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Genetic Epidemiology

Big Picture Learning Goals
 Familiarity with major study designs used in genetic 

epidemiology

 Familiarity with major issues associated with each approach

 Aware of software and web resources used in genetic 
epidemiology



Course Objectives
 The objective of this course is to provide an introduction to 

methods and applications of genetic epidemiology.

 Students will be exposed to basic concepts and principles of 
genetic epidemiology, including:
 study designs for family based and population based studies
 analytical methods used in studies of linkage and association
 modern approaches to gene-environment interactions and rare 

variant analysis
 key web resources for analysis and interpretation
 relevant literature in the field

Class Structure 
Day Time Lead Topics
Monday 8:30-10:00 Carolyn Class Intro

Carolyn Epi 101
10:00-10:30  Break
10:30-12:00 Karen Overview of Genetic Epi
12:00-1:30 Lunch
1:30-3:00 Karen Family Studies
3:00-3:30 Break
3:30-5:00 Carolyn Linkage Disequilibrium

Tuesday 
AM

Time Lead Topics
8:30-10:00 Karen Association Studies
10:00-10:30  Break
10:30-12:00 Carolyn GenomeWide Association Studies



Class Structure Continued
Tuesday 
PM

Time Lead Topics
12:30-3:00 Carolyn GxE
3:00-3:30 Break
3:30-5:00 Karen Sequencing Studies I

/Journal Club I

 This module will include a combination of lectures, in class tutorials and assignments, small 
group interactive activities and readings.

Wednesday Time Lead Topics
8:30-10:00 Carolyn & Karen Sequencing Studies II

/Journal Club II
10:00-10:30 Break
10:30-11:30 Carolyn & Karen Precision Medicine
11:30-12:00 Carolyn & Karen Wrap-up

Class introductions
 Break into groups of 2-3
 Introduce yourselves to one-

another, and you will introduce 
your group members to the 
class.

 Items to include:
 Name
 “Day-job”
 Main objective for taking this 

course
 Thing most excited to learn in 

over the next 3 days



Introduction to Epidemiology

Definitions, Objectives and Historic 
Examples



THINK-PAIR-SHARE ACTIVITY
1. Define “Epidemiology”
2. Give an example of what an epidemiologist 
does

Definitions of Epidemiology



Objectives of Epidemiology

1. Identify disease etiology
2. Determine the burden 

of disease
3. Study the natural 

history of disease
4. Evaluate preventive and 

therapeutic measures
5. Provide foundation for 

public policy

http://www.webmd.boots.com/a-to-z-guides/tc/smoking-what-will-happen

© 2005 Elsevier 

Ignaz Semmelweis - 1846
 Childbed Fever
 Major cause of death post childbirth
 Theories included putrid air, solar 

influences, etc.

 Obstetrical Clinics of the 
Allgmeine Krankenhaus
 1st Clinic
 Physicians and Medical Students

 Performed autopsies at start of the day

 Mortality: 16%

 2nd Clinic
 Midwives

 No autopsies

 Mortality: 7%



 Suggested transmission of disease from cadavers to women

 Noted a colleague died from similar infection after being 
punctured during an autopsy

 Implemented policy that physicians and students wash hands 
and scrub nails after autopsy, before contact with patients:

Edward Jenner - 1796
 Smallpox
 400,000 people died per year in 

Europe
 Devastating when introduced to 

Americas (biological warfare)
 Case fatality rate of 40-60%

 Variolation and vaccination
 Originally infected healthy 

individuals with material from 
smallpox patients.

 Jenner noted that dairy maids, who 
were exposed to cowpox, did not 
develop smallpox.



Smallpox Eradication
 1967 

 ~15 million cases per year 
 ~2 million deaths
 WHO starts efforts to eradicate 

smallpox
 1980

 WHO certifies that smallpox has 
been eradicated

 Last natural case in 1977
 Last US vaccinations in 1972

 2001
 Increased concern about smallpox 

and bioterrorism
 2014

 Small pox found in NIH storage 
refrigerator

John Snow- 1854
 Cholera
 Severe bacterial infection
 Miasmatic theory of 

disease

 London in the 1800s
 Multiple cholera 

pandemics 1831-1854
 1949 John Snow published 

that cholera was caused by 
water



“Father of Modern Epidemiology”
 Combined field work with statistical methods to examine water 

sources used by people with cholera.

 Broad Street Pump
 Collected records on 83 deaths

 Noted unexpected non-cases

 Grand Experiment
 Multiple companies supplied same 

Neighborhoods

 Noted that the Lambeth Company

moved intake to a less polluted source

John Snow’s Map

http://scienceblogs.com/significantfigures/index.p
hp/2013/03/11/200-years-of-dr-john-snow-a-
significant-figure-in-the-world-of-water/

http://www.youtube.com/watch?v=Pq32LB8j2K8



Richard Doll and Bradford Hill- 1952
 Smoking and lung cancer
 1920s health care workers noted 

that many lung cancer patients also 
smoked

 Incidence of lung cancer in men 
over 45 rose 6 fold from 1930 to 
1945

 Cars or other industrial changes.

 Experimental design
 Case-control study
 Looked at hospital patients with and 

without cancer.

 Cohort study
 Prospectively followed >40,000 

physicians

BMJ 2004;328:1519



US Lung Cancer Trends

Descriptive and Analytic 
Epidemiology



Descriptive Epidemiology
 Includes activities related to characterizing the 

distribution of diseases within a population

Analytical Epidemiology
 Concerns activities related to identifying possible causes 

for the occurrence of diseases

Descriptive vs. Analytical Epidemiology

Objectives of Descriptive Epidemiology

 To evaluate trends in health 
and disease and allow 
comparisons among countries 
and subgroups within 
countries

 To provide a basis for 
planning, provision and 
evaluation of services

 To identify problems to be 
studied by analytic methods 
and to test hypotheses related 
to those problems

PERSON

PLACE

TIME

Think of this as the 
standard 
dimensions used to 
track the 
occurrence of a 
disease.



Some Definitions
 Endemic

 Habitual presence of a disease in a 
given area

 Usual prevalence of disease within 
such an area

 Epidemic
 Occurrence in a community or 

region of a group of illnesses of 
similar nature in excess of normal 
expectancy.

 Derived from common or 
propagated source.

 Often called “outbreak”
 Pandemic

 Epidemic over a wide geographic 
area.

Key Measures in Epidemiology

Morbidity Measures Mortality Measures

 Incidence (new cases)
 Cumulative incidence 

(proportion)
 Incidence rate (new cases 

per unit time)

 Prevalence (Existing cases)
 Existing cases
 Point prevalence 

(proportion)
 Period prevalence

 Mortality rate (number of 
deaths per unit time)

 Cumulative mortality 
(proportion)

 Case-fatality rate (proportion 
of subjects with disease that 
die from that disease)

 Proportionate mortality 
(proportion of people who 
die, who died from a specific 
disease- be careful when 
using this measure)

The denominator is a key part of measures in epidemiology.



Goal in Analytical Epidemiology
 Test a hypothesis about relationship between exposure(s) and 

disease(s)

 Consider Internal Validity
 Ideal: Free from bias in design, 
implement, analyze and interpretation
 Reality: We need to address biases

 Consider External Validity
 Ideal: Generalizable
 Reality: Applies to study population, 
infer more broadly

Study Designs for Analytical 
Epidemiology



Randomized Trials
 RCTs
 Randomized Clinical Trials
 Randomized Control Trials

 Often used for studies of 
treatment/drugs in relation to 
prognosis

 Can also be used in other 
settings, including studies of 
risk and prevention

 Key elements:
 Study population is defined
 Study population is randomly 

assigned to two (or more) 
study “arms”

 Outcomes are compared for 
the different arms

© 2005 Elsevier 

Cohort and Case-Control Studies
 Observational study designs used in epidemiology
 Consider strengths, limitations and sources of bias
 Cohort Study
 Steps: Define cohort, take baseline measurements and exposure 

status, ascertain outcome information, compare incidence in 
exposed and unexposed

 Can be prospective or retrospective

 Case-Control Study
 Steps: Identify cases, identify/select controls, collect exposure 

history prior to disase onset, compare odds of exposure in cases 
to odds in controls

 Key step is identifying an appropriate control group



Downloaded from: StudentConsult (on 29 September 2013 04:59 PM)

© 2005 Elsevier 

Cohort Case-Control

Cohort Study

Strengths Limitations
 Temporal sequence
 Allows measurement of 

incidence rate and risk
 Can examine multiple 

outcomes
 Allows examination of rare 

exposures
 Minimizes information bias 

for exposure
 Minimizes survivor bias

 Ineffective for rare diseases
 Often requires large sample
 Often requires long time to 

complete (lag-time)
 Expensive
 Attrition/sensitive to loss to 

follow-up
 May have differential 

ascertainment of outcome
 Confounding can occur



Case-Control Study

Strengths Limitations
 Can examine multiple 

exposures
 Allows examination of rare 

diseases
 Minimizes information bias 

for exposure
 Applicable when long lag 

time
 Compared to cohort studies, 

they are often smaller and 
require less time and money

 Control selection can be 
difficult

 Recall limitations and 
recall bias

 Sample size issues for rare 
exposures

 Cannot directly estimate 
incidence rates, relative 
risks or attributable risk. 

Measures of Association
Note: Some slides in this lecture come from:
http://www.teachepi.org/documents/courses/fundamentals/Pai_L
ecture4_Measures%20of%20Effect%20and%20Impact.pdf
Others from University of Washington EPI 420 materials



Main Measures of Association

 Relative Risk
measure of the relative probability of developing disease based on 
exposure status

 Attributable Risk
measure of the amount of excess disease incidence attributed to the 
exposure of interest

 Odds Ratio
measure of the relative odds of exposure based on disease status (can 
approximate the RR)

The 2x2 Table For Count Data



Relative Risk (RR) For Count Data
 Used in Randomized trials 

Cohort studies

 Based on cumulative incidence 
measure

 AKA: Risk Ratio

 If no association RR=1

Disease

c+ddc‐

a+bba+

Total‐+Exposure

c/(c+d) 

a/(a+b) 
=

(Incidence of Disease in Unexposed) 

(Incidence of Disease in Exposed) 
RR =

Attributable Risk (AR) for Count Data

 Used in Randomized trials and 
Cohort studies

 AKA: Risk Difference*

 Difference in risk between 
exposed and unexposed

 If no association AR=0

a/(a+b) ‐ c/(c+d) = Incidence(exposed) – Incidence(unexposed) AR =

Disease

c+ddc‐

a+bba+

Total‐+Exposure

* Note: Some argue that you should use the term risk difference when testing for 
association, and only use “Attributable Risk” for when you have established causality.



Odds Ratio (OR) for Count Data
 Used primarily in Case Control 

Studies (also in Cohort) 

 AKA: Relative Odds

 Good estimate of RR

 If no association OR=1

b*c

a*d
=

b/d

a/c
=

(Odds of Exposure among Controls) 

(Odds of Exposure among Cases) 
OR =

Disease

c+ddc‐

a+bba+

Total‐+Exposure

What are Odds?
 Odds: Ratio of ways an event can occur to ways the event can 

not occur.
 Odds of 1:1 indicate both options are easily likely.
 When rolling dice, probability of getting a 2 is 1/6
 Odds of getting a 2 is 1:5.

 Used in epidemiology, because of situations where we 
calculate odds ratios
 Case-control studies
 Logistic regression 

 If P=probability of event, then odds=

 If P is very small, 1-P≈1 and odds=



Odds Ratio in Cohort Study and Case-Control 
Study Reduce to Same Calculation

Odds Ratio Estimates Relative Risk 
When Disease is Rare
 The OR will be a good 

estimate of the RR if the 
outcome is rare.

 If the outcome is common, 
and association is positive, 
then the OR will 
overestimate the RR

 This overestimation can be 
quite large for common 
outcomes.



Confidence Intervals and p-values
 Presentation so far has focused on point estimates

 Gives information on magnitude of association

 Statistical software will also provide estimate of confidence 
intervals and p-values

 Important to consider precision and statistical significance, 
along with estimate of magnitude of association.

Bias, Confounding, and Causal 
Inference



Association and Causality
 An exposure and outcome are 

associated if there is a 
differential distribution:
 Incidence of outcome differs 

for exposed and unexposed 
group; or

 Prevalence of exposure differs 
between cases and controls

 An exposure is causal for the 
outcome if the presence (or 
absence) of the exposure 
directly or indirectly influences 
whether the outcome occurs.

2

Phillips, C.V. 2003. Epidemiology. 14(4):459‐466.

Sources of Bias in Epidemiology

What we are trying to 
measure

What we actually 
measure

Bias = Systematic error in the design, conduct or analysis of a study 
that results in a mistaken estimate of an exposure’s effect on the 

risk of disease



Sources of Bias in Epidemiology

Manolio et al. Nat Rev Genet. 2006. 7: 812-820.

 Selection Bias
 Arises from issues in case/control 

ascertainment

 Information Bias
 Arises from measurement error or 

misclassification in assessing factors of 
interest.

 Confounding*
 Arises when there is an extraneous 

disease risk factor that is also associated 
with exposure and not in the causal 
pathway.

*Some argue confounding is not technically 
a bias

Confounding
 Confounding is a key topic in 

epidemiology

 A confounder is often defined as 
a factor that is:
① A risk factor for disease
② Associated with exposure
③ Not a direct result of exposure

 Confounding can lead to 
“spurious” associations

Exposure Outcome

Confounders 



Example of Confounding
 Birth order and Down 

syndrome
 Birth order is associated with 

Down syndrome, later order 
children with higher risk
 Maternal age is associated 

with birth order 
 Maternal age is associated 

with Down Syndrome

 Stratifying on maternal age, 
there is no longer evidence of 
an association between birth 
order and Down syndrome

Approaches to Handling Confounding

In Design of Study In Analysis of Data
 Randomization

 Restriction

 Matching
 Group Matching
 Individual Matching

 Standardization

 Adjustment

 Stratification



Guidelines for Judging Whether an 
Association is Causal

 Temporal relationship (exposure should proceed outcome)
 Strength of association (size of odds ratio or relative risk)
 Dose-response relationship
 Cessation of exposure leads to reduction in outcome
 Replication of finding (multiple independent studies)
 Biological plausibility
 Consistency with other knowledge
 Consideration of alternative explanations (ability to rule them out)
 Specificity of the association

What is Meant by Interaction?
 Biological Interaction

 The interdependent operation of two or more biological causes to produce, 
prevent or control an effect

 Two causes interact on a biological level to cause a disease or outcome

 Statistical Interaction
 The observed joint effects of two factors differs from that expected on the 

basis of their independent effects
 Deviation from additive or multiplicative joint effects

 Effect Modification (or Effect Measure Modification)
 Differences in the effect measure for one factor at different levels of another 

factor
 Example: OR differs for males vs. females; AR differs for pre-menopausal 

and post-menopausal women, etc.



Future Directions in Epidemiology

Summary
 Epidemiology is the study of the distribution and determinants of 

health-related states in populations
 Historic examples demonstrate objectives of epidemiology
 Study design is a key component of epidemiology
 Relative risks, risk differences and odds ratios are used to measure 

association
 It is important to consider and address bias in epi studies
 Selection bias and information bias are two main classes of bias
 Understanding confounding and effect modification are important 

in studies of association
 Future directions are transforming the field of epidemiology



Definitions of Epidemiology
 Greek Etymology

 Epi - upon, among, on, over
 Demos- people, populance
 Logos- study, word, discourse, count

 the study of the distribution and determinants of health-related states in 
specified populations, and the application of this study to control health 
problems - Last

 the study of how disease is distributed in populations and the factors that 
influence or determine this distribution – Gordis

 a branch of medical science that deals with the incidence, distribution, and 
control of disease in a population – Merriam-Webster

 Epidemiology is the study (or the science of the study) of the patterns, causes, 
and effects of health and disease conditions in defined populations. -Wikipedia



Karen L. Edwards, Ph.D.

Professor 

Department of Epidemiology and

Genetic Epidemiology Research Institute

School of Medicine

University of California, Irvine
Irvine, CA

Genetic Epidemiology

Introduction

Big Picture Learning Objectives

 Familiarity with major study designs 
used in genetic epidemiology 

 Familiarity with major issues associated 
with each approach

 Aware of software and web resources 
used in genetic epidemiology



Course Learning Goals/Objectives

• Define genetic epidemiology

• Describe the fundamental concepts critical to genetic epidemiology

• Describe the major study designs used in genetic epidemiology

• Be able to collect family health information and draw a pedigree using a 
software program

• Be familiar with resources and current technology used in genetic 
epidemiology

•Be able to read and discuss the relevant literature

Lecture Outline

• Introduction to Genetic Epidemiology

• Define genetic epidemiology

• Terms and concepts important in genetic 

epidemiology
http://www.genome.gov/Glossary/
http://www.cdc.gov/excite/library/glossary.htm

• Overview of study designs

• Collecting family history information and pedigree 

drawing



Genetic Epidemiology

 Goals
 To discover and characterize genetic 

susceptibility to health and disease in human 
populations

 To identify interactions between genetic and 
environmental factors

 Use family based studies and studies of 
unrelated individuals

 Apply principals of epidemiology, 
biostatistics and genetics/genome science

 Rapidly evolving field

Percent of Obese (BMI > 30) in U.S. Adults



Percent of Obese (BMI > 30) in U.S. Adults

Percent of Obese (BMI > 30) in U.S. Adults



Genetic Epidemiology

Exposure   Disease/Outcome 

Genotype Phenotype

Phenotype and Genotype

 Phenotype and Genotype are the key 
components in genetic epidemiologic studies

 Phenotype (trait) – observed characteristics that 
are usually the focus of a genetic epidemiologic 
study 

 Not always a direct reflection of genotypes

 Examples: Blood pressure, body weight, cholesterol 
level, eye color, heart disease, diabetes, Parkinson’s 
disease, cancer, longevity

 Quantitative  vs. qualitative (discrete) trait





Chromosomes, DNA, Genes
 Chromosomes are made up of DNA and are long strands of “genes” 

 Humans have about 20,000 genes in their genome

 Genes have both coding (exon), noncoding (intron) and regions 
upstream that affect expression (promoter region)

 Promoter region – a sequence of DNA found near beginning of a gene and 
needed to turn a gene on or off

 Exons – contain stretches of DNA that code for proteins

 Introns come in between the exons – intervening sequences, do not code 
for proteins

 Genes control growth, development, health and disease

 Genes are turned on and off in different patterns and at different 
stages of development = gene regulation

Genotype
 The unique genetic information of an individual

 Each gene has its own specific location on the chromosome

 Genes come in pairs, one version of each gene is inherited from your 

mother and one from your father (allele)

 Variations in the underlying DNA can result in differences between 

individuals, and may underlie a specific phenotype

 Different ways of measuring the genotype and alleles

 Single nucleotide polymorphism – most SNPs are not themselves functional, but 

mark the functional variations that affect disease risk

 Sequencing is now common 

 Factors that affect the expression of the gene (such as environment) 

are also important to consider  (Gene x environment (GxE))



Genotype
 Each person inherits 1 chromosome from their biologic 

father and one from their biologic mother

 23 pairs of chromosomes (a total of 46 chromosomes)

 22 of the pairs look the same in males and females

 The sex chromosomes differ in males (X, Y) and females (X, X)

 Genotype – the unique genetic information from an 
individual

 The genetic contribution to the phenotype

 Genotype can refer to a collection of genes or the two alleles 
of a particular gene

 Humans have about 20,000 genes 

A pair of chromosomes

Body weight gene 
(alleles b and B)

Genetic Markers – known locations

b

B



Allele frequencies vary across populations

Humans on the move. Worldwide genetic variation at a neutral marker. Allele 
frequencies of one randomly chosen microsatellite marker reveal common alleles 
shared in all populations and the gradual and arbitrary differences in allele 
frequencies across geographic regions. Populations shown in this example are 
Yoruba and Bantu (Africa); French, Russians, Palestinians, and Pakistani Brahui
(Eurasia); Han Chinese, Japanese, and Yakut (East Asia); New Guineans (Oceania); 
and Maya and Karitianans (America). From King and Motulsky (2002), Science, 
298: 2342-2344.

Identifying genetic effects: 
Overview



Question Approach

Is there evidence for genetic influences on a quantitative trait? Commingling

Is there familial aggregation? Family Study

Is the familial aggregation caused by genetic factors? Twin Study

Is there a major gene?  Is it dominant or recessive ? Segregation Study

Where is this major gene in the human genome? Linkage Analysis

Is there linkage with DNA markers under a specific genetic 
model?

A. Parametric Approach

Is there an increased allele sharing for affected relatives (sib pairs) 
or for relatives with similar phenotype

B. Allele Sharing Approach
(sib-pair analyses)

Where is the exact location of this gene and which polymorphism 
is associated with disease?

Association Study 
(population and family)

Approaches to understanding genetic influences:  
Overview of Genetic Epidemiologic Studies

Most human traits have a skewed distribution –
which could be consistent with a genetic effect 

Body weight as our example

Body weight (lbs)

of  US Adults

60020050 400

100

500

250

10



Basic idea behind Commingling Analysis:

 If a single gene has an effect on the variation in a 
quantitative trait (body weight), each genotype has 
a particular distribution associated with it

 The overall population distribution results from the 
commingling of these genotype-specific sub-
distributions

 Assume a gene with alleles B and b: have 3 
possible genotypes in the population:
 BB - homozygous

 Bb - heterozygous

 bb  - homozygous

A pair of chromosomes from 
an individual person

Body weight gene 
(alleles b and B -

heterozygous)

b

B



Is the frequency distribution of body weight 
consistent with the influence of a gene with 
either dominant or recessive effects? 

Body Weight

BB, Bb bb

Commingling Analysis Summary:

 Why is it used: To provide preliminary
evidence for a single gene that influences a 
quantitative trait (e.g. body weight, blood 
pressure, cholesterol level, blood glucose 
level). 

 A statistical modeling approach that does not 
measure the genotype, but assumes genetic 
principals in the model

 Unrelated individuals – faster and easier



Question Approach

Is there evidence for genetic influences on a quantitative trait? Commingling

Is there familial aggregation?
higher risk in relatives of cases Family Study

Is the familial aggregation caused by genetic factors?
MZ twins concordance rate  
or correlation higher than DZ twins

Twin Study

Is there a major gene?  Is it dominant or recessive ? Segregation Study

Where is this major gene in the human genome? Linkage Analysis

Is there a linkage with DNA markers under a specific genetic 
model?

A. Parametric Approach

Is there increased allele sharing for affected relatives or for 
relatives with similar phenotype

B. Allele Sharing Approach
(sib-pair analyses)

Where is the disease causing gene and which polymorphism is 
associated with disease?

Association Study 
(population and family-based)

Overview of Genetic Epidemiologic Study Design

General comments about twin studies
 One of the first approaches used to evaluate evidence for 

genetic influences on traits

 Evaluate both genetic and environmental influences on 
traits

 Measure of interest is the heritability of the trait
 Proportion of total variance in the quantitative trait due to additive 

genetic effects

 Population specific

 Evaluate evidence for genetic influences on different 
types of traits
 qualitative traits – diabetes

 quantitative traits – blood glucose



A twin approach to unraveling epigenetics
Jordana T. Bell and Tim D. Spector
Trends Genet. 2011 March ; 27(3): 116–125.

Abstract

The regulation of gene expression plays a pivotal role in complex phenotypes, and 
epigenetic mechanisms such as DNA methylation are essential to this process. The 
availability of next generation sequencing technologies allows us to study epigenetic 
variation at an unprecedented level of resolution. Even so, our understanding of the 
underlying sources of epigenetic variability remains limited. Twin studies have played 
an essential role in estimating phenotypic heritability, and these now offer an 
opportunity to study epigenetic variation as a dynamic quantitative trait. High 
monozygotic twin discordance rates for common diseases suggest that unexplained 
environmental or epigenetic factors could be involved. Recent genome-wide 
epigenetic studies in disease-discordant monozygotic twins emphasize the power of 
this design to successfully identify epigenetic changes associated with complex traits. 
We describe how large-scale epigenetic studies of twins can improve our 
understanding of how genetic, environmental and stochastic factors impact upon 
epigenetics, and how such studies can provide a comprehensive understanding of 
how epigenetic variation affects complex traits.

Question Approach

Is there evidence for genetic influences on a quantitative trait? Commingling

Is there familial aggregation?
higher risk in relatives of cases Family Study

Is the familial aggregation caused by genetic factors?
MZ twins concordance rate  
or correlation higher than DZ twins

Twin Study

Is there a major gene?  Is it dominant or recessive ? Segregation Analysis

Where is this major gene in the human genome? Linkage Analysis

Is there a linkage with DNA markers under a specific genetic 
model?

A. Parametric Approach

Is there increased allele sharing for affected relatives or for 
relatives with similar phenotype

B. Allele Sharing Approach
(sib-pair analyses)

Where is the disease causing gene and which polymorphism is 
associated with disease?

Association Study 
(population and family-based)

Overview of Genetic Epidemiologic Study Design



Question Approach

Is there evidence for genetic influences on a quantitative trait? Commingling

Is there familial aggregation?
higher risk in relatives of cases Family Study

Is the familial aggregation caused by genetic factors?
MZ twins concordance rate  
or correlation higher than DZ twins

Twin Study

Is there a major gene?  Is it dominant or recessive ? Segregation Study

Where is this major gene in the human genome? Linkage Analysis

Is there a linkage with DNA markers under a specific genetic 
model?

A. Parametric Approach

Is there increased allele sharing for affected relatives or for 
relatives with similar phenotype

B. Allele Sharing Approach
(sib-pair analyses)

Where is the disease causing gene and which 
polymorphism is associated with disease?

Association Study 
(population and family-based)

Overview of Genetic Epidemiologic Study Design

Association Studies

 Evaluate the association between a particular genetic variant  
and the trait (disease) in a population

 Focuses on unrelated individuals – usually case-control study

 Risk is typically estimated by the odds ratio (OR)
 Compares the frequency of the genetic variant in those with disease to 

those without the disease

 Measure of the strength of an association 
 OR=1 is no effect, OR>1 is increased risk, OR< is decreased risk

 A follow-up or replication study is an important, but challenging 
aspect of association studies



Summary
 Genetic Epidemiology - the genetic and environmental 

aspects of disease in human populations

 Use a variety of study designs to identify and evaluate 
evidence of genetic effects and impact on disease risk in 
populations

 Integrates epidemiology, genetics, genomics and 
biostatistics 

Collecting Family Data

Genetic Epidemiology



Collecting Family Data

 Collecting family data is time consuming 
and expensive

 Need for complete and extended pedigrees

 Local relatives vs. all relatives

 Collection of phenotype data

 Need for accurate description of biologic 
relationships

 Confidentiality and IRB issues in collecting 
family data



Collecting family data

 IRB Issues

 Confidentiality of information

 Publication of pedigree information, genetic status

 Sensitive information

 Non-paternity, adoptions, abortions, medical 
conditions

 General approaches to data collection

 Proband contact

 Individual family members as contacts 

Collecting family data
 Phenotype Information

 Survey

 Proband only
Pro: quick and inexpensive

Con: lack of knowledge about some relatives 

 Relatives

 Critical information
 Mother and Father ID  for ALL related individuals

 Measurements
 Collecting blood / tissue samples

 Physical measurements (height, weight, etc)

 Tools for standardized measures (www.phenxtoolkit.org)

 PhenX Tool Kit – a catalog of high-priority measures for 
consideration and inclusion in genetic epi studies 





Karen L. Edwards, Ph.D.
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Family Studies: Family Health 
History, Segregation and Linkage 

Analysis

Question Approach

Is there evidence for genetic influences on a quantitative trait? Commingling

Is there familial aggregation?
higher risk in relatives or  
higher correlation in relatives

Family Study

Is the familial aggregation caused by genetic factors?
MZ twins concordance rate  
or correlation higher than DZ twins

Twin Study

Is there a major gene?  Is it dominant or recessive ? (likelihood of 
Mendelian models higher than environmental or polygenic model)

Segregation Analysis

Where is this major gene in the human genome? Linkage Analysis

Is there a linkage with DNA markers under a specific genetic 
model?

A. Parametric Approach

Is there an increased allele sharing for affected relatives (sib pairs) 
or for relatives with similar phenotype

B. Allele Sharing Approach
(sib-pair analyses)

Where is the disease causing gene and which polymorphism is 
associated with disease?

Association Study 
(population and family-based)

Overview of Genetic Epidemiologic Study Design



Family Health History: Application to 
public health

Advantages:
• Reflects multiple genetic, environmental, behavioral factors and interactions

• No genetic test can do this

• Family history is a predictor of most diseases (diabetes, cancers, CVD)

• Effective (public health) interventions exist for many of these diseases
• Quitting smoking, maintaining ideal body weight, diet, exercise

• Overcomes one of the most important barriers - getting people interested in 

learning and talking about their health

Goal: Use family history information to motivate behavior change and promote a 

healthy lifestyle for primary prevention of disease
• More personalized health messages  that “ fit within pre-existing beliefs about 

current health status, possible causes and risk factors, course of the disease, 
magnitude of and potential consequences of the risk, and ways to reduce the 
risk”  See Claassen et al. BMC Public Health 2010, 10:248

Genetic Epidemiology

Segregation Analysis



Complex Segregation Analysis (CSA)

 A modeling approach used to determine 
whether there is evidence for a single 
gene that underlies a trait or disease

 Also provides information on mode of 
inheritance

 Dominant, Recessive or Codominant

 General method for evaluating the 
transmission of a trait within pedigrees

 Mendelian transmission

CSA, cont

 Information from CSA is useful in model 
based (parametric) linkage methods

 LOD method linkage analysis depends 
on the specification of a reasonable 
model, including an approximation of the 
mode of inheritance
 Assumes the existence of a Mendelian trait



The goal

 To test for compatibility with Mendelian
expectations by estimating parameters for a 
range of genetic models 

 CSA can provide the statistical evidence for 
Mendelian control of a trait or disease

 As with all methods so far, this evidence can be 
used to support a genetic cause of the disease, 
but is not definitive

 Simultaneously considers major locus, polygenic 
and environmental effects

The Approach

 A variety of models are fit to the family 
data and compared using a likelihood 
ratio test (for nested models)

 The null hypothesis is that the data  DO fit 
with some model of inheritance (genetic 
or not)- a "goodness of fit" approach



The Models
 The models are formed by estimating and 

restricting a specified set of parameters

 The most general model, where all parameters are 
estimated

 Single locus models with no polygenic inheritance 
and differing modes of inheritance

 Polygenic model, with no single locus effect

 Mixed model, both single gene and polygenic 
components

 Nongenetic model  or "environmental model"

Parameters: single locus component

 Means (u) for each subdistribution

 Variance of each subdistribution

 Allele frequencies

 Transmission probabilities - should conform to 

Mendelian expectations

 t1 = P(AA parents transmits A allele to offspring) = 
1.0

 t2= P(Aa parents transmits A allele to offspring) = 
0.5 

 t3 = P(aa parents transmits A allele to offspring) = 
0.0



Parameters : Polygenic component

 Heritability (h2) 

 proportion of variance due to additive genetic effects 

 Not a single major gene

 Can reflect “residual genetic effects” not accounted 
for by a single major locus

 Sometimes referred to as multifactorial component

Model Testing

 Hypothesis testing for nested models 
using the LRT (likelihood ratio test) 

 LRT = -2 [In L(reduced model) - In L(full 
model)]

 LRT is distributed as a chi square with the 
degrees of freedom (df) equal to the difference in 
the number of estimated parameters 

 The likelihood of each model is proportional to 
the probability of the data, given the model and 
family structure



Model testing, cont

 To compare non-nested models 

 use the AIC to compare (not test) models to 
support a particular model over another

 AIC= -2(ln likelihood) + 2(number of estimated 
parameters)

 Calculate the AIC for each competing model 
and select the one with the smallest AIC as 
being the most parsimonious

Interpretation: Inferring A Major Gene

 To infer a major gene

 reject nongenetic models

 accept a major gene model (single or mixed 
model)

 should always test transmission 
probabilities in CSA of quantitative traits to 
safeguard against false inference of a major 
gene



Ascertainment Correction

 Ideal probands would be newly diagnosed, 
population based (incident) cases

 Should correct for ascertainment unless 
pedigrees (probands) are selected from a 
random, population based sample

 Correction for ascertainment is not 
straightforward and is not usually done

 Estimators for population parameters (allele 
frequency and heritabilty) will be most affected

Review Table



Other Issues to Consider

 Nonpaternity seems to have little effect 
on the ability to select models

 Can adjust for covariate effects

 Can also consider adjusting for other 
known genetic factors affecting your 
trait of interest

Important Limitations in CSA

 Implicit assumption of etiologic 
homogeneity

 Power is difficult to estimate as there is 
no single nongenetic alternative model, 
but instead a range of competing 
models

 Sample size
 Larger extended kindreds with several generations 

are generally better than small nuclear families 

 generally requires a large amount of data, with more 
complex models requiring more data



Summary of CSA

 Does not require genotype data

 Can be time consuming to complete analyses

 Information from CSA is useful for a variety of 
reasons

 Preliminary data, estimates for linkage analyses, 
choice of phenotype

 Assumes the existence of a Mendelian
trait



Standardized Human Pedigree Nomenclature: Update
and Assessment of the Recommendations of the National
Society of Genetic Counselors.  
Authors:  Bennett, French, Resta, Lochner Doyle

• Standard format and nomenclature for drawing pedigrees

• Pedigrees convey lots of information

• Picture is worth a 1000 words

• Sensitive information and how to display?

J Genet Counsel (2008) 17:424–433



Bennett article - some key points

• A medical pedigree is a graphic presentation of a family’s health history 
and genetic relationships 

• A pivotal tool in the practice of medical genetics / genetic epi research

• Interpreting a pedigree should be a standard competency of all health 
professionals

• Pedigrees should not contain information about which a subject had no prior 
knowledge. 

• a person who had presymptomatic or susceptibility genetic testing through 
research should not find out about increased or decreased disease risk status 
from a publication

In Class Exercise: Pedigree 
Drawing

Let me start with my great-great grandparents: Jim and Ann Flight.

They had two children: Kathy, and Gerry.

Kathy died in a car accident along with her father Jim.

Gerry married Kate Doe.

Kate and Gerry had one child, Kathy

Kathy Flight married David Dewey and they had my dad, Bob. My dad took his mother’s 

maiden name because David had an affair with someone named Maggie Braun.

After Jim’s death, Ann married Paul Wright. Ann and Paul had one child: Tom Wright.

Tom Wright married Kaisa Stone.

Tom and Kaisa had one daughter: Heather. Heather Wright was wed to Peter Meter and had 

one child, Jean. Jean married Bob Flight and they had me Jane Flight.



In Class Exercise: Collecting 
Family History Information

Think about your own family history
- Do you know the vital status of your immediate family members, 

what about more distant relatives? 

- Do you know the DOB and DOD for your immediate family members, 

what about more distant relatives?

- What health conditions run in your family?

- Do you know age or date of onset?

- How confident are you in this information?

Draw your pedigree, indicating as much of the following as possible

- vital status, health conditions, age at onset or death 

Genetic Epidemiology

Linkage Analysis



Linkage Analysis, overview

 Linkage
 Location of genetic loci sufficiently close together on a 

chromosome that they do not segregate independently

 linkage is a property of loci (not alleles), and evaluation 
involves all alleles at the marker locus

 the specific alleles segregating in one family may differ 
from alleles at the same locus segregating in a different 
family

Linkage vs. Association

 Linkage
 Cosegregation of a disease or trait with a specific 

chromosomal region in multiple families

 Genetic linkage is the tendency of two loci to be 
inherited together (e.g. loci are on the same 
chromosome)

 Property of two loci (genes or locations) 

 Association
 Presence of a disease or trait with a specific allele in a 

gene or marker (in unrelated subjects) – probably due to 
linkage disequilibrium



Linkage Analysis –background

 The aim of linkage analysis is to infer the relative 
position of two or more loci 
 Examining patterns of allele sharing or cosegregation

of marker and disease in relatives

 The location of one locus is known (the marker), the 
other is unknown (the disease causing gene)

 Alleles of loci on the same chromosome can violate 
Mendels’s law of independent assortment (linkage)

 Evidence of linkage between a known marker and a 
putative gene for a disorder is the ultimate statistical 
evidence for a genetic component in disease 
etiology

General Approaches to Linkage 
Analysis
 Genome Wide Scan

 Isolate a gene solely on the basis of it's chromosomal 
location, without regard to it's biochemical function. 

 This is often referred to as the "positional genetic" 
approach (i.e. genome screens are often referred to 
positional cloning)

 Candidate gene approach
 Select candidate genes based on their function or other 

known properties



Required data for family studies

 At least pairs of related individuals

 Accurate pedigree structure / biological 
relationships
 Nuclear family vs. extended kindred 

 Phenotype data – quantitative or categorical

 Genotype data
 Location of markers (marker map)

Genetic Markers

 A genotype (measurable "trait" ) that is genetically 
determined, can be accurately classified, has a simple, 
unequivocal pattern of inheritance  (and polymorphic). 

 Types of genetic markers
 Polymorphic markers – lots of alleles / variation
 Variable number of tandem repeats (VNTR)
 Microsatellites, (e.g. CA repeats), very polymorphic 

 Single nucleotide polymorphisms (SNP's) - 2 allele 
markers, very common

 Sequence data – exome or whole genome



Statistical Analysis: LOD based 
Linkage Analysis

 Involves comparison of likelihoods of observing 
the segregation pattern of 2 loci under specific 
models, including
 Under the null hypothesis of no linkage
 Independent assortment – loci recombine as if on 

different chromosomes

 Alternative hypotheses of linkage
 differ in the extent of crossing over (i.e.  different 

values of recombination events)

LOD Score

 LOD score = log (base 10) of the odds of 
linkage vs. no linkage (not an odds ratio!)
 LOD score > 3, supports linkage, corresponds 

to a genome-wide type 1 error rate of 0.05 
(depends on number of markers tested)

 LOD score < -2, used to exclude a 

chromosomal region

 Exclusion mapping

 add LOD scores from all families to obtain 
LOD score for your sample
 Assumes families are independent



Linkage Mapping of CVD Risk Traits in the Isolated Norfolk Island
Population

Hum Genet. 2008 December ; 124(5): 543–552. doi:10.1007/s00439-008-0580-y.

Abstract:  To understand the underlying genetic architecture of cardiovascular disease (CVD) risk traits, 
we undertook a genome-wide linkage scan to identify CVD quantitative trait loci (QTLs) in 377
individuals from the Norfolk Island population. The central aim of this research focused on the
utilization of a genetically and geographically isolated population of individuals from Norfolk Island
for the purposes of variance component linkage analysis to identify QTLs involved in CVD risk
traits.

-The ancestral origins of the Norfolk Island are well documented and originated from divergent founding 
paternal and maternal lineages, European and Tahitian, respectively. 

-1,574 residents 

-Exhaustive genealogical documents indicate that the population grew from a limited number of initial 
founders (nine males, twelve females) and in relative isolation in the early generations of population 
expansion

- Evidence of the Island's strict immigration laws are obvious by the limited numbers of surnames, resulting 
in the worlds only telephone directory which includes nicknames to differentiate between individuals with the 
same name

Linkage Mapping of CVD Risk Traits in the Isolated Norfolk Island
Population

Hum Genet. 2008 December ; 124(5): 543–552. doi:10.1007/s00439-008-0580-y.

The Norfolk Island genealogy dates back approximately ten generations to the initial founders
and contains 6379 individual entries linked together within 2185 nuclear families. The
complexity of the island's heritage is evident considering 5750 individuals reside within a single
multifamily pedigree exhibiting 1661 marriages and 1233 founders.

Methods:  Substantial evidence supports the involvement of traits such as systolic and diastolic blood
pressures (SBP and DBP), high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein cholesterol
(LDL-C), body mass index (BMI) and triglycerides (TG) as important risk factors for
CVD pathogenesis. In addition to the environmental influences of poor diet, reduced physical
activity, increasing age, cigarette smoking and alcohol consumption, many studies have illustrated
a strong involvement of genetic components in the CVD phenotype through family and twin studies.
We undertook a genome scan using 400 markers spaced approximately 10cM in 600 individuals
from Norfolk Island. Genotype data was analyzed using the variance components methods of
SOLAR. 

Results: Our results gave a peak LOD score of 2.01 localizing to chromosome 1p36 for systolic
blood pressure and replicated previously implicated loci for other CVD relevant QTLs.



Sib-Pair Linkage Analysis

 Sib pairs are generally easier to collect, tend to be 
more closely matched for age and environment than 
other relative pairs

 Qualitative trait: under linkage, Affected relative pairs 
should share alleles IBD (inherited from a common 
ancestor within the pedigree), more often than 
expected under Mendelian expectations

 Quantitative trait: relative pairs should show a 
correlation between the magnitude of their phenotypic 
difference and the number of alleles shared IBD 



Quantitative sib-pair linkage 

 A regression approach
 Regress the squared within-pair difference of a 

quantitative trait on the number of marker alleles 
shared IBD

 Null hypothesis - the slope of the squared 
within pair difference is zero 

 The alternative hypothesis is that under 
linkage, the slope is negative.

Identity by descent vs. Identity by 
state

 IBS- two alleles at a given locus are identical 
in state if they represent the same allelic 
variant at that locus

 IBD- two alleles at a given locus are IBD if 
they were transmitted from a common 
ancestor –ie they represent copies of the 
same ancestral DNA



Quantitative Sib-pair linkage 
results

Alleles shared IBD at a specific locus

0 1 2

Squared 
trait 
difference

100

10

50

BMI: Slope of the line is negative 



Linkage Disequilibrium

Outline

• Linkage disequilibrium (LD)
– Definition of linkage disequilibrium

– Importance of disequilibrium 

– Measures of disequilibrium

• SNP selection
– Public resources

– Tag SNP selection programs

• Imputation



Definitions

• Allele
– Different versions of DNA sequence 

at a given location

• Genotype
– The two alleles in an individual at a 

given locus

• Haplotype
– A series of alleles along a single 

chromosome

• Diplotype
– a set of haplotype pairs in an 

individual

SNP1: C and T 
SNP2: C and A

C C C A 

T C T A

SNP1: rs3822050 and SNP2: rs10517002

SNP1: C/C, C/T or T/T
SNP2: C/C, C/A or A/A

SNP1 SNP2   SNP1 SNP2

C C C C 

C C C A 

C C T C 

T C T A 

Linkage Disequilibrium: Two loci that are in linkage disequilibrium are inherited 
together more often than would be expected by chance. 

Zondervan & Cardon, 2004 

Systematic studies of common genetic variants are facilitated by the fact that 
individuals who carry a particular SNP allele at one site often predictably carry 
specific alleles at other nearby variant sites. This correlation is known as linkage 
disequilibrium

The international HapMap consortium, 2005

Linkage Disequilibrium refers to the nonindependence of alleles at different sites. 
Pritchard and Przeworski 2001

What is Linkage Disequilibrium?



C A C C 

T C T A

SNP1 SNP2   SNP1 SNP2

SNP1: C/T
SNP2: C/A

C A C C 

T C T A

SNP1 SNP2   SNP1 SNP2

SNP1: C/T
SNP2: C/A

Linkage Equilibrium

Linkage Disequilibrium

haplotype frequencies in population match what is expected based on allele frequencies
Example: frequency of C-A haplotype equals frequency of C allele at SNP 1  * frequency 
of A allele at SNP 2

haplotype frequencies in population differ from what is expected based on allele 
frequencies

It is a Matter of Scale

"Nothing in biology 
makes sense 
except in the light 
of evolution”
-Theodosius Dobzhansky, 1973



Current Haplotypes Arose from 
Ancient Mutation Events

1. Ancestral state has no 
variation at either SNP 
position.

2. Mutation leads to first 
SNP

3. Asecond mutation leads 
to second SNP

4. Recombination or 
recurrent mutation 
needed for all four 
haplotypes

C A

T A

T C

C A

C A
T A

C A

T A
T C

C C

T A

C A

T C

Haplotypes

The International HapMap Consortium. Nature | Vol 437 | 27Octobe



Focus on Pairwise LD

A       a

B      pAB     paB       pB

b      pAb       pab       pb

pA          pa

A B

a b

a B

A b

If loci are independent, then we expect 
pAB= pA* pB

pAb= pA* pb

pAB= pA* pB

pAB= pA* pB

Measuring LD for pairs of sites‐ D

One important measure of LD is

DAB = pAB – pApB

Notice that D=0 if and only the two sites are independent

A disadvantage of D is that the range of possible values depends greatly 
on the marginal allele frequencies.

A       a

B      pAB     paB       pB

b      pAb       pab       pb

pA          pa

A B

a b

a B

A b



Measuring LD for pairs of sites‐ D’

Lewontin (1964) proposed an adjusted 

statistic that has range [-1, 1]:

D’ = D/max(D), where max(D) is dependent on the marginal allele 
frequencies

If DAB>0:   D’AB =  DAB/(min(PaPB, PAPb))

If DAB<0:   D’AB = DAB/(min(PAPB,PaPb))

A       a

B      pAB     paB pB

b      pAb       pab pb

pA          pa

Properties of D’

• D’ favored in medical genetics

– D’=0 implies independence

– |D’|<1 implies that there has been recombination 
between the two sites in the history of the sample (or 
recurrent mutation)

– |D’=1| implies “complete LD”

• No historic recombination

• Neither site has experienced recurrent mutation or 
gene conversion 

• Genotypes not perfectly correlated (unequal allele 
frequency)

• D’ inflated in smaller samples



Measuring LD for pairs of sites‐ r2

Along with D’, the other most widely

used statistic is r2:

r2 = DAB
2 / (pA*pB*pa*pb)

r2 has range [0,1].  Its value is 1 if

just 2 of the 4 haplotypes are present.

r2 is intimately connected to the power of association mapping 
[Pritchard & Przeworski 2001] 

A       a

B      pAB     paB pB

b      pAb       pab pb

pA          pa

Properties of r2

• r2 favored in population genetics
– r2 =0 implies independence

– r2 =1 implies “perfect LD”
• Marker loci have identical allele frequencies 

• Genotype is perfectly correlated

– Related to power if (N2=N1/r
2) 

• where N1 is sample size needed for directly genotyped SNP, 
N2 is sample size needed to test tagged SNP and r2 is the LD 
between the directly genotyped SNP and the tagged SNP).

• Assume need 1,000 for directly genotyped SNP, examples of 
sample size needed for tagged SNPs, depending on r2

– r2=1.0, N1= N2=1,000

– r2=0.2, N2 = 1,000/0.2 = 5,000



What factors affect LD?

• Mutation

• Historical recombination

• Natural selection

• Founder effects

• Migration

• Random drift

• Population admixture

LD over time

• Recombination 
assorts SNPs on 
haplotypes.

• Under assumption 
of random mating 
and a large 
population, LD will 
break down over 
time.



Applications of LD

• LD is the sine qua non of genetic association studies:
– We are interested in testing for an association between 
disease status and causal mutations

– If all polymorphisms were independent at the population 
level, association studies would have to examine every one 
of them.

– Instead we can test a subset and get information on all of 
them.

• LD is also used in studies of human history, natural 
selection and the biology of recombination

Genotype at one site can predict genotype at another site

Proportion of sites 
are correlated

LD Across a Gene



SNP Selection

• We use information about allele frequencies 
and LD across the genome to make informed 
choices as to which variants to genotype

– Identify SNPs in region of interest

– Interested in minimal set of SNPs needed to 
capture variation in region.

Identify variation for your region

• Option 1: sequence individuals in your 
sample for the entire gene/region of interest

• Option 2: sequence a subset of individuals 
to identify variation in your region

• Option 3: Use public databases to identify 
known variation in your region 



SNP Database Resources

• NCBI SNP Database, dbSNP
– http://www.ncbi.nlm.nih.gov/SNP/

• International HapMap Project
– http://www.hapmap.org/

• NHLBI Program for Genomic Applications 
(http://www.nhlbi.nih.gov/resources/pga/)
– SeattleSNPs (http://pga.mbt.washington.edu/)

– InnateImmunity (http://innateimmunity.net/)

• 1,000 genomes project
– http://www.1000genomes.org

• Exome variant server (EVS)
– http://evs.gs.washington.edu/EVS/

Tag SNPs

– tagSNPs 
• SNPs are selected based on their pair wise ability to predict 
genotype of untyped SNPs

• Based on an r2 concept of LD structure
• Example program: LDSelect

– haplotype‐tagging SNPs (htSNPs) 
• SNPs are selected to optimize resolution of existing 
haplotypes 

• Based on a D’ concept of LD structure
• Example program: Haploview, HaploBlockfinder

– Multi‐marker tagSNPs
• Use tagSNP concept, but extend past pair wise LD
• Example program: tagger



Tag SNPs – using r2 information

Think-Pair-Share 
Exercise:

Which SNPs are in high LD?
How many SNPs would you 

need to genotype to 
effectively capture the 

variation across the region?

A/T
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G/A
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G/C
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A/C
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C
G

T
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C
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A
C
C
C

G
G
A
A

After Carlson et al. (2004) AJHG 74:106

Tag SNPs – using r2 information

Tags:

Test for association:

A/T
1

G/A
2

G/C
3

T/C
4

G/C
5

A/C
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A
A
T
T

G
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G
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C
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G
A
A

After Carlson et al. (2004) AJHG 74:106



European-Americans
CRP

African-Americans
CRP

Tag SNPs are Population Specific

Thousand Genomes and GVS 
Tutorial



Limitations of tag SNPs

• Ultimately, we are interested in identifying 
common polymorphisms that are causally 
associated with disease risk, we cannot 
determine if signal is from the tagSNP or from 
a correlated SNP. 

• What happens if your tagSNP fails in the 
genotyping/QC stage?

Imputation

• We also use LD information to impute  genotype 
information.

• Common example is in genome‐wide association 
studies.

– Example: SNPs on a GWAS chip can be used to infer 
information on all variants in HapMap and 1000 genomes 
data

• Recent literature focuses on appropriate reference 
populations (see for example Eur J Hum Genet. 2015 
Jul;23(7):975‐83. )



Imputation with family data

Imputation with Population Data

Nature Reviews Genetics 11, 499-511 (July 2010)



Imputation Programs

• IMPUTE2

– http://mathgen.stats.ox.ac.uk/impute/impute_v2.html

• Beagle

– http://faculty.washington.edu/browning/beagle/beagle.ht
ml

• MaCH/minimac

– http://genome.sph.umich.edu/wiki/MaCH:_1000_Genome
s_Imputation_Cookbook

– http://genome.sph.umich.edu/wiki/Minimac

Example MaCH

• Uses a hidden Marcov‐model

– Iteratively update the phase of each individuals 
genotype data conditional on haplotype estimates 
of other samples.

• Gi is the observed genotype of individual i, 

• D‐i is estimated haplotypes of all other individuals 

• Z are the hidden states

•  is the crossover parameter between hidden states

•  is the error parameter



Imputation Output

• A “best guess” genotype (i.e. TT)
• Probability of each genotype (i.e. pr(TT), 
pr(TA), pr(AA))

• A “dosage”.  If T is 0 and A is 1, then people 
are on a scale from 0 to 2 (where 0=TT, 1=TA 
and 2=AA). 
• dosage=pr(TA)+2*pr(TT)

• A quality score (typically an “information” or 
r2 measure) that captures the uncertainty in 
the imputation.

Summary

• Linkage disequilibrium (LD) refers to the 
nonindependence of alleles at different sites in 
the genome

• LD is shaped by population genetic forces
• We exploit LD information in genetic 
epidemiology
– Selecting tagSNPs for association studies
– Imputation in GWAS studies

• LD complicates interpretation of association 
studies



Tag SNPs – using r2 information

Tags:

SNP 1
SNP 3
SNP 6

3 in total

Test for association:

SNP 1 captures 1 & 2
SNP 3 captures 3 & 5
SNP 6 captures 4 & 6

A/T
1

G/A
2

G/C
3

T/C
4

G/C
5

A/C
6

high r2 high r2 high r2
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T
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C
G

G
C

C
G

T
C
C
C

A
C
C
C

G
G
A
A

After Carlson et al. (2004) AJHG 74:106

Tags: 

SNP 1
SNP 3

2 in total

Test for association:

SNP 1 captures 1+2
SNP 3 captures 3+5

SNP 1 and 3 in combo also 
captures 4 and 6

Picking tag SNPs using multimarker r2
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A/C
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http://www.broad.mit.edu/mpg/tagger
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