 =10
Mo 11 210 MMIL=l6 2 2 8 4 8|  oios
0 0 1 -1 0O 2 2 0 4 4 4 02=20
111 -1 0 |6 2 2 8 4 8

Note, only %% the additive genetic variance was captured by the markers 10




R code GBLUP

NL=5 _ -
SigA=5 X= matrlxg c( 1,
SigE=20 '
Lam=SigE/SigA 1 '
Y = matrix( ¢( 7, 1,
9, 1),6,1)
10,
S’ M = matrix( ¢( 1,-1,0,-1,1,
’ 0,0,1,0,-1,
). 6.1) 0,-1,0,0,0
Z = matrix( ¢(1, 0, 0, 0, 0, 0, 1,-1,1,-1,0,
0,1,0,0,0,0, 0,0,1,-1,0,
0,0,1,0,0,0, 1,-1,1,-1,0),6,5, byrow = TRUE)
0,0,0,1,0,0,
0,0,0,0,1,0, G=(1/NL)*M%*%t(M)
0,0,0,0,0,1),6,6) Gl=solve(G)
1
Add a Ridge Value to Solve
r=.00001

ridge=r*l|
G1=G+ridge
INVG=solve(G1)

LHS = rbind( cbind(t(X) %*% X
cbind(t(Z) %*% X

RHS = rbind(t(X)%*%Y,

H(2)%*%Y)

C = solve(LHS)
BU =C %*% RHS
BU

LX) %*%Z ),
, (2)%*%Z +Lam*INVG))




Equivalent Model
Estimation of Marker effects

X'l,N XN,l Xl,N'MN,p l31,1 X'l,N YN,l
Mlp,N X'y1 M, My, +G_egl o1 M'p,N Yy

g,

Each Marker effects is solved for

Assumption depends on method

1) (GBLUP, ssGBLUP) Genetic variance associated with
each marker is equal® :\foTj

2) (Bayes A) sampled from a t distribution

3) (Bayes B and Bayes C 1) from a mixture of distributions
(null and t)

0, =GEBV, =Mg=> M4,
j

NL=5 R Code SNP BLUP

SigA=5
Sigg=SigA/NL
SigE=20

y = matrix( ¢( 7,
9,
10,

yyyyy




M = matrix( ¢( 1,-1,0,-1,1,
0,0,1,0,-1,
0,-1,0,0,0,
1,-1,1,-1,0,
0,0,1,-1,0,
1,-1,1,-1,0),6,5, byrow = TRUE)
LHS = rbind( cbind(t(X) %*% X, t(X) %*%M ),
cbind( t(M) %*% X, t(M)%*%M + (SigE/Sigg)*l))

RHS = rbind(t(X)%*% v,
t(M)%*%y)

C = solve(LHS)

Bg = C %*% RHS SNP effects=GWAS
Bg

g=Bg[2:6]

U=M%*%g

U Compare Breeding Values with GBLUP

Example

missing phenotypes but know genotypes
and marker effects following training =pure
genomic selection




Loci

Genotype
1 2 3 4 5
aa AA Aa aa AA

EBV
-1 1 0 -1 1] -0.08491 -0.0456
0.021935
0.012177
0.070134
-0.08231

Problems and relation to
Association Analysis

Admixture
— Major problem
— False Positives
— Spurious Correlations
— Correlation does not mean Causation
Partial Solution
— Use Igenstrat to correct for structure
— Use Structure to correct for structure
— Does not correct for phase
Application : economics
— 2stage
— Use Dense SNP genotyping (60k) on all selected male parents
— Use low density genotyping (512) on all selection candidates
— Impute genotypes of female breeders
Use in Humans to determine disease risk
— Use dense SNP chip for predicton of “risk” or “merit”
— Don’t worry about which markers are most predictive, Use them all
— Solves “missing heritability” issues
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