Genetic Epidemiology

Association Studies and Power Considerations

Karen L. Edwards, Ph.D.

Professor

Department of Epidemiology and Genetic Epidemiology Research Institute School of Medicine University of California, Irvine

Irvine, CA

Overview of Genetic Epid	lemiologic Studies
Question	Approach
Is there evidence for genetic influences on a quantitative trait?	Commingling
Is there familial aggregation? higher risk in relatives of higher correlation in relatives	Family Study
Is the familial aggregation caused by genetic factors? MZ twins concordance rate or correlation higher than DZ twins	Twin Study
Is there a major gene? Is it dominant or recessive ? (likelihoods of Mendelian models higher than environmental or polygenic model)	Segregation Study
Where is this major gene in the human genome?	Linkage Analysis
Is there linkage with DNA markers under a specific genetic model?	A. Parametric Approach
Is there an increased allele sharing for affected relatives (sib pairs) or for relatives with similar phenotype	B. Allele Sharing Approach (sib-pair analyses)
Where is the (exact) location of this gene and which polymorphism is associated with disease?	Association Study (population and family)

Linkage, Review

Cosegregation of two loci in related individuals

- 2 loci are linked if they are transmitted together from parent to offspring more often than expected under law of independent assortment
- During meiosis, recombination occurs with a probability of less than 50% (Θ <0.5)
- Linkage extends over larger regions of the genome than LD

Good for localization – Not as good at fine mapping

- Marker and disease loci do not need to be in the same gene – we estimate how close they are with theta (Θ)
- > One of the most important tools in genetic epi

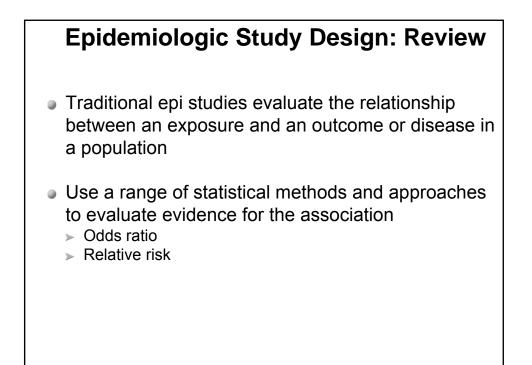
Linkage Disequilibrium

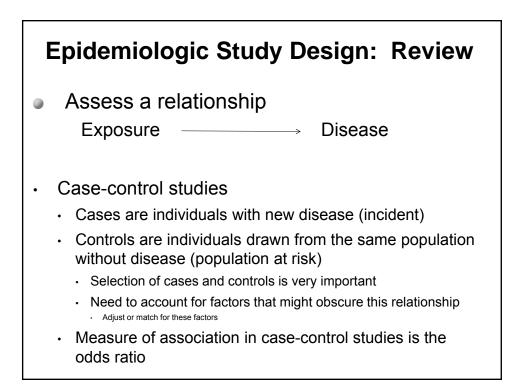
Linkage Disequilibrium (allelic association)

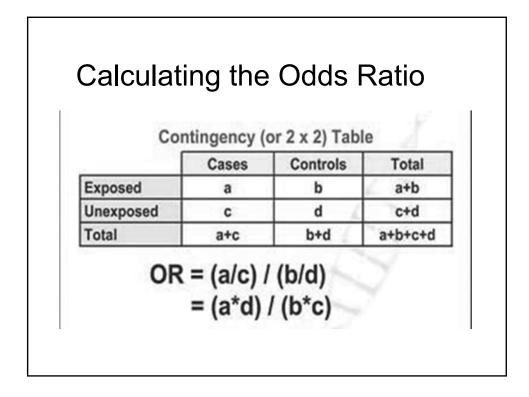
- 2 loci (alleles) are in LD if across the <u>population</u> they are together on the same haplotype more often than expected by chance
- Depends on O (recombination fraction and number of generations)
 - ▶ Diminished by a factor of 1-⊖ per generation

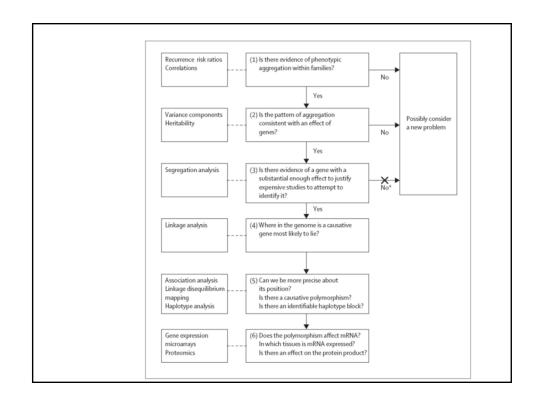
Foundation on which genetic association studies are based

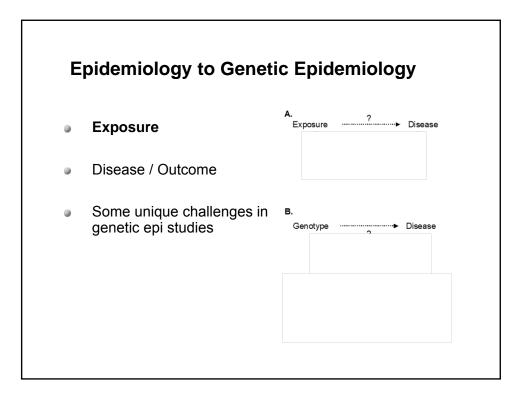
Complimentary to linkage studies

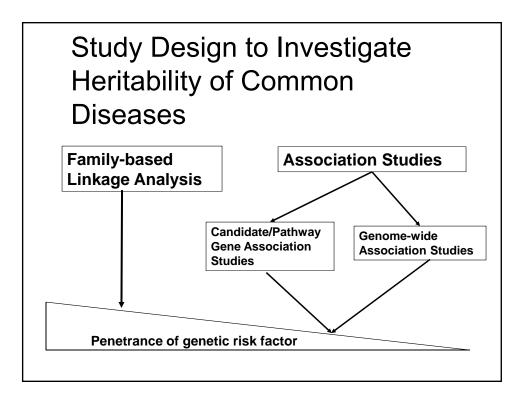


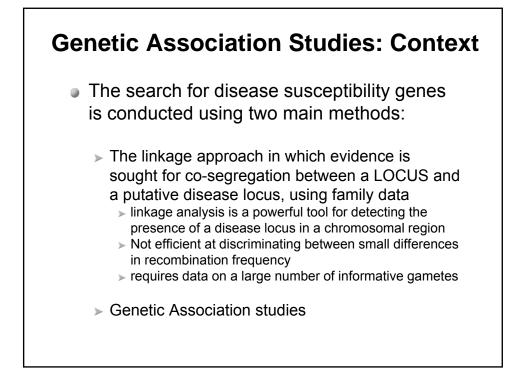


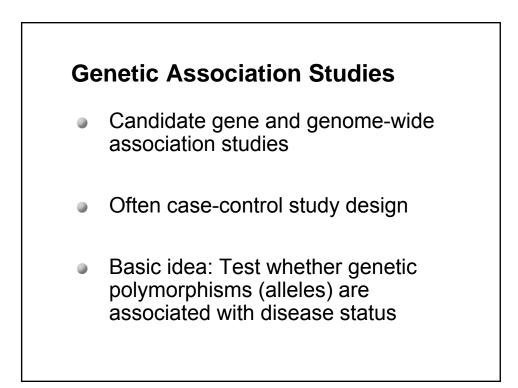












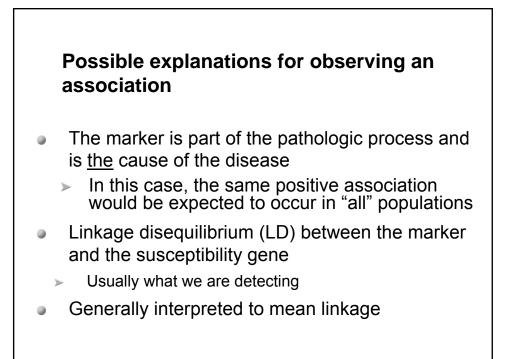
- Evidence is sought for an association between a particular ALLELE and disease in a population
- There should be some evidence that the trait is under genetic control before conducting an association study
- Often used as a followup to linkage to narrow a region of interest (fine mapping), or to evaluate a specific candidate gene(s)

Why Do Association Studies in Unrelated Individuals?

- May be more powerful for detecting loci with smaller effects
- Fine mapping
- Does not require family data
 - ▹ Faster
 - Cheaper

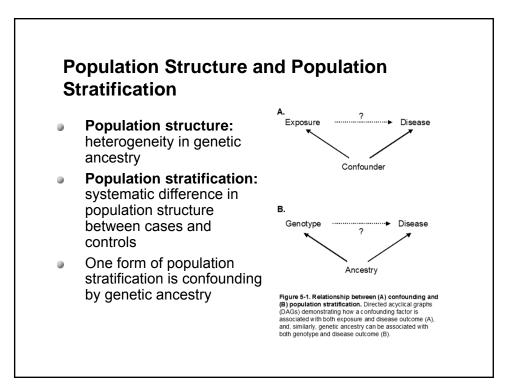
Genetic Association Studies

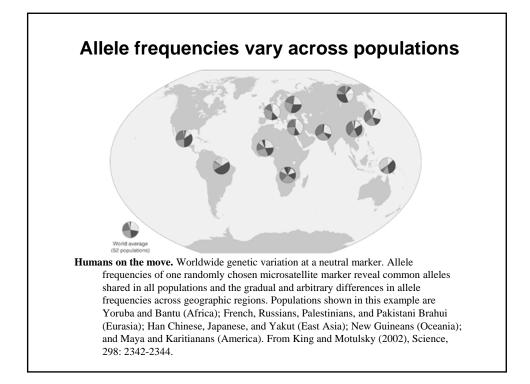
- Despite the popularity, there are many challenges in conducting genetic association studies
 - Interpretation is not always clear
 - Replication has proven difficult
 - > Power
 - Gene x environment interactions
 - Gene x gene interactions
 - Confounding
 - Multiple testing



Possible explanations for observing an association, cont

- Confounding
 - Genetic ancestry is the most important confounder to consider
 - Population stratification
 - other genetic and environmental factors such as religion, geographic location
- Chance
 - Multiple testing problems with large numbers of markers

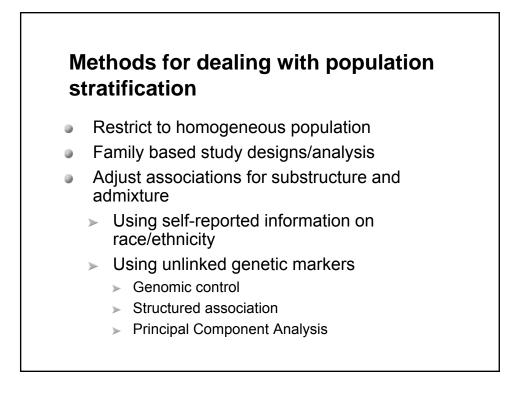


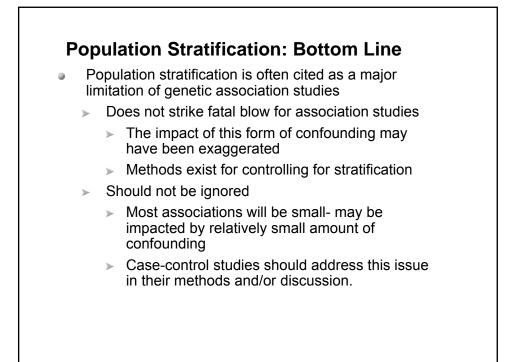


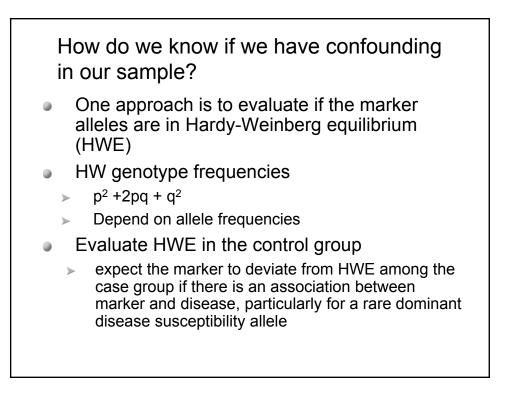
Example 1	from Knowler		
Pima ancestry	%Gm Haplotvpe	Gm Haplotype	%NIDDM
Total (crude)	6.0	Present	8%
		Absent	29%

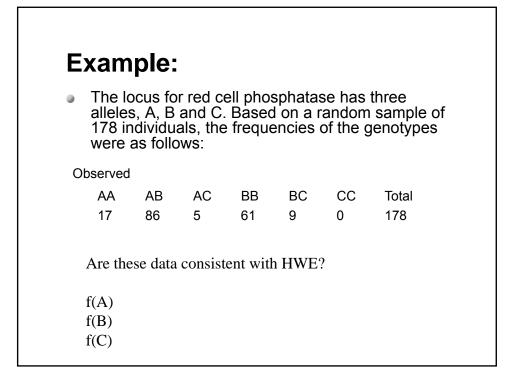
Example 1	rom Knowler	et al.,	
Pima ancestry	%Gm Haplotvpe	Gm Haplotype	%NIDDM
Total (crude)	6.0	Present	8%
		Absent	29%
None	65.6	Present	17.8%
		Absent	19.9%
50%	42.2	Present	28.3%
		Absent	28.8%
100%	1.6	Present	35.9%
		Absent	39.3%

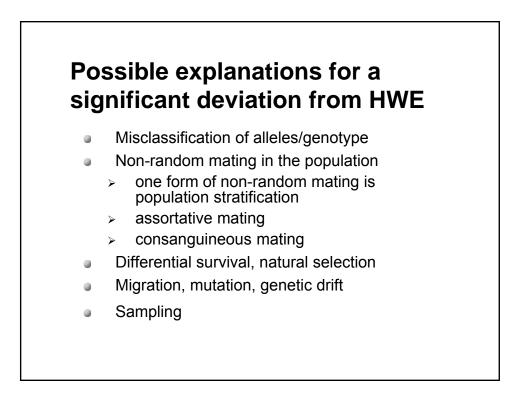
Total (crude)	6.0	Present	8%
		Absent	29%
None	65.6	Present	17.8%
		Absent	19.9%
50%	42.2	Present	28.3%
		Absent	28.8%
100%	1.6	Present	35.9%
		Absent	39.3%



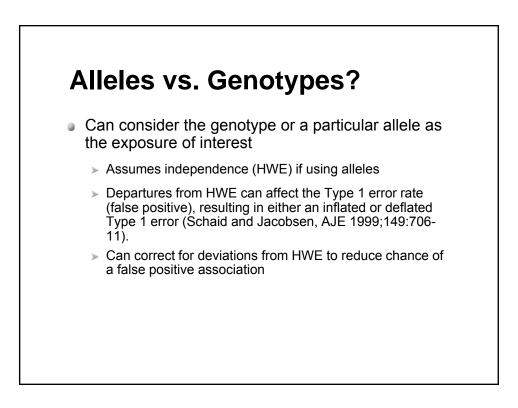


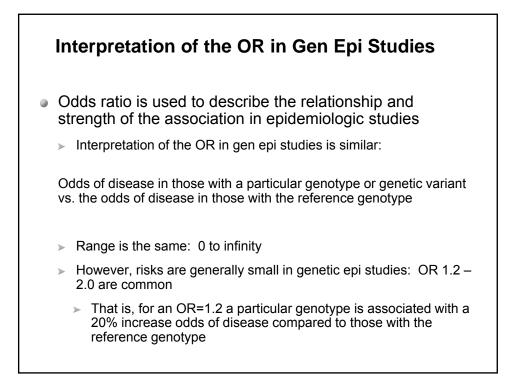


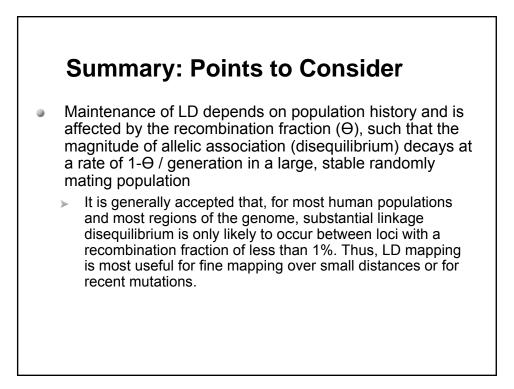




	Cohort		Ca	se-Control	
Genotype	Disease risk risk	Relative Risk (RR)	Frequency in cases	Frequency in controls	OR
NN	l _o	1	A ₁	B ₁	1
NS	I ₁	I ₁ /I _o	A ₂	B ₂	A ₂ B ₁ / A ₁ B ₂
SS	I_2	l ₂ /l _o	A ₃	B ₃	A ₃ B ₁ / A ₁ B ₃
N = normal	allele, S =	susceptibi	lity allele		

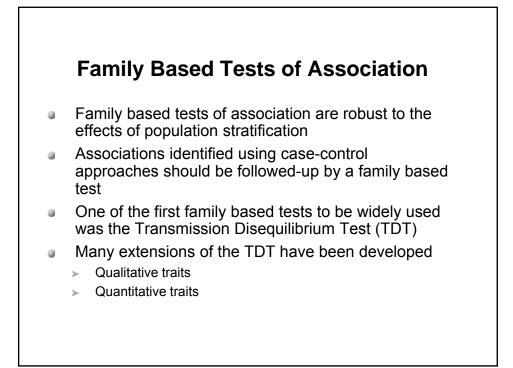


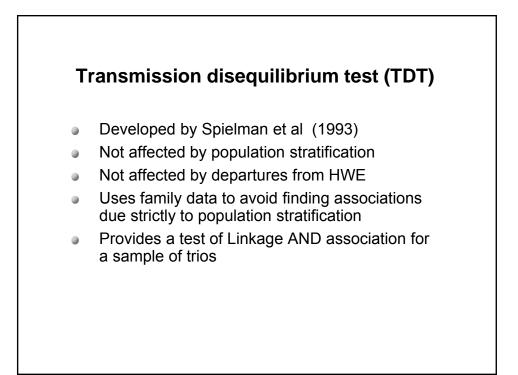


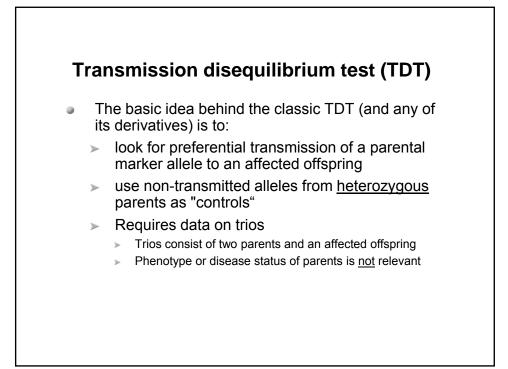


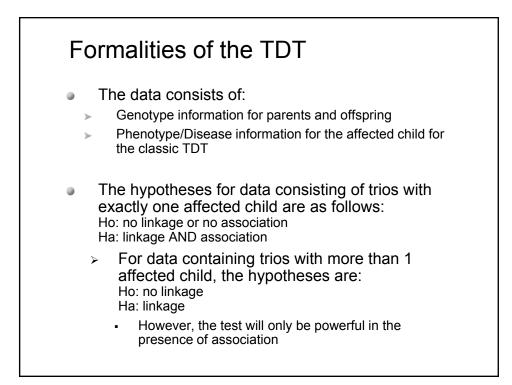
- Different alleles maybe associated with disease in different populations
 - random markers can be used, but more meaningful results are often obtained with candidate genes and/or functional mutations
- Adjustment for multiple comparisons is not straightforward
 - Bonferroni correction is considered conservative because markers are not independent, and are often highly correlated
 - False Discovery Rate
 - Staged study designs

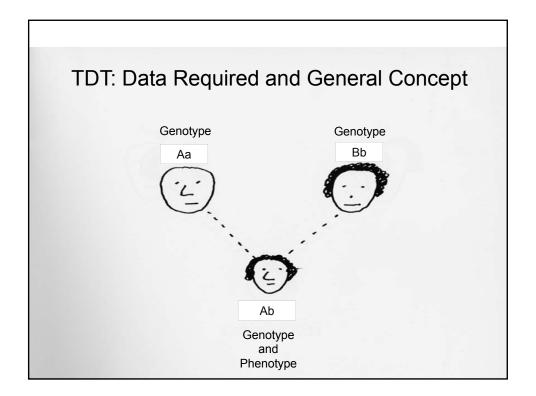
Family Based Tests of Association

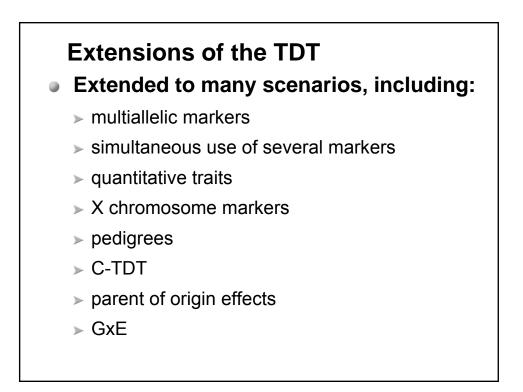


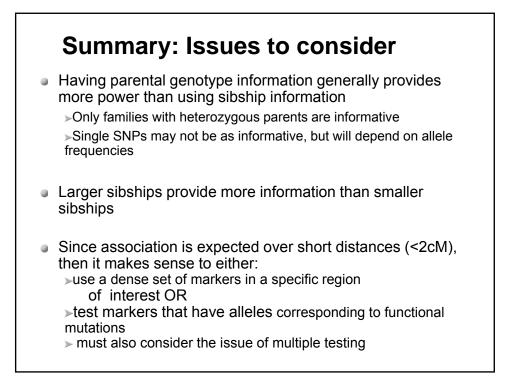








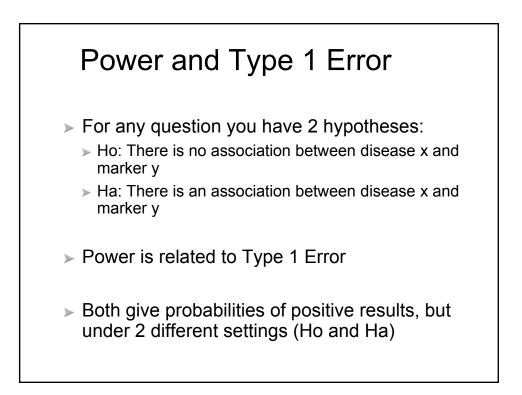


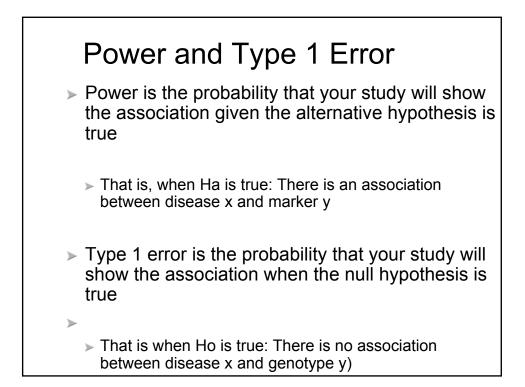


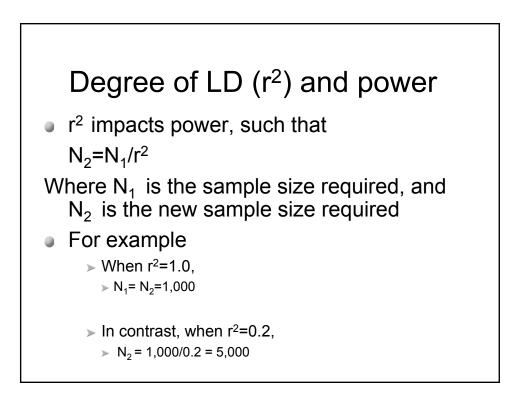
Power and Sample Size Considerations: The Basics

Power and Sample Size

- Critical part of study design
- Can either estimate power or sample size
- Computed by specifying model parameters
 - Can be estimated for Mendelian disorders
 - Generally unknown for complex diseases
- Deal with uncertainity by considering a range of the parameter values
 - Can report "worst-case scenario"
 - Show power over the range of values indicating median power and/or sample size
- Number of software programs

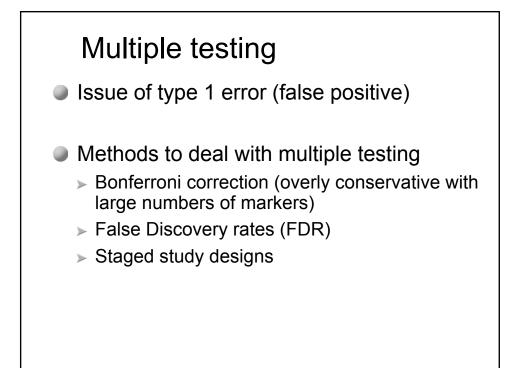


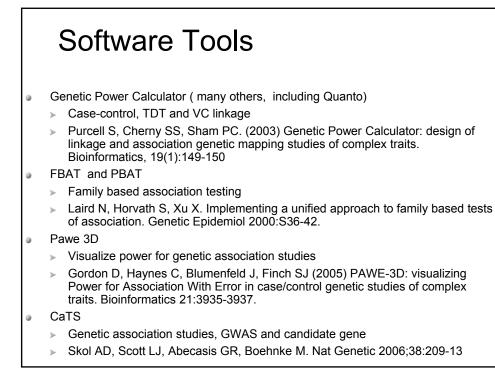


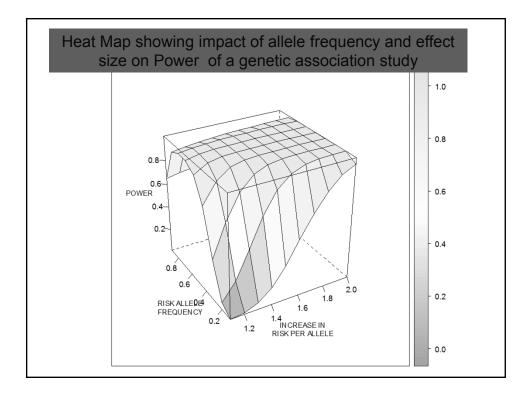


Assumptions for Power Calculations

- Power depends on
 - Linkage disequilibrium (in association studies)
 - Relatedness of individuals (for some designs)
 - > Pedigree or family structure
 - Effect size
 - Measurement error (genotype and phenotype)
 - Penetrance
 - > Frequency of the high risk allele
 - Genetic model (dominant, recessive,,codominant)
 - Prevalence of disease
 - Type of test (allelic, genotypic or trend test)
 - Number of independent tests performed
 - Alpha or type 1 error level



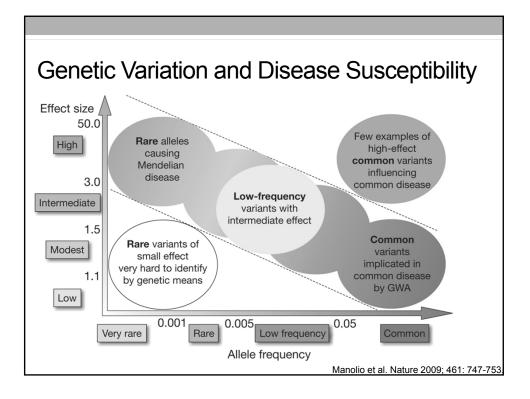


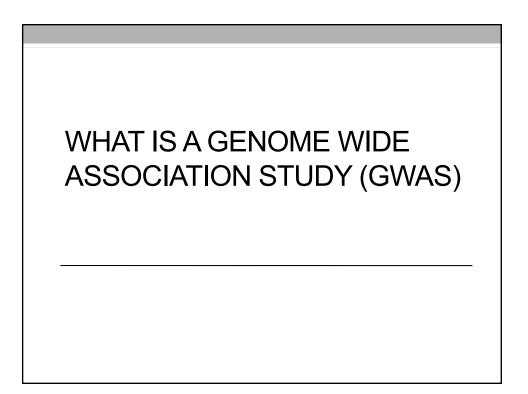


GENOME WIDE ASSOCIATION STUDIES (GWAS)

Outline

- What is a Genome Wide Association Study (GWAS)
- Points to consider in Conducting and Interpreting GWAS
- Post-GWAS Research
- Impact of GWAS findings

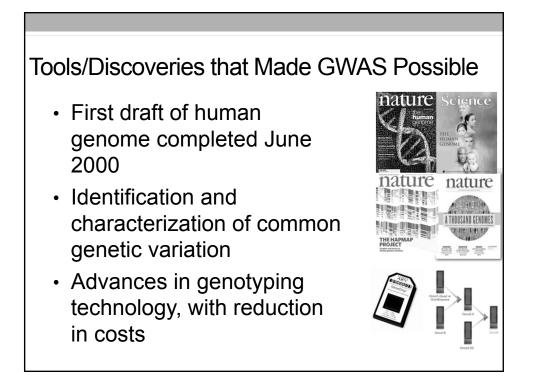


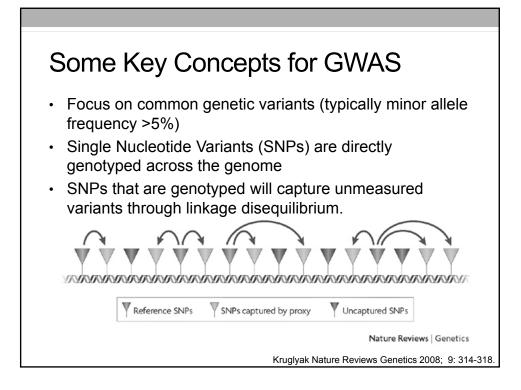


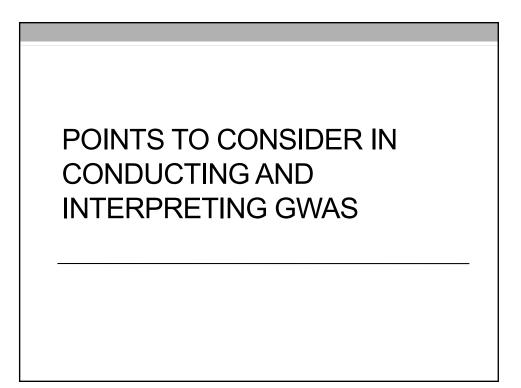
GWAS DEFINITION

- A genome-wide association study is an approach that involves rapidly scanning markers across the complete sets of DNA, or genomes, of many people to find genetic variations associated with a particular disease.
- Once new genetic associations are identified, researchers can use the information to develop better strategies to detect, treat and prevent the disease.
- Such studies are particularly useful in finding genetic variations that contribute to common, complex diseases, such as asthma, cancer, diabetes, heart disease and mental illnesses.

http://www.genome.gov/20019523

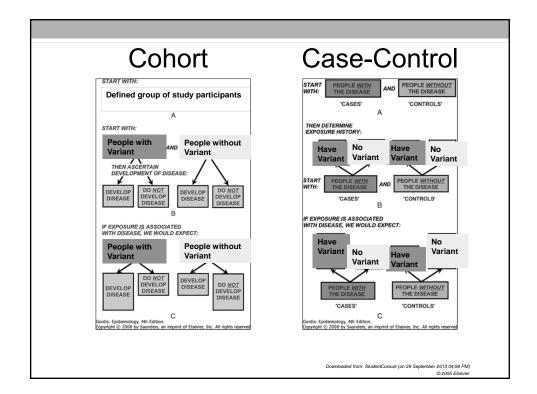


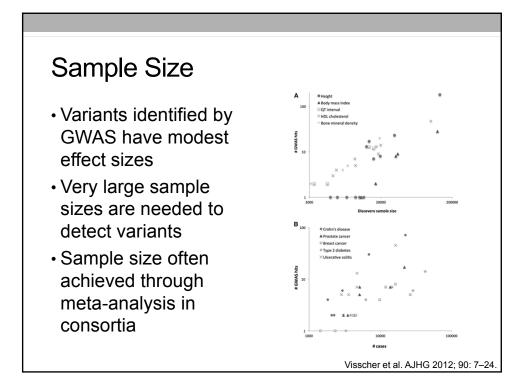


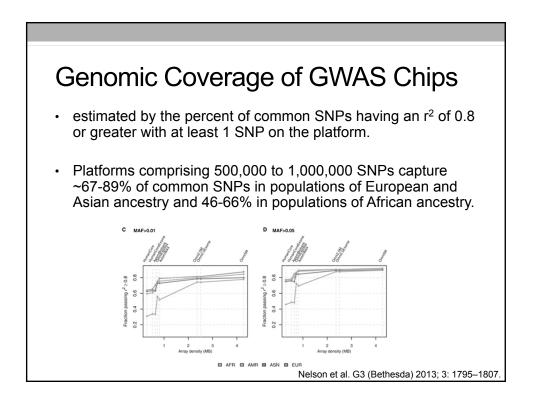


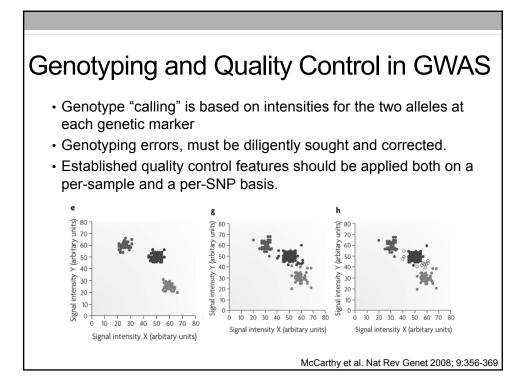
Study Designs Used in GWAS

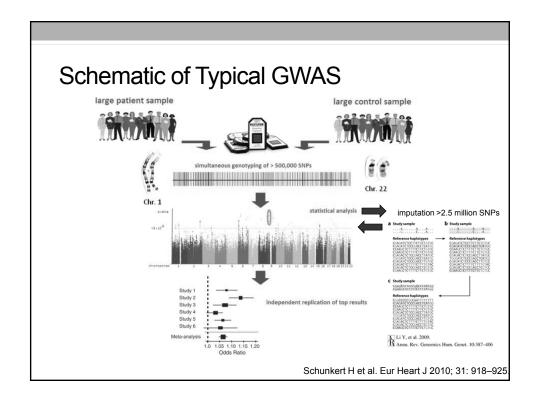
	Case-Control	Cohort	Trio
Assumptions	Case and control participants are drawn from the same population Case participants are representative of all cases of the disease, or limitations on diagnostic specificity and representativeness are clearly specified Genomic and epidemiologic data are collected similarly in cases and controls Differences in allele frequencies relate to the cutcome of interest rather than differences in background population between cases and controls	Participants under study are more representative of the population from which they are drawn Diseases and traits are ascertained similarly in individuals with and without the gene variant	Disease-related alleles are transmitted in excess of 50% to affected offspring from heterozygous parents
Advantages	Short time frame Large numbers of case and control participants can be assembled Optimal epidemiologic design for studying rare diseases	Cases are incident (developing during observation) and free of survival bias Direct measure of risk Fewer biases than case-control studies Continuum of health-related measures available in population samples not selected for presence of disease	Controls for population structure; immune to population stratification Allows checks for Mendelian inheritance patterns in genotyping quality control Logistically simpler for studies of children's conditions Does not require phenotyping of parents
Disadvantages	Prone to a number of biases including population stratification Cases are usually prevalent cases, may exclude fatal or short episodes, or mild or silent cases Overestimate relative risk for common diseases	Large sample size needed for genotyping if incidence is low Expensive and lengthy follow-up Existing consent may be insufficient for GWA genotyping or data sharing Requires variation in trait being studied Poorly suited for studying rare diseases	May be difficult to assemble both parents and offspring, especially in disorders with older ages of onset Highly sensitive to genotyping error

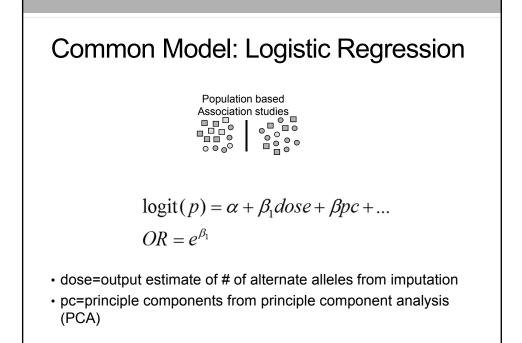


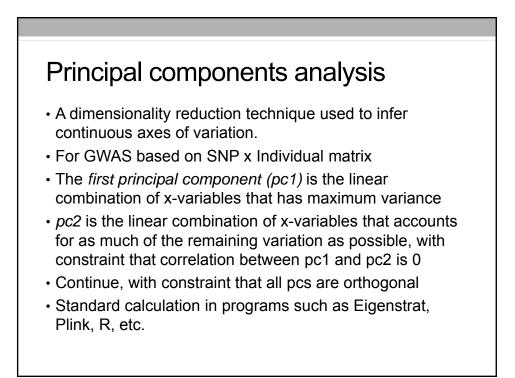


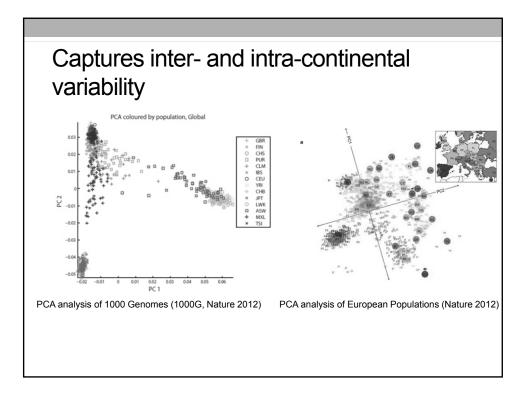


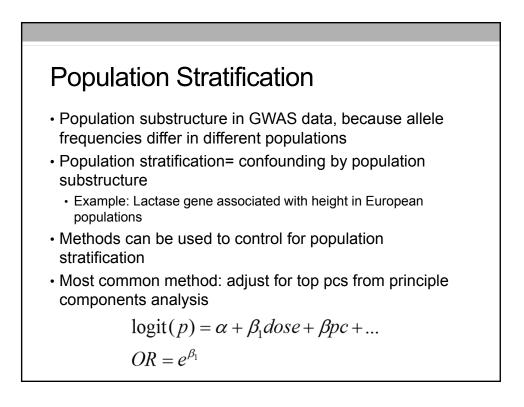


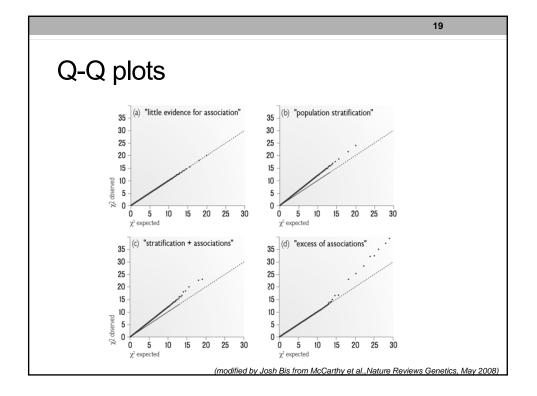


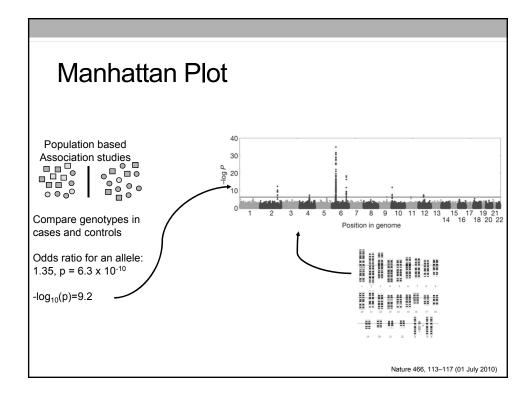


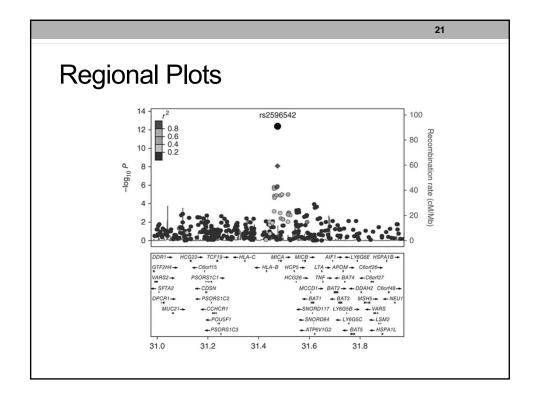


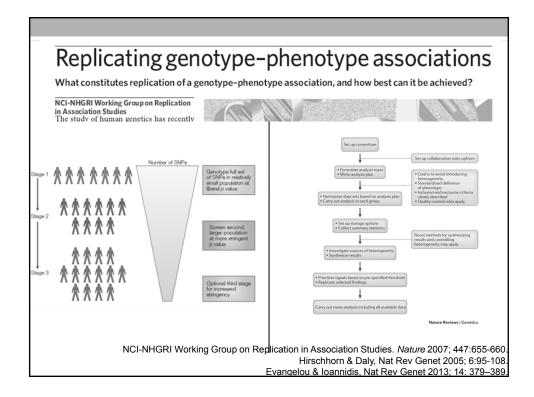






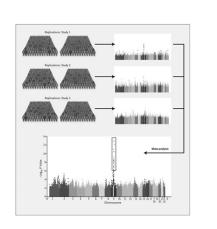


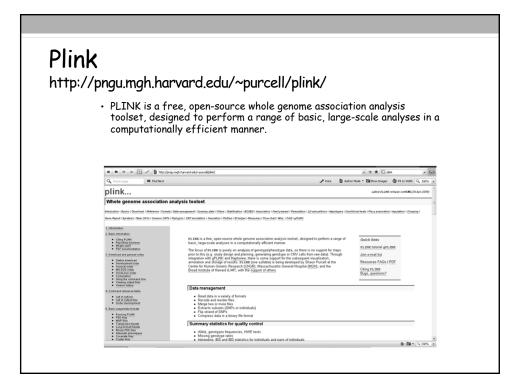


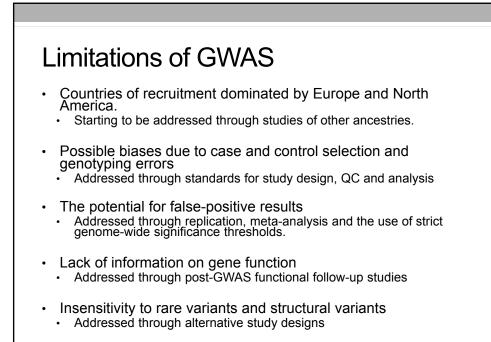


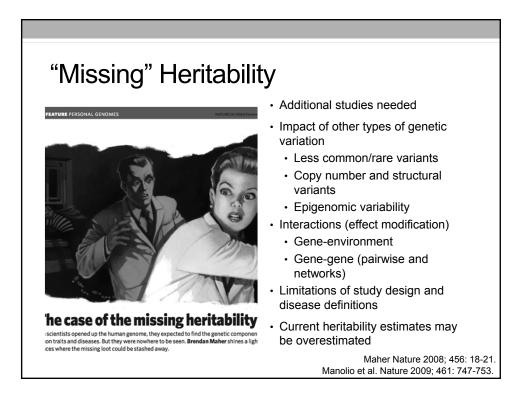
Meta-Analysis

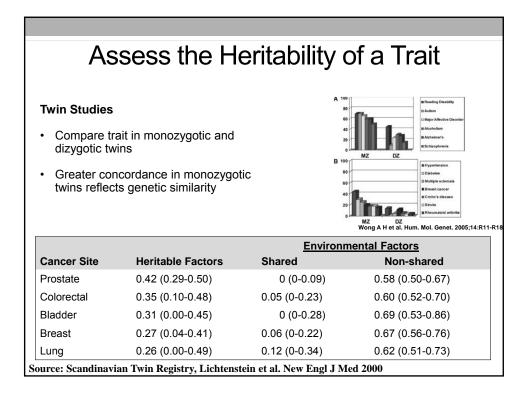
- Large sample sizes required because of small effect sizes, pvalue threshold, misclassification inherent in using tagSNPs, etc.
- Meta-analysis are often used to combine information across studies.
- Meta-analysis combines information across studies, creating a weighted average of study specific estimates.

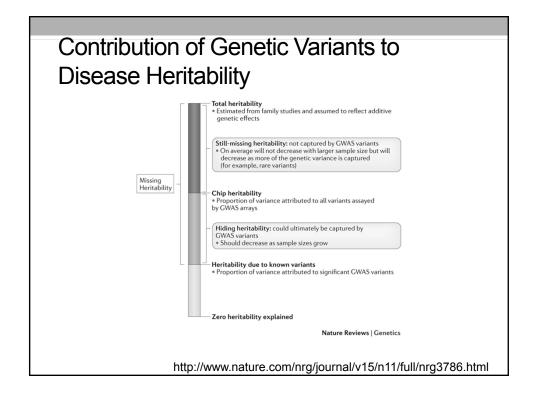


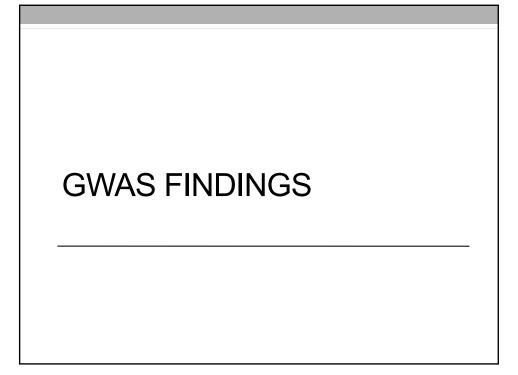




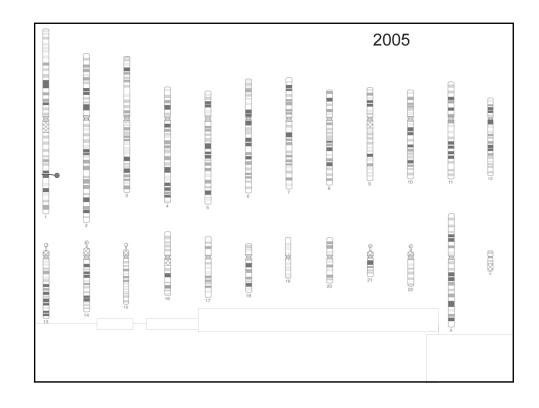


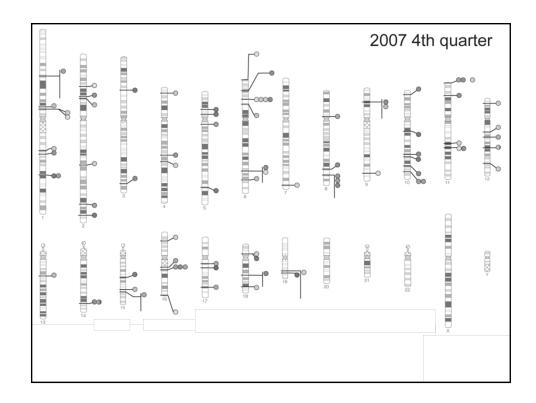


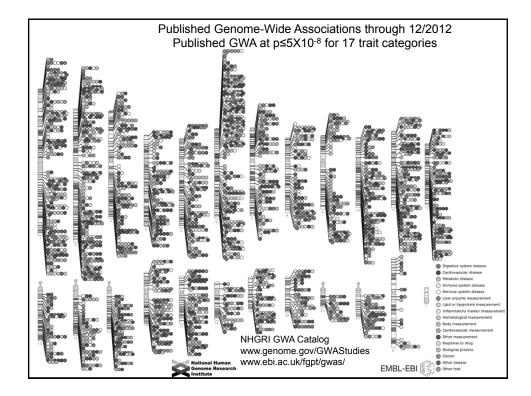


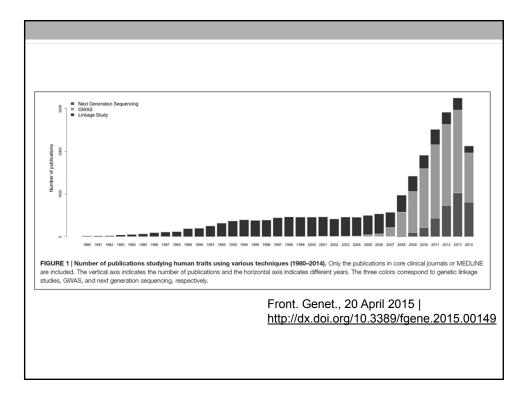


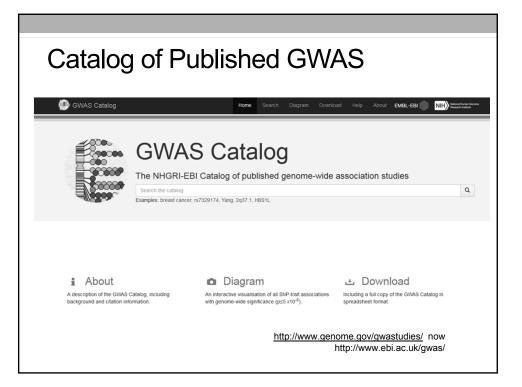
			4	5	0	7	0	9	10	12
) 1 1 13	2 8 14	P 20 15	16	Cell			20	21	64-430 22	
				HT H	NO NO	and the second		Nucleotides		



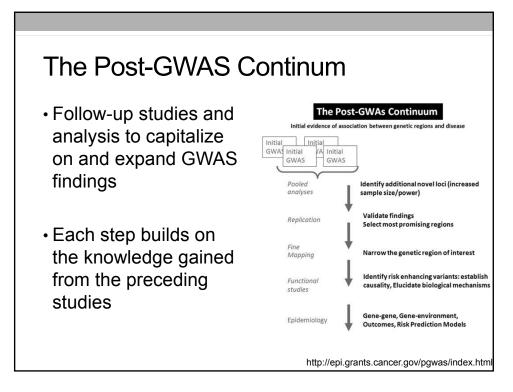


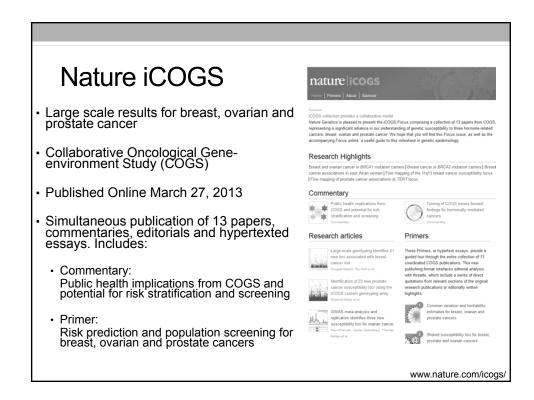


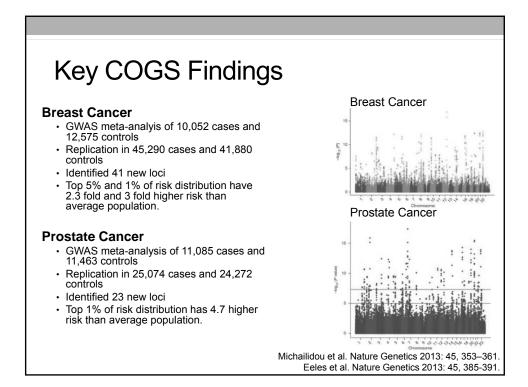


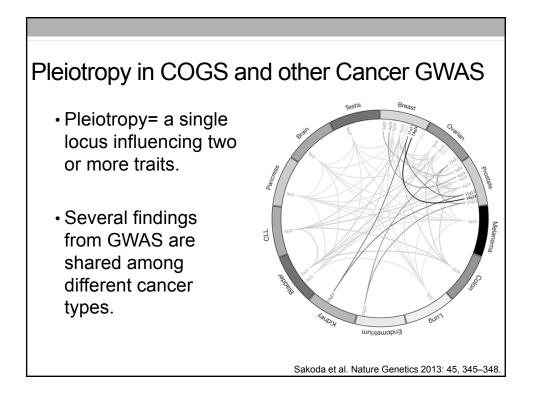


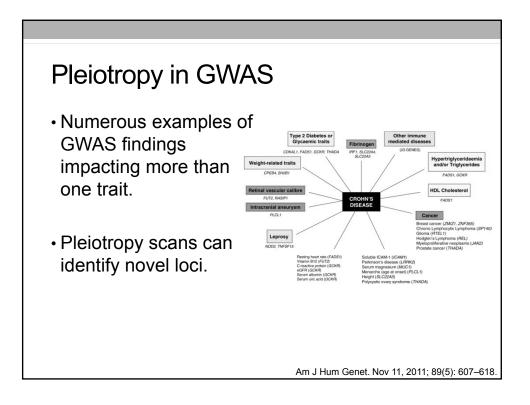


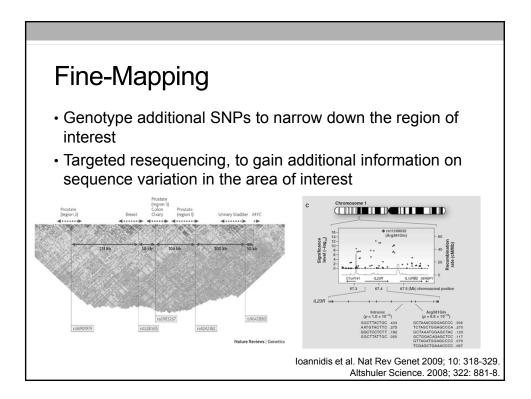




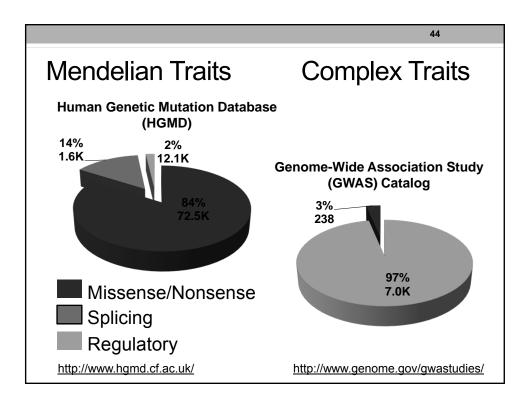


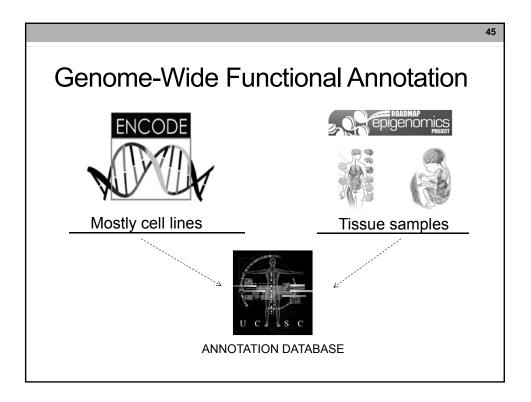


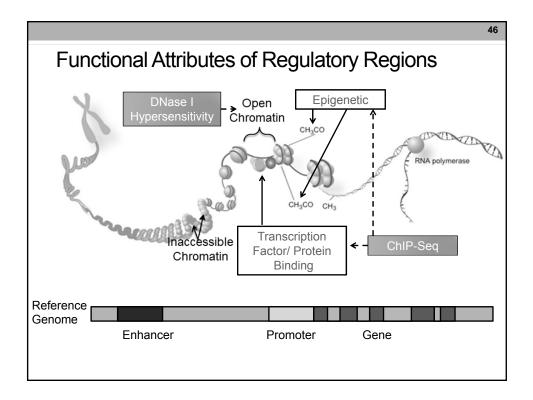


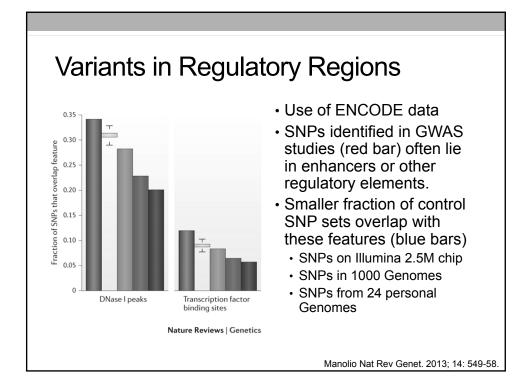


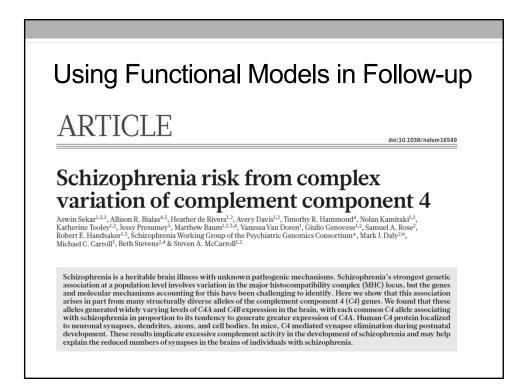


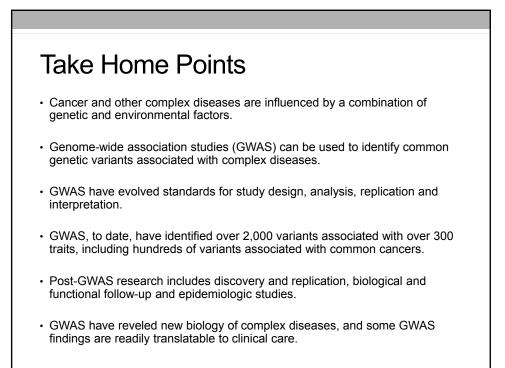


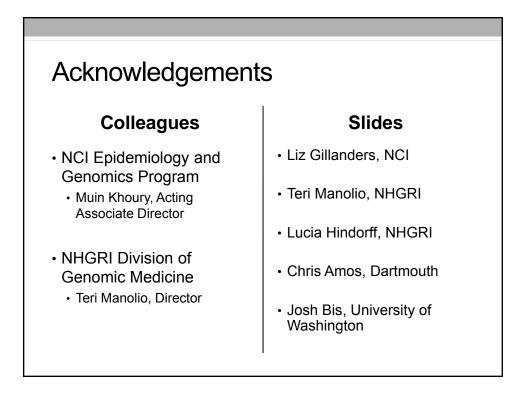




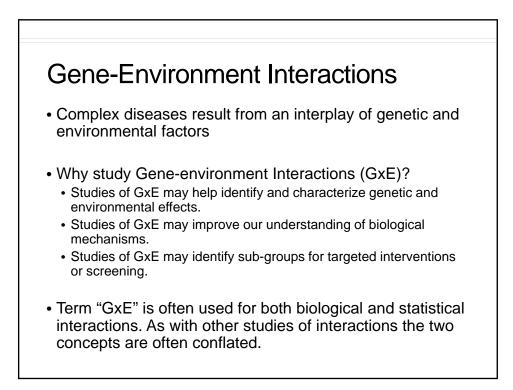


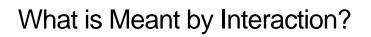






GENE-ENVIRONMENT INTERACTIONS





Biological Interaction

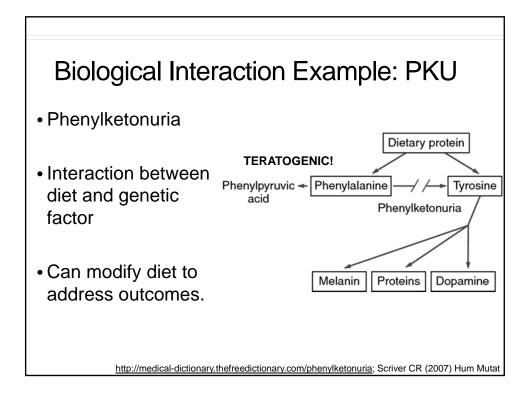
- The interdependent operation of two or more biological causes to produce, prevent or control an effect
- Interdependency among the biologic mechanisms of actions for two or more exposures through common pathways, protein complexes or biological products.

Statistical Interaction

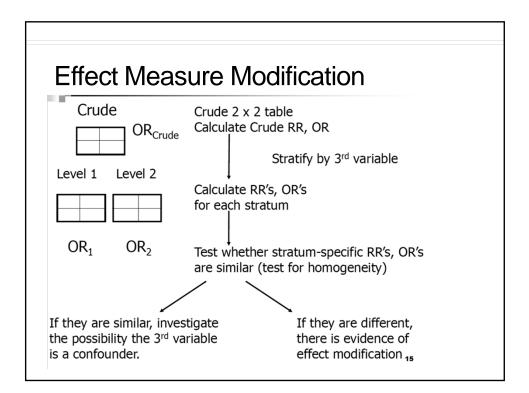
- The observed joint effects of two factors differs from that expected on the basis of their independent effects
- · Deviation from additive or multiplicative joint effects

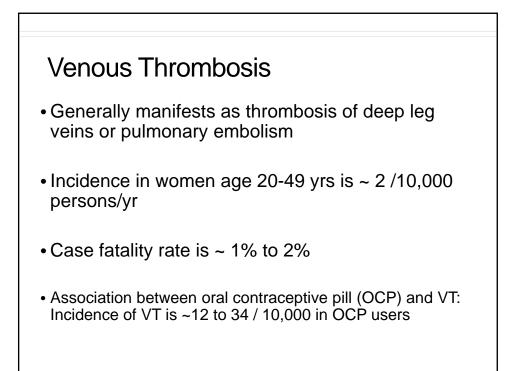
• Effect Modification (or Effect Measure Modification)

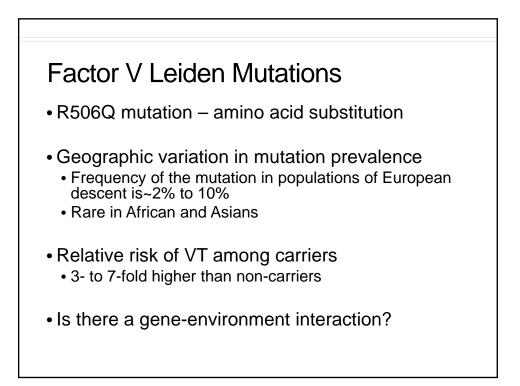
- Differences in the effect measure for one factor at different levels of another factor
- Example: OR differs for males vs. females; AR differs for premenopausal and post-menopausal women, etc.

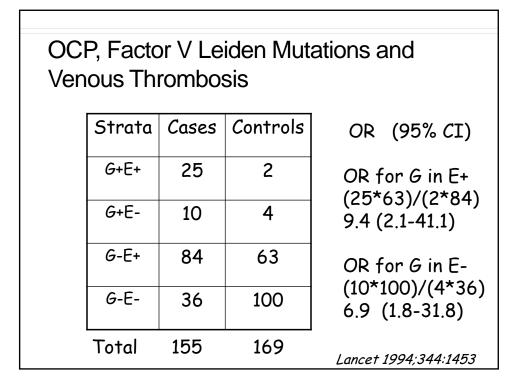


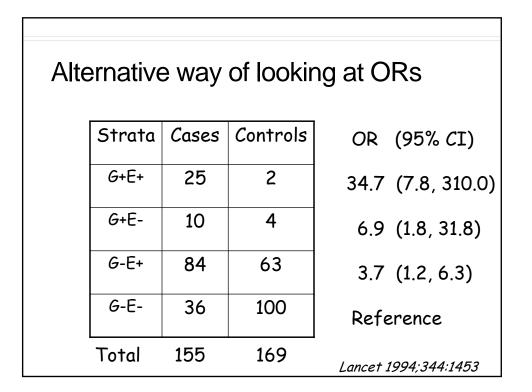
- This lecture will focus on methods for statistical interaction/effect modification.
- Keep in mind these interactions often do not have straightforward biologic interpretation, although some argue for links.
 - Non additive effects may imply non-independence of biologic mechanism of actions
 - Weinberg (1986), VanderWeele (2008-)
 - Multiplicative model may correspond to independent effects on multiple steps of a multi-step carcinogenic model
 - Siemiatycki and Thomas (1981)











Interactions are Scale Dependent

	G=0	G=1
E=0	1.0	RR _G
E=1	RR _E	RR _{GE}

Multiplicative model

No Interaction: RR_{GE} = $RR_{G} \times RR_{E}$ Relative-risk associated with E is the same by levels of G and reverse Interaction Relative Risk = $RR_{GE}/(RR_{G} \times RR_{E})$

Additive model

No Interaction: $RR_{GE} = RR_{G} + RR_{E}$ -1 Risk-difference associated with E is the same by levels of G and reverse

Relative Excess Risk due to Interaction (RERI) =RR_{GE}- RR_G- RR_E+1

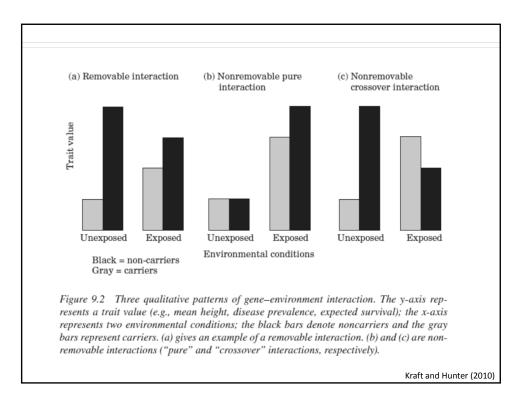
Expectation	s Using Diffe	erent Scales
Measurement Scale and Interaction Effect	Cohort Study	Case-control study*
Multiplicative Scale		
No Interaction	RR _{GE} =RR _G xRR _E	OR _{GE} =OR _G XOR _E
Synergistic Interaction	RR _{GE} >RR _G xRR _E	OR _{GE} >OR _G XOR _E
Antagonistic Interaction	RR _{GE} <rr<sub>GxRR_E</rr<sub>	OR _{GE} <or<sub>GxOR_E</or<sub>
Additive Scale		
No Interaction	RR _{GE} =RR _G +RR _E -1	OR _{GE} =OR _G +OR _E -1
Synergistic Interaction	RR _{GE} >RR _G +RR _E -1	OR _{GE} >OR _G +OR _E -1
Antagonistic Interaction	RR _{GE} <rr<sub>G+RR_E-1</rr<sub>	OR _{GE} <or<sub>G+OR_E-1</or<sub>

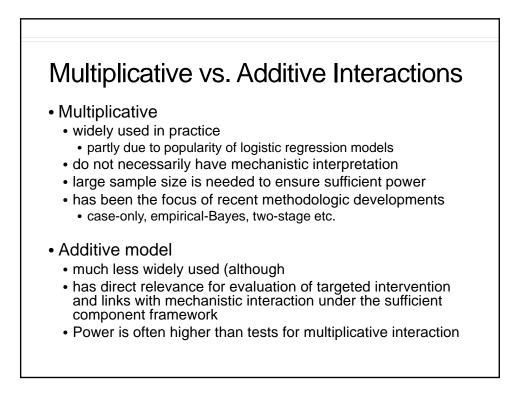
* Formulas for the ORs are approximations based on the approximation of the OR to the RR

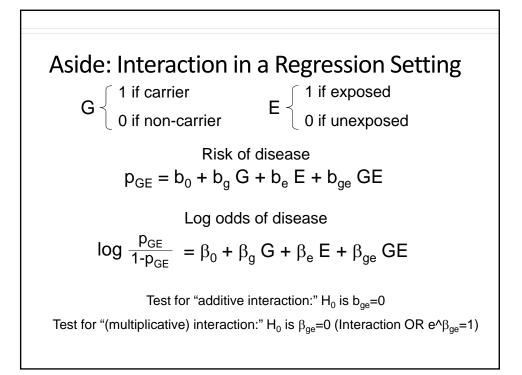
Adapted from "Genetic Epidemiology: Methods and Applications". Austin 2013.

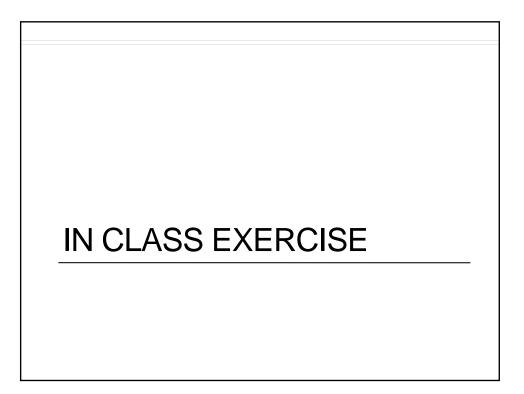
E=0 1.0 RR _G =6.9
$E=1 \qquad RR_{E}=3.7 \qquad RR_{GE}=34.7$

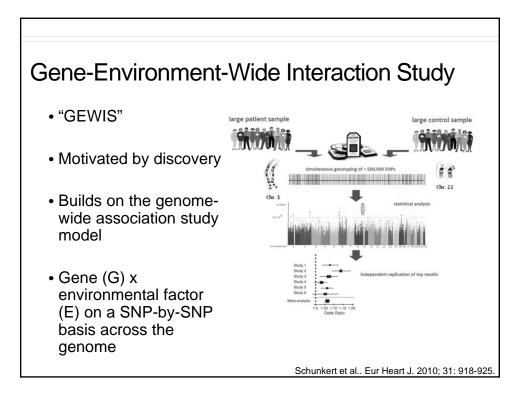
	NAT2 rapid/intermediate	NAT2 slow
Never-smoker	1.0	0.9 (0.6-1.3)
Ever-smoker	2.9 (2.0-4.2)	4.6 (3.2-6.6)

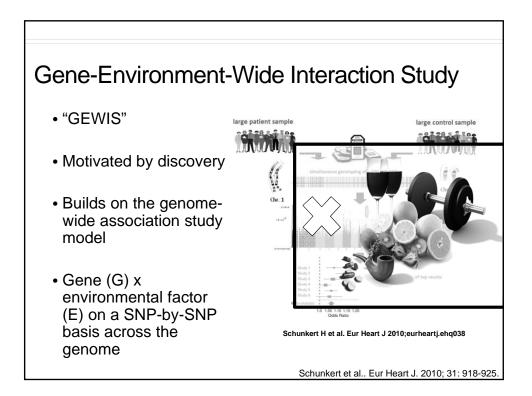


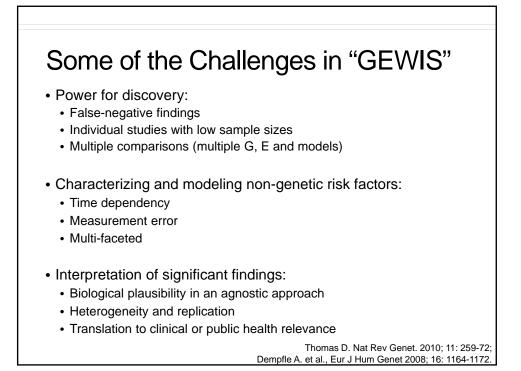


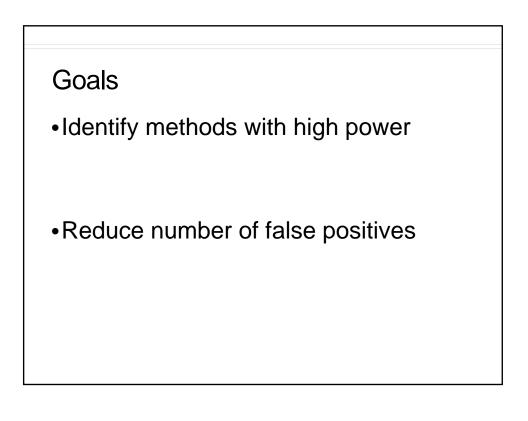












Approaches for GEWIS

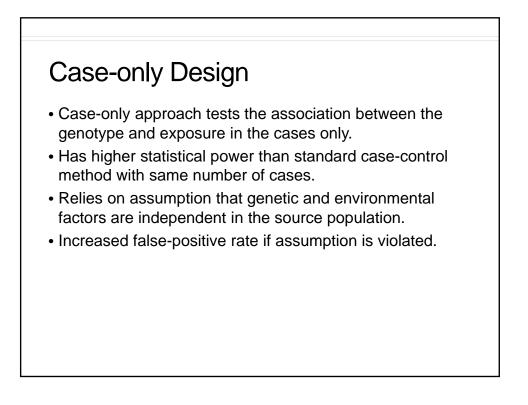
- Multifactor dimension reduction, and other machine learning techniques
- Pathway/hierarchical models
- Family based tests
- Additive models
- Logistic regression-based tests for multiplicative interactions

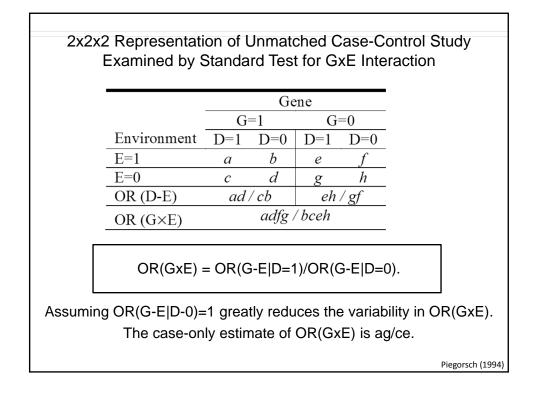
	e in Hutter et al. Genet Epidemio	
	43-57. doi: 10.1002/gepi.21756.	<u>l.</u> 2013
Method	Highlights	Reference
Sufficient component models	 Framework where the presence of interaction in the additive scale can be used as evidence of overlap of biologic actions through a common underlying pathway. Useful in characterization motivated by understanding biological mechanisms. 	[VanderWeele, 2009; VanderWeele and Robins, 2007].
Test for qualitative interaction	 Tests for qualitative interactions. Useful in characterization motivated by understanding nature of interaction. 	[Gail and Simon, 1985]
Goodness of fit tests	 Simultaneously test multiple terms including G × G and G × E. Useful when building parsimonious models for risk assessment in public health contexts. 	[Hosmer et al., 1997]
Unconditional logistic regression	 Standard method for analysis. Robust to assumptions about G-E correlation. 	[Breslow and Day, 1980]
Case only	 Efficient method for analysis of multiplicative interaction odds ratio. Exploits, and is highly sensitive to, assumption of G-E independence. Useful for improved power for discovery of G × E interaction. 	[Piegorsch et al., 1994]
Maximum likelihood estimation	 Exploits G × E independence assumption in the analysis of case-control data. Allows efficient estimation of all parameters from logistic regression model. Useful for both discovery and characterization. For discovery, the method could be used 	[Chatterjee and Carroll, 2005]

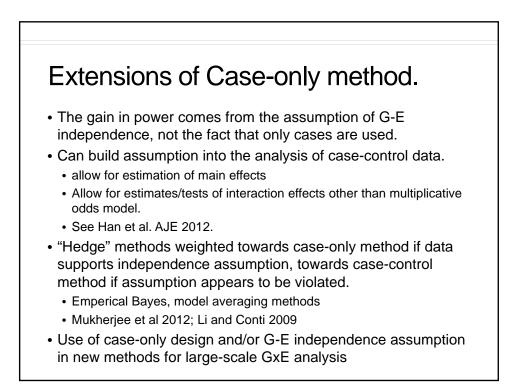
Logistic Regression Based Methods for Multiplicative GxE

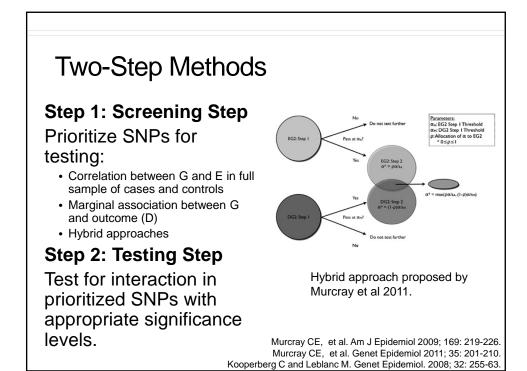
Method	Key Details
Case-control	Robust model; Does not assume G-E independence; low power for discovery.
Case-only	Gains in power and efficiency under G-E independence.
Data-adaptive estimators (e.g. Empirical Bayes and Bayesian Model Averaging)	Increased power versus case-control and improved control of type 1 error versus case-only.
Two-step procedures	Screening step and testing step. Maintains type 1 error and provides power gain under many settings.
Joint-test of genetic main effect and GxE (2 degree of freedom tests)	Tests null hypothesis that genetic marker is not associated with disease in any stratum defined by exposure.

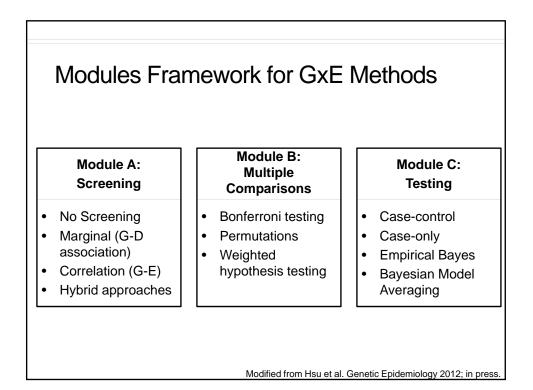
Modified from Mukherjee et al. Am J. of Epidemiology. 2012; 175(3): 177-190.

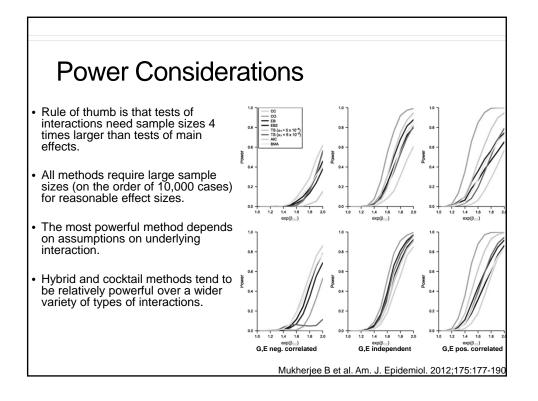


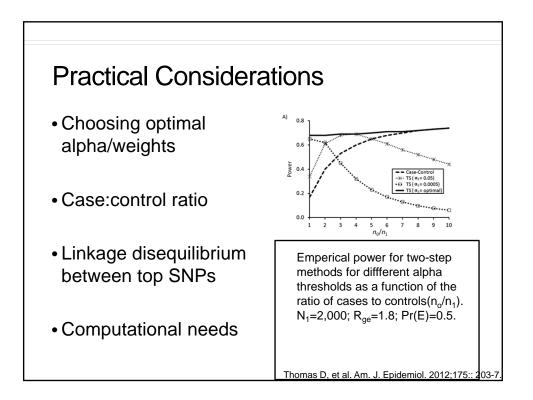






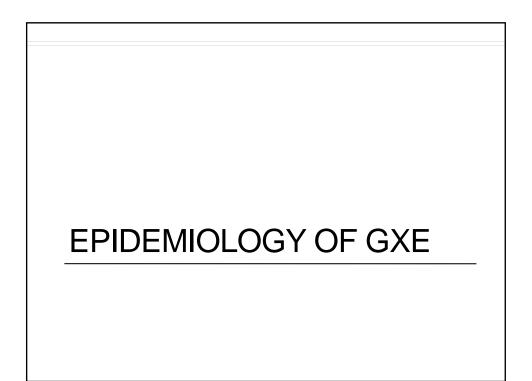


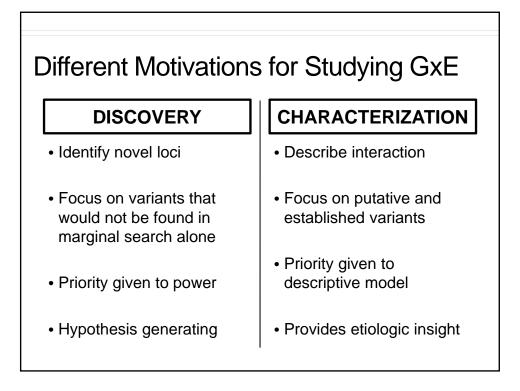


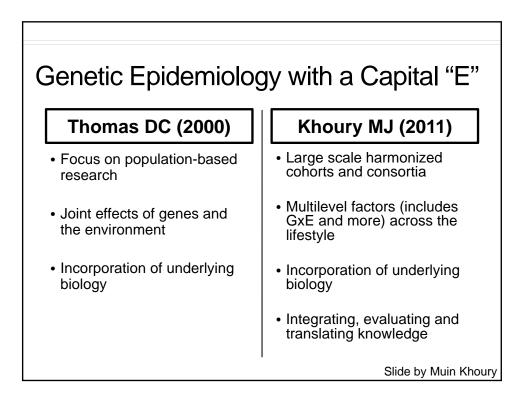


Software for	or analysis
--------------	-------------

Software	Good for	URL
PLINK	GWAS, data handling, GE test, joint test	http://pngu.mgh.harvard.edu/~purcell/p link/
ProbABEL	GWAS, computes robust variance-covariance matrix	http://www.genabel.org/packages/Prob ABEL
GxEscan	R script incorporating multiple GWAS GxE tests	http://biostats.usc.edu/software
Multassoc	Test a group of SNPs taking interaction with other G, E into account	http://dceg.cancer.gov/tools/analysis/m ultassoc
R	Flexible, write your own scripts	http://www.r-project.org/
METAL	Meta-analysis	http://www.sph.umich.edu/csg/abecasi s/metal/







Sources of Bias in Epidemiology

- Selection Bias
 - · Arises from issues in case/control ascertainment

Information Bias

 Arises from measurement error or misclassification in assessing factors of interest.

Confounding

· Arises when there is an extraneous disease risk factor that is also associated with exposure and not in the causal pathway.

 $\operatorname{Box} 1 \operatorname{|} \operatorname{\textbf{Major}}$ sources of bias that affect case-control and prospective cohort studies

Blases that relate to subject selection Prevalence-incidence or survival blas. Selection of existing cases that are currently available for study will miss fatal and short episodes, and might miss mild or silent cases¹⁹.

Non-response (or respondent) blas. Differential rates of refusal or non-response to inquiries be cases and disease-free comparison subjects¹⁹.

Diagnosis blas. Also known as diagnostic suspicion blas. Knowledge of a subject's exposure to a putative cause of disease can influence both the intensity and outcome of the diagnostic process¹¹ Referral or admission-rate bias. Factors related to the probability of referral. Cases who are more likely to receive advanced care or to be hospitalized — such as those with greater access to health care or with co-existing illnesses — can distort associations with other risk factors in clinic-based studies, unless the same referral or admission bases are operative in disease. Tree comparison subjects²⁰.

Surveillance blas. If a condition is mild or likely to escape routine medical attention, cases are more likely to be detected in people who are under frequent medical surveillance³⁰.

Blases that relate to measuring exposures and outcomes Recall blas. Questions about specific exposures might be asked more frequently of cases, or cases might search their memories more intensively for potential causative exposures. Family information bias. The flow of family information about exposures or illnesses can be

stimulated by, or directed to, a new case in its midst¹⁹.

Exposure suspicion bias. Knowledge of a patient's disease status can influence the intensity and outcome of the search for exposure to a putative cause¹⁹.

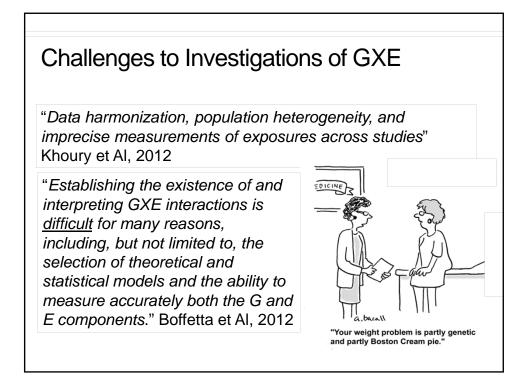
Manolio et al. Nat Rev Genet. 2006. 7: 812-820.

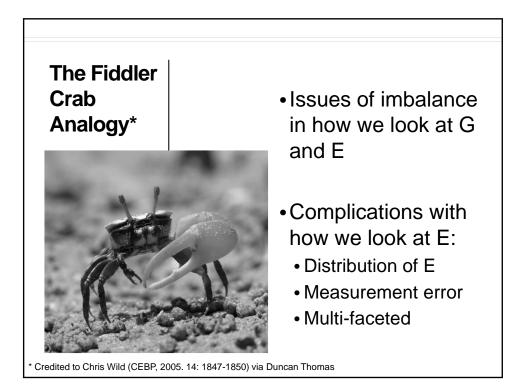
Sources of Bias in G and GxE

Method	Key Considerations
Selection Bias	 Issues of poor control selection and incomplete case ascertainment. Need to consider non-respondants, people who refuse or are unable to provide DNA/data
Information Bias	 Errors in questionnaire, specimen handling Highlights importance of lab QC Can impact type I and type II error for GxE
Confounding	 Population stratification for G "Traditional" factors for E Under certain conditions "confounders" can bias the interaction term (see, for example, Tchetgen Tchtgen and VanderWeele 2012).

- Concerns of all three of these factors increase when examining GxE in existing genetic studies that used "convenient controls".
- · Presence of these biases may contribute to disparate findings in literature and issues in replication.

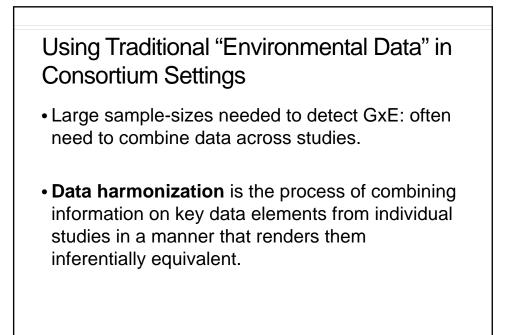
Modified from Garcia-Closas et al. in Human Genome Epidemiology. 2004.

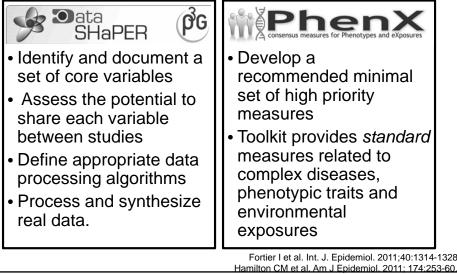


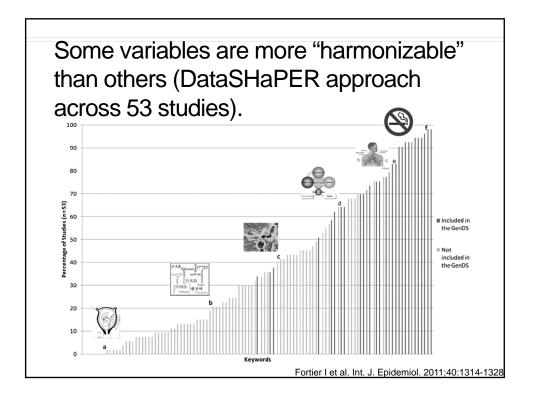


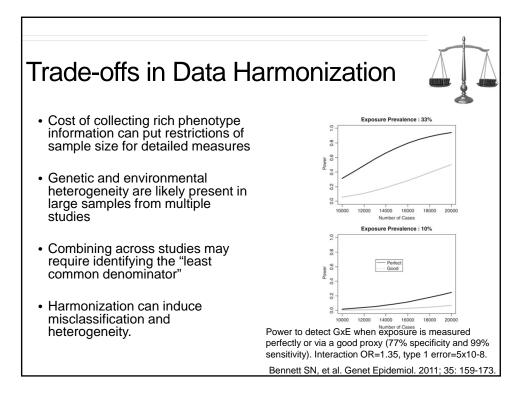
Measurement Error

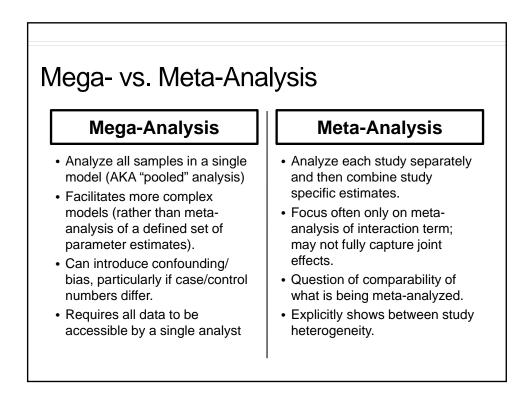
- Environmental factors are often complex, multifaceted and difficult to measure.
- Measurement error can lead to both type I and type II error for GxE.
- Statistical methods to correct misclassification exist, but are infrequently used for GxE.
- Measurement error has strong impact on power to detect GxE.
- Additional issues arise when considering GxE across multiple studies

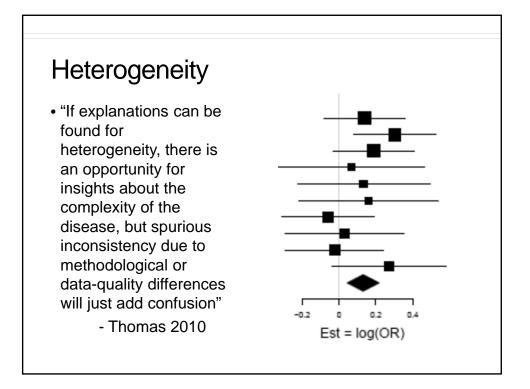


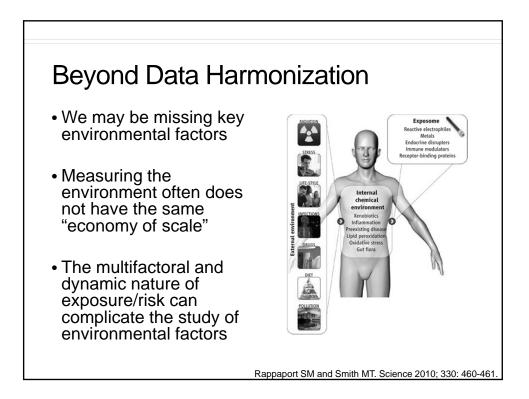


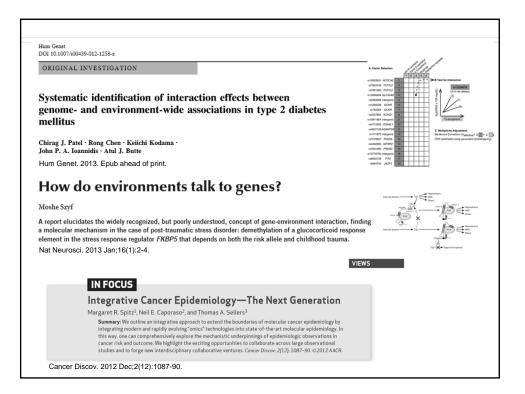


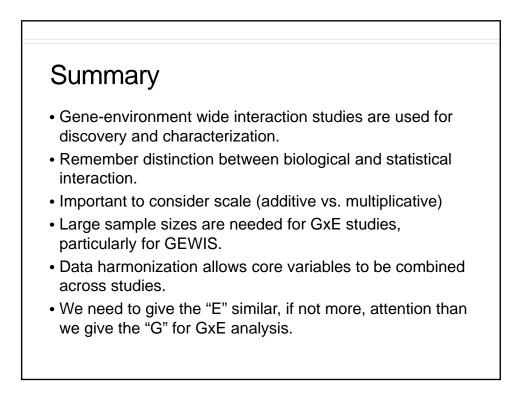










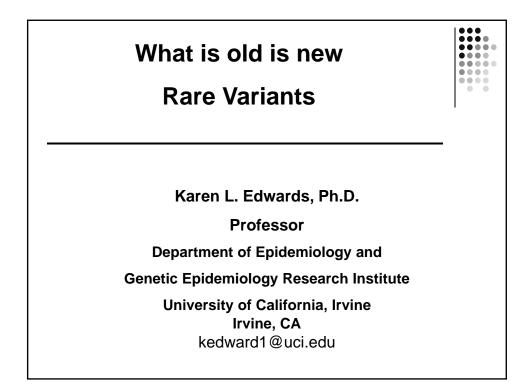


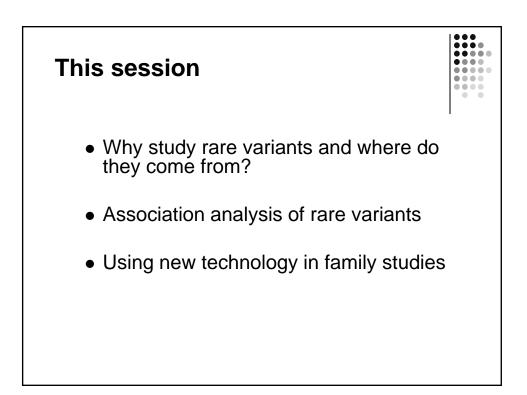
IN CLASS EXERCISE

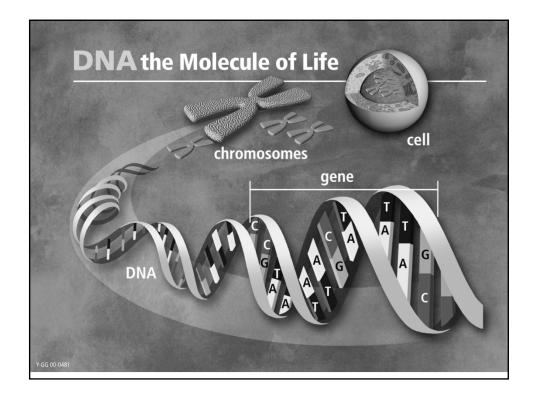
In Class Exercise:

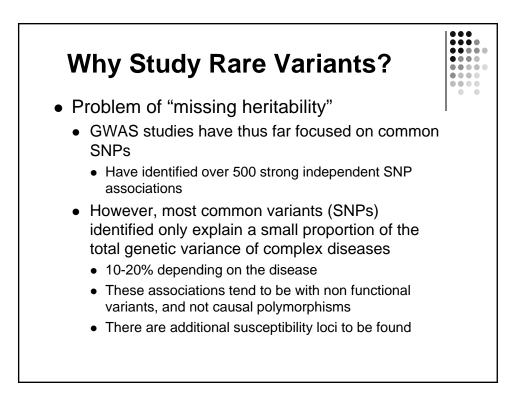
- You continue to work with collaborators on the FAKE study. They decide to follow-up on their candidate gene study with a genome-wide association study (GWAS). They were only able to afford genome-wide genotyping on a subset of the subjects, so they decide to reach out to their collaborators in the Meta-Analysis of Diet and Environment for Understanding Phenotypes (MADE-UP) consortia. The next page has "table 1" for the 8 studies in this consortia. Brainstorm with your group about the following:
 - What are potential issues/challenges that you might encounter in analyzing this data?
 - What are solutions might you use for some of these challenges?
 - What additional information would be most helpful for you to have?

	Study 1: Cohort		Study 2: Case-control		Study 3: Case-control		Study 4: Cohort		Study 5: Case-control		Study 6: Case-control		Study 7: Cohort		Study 8: Cohort	
	Case	Control	Case	Control	Case	Control	Case	Control	Case	Control	Case	Control	Case	Control	Case	Contro
N	931	1,435	1,410	1,666	2,031	2,044	69	238	465	465	5,450	5,475	1,064	1,202	1,381	1,303
% Female	32.0%	43.2%	32.1%	44.1%	19%	16.5%	34.8%	26.2%	26.7%	26.8%	56%	56%	60%	55%	0%	0%
Mean Age (yrs)	65.5	65.8	65.1	67.5	59.8	61.3	58.1	57.8	62.4	62.8	64.0	64.2	61.3	62.8	65.4	65.4
% Strawberry eaters	47.7%	45.8%	45%	40%	65.2%	56.2%	60.9%	65.2%	55.4%	55.6%	59.3%	52.1%	58.2%	59.0%	65.3%	66.4%
% Rhubarb eaters	21.6%	15.1%	25.6%	24.5%	36.7%	34.5%	12.1%	7.1%	14.1%	10.2%	NA	NA	28.4%	33.4%	14.9%	10.7%
Instrument for dietary assessment	FFQ	FFQ	FFQ	FFQ	5 Q survey	5 Q survey	FFQ	FFQ	24 hour recall	24 hour recall	5 Q survey	5 Q survey	FFQ	FFQ	24 hour recall	24 hour recall
Country	USA	USA	USA	USA	China	China	Japan	Japan	Germany	Germany	USA	USA	Canada	Canada	USA	USA
Genotyping Platform	Illumina 550K		Affymetrix 6.0		Illumina 550K		Illumina 1M		Illumina Omni Express		Illumina Omni Express		Affymetrix Axiom-CEU		Affymetrix Axiom-CEU	









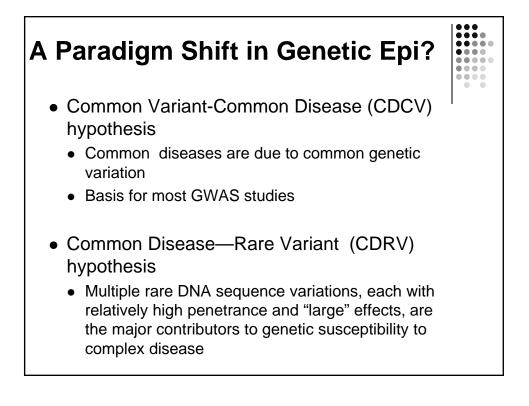
Nice thought piece on the rare versus common variant debate

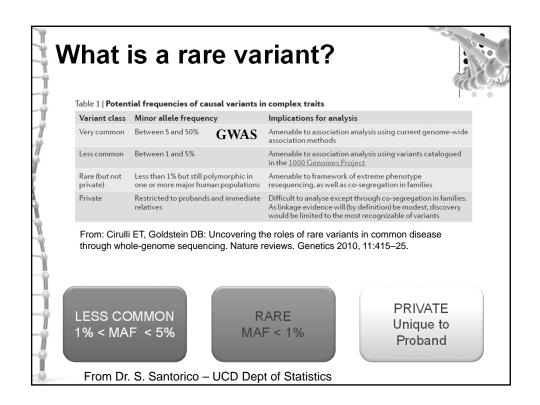
GENOME-WIDE ASSOCIATION STUDIES

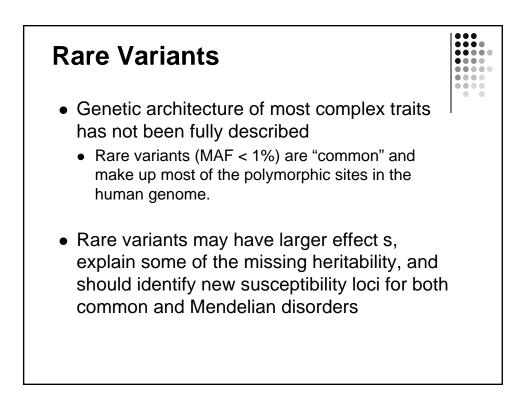
Rare and common variants: twenty arguments

Greg Gibson

Abstract | Genome-wide association studies have greatly improved our understanding of the genetic basis of disease risk. The fact that they tend not to identify more than a fraction of the specific causal loci has led to divergence of opinion over whether most of the variance is hidden as numerous rare variants of large effect or as common variants of very small effect. Here I review 20 arguments for and against each of these models of the genetic basis of complex traits and conclude that both classes of effect can be readily reconciled.



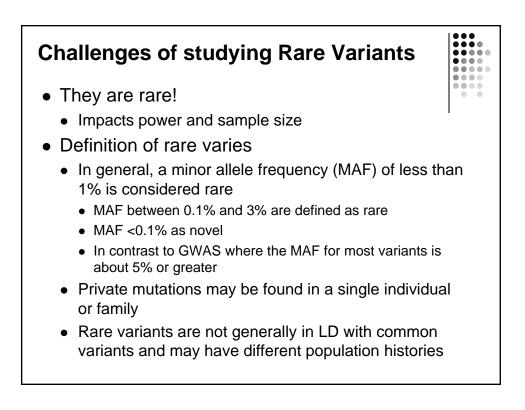


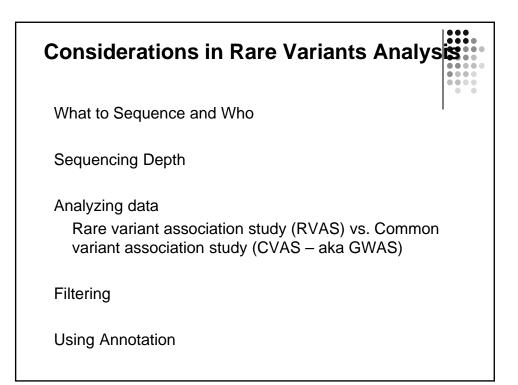


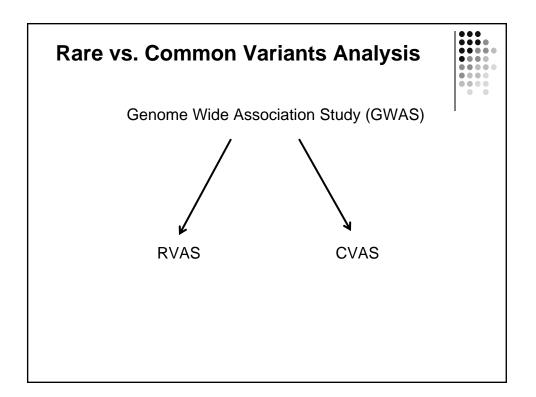
Significance of Rare Variants

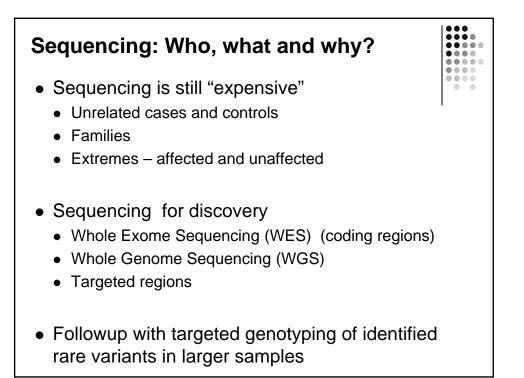
Discovering the genetic basis of common diseases, such as diabetes, heart disease, and schizophrenia, is a key goal in biomedicine. Genomic studies have revealed thousands of common genetic variants underlying disease, but these variants explain only a portion of the heritability. Rare variants are also likely to play an important role, but few examples are known thus far, and initial discovery efforts with small sample sizes have had only limited success.

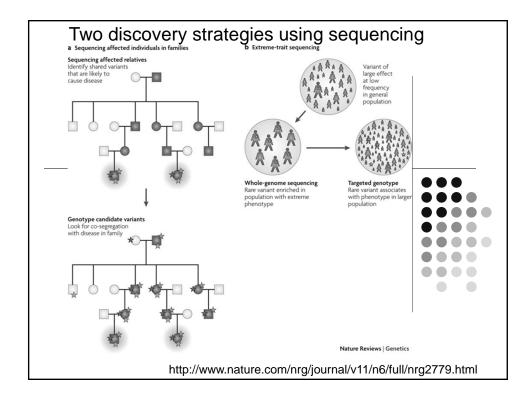
Zuk et al., www.pnas.org/cgi/doi/10.1073/pnas.1322563111

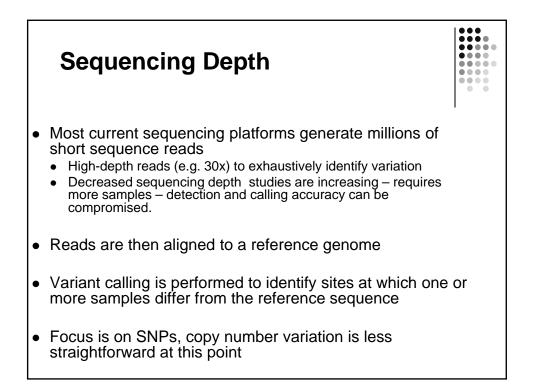


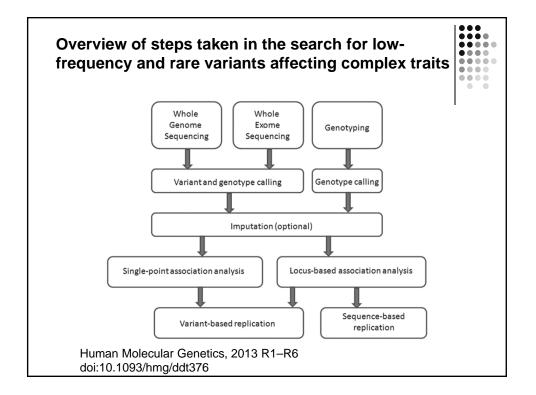


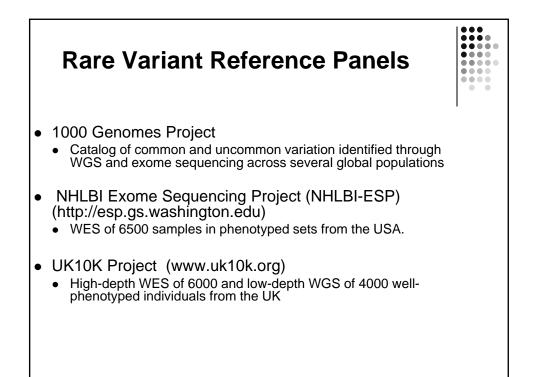


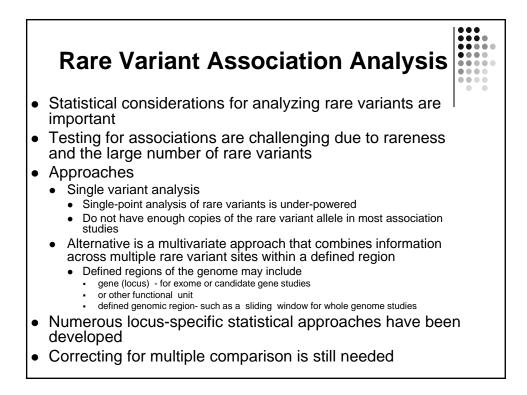






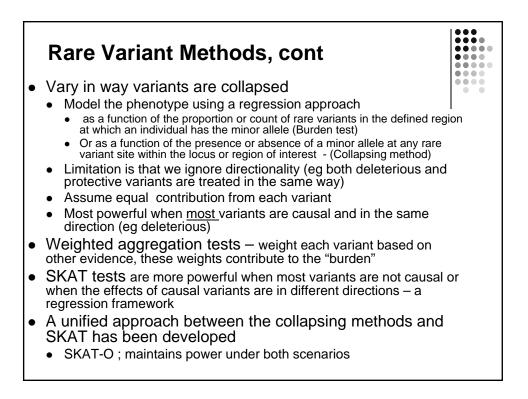


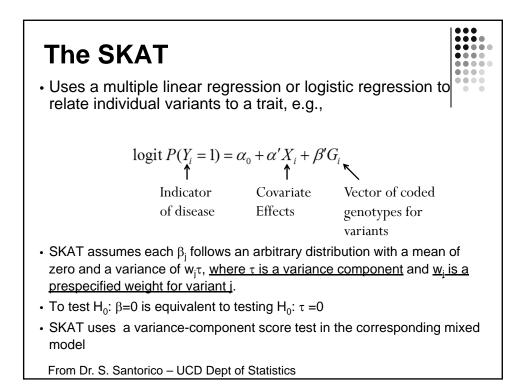


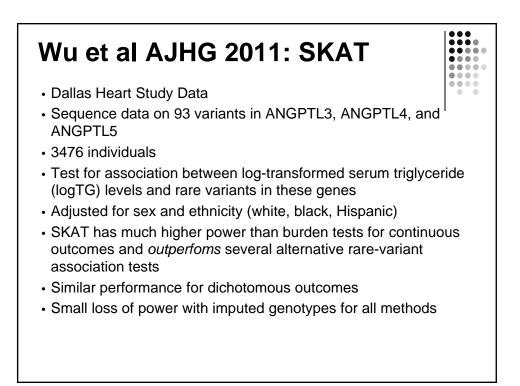


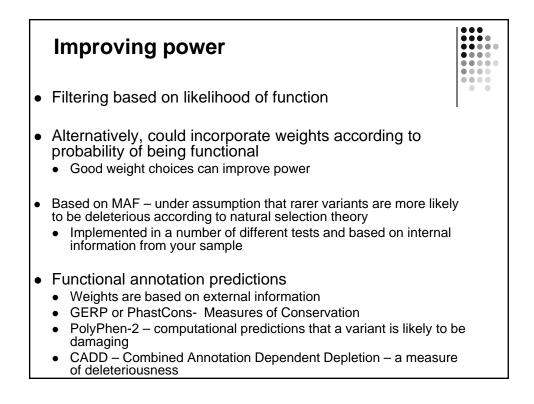
Statistical approaches for analysis of rare variants

- Many Approaches have been developed:
 - Collapsing and Aggregation Methods (Burden tests)
 - Non-Burden tests
- Collapsing methods/Burden tests
 - Aggregate information across multiple variants into a single quantity to evaluate cumulative effects (burden) of multiple variants in a defined genomic region of interest
 - Test for trait association with an accumulation of rare minor alleles
 - Vary in the way they collapse variants
 - Assume all collapsed variants are associated with the disease and variants can be either deleterious or protective
- Non-Burden tests
 - Multivariate tests that combine single-variant test statistics
 - Make no assumption about direction and magnitude of effect of each rare variant – more flexible and more powerful in some scenarios
 - Sequence Kernal Association Test (SKAT)









Or Zuka,b,1, Stephen F. Schaffnera, Kaitlin Samochaa,c,d, Ron Doa,e, Eliana Hechtera, Sekar Kathiresana,e,f,g, Mark J. Dalya,c, Benjamin M. Nealea,c, Shamil R. Sunyaeva,h, and Eric S. Landera,i,j,2

Genetic studies have revealed thousands of loci predisposing to hundreds of human diseases and traits, revealing important biological pathways and defining novel therapeutic hypotheses. However, the genes discovered to date typically explain less than half of the apparent heritability. Because efforts have largely focused on common genetic variants, one hypothesis is that much of the missing heritability is due to rare genetic variants. Studies of common variants are typically referred to as genomewide association studies, whereas studies of rare variants are often simply called sequencing studies. Because they are actually closely related, we use the terms common variant association study (CVAS) and rare variant association study (RVAS). In this paper, we outline the similarities and differences between RVAS and CVAS and describe a conceptual framework for the design of RVAS. We apply the framework to address key questions about the sample sizes needed to detect association, the relative merits of testing disruptive alleles vs. missense alleles, frequency thresholds for filtering alleles, the value of predictors of the functional impact of missense alleles, the potential utility of isolated populations, the value of gene-set analysis, and the utility of de novo mutations. The optimal design depends critically on the selection coefficient against deleterious alleles and thus varies across genes. The analysis shows that common variant and rare variant studies require similarly large sample collections. In particular, a well-powered RVAS should involve discovery sets with at least 25,000 cases, together with a substantial replication set.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1322563111/-/DCSupplemental.

