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Genetic Epidemiology

Association Studies and Power 
Considerations

Question Approach

Is there evidence for genetic influences on a quantitative trait? Commingling

Is there familial aggregation?
higher risk in relatives of  
higher correlation in relatives

Family Study

Is the familial aggregation caused by genetic factors?
MZ twins concordance rate  
or correlation higher than DZ twins

Twin Study

Is there a major gene?  Is it dominant or recessive ? (likelihoods of 
Mendelian models higher than environmental or polygenic model)

Segregation Study

Where is this major gene in the human genome? Linkage Analysis

Is there linkage with DNA markers under a specific genetic 
model?

A. Parametric Approach

Is there an increased allele sharing for affected relatives (sib pairs) 
or for relatives with similar phenotype

B. Allele Sharing Approach
(sib-pair analyses)

Where is the (exact) location of this gene and which polymorphism 
is associated with disease?

Association Study 
(population and family)

Overview of Genetic Epidemiologic Studies



Linkage, Review
Cosegregation of two loci in related individuals

2 loci are linked if they are transmitted together from 
parent to offspring more often than expected under law of 
independent assortment

During meiosis, recombination occurs with a probability of 
less than 50% (Ө <0.5)

Linkage extends over larger regions of the genome than 
LD

Good for localization – Not as good at fine mapping
Marker and disease loci do not need to be in the same 
gene – we estimate how close they are with theta (Ө)

One of the most important tools in genetic epi

Linkage Disequilibrium

Linkage Disequilibrium (allelic association)
2 loci (alleles) are in LD if across the population
they are together on the same haplotype more 
often than expected by chance

Depends on Ө (recombination fraction and 
number of generations)

Diminished by a factor of 1-Ө per generation 

Foundation on which genetic association 
studies are based

Complimentary to linkage studies



Epidemiologic Study Design: Review

Traditional epi studies evaluate the relationship 
between an exposure and an outcome or disease in 
a population

Use a range of statistical methods and approaches 
to evaluate evidence for the association

Odds ratio
Relative risk 

Epidemiologic Study Design:  Review

Assess a relationship
Exposure  Disease 

• Case-control studies
• Cases are individuals with new disease (incident)

• Controls are individuals drawn from the same population 
without disease (population at risk)
• Selection of cases and controls is very important

• Need to account for factors that might obscure this relationship
• Adjust or match for these factors

• Measure of association in case-control studies is the 
odds ratio



Calculating the Odds Ratio 



Epidemiology to Genetic Epidemiology

Exposure

Disease / Outcome

Some unique challenges in 
genetic epi studies

Study Design to Investigate 
Heritability of Common 
Diseases

Family-based 
Linkage Analysis

Association Studies

Penetrance of genetic risk factor

Candidate/Pathway 
Gene Association 
Studies

Genome-wide 
Association Studies



Genetic Association Studies: Context

The search for disease susceptibility genes 
is conducted using two main methods:

The linkage approach in which evidence is 
sought for co-segregation between a LOCUS and 
a putative disease locus, using family data

linkage analysis is a powerful tool for detecting the 
presence of a disease locus in a chromosomal region 
Not efficient at discriminating between small differences 
in recombination frequency
requires data on a large number of informative gametes

Genetic Association studies

Genetic Association Studies

Candidate gene and genome-wide 
association studies

Often case-control study design

Basic idea: Test whether genetic 
polymorphisms (alleles) are 
associated with disease status



Association approach

Evidence is sought for an association between a 
particular ALLELE and disease in a population 

There should be some evidence that the trait is 
under genetic control before conducting an 
association study

Often used as  a followup to linkage to narrow a 
region of interest (fine mapping), or to evaluate a 
specific candidate gene(s)

Why Do Association Studies in 
Unrelated Individuals?

May be more powerful for detecting loci 
with smaller effects

Fine mapping

Does not require family data
Faster

Cheaper



Genetic Association Studies

Despite the popularity, there are many 
challenges in conducting genetic 
association studies

Interpretation is not always clear

Replication has proven difficult

Power
Gene x environment interactions

Gene x gene interactions

Confounding

Multiple testing

Possible explanations for observing an 
association

The marker is part of the pathologic process and 
is the cause of the disease

In this case, the same positive association 
would be expected to occur in “all” populations 

Linkage disequilibrium (LD) between the marker 
and the susceptibility gene

Usually what we are detecting

Generally interpreted to mean linkage



Possible explanations for observing an 
association, cont

Confounding
Genetic ancestry is the most important 
confounder to consider 
Population stratification
other genetic and environmental 
factors such as religion, geographic 
location

Chance
Multiple testing problems with large numbers 
of markers

Population Structure and Population 
Stratification

Population structure:
heterogeneity in genetic 
ancestry

Population stratification:
systematic difference in 
population structure 
between cases and 
controls

One form of population 
stratification is confounding 
by genetic ancestry



Allele frequencies vary across populations

Humans on the move. Worldwide genetic variation at a neutral marker. Allele 
frequencies of one randomly chosen microsatellite marker reveal common alleles 
shared in all populations and the gradual and arbitrary differences in allele 
frequencies across geographic regions. Populations shown in this example are 
Yoruba and Bantu (Africa); French, Russians, Palestinians, and Pakistani Brahui 
(Eurasia); Han Chinese, Japanese, and Yakut (East Asia); New Guineans (Oceania); 
and Maya and Karitianans (America). From King and Motulsky (2002), Science, 
298: 2342-2344.

Population Stratification
Example from Knowler et al.,

29%Absent

8%Present6.0Total (crude)

%NIDDMGm 
Haplotype

%Gm
Haplotvpe

Pima ancestry



Population Stratification
Example from Knowler et al.,

39.3%Absent

35.9%Present1.6100%

28.8%Absent

28.3%Present42.250%

19.9%Absent

17.8%Present65.6None

29%Absent

8%Present6.0Total (crude)

%NIDDMGm 
Haplotype

%Gm
Haplotvpe

Pima ancestry

Methods for dealing with population 
stratification

Restrict to homogeneous population

Family based study designs/analysis

Adjust associations for substructure and 
admixture

Using self-reported information on 
race/ethnicity

Using unlinked genetic markers
Genomic control

Structured association

Principal Component Analysis 



Population Stratification: Bottom Line
Population stratification is often cited as a major 
limitation of genetic association studies

Does not strike fatal blow for association studies

The impact of this form of confounding may 
have been exaggerated

Methods exist for controlling for stratification

Should not be ignored 

Most associations will be small- may be 
impacted by relatively small amount of 
confounding

Case-control studies should address this issue 
in their methods and/or discussion.

How do we know if we have confounding 
in our sample?

One approach is to evaluate if the marker 
alleles are in Hardy-Weinberg equilibrium 
(HWE)

HW genotype frequencies
p2 +2pq + q2

Depend on allele frequencies

Evaluate HWE in the control group 
expect the marker to deviate from HWE among the 
case group if there is an association between 
marker and disease, particularly for a rare dominant 
disease susceptibility allele 



Example:
The locus for red cell phosphatase has three 
alleles, A, B and C. Based on a random sample of 
178 individuals, the frequencies of the genotypes 
were as follows:

AA AB AC BB BC CC Total

17 86 5 61 9 0 178

Are these data consistent with HWE?

f(A)
f(B)
f(C)

Observed

Possible explanations for a 
significant deviation from HWE

Misclassification of alleles/genotype

Non-random mating in the population
 one form of non-random mating is 

population stratification
 assortative mating
 consanguineous mating

Differential survival, natural selection

Migration, mutation, genetic drift

Sampling



Basic study design using cohort 
or case-control approach

Cohort Case-Control

Genotype Disease 
risk risk

Relative 
Risk 
(RR)

Frequency 
in cases

Frequency 
in controls OR

NN Io 1 A1 B1 1

NS I1 I1/Io A2

B2 A2B1/ 
A1B2

SS I2 I2/Io A3

B3 A3B1/ 
A1B3

N = normal allele, S = susceptibility allele

Alleles vs. Genotypes?

Can consider the genotype or a particular allele as 
the exposure of interest

Assumes independence (HWE) if using alleles

Departures from HWE can affect the Type 1 error rate 
(false positive), resulting in either an inflated or deflated 
Type 1 error (Schaid and Jacobsen, AJE 1999;149:706-
11). 

Can correct for deviations from HWE to reduce chance of 
a false positive association



Interpretation of the OR in Gen Epi Studies

Odds ratio is used to describe the relationship and 
strength of the association in epidemiologic studies

Interpretation of the OR in gen epi studies is similar:

Odds of disease in those with a particular genotype or genetic variant 
vs. the odds of disease in those with the reference genotype

Range is the same:  0 to infinity

However, risks are generally small in genetic epi studies:  OR 1.2 –
2.0 are common

That is, for an OR=1.2 a particular genotype is associated with a 
20% increase odds of disease compared to those with the 
reference genotype

Summary: Points to Consider

Maintenance of LD depends on population history and is 
affected by the recombination fraction (Ө), such that the 
magnitude of allelic association (disequilibrium) decays at 
a rate of 1-Ө / generation in a large, stable randomly 
mating population

It is generally accepted that, for most human populations 
and most regions of the genome, substantial linkage 
disequilibrium is only likely to occur between loci with a 
recombination fraction of less than 1%. Thus, LD mapping 
is most useful for fine mapping over small distances or for 
recent mutations.



Summary: Points to Consider

Different alleles maybe associated 
with disease in different populations

random markers can be used, but more meaningful 
results are often obtained with candidate genes and/or 
functional mutations

Adjustment for multiple comparisons 
is not straightforward

Bonferroni correction is considered conservative 
because markers are not independent, and are often 
highly correlated

False Discovery Rate

Staged study designs

Family Based Tests of 
Association



Family Based Tests of Association

Family based tests of association are robust to the 
effects of population stratification

Associations identified using case-control 
approaches should be followed-up by a family based 
test

One of the first family based tests to be widely used 
was the Transmission Disequilibrium Test (TDT)

Many extensions of the TDT have been developed
Qualitative traits

Quantitative traits

Transmission disequilibrium test (TDT)

Developed by Spielman et al  (1993)

Not affected by population stratification 

Not affected by departures from HWE

Uses family data to avoid finding associations 
due strictly to population stratification

Provides a test of Linkage AND association for 
a sample of trios



Transmission disequilibrium test (TDT)

The basic idea behind the classic TDT (and any of 
its derivatives) is to:

look for preferential transmission of a parental 
marker allele to an affected offspring

use non-transmitted alleles from heterozygous
parents as "controls“ 

Requires data on trios
Trios consist of two parents and an affected offspring

Phenotype or disease status of parents is not relevant

Formalities of the TDT

The data consists of:
Genotype information for parents and offspring 

Phenotype/Disease information for the affected child for 
the classic TDT

The hypotheses for data consisting of trios with 
exactly one affected child are as follows: 
Ho: no linkage or no association
Ha: linkage AND association

 For data containing trios with more than 1 
affected child, the hypotheses are: 
Ho: no linkage
Ha: linkage

 However, the test will only be powerful in the 
presence of association



Genotype

Genotype
and

Phenotype

Genotype

Aa Bb

Ab

TDT: Data Required and General Concept

Extensions of the TDT
Extended to many scenarios, including:

multiallelic markers 

simultaneous use of several markers

quantitative traits

X chromosome markers 

pedigrees

C-TDT

parent of origin effects 

GxE



Summary: Issues to consider 
Having parental genotype information generally provides 
more power than using sibship information

Only families with heterozygous parents are informative

Single SNPs may not be as informative, but will depend on allele 
frequencies

Larger sibships provide more information than smaller 
sibships

Since association is expected over short distances (<2cM), 
then it makes sense to either: 

use a dense set of markers in a specific region
of  interest OR

test markers that have alleles corresponding to functional 
mutations 

must also consider the issue of multiple testing

Power and Sample Size 
Considerations: The Basics



Power and Sample Size
Critical part of study design

Can either estimate power or sample size 

Computed by specifying model parameters
Can be estimated for Mendelian disorders

Generally unknown for complex diseases

Deal with uncertainity by considering a 
range of the parameter values

Can report “worst-case scenario”

Show power over the range of values 
indicating median power and/or sample size

Number of software programs

Power and Type 1 Error

For any question you have 2 hypotheses:
Ho: There is no association between disease x and 
marker y

Ha: There is an association between disease x and 
marker y

Power is related to Type 1 Error 

Both give probabilities of positive results, but 
under 2 different settings (Ho and Ha)



Power and Type 1 Error
Power is the probability that your study will show 
the association given the alternative hypothesis is 
true

That is, when Ha is true: There is an association 
between disease x and marker y

Type 1 error is the probability that your study will 
show the association when the null hypothesis is 
true 

That is when Ho is true: There is no association 
between disease x and genotype y)

Degree of LD (r2) and power
r2  impacts power, such that 

N2=N1/r2

Where N1 is the sample size required, and 
N2 is the new sample size required

For example 
When r2=1.0,  

N1= N2=1,000

In contrast, when r2=0.2,
N2 = 1,000/0.2 = 5,000



Assumptions for Power Calculations

Power depends on

Linkage disequilibrium (in association studies)

Relatedness of individuals (for some designs)

Pedigree or family structure

Effect size

Measurement error (genotype and phenotype)

Penetrance

Frequency of the high risk allele

Genetic model (dominant, recessive,,codominant)

Prevalence of disease

Type of test (allelic, genotypic or trend test)

Number of independent tests performed

Alpha or type 1 error level

Multiple testing

Issue of type 1 error (false positive)

Methods to deal with multiple testing
Bonferroni correction (overly conservative with 
large numbers of markers)

False Discovery rates (FDR)

Staged study designs



Software Tools

Genetic Power Calculator ( many others,  including Quanto)

Case-control, TDT and VC linkage

Purcell S, Cherny SS, Sham PC. (2003) Genetic Power Calculator: design of 
linkage and association genetic mapping studies of complex traits. 
Bioinformatics, 19(1):149-150 

FBAT  and PBAT 

Family based association testing

Laird N, Horvath S, Xu X. Implementing a unified approach to family based tests 
of association. Genetic Epidemiol 2000:S36-42.

Pawe 3D

Visualize power for genetic association studies

Gordon D, Haynes C, Blumenfeld J, Finch SJ (2005) PAWE-3D: visualizing 
Power for Association With Error in case/control genetic studies of complex 
traits. Bioinformatics 21:3935-3937. 

CaTS

Genetic association studies, GWAS and candidate gene

Skol AD, Scott LJ, Abecasis GR, Boehnke M. Nat Genetic 2006;38:209-13

Heat Map showing impact of allele frequency and effect 
size on Power  of a genetic association study



GENOME WIDE ASSOCIATION 
STUDIES (GWAS)

Outline

• What is a Genome Wide Association Study (GWAS)

• Points to consider in Conducting and Interpreting GWAS

• Post-GWAS Research

• Impact of GWAS findings



Manolio et al. Nature 2009; 461: 747-753.

Genetic Variation and Disease Susceptibility

WHAT IS A GENOME WIDE 
ASSOCIATION STUDY (GWAS)



GWAS DEFINITION
• A genome-wide association study is an approach that 

involves rapidly scanning markers across the complete 
sets of DNA, or genomes, of many people to find genetic 
variations associated with a particular disease. 

• Once new genetic associations are identified, researchers 
can use the information to develop better strategies to 
detect, treat and prevent the disease. 

• Such studies are particularly useful in finding genetic 
variations that contribute to common, complex diseases, 
such as asthma, cancer, diabetes, heart disease and 
mental illnesses.

http://www.genome.gov/20019523

• First draft of human 
genome completed June 
2000

• Identification and 
characterization of common 
genetic variation

• Advances in genotyping 
technology, with reduction 
in costs

Tools/Discoveries that Made GWAS Possible



Some Key Concepts for GWAS

• Focus on common genetic variants (typically minor allele 
frequency >5%)

• Single Nucleotide Variants (SNPs) are directly 
genotyped across the genome

• SNPs that are genotyped will capture unmeasured 
variants through linkage disequilibrium.

Kruglyak Nature Reviews Genetics 2008;  9: 314-318.

POINTS TO CONSIDER IN 
CONDUCTING AND 
INTERPRETING GWAS



Study Designs Used in GWAS

Pearson & Manolio JAMA 2008; 299:1335-44

Downloaded from: StudentConsult (on 29 September 2013 04:59 PM)

© 2005 Elsevier 

Cohort Case-Control

People with 
Variant

People with 
Variant

Have
Variant

Have
Variant

Have
Variant Have

Variant

People without 
Variant

People without 
Variant

No
Variant

No
Variant

No
Variant

No
Variant

Defined group of study participants



Sample Size

• Variants identified by 
GWAS have modest 
effect sizes

• Very large sample 
sizes are needed to 
detect variants

• Sample size often 
achieved through 
meta-analysis in 
consortia

Visscher et al. AJHG 2012; 90: 7–24.

Genomic Coverage of GWAS Chips 
• estimated by the percent of common SNPs having an r2 of 0.8 

or greater with at least 1 SNP on the platform.

• Platforms comprising 500,000 to 1,000,000 SNPs capture 
~67-89% of common SNPs in populations of European and 
Asian ancestry and 46-66% in populations of African ancestry.

Nelson et al. G3 (Bethesda) 2013; 3: 1795–1807. 



Genotyping and Quality Control in GWAS
• Genotype “calling” is based on intensities for the two alleles at 

each genetic marker 

• Genotyping errors, must be diligently sought and corrected. 

• Established quality control features should be applied both on a 
per-sample and a per-SNP basis. 

McCarthy et al. Nat Rev Genet 2008; 9:356-369

Schematic of Typical GWAS

imputation >2.5 million SNPs

Schunkert H et al. Eur Heart J 2010; 31: 918–925.



Common Model: Logistic Regression

• dose=output estimate of # of alternate alleles from imputation 

• pc=principle components from principle component analysis 
(PCA)

Population based 
Association studies

Principal components analysis

• A dimensionality reduction technique used to infer 
continuous axes of variation.

• For GWAS based on SNP x Individual matrix

• The first principal component (pc1) is the linear 
combination of x-variables that has maximum variance 

• pc2 is the linear combination of x-variables that accounts 
for as much of the remaining variation as possible, with 
constraint that correlation between pc1 and pc2 is 0

• Continue, with constraint that all pcs are orthogonal

• Standard calculation in programs such as Eigenstrat, 
Plink, R, etc.



Captures inter- and intra-continental 
variability

PCA analysis of 1000 Genomes (1000G, Nature 2012) PCA analysis of European Populations (Nature 2012)

Population Stratification

• Population substructure in GWAS data, because allele 
frequencies differ in different populations

• Population stratification= confounding by population 
substructure
• Example: Lactase gene associated with height in European 

populations

• Methods can be used to control for population 
stratification

• Most common method: adjust for top pcs from principle 
components analysis



(modified by Josh Bis from McCarthy et al.,Nature Reviews Genetics, May 2008)

Q-Q plots

19

Manhattan Plot

Population based 
Association studies

Compare genotypes in 
cases and controls

Odds ratio for an allele:
1.35, p = 6.3 x 10-10

-log10(p)=9.2

Nature 466, 113–117 (01 July 2010)



Regional Plots

21

NCI-NHGRI Working Group on Replication in Association Studies. Nature 2007; 447:655-660.
Hirschhorn & Daly, Nat Rev Genet 2005; 6:95-108.

Evangelou & Ioannidis, Nat Rev Genet 2013; 14: 379–389.



Meta-Analysis
• Large sample sizes required 

because of small effect sizes, p-
value threshold, misclassification 
inherent in using tagSNPs, etc.

• Meta-analysis are often used to 
combine information across 
studies.

• Meta-analysis combines 
information across studies, 
creating a weighted average of 
study specific estimates.

Plink 
http://pngu.mgh.harvard.edu/~purcell/plink/

• PLINK is a free, open-source whole genome association analysis
toolset, designed to perform a range of basic, large-scale analyses in a
computationally efficient manner.



Limitations of GWAS
• Countries of recruitment dominated by Europe and North 

America.
• Starting to be addressed through studies of other ancestries.

• Possible biases due to case and control selection and 
genotyping errors 

• Addressed through standards for study design, QC and analysis

• The potential for false-positive results 
• Addressed through replication, meta-analysis and the use of strict 

genome-wide significance thresholds.

• Lack of information on gene function
• Addressed through post-GWAS functional follow-up studies

• Insensitivity to rare variants and structural variants
• Addressed through alternative study designs

“Missing” Heritability
• Additional studies needed

• Impact of other types of genetic 
variation

• Less common/rare variants

• Copy number and structural 
variants

• Epigenomic variability

• Interactions (effect modification)

• Gene-environment

• Gene-gene (pairwise and 
networks)

• Limitations of study design and 
disease definitions

• Current heritability estimates may 
be overestimated

Maher Nature 2008; 456: 18-21.
Manolio et al. Nature 2009; 461: 747-753.



Assess the Heritability of a Trait

Cancer Site Heritable Factors

Environmental Factors

Shared                             Non-shared

Prostate 0.42 (0.29-0.50) 0 (0-0.09) 0.58 (0.50-0.67)

Colorectal 0.35 (0.10-0.48) 0.05 (0-0.23) 0.60 (0.52-0.70)

Bladder 0.31 (0.00-0.45) 0 (0-0.28) 0.69 (0.53-0.86)

Breast 0.27 (0.04-0.41) 0.06 (0-0.22) 0.67 (0.56-0.76)

Lung 0.26 (0.00-0.49) 0.12 (0-0.34) 0.62 (0.51-0.73)

Source: Scandinavian Twin Registry, Lichtenstein et al. New Engl J Med 2000

Wong A H et al. Hum. Mol. Genet. 2005;14:R11-R18

Twin Studies

• Compare trait in monozygotic and 
dizygotic twins

• Greater concordance in monozygotic 
twins reflects genetic similarity

Contribution of Genetic Variants to 
Disease Heritability 

http://www.nature.com/nrg/journal/v15/n11/full/nrg3786.html



GWAS FINDINGS





NHGRI GWA Catalog
www.genome.gov/GWAStudies
www.ebi.ac.uk/fgpt/gwas/ 

Published Genome-Wide Associations through 12/2012
Published GWA at p≤5X10-8 for 17 trait categories

Front. Genet., 20 April 2015 | 
http://dx.doi.org/10.3389/fgene.2015.00149



http://www.genome.gov/gwastudies/ now 
http://www.ebi.ac.uk/gwas/

Catalog of Published GWAS

POST-GWAS RESEARCH



The Post-GWAS Continum

• Follow-up studies and 
analysis to capitalize 
on and expand GWAS 
findings

• Each step builds on 
the knowledge gained 
from the preceding 
studies

http://epi.grants.cancer.gov/pgwas/index.html

Nature iCOGS
• Large scale results for breast, ovarian and 

prostate cancer

• Collaborative Oncological Gene-
environment Study (COGS)

• Published Online March 27, 2013

• Simultaneous publication of 13 papers, 
commentaries, editorials and hypertexted
essays. Includes:

• Commentary:
Public health implications from COGS and 
potential for risk stratification and screening

• Primer:
Risk prediction and population screening for 
breast, ovarian and prostate cancers

www.nature.com/icogs/



Key COGS Findings
Breast Cancer

• GWAS meta-analyis of 10,052 cases and 
12,575 controls

• Replication in 45,290 cases and 41,880 
controls

• Identified 41 new loci
• Top 5% and 1% of risk distribution have 

2.3 fold and 3 fold higher risk than 
average population.

Prostate Cancer
• GWAS meta-analysis of 11,085 cases and 

11,463 controls
• Replication in 25,074 cases and 24,272 

controls
• Identified 23 new loci
• Top 1% of risk distribution has 4.7 higher 

risk than average population.

Breast Cancer

Prostate Cancer

Michailidou et al. Nature Genetics 2013: 45, 353–361.
Eeles et al. Nature Genetics 2013: 45, 385-391.

Pleiotropy in COGS and other Cancer GWAS

• Pleiotropy= a single 
locus influencing two 
or more traits.

• Several findings 
from GWAS are 
shared among 
different cancer 
types.

Sakoda et al. Nature Genetics 2013: 45, 345–348.



Pleiotropy in GWAS

• Numerous examples of 
GWAS findings 
impacting more than 
one trait.

• Pleiotropy scans can 
identify novel loci.

Am J Hum Genet. Nov 11, 2011; 89(5): 607–618. 

Fine-Mapping

• Genotype additional SNPs to narrow down the region of 
interest

• Targeted resequencing, to gain additional information on 
sequence variation in the area of interest

Ioannidis et al. Nat Rev Genet 2009; 10: 318-329.
Altshuler Science. 2008; 322: 881-8. 



Post-GWAS Biological Studies

• Identification of risk-
modifying variants

• Determination of 
biological mechanism 
of risk-enhancement

• Examination of 
functional 
consequences of 
variant

Monteiro & Freedman. J Int Med 2013; 274: 414-424.

84%
72.5K

14%
1.6K

2%
12.1K

97%
7.0K

3%
238

Missense/Nonsense
Splicing

Regulatory

Genome-Wide Association Study 
(GWAS) Catalog

Human Genetic Mutation Database 
(HGMD)

http://www.hgmd.cf.ac.uk/ http://www.genome.gov/gwastudies/
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Mendelian Traits Complex Traits



Genome-Wide Functional Annotation

Mostly cell lines Tissue samples 

ANNOTATION DATABASE

45

Functional Attributes of Regulatory Regions

Epigenetic 

Transcription 
Factor/ Protein

Binding

ChIP-Seq

DNase I
Hypersensitivity

Reference 
Genome

Enhancer Promoter Gene

46



Variants in Regulatory Regions

• Use of ENCODE data
• SNPs identified in GWAS 

studies (red bar) often lie 
in enhancers or other 
regulatory elements.

• Smaller fraction of control 
SNP sets overlap with 
these features (blue bars)
• SNPs on Illumina 2.5M chip
• SNPs in 1000 Genomes
• SNPs from 24 personal 

Genomes

Manolio Nat Rev Genet. 2013; 14: 549-58.

Using Functional Models in Follow-up



Take Home Points
• Cancer and other complex diseases are influenced by a combination of 

genetic and environmental factors. 

• Genome-wide association studies (GWAS) can be used to identify common 
genetic variants associated with complex diseases.

• GWAS have evolved standards for study design, analysis, replication and 
interpretation.

• GWAS, to date, have identified over 2,000 variants associated with over 300 
traits, including hundreds of variants associated with common cancers.

• Post-GWAS research includes discovery and replication, biological and 
functional follow-up and epidemiologic studies.

• GWAS have reveled new biology of complex diseases, and some GWAS 
findings are readily translatable to clinical care.
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GENE-ENVIRONMENT 
INTERACTIONS

Gene-Environment Interactions
• Complex diseases result from an interplay of genetic and 

environmental factors

• Why study Gene-environment Interactions (GxE)?
• Studies of GxE may help identify and characterize genetic and 

environmental effects.
• Studies of GxE may improve our understanding of biological 

mechanisms.
• Studies of GxE may identify sub-groups for targeted interventions 

or screening.

• Term “GxE” is often used for both biological and statistical 
interactions. As with other studies of interactions the two 
concepts are often conflated.



What is Meant by Interaction?
• Biological Interaction

• The interdependent operation of two or more biological causes to 
produce, prevent or control an effect

• Interdependency among the biologic mechanisms of actions for two 
or more exposures through common pathways, protein complexes 
or biological products.

• Statistical Interaction
• The observed joint effects of two factors differs from that expected 

on the basis of their independent effects
• Deviation from additive or multiplicative joint effects

• Effect Modification (or Effect Measure Modification)
• Differences in the effect measure for one factor at different levels of 

another factor
• Example: OR differs for males vs. females; AR differs for pre-

menopausal and post-menopausal women, etc.

http://medical-dictionary.thefreedictionary.com/phenylketonuria; Scriver CR (2007) Hum Mutat

TERATOGENIC!

Biological Interaction Example: PKU

• Phenylketonuria

• Interaction between 
diet and genetic 
factor

• Can modify diet to 
address outcomes.



Statistical GxE Interaction

• This lecture will focus on methods for 
statistical interaction/effect modification.

• Keep in mind these interactions often do not 
have straightforward biologic interpretation, 
although some argue for links. 
• Non additive effects may imply non-independence of biologic 

mechanism of actions

• Weinberg (1986), VanderWeele (2008-)

• Multiplicative model may correspond to independent effects 
on multiple steps of a multi-step carcinogenic model

• Siemiatycki and Thomas (1981)

Effect Measure Modification



Venous Thrombosis

• Generally manifests as thrombosis of deep leg 
veins or pulmonary embolism

• Incidence in women age 20-49 yrs is ~ 2 /10,000 
persons/yr

• Case fatality rate is ~ 1% to 2%

• Association between oral contraceptive pill (OCP) and VT: 
Incidence of VT is ~12 to 34 / 10,000 in OCP users

Factor V Leiden Mutations
• R506Q mutation – amino acid substitution

• Geographic variation in mutation prevalence
• Frequency of the mutation in populations of European 

descent is~2% to 10%
• Rare in African and Asians

• Relative risk of VT among carriers
• 3- to 7-fold higher than non-carriers

• Is there a gene-environment interaction?



OCP, Factor V Leiden Mutations and 
Venous Thrombosis

Strata Cases Controls

G+E+ 25 2

G+E- 10 4

G-E+ 84 63

G-E- 36 100

OR   (95% CI)

OR for G in E+
(25*63)/(2*84)
9.4 (2.1-41.1)

OR for G in E-
(10*100)/(4*36)
6.9  (1.8-31.8)

Total      155         169
Lancet 1994;344:1453

Alternative way of looking at ORs

Strata Cases Controls

G+E+ 25 2

G+E- 10 4

G-E+ 84 63

G-E- 36 100

OR   (95% CI)

34.7  (7.8, 310.0)

6.9  (1.8, 31.8)

3.7  (1.2, 6.3)

Reference

Total      155         169
Lancet 1994;344:1453



Interactions are Scale Dependent

G=0 G=1

E=0 1.0 RRG

E=1 RRE RRGE

Multiplicative model 
No Interaction: RRGE= RRG× RRE

Relative-risk associated with E is the same by levels of G and reverse
Interaction Relative Risk =RRGE/(RRG× RRE)

Additive model 
No Interaction: RRGE= RRG+ RRE-1
Risk-difference associated with E is the same by levels of G and reverse
Relative Excess Risk due to Interaction (RERI) =RRGE- RRG- RRE+1

Expectations Using Different Scales

Measurement Scale 
and Interaction Effect

Cohort Study Case-control study*

Multiplicative Scale

No Interaction RRGE=RRGxRRE ORGE=ORGxORE

Synergistic Interaction RRGE>RRGxRRE ORGE>ORGxORE

Antagonistic Interaction RRGE<RRGxRRE ORGE<ORGxORE

Additive Scale

No Interaction RRGE=RRG+RRE-1 ORGE=ORG+ORE-1

Synergistic Interaction RRGE>RRG+RRE-1 ORGE>ORG+ORE-1

Antagonistic Interaction RRGE<RRG+RRE-1 ORGE<ORG+ORE-1

* Formulas for the ORs are approximations based on the approximation of the OR to the RR

Adapted from “Genetic Epidemiology: Methods and Applications”. Austin 2013. 



OCP, Factor V Leiden Example

G=0 G=1

E=0 1.0 RRG=6.9

E=1 RRE=3.7 RRGE=34.7

Multiplicative model 
Interaction Relative Risk: RRGE/RRG× RRE
34.7 / 6.9 x 3.7  = 1.4

Additive model 
Relative Excess Risk due to Interaction (RERI): RRGE- RRG- RRE+1
34.7 – (6.9 + 3.7 - 1) = 25.1

NAT2, smoking and bladder Cancer
(Garcia-Closas et al., Lancet, 2005)

NAT2 
rapid/intermediate

NAT2 slow

Never-smoker 1.0 0.9 (0.6-1.3)

Ever-smoker 2.9 (2.0-4.2) 4.6 (3.2-6.6)

No effect of NAT2 in the absence of smoking



Kraft and Hunter (2010)

• Multiplicative
• widely used in practice 

• partly due to popularity of logistic regression models
• do not necessarily have mechanistic interpretation
• large sample size is needed to ensure sufficient power
• has been the focus of recent methodologic developments

• case-only, empirical-Bayes, two-stage etc. 

• Additive model 
• much less widely used (although 
• has direct relevance for evaluation of targeted intervention 

and links with mechanistic interaction under the sufficient 
component framework

• Power is often higher than tests for multiplicative interaction 

Multiplicative vs. Additive Interactions



Aside: Interaction in a Regression Setting

G
1 if carrier

0 if non-carrier
E

1 if exposed

0 if unexposed

pGE = b0 + bg G + be E + bge GE 
Risk of disease

= 0 + g G + e E + ge GE 

Log odds of disease
pGE

1-pGE
log

Test for “additive interaction:” H0 is bge=0 

Test for “(multiplicative) interaction:” H0 is ge=0 (Interaction OR e^ge=1)

IN CLASS EXERCISE



Gene-Environment-Wide Interaction Study

• “GEWIS”

• Motivated by discovery

• Builds on the genome-
wide association study 
model

• Gene (G) x 
environmental factor 
(E) on a SNP-by-SNP 
basis across the 
genome

Schunkert et al.. Eur Heart J. 2010; 31: 918-925.

Gene-Environment-Wide Interaction Study

Schunkert H et al. Eur Heart J 2010;eurheartj.ehq038

Schunkert et al.. Eur Heart J. 2010; 31: 918-925.

• “GEWIS”

• Motivated by discovery

• Builds on the genome-
wide association study 
model

• Gene (G) x 
environmental factor 
(E) on a SNP-by-SNP 
basis across the 
genome



Some of the Challenges in “GEWIS”
• Power for discovery:

• False-negative findings
• Individual studies with low sample sizes
• Multiple comparisons (multiple G, E and models)

• Characterizing and modeling non-genetic risk factors:
• Time dependency

• Measurement error

• Multi-faceted

• Interpretation of significant findings:
• Biological plausibility in an agnostic approach

• Heterogeneity and replication

• Translation to clinical or public health relevance

Thomas D. Nat Rev Genet. 2010; 11: 259-72; 
Dempfle A. et al., Eur J Hum Genet 2008; 16: 1164-1172.

Goals

• Identify methods with high power

•Reduce number of false positives



Approaches for GEWIS

• Multifactor dimension reduction, and other machine 
learning techniques

• Pathway/hierarchical models

• Family based tests

• Additive models

• Logistic regression-based tests for multiplicative 
interactions

Methods for GxE

• See full table in  Hutter et al. Genet Epidemiol. 2013 
Nov;37(7):643-57. doi: 10.1002/gepi.21756.  



Logistic Regression Based Methods for 
Multiplicative GxE

Method Key Details

Case-control Robust model; Does not assume G-E 
independence; low power for discovery.

Case-only Gains in power and efficiency under G-E 
independence.

Data-adaptive estimators 
(e.g. Empirical Bayes and 
Bayesian Model Averaging)

Increased power versus case-control and 
improved control of type 1 error versus case-only. 

Two-step procedures Screening step and testing step.  Maintains type 1 
error and provides power gain under many 
settings. 

Joint-test of genetic main 
effect and GxE (2 degree of 
freedom tests)

Tests null hypothesis that genetic marker is not 
associated with disease in any stratum defined by 
exposure.

Modified from Mukherjee et al. Am J. of Epidemiology. 2012; 175(3): 177-190.

Case-only Design

• Case-only approach tests the association between the 
genotype and exposure in the cases only.

• Has higher statistical power than standard case-control 
method with same number of cases.

• Relies on assumption that genetic and environmental 
factors are independent in the source population.

• Increased false-positive rate if assumption is violated.



2x2x2 Representation of Unmatched Case-Control Study 
Examined by Standard Test for GxE Interaction

OR(GxE) = OR(G-E|D=1)/OR(G-E|D=0).

Assuming OR(G-E|D-0)=1 greatly reduces the variability in OR(GxE).

The case-only estimate of OR(GxE) is ag/ce.

Piegorsch (1994)

Extensions of Case-only method.
• The gain in power comes from the assumption of G-E 

independence, not the fact that only cases are used.

• Can build assumption into the analysis of case-control data.
• allow for estimation of main effects 

• Allow for estimates/tests of interaction effects other than multiplicative 
odds model. 

• See Han et al. AJE 2012.

• “Hedge” methods weighted towards case-only method if data 
supports independence assumption, towards case-control 
method if assumption appears to be violated. 
• Emperical Bayes, model averaging methods 

• Mukherjee et al 2012; Li and Conti 2009

• Use of case-only design and/or G-E independence assumption 
in new methods for large-scale GxE analysis



Two-Step Methods

Step 1: Screening Step
Prioritize SNPs for 
testing:

• Correlation between G and E in full 
sample of cases and controls

• Marginal association between G 
and outcome (D)

• Hybrid approaches

Step 2: Testing Step
Test for interaction in 
prioritized SNPs with 
appropriate significance 
levels.

Hybrid approach proposed by 
Murcray et al 2011.

Murcray CE,  et al. Am J Epidemiol 2009; 169: 219-226.
Murcray CE,  et al. Genet Epidemiol 2011; 35: 201-210.

Kooperberg C and Leblanc M. Genet Epidemiol. 2008; 32: 255-63.

Module A:

Screening

• No Screening

• Marginal (G-D 
association)

• Correlation (G-E)

• Hybrid approaches

Module B:
Multiple

Comparisons

• Bonferroni testing

• Permutations

• Weighted
hypothesis testing

Module C:

Testing

• Case-control

• Case-only

• Empirical Bayes

• Bayesian Model 
Averaging

Modules Framework for GxE Methods

Modified from Hsu et al. Genetic Epidemiology 2012; in press.



Power Considerations
• Rule of thumb is that tests of 

interactions need sample sizes 4 
times larger than tests of main 
effects.

• All methods require large sample 
sizes (on the order of 10,000 cases) 
for reasonable effect sizes.

• The most powerful method depends 
on assumptions on underlying 
interaction.

• Hybrid and cocktail methods tend to 
be relatively powerful over a wider 
variety of types of interactions.

Mukherjee B et al. Am. J. Epidemiol. 2012;175:177-190

G,E neg. correlated G,E independent G,E pos. correlated

Practical Considerations

• Choosing optimal 
alpha/weights

• Case:control ratio

• Linkage disequilibrium 
between top SNPs

• Computational needs

Emperical power for two-step 
methods for diffferent alpha 
thresholds as a function of the 
ratio of cases to controls(no/n1). 
N1=2,000; Rge=1.8; Pr(E)=0.5.

Thomas D, et al. Am. J. Epidemiol. 2012;175:: 203-7.



Software for analysis
Software Good for URL

PLINK GWAS, data handling, 
GE test, joint test

http://pngu.mgh.harvard.edu/~purcell/p
link/

ProbABEL GWAS, computes robust 
variance-covariance 
matrix

http://www.genabel.org/packages/Prob
ABEL

GxEscan R script incorporating 
multiple GWAS GxE
tests

http://biostats.usc.edu/software

Multassoc Test a group of SNPs
taking interaction with 
other G, E into account

http://dceg.cancer.gov/tools/analysis/m
ultassoc

R Flexible, write your own 
scripts

http://www.r-project.org/

METAL Meta-analysis http://www.sph.umich.edu/csg/abecasi
s/metal/

EPIDEMIOLOGY OF GXE



Different Motivations for Studying GxE

DISCOVERY

• Identify novel loci 

• Focus on variants that 
would not be found in 
marginal search alone

• Priority given to power

• Hypothesis generating

CHARACTERIZATION

• Describe interaction

• Focus on putative and 
established variants

• Priority given to 
descriptive model

• Provides etiologic insight

Genetic Epidemiology with a Capital “E”

Thomas DC (2000)

• Focus on population-based 
research

• Joint effects of genes and 
the environment

• Incorporation of underlying 
biology

Khoury MJ (2011)

• Large scale harmonized 
cohorts and consortia

• Multilevel factors (includes 
GxE and more) across the 
lifestyle

• Incorporation of underlying 
biology

• Integrating, evaluating and 
translating knowledge

Slide by Muin Khoury



Sources of Bias in Epidemiology

Manolio et al. Nat Rev Genet. 2006. 7: 812-820.

• Selection Bias
• Arises from issues in 

case/control ascertainment

• Information Bias
• Arises from measurement error 

or misclassification in 
assessing factors of interest.

• Confounding
• Arises when there is an 

extraneous disease risk factor 
that is also associated with 
exposure and not in the causal 
pathway.

Sources of Bias in G and GxE
Method Key Considerations

Selection Bias • Issues of poor control selection and incomplete case ascertainment.
• Need to consider non-respondants, people who refuse or are unable 

to provide DNA/data

Information Bias • Errors in questionnaire, specimen handling
• Highlights importance of lab QC
• Can impact type I and type II error for GxE

Confounding • Population stratification for G
• “Traditional” factors for E
• Under certain conditions “confounders” can bias the interaction term 

(see, for example, Tchetgen Tchtgen and VanderWeele 2012).

Modified from Garcia-Closas et al. in Human Genome Epidemiology. 2004.

• Concerns of all three of these factors increase when examining 
GxE in existing genetic studies that used “convenient controls”.

• Presence of these biases may contribute to disparate findings in 
literature and issues in replication.



Challenges to Investigations of GXE

“Establishing the existence of and 
interpreting GXE interactions is 
difficult for many reasons, 
including, but not limited to, the 
selection of theoretical and 
statistical models and the ability to 
measure accurately both the G and 
E components.” Boffetta et Al, 2012

“Data harmonization, population heterogeneity, and 
imprecise measurements of exposures across studies”
Khoury et Al, 2012 

The Fiddler 
Crab 
Analogy*

• Issues of imbalance 
in how we look at G 
and E 

• Complications with 
how we look at E:
• Distribution of E

• Measurement error

• Multi-faceted

* Credited to Chris Wild (CEBP, 2005. 14: 1847-1850) via Duncan Thomas



Measurement Error
• Environmental factors are often complex, multifaceted and difficult to 

measure.

• Measurement error can lead to both type I and type II error for GxE.

• Statistical methods to correct misclassification exist, but are 
infrequently used for GxE.

• Measurement error has strong impact on power to detect GxE.

• Additional issues arise when considering GxE across multiple studies

Using Traditional “Environmental Data” in 
Consortium Settings

• Large sample-sizes needed to detect GxE: often 
need to combine data across studies.

• Data harmonization is the process of combining 
information on key data elements from individual 
studies in a manner that renders them 
inferentially equivalent.



Harmonization Resources for Phenotype 
Data 

• Identify and document a 
set of core variables

• Assess the potential to 
share each variable 
between studies

• Define appropriate data 
processing algorithms

• Process and synthesize 
real data.

• Develop a 
recommended minimal 
set of high priority 
measures

• Toolkit provides standard
measures related to 
complex diseases, 
phenotypic traits and 
environmental 
exposures

Fortier I et al. Int. J. Epidemiol. 2011;40:1314-1328
Hamilton CM et al. Am J Epidemiol. 2011; 174:253-60.

Fortier I et al. Int. J. Epidemiol. 2011;40:1314-1328

Some variables are more “harmonizable” 
than others (DataSHaPER approach 
across 53 studies).



Trade-offs in Data Harmonization

• Cost of collecting rich phenotype 
information can put restrictions of 
sample size for detailed measures

• Genetic and environmental 
heterogeneity are likely present in 
large samples from multiple 
studies

• Combining across studies may 
require identifying the “least 
common denominator”

• Harmonization can induce 
misclassification and 
heterogeneity.

Bennett SN, et al. Genet Epidemiol. 2011; 35: 159-173. 

Power to detect GxE when exposure is measured 
perfectly or via a good proxy (77% specificity and 99% 
sensitivity). Interaction OR=1.35, type 1 error=5x10-8.

Mega- vs. Meta-Analysis

Mega-Analysis

• Analyze all samples in a single 
model (AKA “pooled” analysis)

• Facilitates more complex 
models (rather than meta-
analysis of a defined set of 
parameter estimates).

• Can introduce confounding/ 
bias, particularly if case/control 
numbers differ.

• Requires all data to be 
accessible by a single analyst

Meta-Analysis

• Analyze each study separately 
and then combine study 
specific estimates.

• Focus often only on meta-
analysis of interaction term; 
may not fully capture joint 
effects.

• Question of comparability of 
what is being meta-analyzed.

• Explicitly shows between study 
heterogeneity.



Heterogeneity

• “If explanations can be 
found for 
heterogeneity, there is 
an opportunity for 
insights about the 
complexity of the 
disease, but spurious 
inconsistency due to 
methodological or 
data-quality differences 
will just add confusion”

- Thomas 2010

Beyond Data Harmonization

• We may be missing key 
environmental factors

• Measuring the 
environment often does 
not have the same 
“economy of scale”

• The multifactoral and 
dynamic nature of 
exposure/risk can 
complicate the study of 
environmental factors

Rappaport SM and Smith MT. Science 2010; 330: 460-461.



Nat Neurosci. 2013 Jan;16(1):2-4. 

Hum Genet. 2013. Epub ahead of print. 

Cancer Discov. 2012 Dec;2(12):1087-90.

Summary

• Gene-environment wide interaction studies are used for 
discovery and characterization.

• Remember distinction between biological and statistical 
interaction.

• Important to consider scale (additive vs. multiplicative)

• Large sample sizes are needed for GxE studies, 
particularly for GEWIS.

• Data harmonization allows core variables to be combined 
across studies.

• We need to give the “E” similar, if not more, attention than 
we give the “G” for GxE analysis.



IN CLASS EXERCISE

In Class Exercise:
• You continue to work with collaborators on the FAKE study.  

They decide to follow-up on their candidate gene study with a 
genome-wide association study (GWAS). They were only able 
to afford genome-wide genotyping on a subset of the subjects, 
so they decide to reach out to their collaborators in the Meta-
Analysis of Diet and Environment for Understanding 
Phenotypes (MADE-UP) consortia. The next page has “table 1” 
for the 8 studies in this consortia. Brainstorm with your group 
about the following:

• What are potential issues/challenges that you might encounter in 
analyzing this data?

• What are solutions might you use for some of these challenges?

• What additional information would be most helpful for you to have?
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What is old is new

Rare Variants

This session

 Why study rare variants and where do 
they come from?

 Association analysis of rare variants 

 Using new technology in family studies



Why Study Rare Variants?

 Problem of “missing heritability”
 GWAS studies have thus far focused on common 

SNPs 
 Have identified over 500 strong independent SNP 

associations

 However, most common variants (SNPs) 
identified only explain a small proportion of the 
total genetic variance of complex diseases
 10-20% depending on the disease

 These associations tend to be with non functional 
variants, and not causal polymorphisms

 There are additional susceptibility loci to be found



Nice thought piece on the rare versus common variant debate…

A Paradigm Shift in Genetic Epi?

 Common Variant-Common Disease (CDCV) 
hypothesis   
 Common  diseases are due to common genetic 

variation

 Basis for most GWAS studies

 Common Disease—Rare Variant  (CDRV) 
hypothesis
 Multiple rare DNA sequence variations, each with 

relatively high penetrance and “large” effects, are 
the major contributors to genetic susceptibility to 
complex disease



What is a rare variant?

RARE
MAF < 1% 

LESS COMMON
1% < MAF  < 5%

PRIVATE
Unique to 
Proband

From: Cirulli ET, Goldstein DB: Uncovering the roles of rare variants in common disease 
through whole-genome sequencing. Nature reviews. Genetics 2010, 11:415–25.

GWAS

From Dr. S. Santorico – UCD Dept of Statistics

Rare Variants

 Genetic architecture of most complex traits 
has not been fully described 
 Rare variants (MAF < 1%) are “common” and 

make up most of the polymorphic sites in the 
human genome. 

 Rare variants may have larger effect s, 
explain some of the missing heritability, and 
should identify new susceptibility loci for both 
common and Mendelian disorders



Significance of Rare Variants

Discovering the genetic basis of common diseases, such as 
diabetes, heart disease, and schizophrenia, is a key goal in 
biomedicine. Genomic studies have revealed thousands of common 
genetic variants underlying disease, but these variants explain only a 
portion of the heritability. Rare variants are also likely to play an 
important role, but few examples are known thus far, and initial 
discovery efforts with small sample sizes have had only limited 
success.

Zuk et al., www.pnas.org/cgi/doi/10.1073/pnas.1322563111

Challenges of studying Rare Variants

 They are rare!  
 Impacts power and sample size 

 Definition of rare varies 
 In general, a minor allele frequency (MAF) of less than 

1% is considered rare
 MAF between 0.1% and 3% are defined as rare

 MAF <0.1% as novel

 In contrast to GWAS where the MAF for most variants is 
about 5% or greater

 Private mutations may be found in a single individual 
or family

 Rare variants are not generally in LD with common 
variants and may have different population histories



What to Sequence and Who

Sequencing Depth 

Analyzing data

Rare variant association study (RVAS) vs. Common 
variant association study (CVAS – aka GWAS)

Filtering

Using Annotation

Considerations in Rare Variants Analysis

Genome Wide Association Study (GWAS)

RVAS CVAS

Rare vs. Common Variants Analysis



Sequencing: Who, what and why?

 Sequencing is still “expensive” 
 Unrelated cases and controls

 Families

 Extremes – affected and unaffected

 Sequencing  for discovery
 Whole Exome Sequencing (WES)  (coding regions)

 Whole Genome Sequencing (WGS)

 Targeted regions 

 Followup with targeted genotyping of identified 
rare variants in larger samples

http://www.nature.com/nrg/journal/v11/n6/full/nrg2779.html

Two discovery strategies using sequencing



Sequencing Depth

 Most current sequencing platforms generate millions of 
short sequence reads
 High-depth reads (e.g. 30x) to exhaustively identify variation 
 Decreased sequencing depth  studies are increasing – requires 

more samples – detection and calling accuracy can be 
compromised.

 Reads are then aligned to a reference genome

 Variant calling is performed to identify sites at which one or 
more samples differ from the reference sequence

 Focus is on SNPs, copy number variation is less 
straightforward at this point

Overview of steps taken in the search for low-
frequency and rare variants affecting complex traits

Human Molecular Genetics, 2013 R1–R6
doi:10.1093/hmg/ddt376



Rare Variant Reference Panels

 1000 Genomes Project 
 Catalog of common and uncommon variation identified through 

WGS and exome sequencing across several global populations

 NHLBI Exome Sequencing Project (NHLBI-ESP)  
(http://esp.gs.washington.edu)
 WES of 6500 samples in phenotyped sets from the USA. 

 UK10K Project  (www.uk10k.org)
 High-depth WES of 6000 and low-depth WGS of 4000 well-

phenotyped individuals from the UK

Rare Variant Association Analysis

 Statistical considerations for analyzing rare variants are 
important

 Testing for associations are challenging due to rareness 
and the large number of rare variants

 Approaches
 Single variant analysis  

 Single-point analysis of rare variants is under-powered
 Do not have enough copies of the rare variant allele in most association 

studies
 Alternative is a multivariate approach that combines information 

across multiple rare variant sites within a defined region
 Defined regions of the genome may include

 gene (locus)  - for exome or candidate gene studies
 or other functional  unit 
 defined genomic region- such as a  sliding  window for whole genome studies

 Numerous locus-specific statistical approaches have been 
developed

 Correcting for multiple comparison is still needed



Statistical approaches for analysis of 
rare variants

 Many Approaches have been developed:
 Collapsing and Aggregation Methods  (Burden tests)
 Non-Burden tests

 Collapsing methods/Burden tests 
 Aggregate information across multiple  variants into a single 

quantity to evaluate cumulative effects (burden) of multiple variants 
in a defined genomic region of interest

 Test for trait association with an accumulation of rare minor alleles
 Vary in the way they collapse variants  
 Assume all collapsed variants are associated with the disease and  

variants can be either deleterious or protective

 Non-Burden tests
 Multivariate tests that combine single-variant test statistics 
 Make no assumption about direction and magnitude of effect of 

each rare variant – more flexible and more powerful in some 
scenarios

 Sequence Kernal Association Test (SKAT) 

Rare Variant Methods, cont

 Vary in way variants are collapsed
 Model the phenotype using a regression approach

 as a function of the proportion or count of rare variants in the defined region  
at which an individual has the minor allele (Burden test)

 Or as a function of the presence or absence of a minor allele at any rare 
variant site within the locus or region of interest  - (Collapsing method)

 Limitation is that we ignore directionality (eg both deleterious and 
protective variants are treated in the same way)

 Assume equal  contribution from each variant
 Most powerful when most variants are causal and in the same 

direction (eg deleterious)

 Weighted aggregation tests – weight each variant based on 
other evidence, these weights contribute to the “burden”

 SKAT tests are more powerful when most variants are not causal or 
when the effects of causal variants are in different directions – a 
regression framework

 A unified approach between the collapsing methods and 
SKAT has been developed
 SKAT-O ; maintains power under both scenarios



• Uses a multiple linear regression or logistic regression to 
relate individual variants to a trait, e.g.,

• SKAT assumes each j follows an arbitrary distribution with a mean of 
zero and a variance of wj, where  is a variance component and wj is a 
prespecified weight for variant j.

• To test H0: =0 is equivalent to testing H0:  =0

• SKAT uses  a variance-component score test in the corresponding mixed 
model

The SKAT

Indicator 
of disease

Covariate
Effects

Vector of coded 
genotypes for 
variants

From Dr. S. Santorico – UCD Dept of Statistics

• Dallas Heart Study Data

• Sequence data on 93 variants in ANGPTL3, ANGPTL4, and 
ANGPTL5

• 3476 individuals

• Test for association between log-transformed serum triglyceride 
(logTG) levels and rare variants in these genes

• Adjusted for sex and ethnicity (white, black, Hispanic)

• SKAT has much higher power than burden tests for continuous 
outcomes and outperfoms several alternative rare-variant 
association tests

• Similar performance for dichotomous outcomes

• Small loss of power with imputed genotypes for all methods

Wu et al AJHG 2011: SKAT



A Groupwise Association Test for Rare Mutations Using a Weighted Sum Statistic

Bo Eskerod Madsen1, Sharon R. Browning2*

Abstract
Resequencing is an emerging tool for identification of rare disease-associated mutations. Rare mutations are difficult to tag
with SNP genotyping, as genotyping studies are designed to detect common variants. However, studies have shown that
genetic heterogeneity is a probable scenario for common diseases, in which multiple rare mutations together explain a
large proportion of the genetic basis for the disease. Thus, we propose a weighted-sum method to jointly analyse a group
of mutations in order to test for groupwise association with disease status. For example, such a group of mutations may
result from resequencing a gene. We compare the proposed weighted-sum method to alternative methods and show that it
is powerful for identifying disease-associated genes, both on simulated and Encode data. Using the weighted-sum method,
a resequencing study can identify a disease-associated gene with an overall population attributable risk (PAR) of 2%, even
when each individual mutation has much lower PAR, using 1,000 to 7,000 affected and unaffected individuals, depending
on the underlying genetic model. This study thus demonstrates that resequencing studies can identify important genetic
associations, provided that specialised analysis methods, such as the weighted-sum method, are used.

Citation: Madsen BE, Browning SR (2009) A Groupwise Association Test for Rare Mutations Using a Weighted Sum Statistic. PLoS Genet 
5(2): e1000384. doi:10.1371/journal.pgen.1000384

Improving power

 Filtering based on likelihood of function 

 Alternatively, could incorporate weights according to 
probability of being functional 
 Good weight choices can improve power

 Based on MAF – under assumption that rarer variants are more likely 
to be deleterious according to natural selection theory
 Implemented in a number of different tests and based on internal 

information from your sample

 Functional annotation predictions 
 Weights are based on external information
 GERP or PhastCons- Measures of Conservation  
 PolyPhen-2 – computational predictions that a variant is likely to be 

damaging 
 CADD – Combined Annotation Dependent Depletion – a measure 

of deleteriousness



Searching for missing heritability: Designing rare variant association studies

Or Zuka,b,1, Stephen F. Schaffnera, Kaitlin Samochaa,c,d, Ron Doa,e, Eliana Hechtera, Sekar
Kathiresana,e,f,g, Mark J. Dalya,c, Benjamin M. Nealea,c, Shamil R. Sunyaeva,h, and Eric S. 
Landera,i,j,2

Genetic studies have revealed thousands of loci predisposing to hundreds of human diseases and 
traits, revealing important biological pathways and defining novel therapeutic hypotheses. However, 
the genes discovered to date typically explain less than half of the apparent heritability. Because 
efforts have largely focused on common genetic variants, one hypothesis is that much of the missing

heritability is due to rare genetic variants. Studies of common variants are typically referred to as 
genomewide association studies, whereas studies of rare variants are often simply called sequencing 
studies. Because they are actually closely related, we use the terms common variant association study 
(CVAS) and rare variant association study (RVAS). In this paper, we outline the similarities and 
differences between RVAS and CVAS and describe a conceptual framework for the design of RVAS. 
We apply the framework to address key questions about the sample sizes needed to detect 
association, the relative merits of testing disruptive alleles vs. missense alleles, frequency thresholds 
for filtering alleles, the value of predictors of the functional impact of missense alleles, the potential 
utility of isolated populations, the value of gene-set analysis, and the utility of de novo mutations. The 
optimal design depends critically on the selection coefficient against deleterious alleles and thus varies 
across genes. The analysis shows that common variant and rare variant studies require similarly large 
sample collections. In particular, a well-powered RVAS should involve discovery sets with at least

25,000 cases, together with a substantial replication set.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.

1073/pnas.1322563111/-/DCSupplemental.

Important Considerations

 Population stratification is an important consideration
 Rare variants show increased population specificity
 Rare variants can show stronger patterns of population stratification 

than common variants
 Most of the rare variant tests allow adjustment for covariates 

including PCA’s
 Some studies have shown that genomic control and PCA have not 

been effective at controlling population stratification

 Underscores the need for attention to study design
 Case and Control Selection
 Replication



Unrelated Individuals and Family Studies

 Case-control association studies will require 
large sample sizes
 Burden and non-burden tests increase the overall 

MAF, but power is still a concern

 Family studies are making a come back
 Variants that are rare in the population will be 

“enriched” in families where the variant is causal

 Incorporation of new technology is a focus 
 Analytic approach varies

 Discovery

 Follouwp on previous linkage regions

 Combine linkage and association testing

Main Points to Remember

 Emerging Area
 Methods are evolving

 Families and Unrelated individuals
 No consensus yet on approach
 As data / evidence accumulates we will likely see more 

“standardized” approaches as with GWAS
 Functional information and annotation will also continue to improve

 Basic factors still need to be considered
 Appropriate selection of your sample
 Adjustment for covariates, including population stratification
 Adjustment for multiple comparisons

 Recurring themes
 What is old is new
 Emerging methods that build on fundamentals



Example: Identifying susceptibility genes for 
metabolic syndrome in a multi-ethnic family 
study

Multivariate Linkage Analyses



Project Overview

Step 3:Custom 
Genotyping + Whole 

Genome array

Step 2:Whole 
Exome Sequencing 

(WES) (~71.8K 
variants, ~66.9K 

variants after QC)

Step1:Linkage 
analysis (~410 
microsatellites)

All subjects in all 
families

Selected  
Extreme 

subjects within 
linked families 

Extreme 
subjects within  
linked families

Non-sequenced 
family members 

and families
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Aim 2:  Whole Exome Sequencing 
and Filtering

A.  Pedigree 
Selection

• Linked families (2 families for each candidate region-overlap)
• Select Subjects in Linked families (via ExomePicks and Extreme 

Affected/Unaffected status)

B.  Obtain 
Exome Data

• Focus on Candidate Regions
• QC and filtering of variants

C.  Screening 
Step

• (1) Weighted Allele Frequency Comparison (extreme affected vs. 
unaffected):  Weights relate to Functional and conservation Scores

• (II) Fisher’s test (unweighted)
• LD & Bioinformatics pipeline for inclusion of additional variants
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Framework for selecting variants for 
custom genotyping

• Functional 
scores (CADD) 
and PolyPhen, 
for WES 
variants in 
candidate 
regions

• Conservation 
scores: GERP, 
PhastCons

i. Bioinformatics

ii. Statistical 
screening (affected vs

unaffected) • Take exome
variants and 
tagSNPs for 
nominated 
genes

• Include variants 
in intronic
regions using 
HaploReg

iii. Variant 
Inclusion based 

on LD & 
Bioinformatics
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WEIGHTS

VARIANTS

Unweighted Fisher’s 
Allelic Association 
Test

Weighted Allele 
Frequency 
Comparison of rare 
variants
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