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Background

Background

High-profile hospital-acquired infections such as:
Methicillin-Resistant Staphylococcus Aureus (MRSA) and
Glycopeptide-Resistant Enterococcal (GRE)
Vancomycin-Resistant Enterococcal (VRE)

have a major impact on healthcare within the UK and
elsewhere.

In 2007, around 9,000 people were recorded as having died
with MRSA or C. diff bloodstream infections as the underlying
cause or a contributory factor. (2009 National Audit Office Report)

The estimated annual economic cost is over £1 billion per year
(UK, 2009). (2009 National Audit Office Report)

Despite enormous research attention, many basic questions
concerning the spread of such pathogens remain unanswered.

Our aim is to address a range of scientific questions via
analyses of detailed data sets taken from observational studies
on hospital wards.



Background (2)

For instance, we are interested in answering important questions
such as:

What value do specific control measures have?

How is risk of acquisition related to number of carriers?

What effects do different antibiotics play?

What enables some strains to spread more rapidly than
others?

Is it of material benefit to increase or decrease the
frequency of swab tests?

Methicillin-Resistant Staphylococcus Aureus

Staphylococcus aureus is a bacterium that lives harmlessly on
the skin and in the nose . . .

. . . of about a third of normal healthy people.

It can cause problems when it gets the opportunity to enter
the body.

This is likely to happen in people who are already unwell.

Transmission primarily via hands.

Most common cause of surgical infections.



Typical Data sets

Typical data sets contain anonymised ward - level information on:

Dates of patient admission
and discharge.

Dates of swab tests.

Outcomes of tests.

Patient location (e.g. in
isolation).

Details of antibiotics
administered.

Typing data.

Modelling



A Schematic Representation of a “Standard
Model”

Screening Tests

Taken at specific times for every single patient

If positive then the patient becomes isolated.

This routine swabbing procedure may be subject to imperfect
sensitivity, i.e. some false negative swabs are possible.

Therefore, we assume that the sensitivity of this swabbing
procedure is denoted by p.

100% specificity is assumed, although this assumption can be
relaxed.

Recall that:

Sensitivity: P(Test is positive|patient is colonised)

Specificity: P(Test is negative|patient is uncolonised)



Model Dynamics

While susceptible an individual receives indirect colonisation
pressure from each colonised and non-isolated (colonised and
isolated) according to a homogeneous Poisson process with
intensity β1 (β2).

We also allow for background transmission, i.e. an individual
receives colonisation pressure from outside the ward according
to homogeneous Poisson process with intensity β0.

Hint: If β1 > β2 may indicate that isolation is somewhat effective

Model Dynamics (cont.)

In other words, the total pressure that susceptible individual j is
subject to just prior to their colonisation is:

λj(t) = β0 + β1nC (t) + β2nI (t)

where nC is number of colonised individuals on ward, nI is number
of isolated individuals on ward.
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Note that this assumes linear colonisation pressure.



Model Dynamics (cont.)

Although this model shares some similarities with a standard SIR
model (e.g. contacts according to a Poisson process), on the other
hand it has some distinct differences:

Open population (individuals come in and out at any time);

An individual remains infectious until discharged;

In other words, it is an open-population SI-type epidemic model.

The Data

What is known?

Newly-identified and previously known MRSA-positive
patients were placed into contact precautions such as gown
and glove use as well as use of single rooms.

Dates of each ICU admission and discharge were obtained.

Dates on which contact precautions were initially applied were
also known.

What is (usually) not known?

If the patient was colonised on admission.

When the patient became colonised (if ever)?

How sensitive the swab test was?

Which apparently uncolonised patients were colonised?



Inference

Likelihood

Denote by

c = (c1, . . . , cnA
) (colonisations),

a = (a1, . . . , anA
) (admissions),

d = (d1, . . . , dnA
) (discharges),

q = (q1, . . . , qnA
) (isolations),

z = (z1, . . . , znA
) (swab tests outcomes),

t = (t1, . . . , tnA
), (swab tests times)

v = (v1, . . . , vnA
) (indicator variables for colonidation on

admission)



Likelihood (cont.)

In practice, the patients’ colonisation times are never observed and
therefore are assumed to be unknown.

The likelihood of the observed data y = (a,q,d, t, z, v) given the
model parameters θ = (β0, β1, β2, φ, p) is intractable.

Therefore, we consider the likelihood of the observed data
augmented with both the unobserved colonisation times (c).

Likelihood (cont.)

The augmented likelihood can be very easily derived up to
proportionality:

π(y, c|θ) ∝ φnP
C (1− φ)nW

A −nP
C

× pnTP (1− p)nFN

×
nC +nQ∏
j /∈K

β0 +
∑
i∈YC

j

β1 +
∑
i∈YQ

j

β2


× exp

{
−
∫ TE

TS

(β0St + β1CtSt + β2QtSt) dt

}
(1)



Likelihood (cont.)

The integral ∫ TE

TS

(β0St + β1CtSt + β2QtSt) dt

can be decomposed into three separate integrals . . .

. . . and then each of them can be calculated using a double
sum expression as we did in the standard SIR model (Lecture
2).

Nevertheless, due to the fact that in this context we have an
open population is slightly more tricky and we have to keep
track who is in the ward at any particular time t and whether
or not he/she is isolated.

Priors

We assign Gamma prior distributions for the colonisation rates, i.e.

β0 ∼ Ga(µβ0 , νβ0)

β1 ∼ Ga(µβ1 , νβ1)

β2 ∼ Ga(µβ2 , νβ2).

In addition, Beta priors are assumed for the importation probability
φ and test’s sensitivity p, i.e.

φ ∼ Beta(µφ, νφ)

p ∼ Beta(µp, νp).



Posterior Distribution

The joint posterior distribution of the unobserved colonisation
times and the model parameters is then derived as follows:

π(θ, c|y) ∝ π(θ)× π(y, c|θ) (2)

Within a Bayesian framework we wish to draw samples from (2).

Markov Chain Monte Carlo (MCMC) methodology allow us to do
that efficiently.

Full Conditional Distributions

It is easy to derive the full conditional distribution of the
parameters p and φ. The choice of the (conjugate) priors
enables us to derive these distributions in closed form:

φ|θ, y, c ∼ Beta(φnP
C + µφ, n

W
A − nP

C + νφ)

p|θ, y, c ∼ Beta(nTP + µp, nFN + νp)

On the other hand, the conditional distributions of the
transmission rates, β0, β1, β2 are not available in closed form
due to the product term in the likelihood which cannot be
factorised: ∏

j /∈K

(
βF

0 + βF
1 nj

C + βF
2 nj

Q

)

Likewise, the density of the conditional distribution of the
colonisation times is only available up to proportionality.



A sketch of the MCMC algorithm

1. Initialisation;

2. Update colonisation rates β0, β1, β2 using
Metropolis-Hastings algorithm;

3. Update colonisation times:
3.1 Propose to move a colonisation time;
3.2 Propose to add a colonisation time;
3.3 Propose to delete a (previously added)

colonisation time;

4. Update test’s sensitivity p using Gibbs sampler.

5. Update importation probability φ using Gibbs
sampler.

Note that by adding/deleting the dimension of the
parameter’s space changes

More (technical) details on the MCMC
algorithm

Updating the transmission rates is straightforward. For
example, we could use a random walk Metropolis.

Updating p and φ is also straightforward since their
conditional distributions are available explicitly and we can use
a Gibbs sampler.

On the other hand, extra care is required when updating the
colonisation times.



Updating the colonisation times

Move an existing colonization time. An existing colonization
time, denoted by ci , is chosen uniformly at random from the
set of the colonization time and a new colonisation time (c ′i )
is proposed;

Add a colonization time. An individual who belongs to the set
of the susceptibles is chosen uniformly at random and a
colonization time (c ′i ) is proposed;

Delete a (previously added) colonization time. A colonization
time (ci ) is chosen to be deleted from a discrete uniform
distribution over the individuals for which a colonization has
been previously added.

Note: All the moves above are of a Metropolis-Hastings type and
therefore, they are accepted with some probability.

Results – Exploring the output



Estimation Procedure

We fit the aforementioned “Standard Model” (assuming linear
colonisation pressure) to the data from an ICU by employing
the aforementioned MCMC algorithm.

Each MCMC algorithm runs long enough and then we end
having samples from the posterior distribution of the
parameters of interest (β0, β1, β2, p, φ) given the observed
data.

Fairly uninformative priors were used − typically Exponential
distributions with very low rate.

Results Within a Specific Ward

For illustration, we focus on the results obtained from the data
analysis in one ward.

First, we concentrate on the colonisation rates β1 and β2:
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Figure: Posterior densities of the colonisation rates



Results Within a Specific Ward

Apart from focusing on the posterior distribution of each of the
model’s parameters we can also look at a:

joint distribution or a

function of them.
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Summarising the Results

By borrowing techniques from “Meta-Analysis” we can derive a
pooled estimate for the log (β1/β2):



Making use of the (inferred)
colonisation times

Undetected cases and test delays

This methodology enable us to assess:

how much transmission is due to patients who are colonised
but not yet detected and
how much transmission is due to patients who are colonised
and have been tested, but who are awaiting results.

Define 1 CPD to be one Colonised-Patient-Day, i.e. each
colonised patient contributes one unit of CPD for each day
they remain colonised.

We are interested in the mean percentage of total CPD that
arose

from patients who were colonised but not yet detected (phidden)

from patients who were colonised and tested but awaiting test
results (pwait).



Estimating the (true) prevalence

These methods allow us to estimate the true underlying
prevalence, i.e. the proportion of colonised individuals out of
the total number of individuals in the ward over time . . .

. . . taking into account the undetected individuals.

Therefore,

It is of interest to compare the prevalence which is computed
using the observed data only (i.e. detected patients) with the
model’s predictions.

For each ward the average monthly prevalence and the
average monthly admission prevalence has been computed.

Alternative Models



A Semi-Parametric Model

We propose that the total pressure that susceptible individual
j is subject to just prior to their colonisation is given as
follows:

λj(t) =


β0, if nC+Q(t) ∈ [a, b]
β1, if nC+Q(t) ∈ [b + 1, c]
β2, if nC+Q(t) ∈ [c + 1,∞]

where b > a and c > b + 1 are fixed and known.

Note that we don’t make any assumption regarding the
relationship of β0, β1 and β2. For example, we don’t imply
a-priori the constraint that β2 > β1.

A Semi-Parametric Model (cont).

In order to fit such a model to our data, we should first
choose values for the different levels of colonisation pressure:
a, b and c .

An MCMC algorithm can employed in order to draw samples
from the posterior distribution of the parameters β0, β1 and
β2.

Extra care is required when calculating the likelihood and
especially the integrals.

Note that for this particular model, we do not make any
distinction between colonised and isolated or colonised but
non-isolated.



A Non-Linear Model

We consider a simpler model in which the colonisation pressure
received by a susceptible individual does not increase with the
number of colonised individuals.

Specifically, the total pressure that susceptible individual j is
subject to just prior to their colonisation is:

λ(t) = β0 + β11{nC(t)≥1} + β21{nQ(t)≥1},

where nC(t) is number of colonised individuals on ward, nQ(t) is
number of isolated and colonised individuals on ward.

Extra care is required when calculating the integrals which are
involved in the likelihood:∫

St1{nC(t)≥1} dt

∫
St1{nQ(t)≥1} dt

A Non-Linear Model (2)

An alternative non-linear model

λj(t) = β0 + β1 · (C (t) ∧ δ)

where δ is assumed to be unknown and needs to be estimated.

If δ is fixed and known then it is much harder to implement
the MCMC algorithm; especially the calculation of the
integrals.

If δ unknown the estimation is even harder; not just
technically, but a lot of data are required to estimate δ and
the other parameters accurately.



Conclusions − Remarks

Conclusions

Even in complicated models, the principles to make inference
using Markov Chain Monte Carlo methods are the same . . .

. . . although, implementation-wise, it may be more difficult.

We should keep in mind that although we can fit any model
we like to the data . . .

. . . it may be difficult to accurately estimate all the
parameters and this will transparent from the MCMC output!


