

Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology and Immunology KU Leuven, Belgium.

Introduction to molecular epidemiology and infectious disease phylodynamics

Philippe Lemey¹, Guy Baele¹ and Marc Suchard²

- 1.Rega Institute, Department of Microbiology and Immunology, K.U. Leuven, Belgium.
- 2.Departments of Biomathematics and Human Genetics, David Geffen School of Medicine at UCLA. Department of Biostatistics, UCLA School of Public Health

SISMID, July 20-22, 2016

This course (SISMID module 13)

- Wednesday, July 20
 - Introduction
 - Alignment, substitution models and phylogenetic inference
- Thursday, July 21
 - ➡ Phylogenetic inference practical
 - Bayesian phylogenetics
 - ➡ Molecular clocks and model testing
 - BEAST practical

http://rega.kuleuven.be/cev/ecv/

- Friday, July 22
 - Viral epidemiology and the coalescent
 - ➡ BEAST practical
 - Phylogeography
 - BEAST practical
 - Bonus
 - ➡ Phylo-Alignment
 - Recombination
 - Robust Counting
 - (We are here to cater for your needs!)

Molecular evolution and phylogenetics

- biological sequences (DNA, RNA, protein) contain information about the processes and events that formed them
- this information is often scrambled, fragmentary, hidden, or lost completely
- our aim is to use mathematical models to recover and decipher this information
- The central concept is a phylogeny: a diagram depicting the ancestral relationships among characters or genetic sequences

HIV-1 (UK) ATC---TGCTAAAGCATATGACACAGAGGTACATAATGTTT HIV-1 (USA) ATCGGATGCTAGAGCTTATGATACAGAGGTACA---TGTTT

Information in (viral) molecular sequences

- Genetic distances among strains
- Phylogeny
 - ➡ subtyping/classification
 - ⇒ identification of transmission clusters
 - ➡ association with risk factors / traits
 - ➡ forensics

- Dates of historical events
- Evolutionary processes
 - ➡ recombination
 - ⇒ natural selection
- Epidemiological processes
 - transmission rates
 - → movement among locations
- Phenotypic trait evolution?

HIV-1 (UK) ATC---TGCTAAAGCATATGACACAGAGGTACATAATGTTT HIV-1 (USA) ATCGGATGCTAGAGCTTATGATACAGAGGTACA---TGTTT

Genetic distances

SIVcpz	атесстеса	Сассетсает	TCTAACAGGG	сса а а а тта с	атссстссса
HIV-1	ATGGGTGCGA	GAGCGTCAGT	ATTAAGCGGG	GGAGAATTAG	ATCGATGGGA
SIVcpz	AAAA <mark>G</mark> TTCGG	CTTAGGCCCG	GGGGAA <mark>GA</mark> AA	AA <mark>g</mark> atata <mark>tg</mark>	ATGAAACATT
HIV-1	AAAA <mark>A</mark> TTCGG	TTAAGGCCAG	GGGGAA <mark>AG</mark> AA	Aaaatataaa	TTAAAACATA
SIVcpz	TAGTATGGGC	AAGCAGGGAG	CT <mark>G</mark> GAA <mark>A</mark> GAT	TCGCA <mark>TG</mark> TGA	CCCCGGGCTA
HIV-1	TAGTATGGGC	AAGCAGGGAG	CT <mark>A</mark> GAACGAT	TCGCA <mark>GT</mark> TAA	TCCTGGCCTG
SIVcpz	ATGGAAAGTA	AGGAAGGATG	TACTAAATTG	TTACAACAAT	TA <mark>G</mark> AGCCAGC
HIV-1	TTAGAAACAT	CAGAAGGCTG	TAGACAAATA	CTGGGACAGC	TACAACCATC
SIVcpz	TCTCAAAACA	GG <mark>C</mark> TCAGAAG	GACTGCGGTC	CTTGTTTAAC	AC <mark>TCTG</mark> GCAG
HIV-1	CCTTCAGACA	GGATCAGAAG	AACTTAGATC	ATTATATAAT	AC <mark>AGTA</mark> GCAA
SIVcpz	TACTGTGGTG	CATACATAGT	GACATCACTG	TA <mark>G</mark> AAGACAC	ACAGAAAGCT
HIV-1	CCCTCTATTG	TGTGCATCAA	AGGATAGAGA	TAAAAGACAC	CAAGGAAGCT
SIVcpz	CTAGAACAGC	TA <mark>A</mark> AG <mark>CG</mark> GCA	TCATGGAGAA	CAACAGAGCA	AA <mark>ACT</mark> GAAA <mark>G</mark>
HIV-1	TTAGACAAGA	TAGAGGAA	GAGCA	AAACAAAAGT	AAGAAAA
SIVcpz	TAACTCAGGA	AGC <mark>CGTGA</mark> AG	GGGGAGCCAG	TCAAGGCGCT	AG <mark>TGCCTCTG</mark>
HIV-1	AAGCACAGCA	AGCAG	CAGCTGACA-	-CAGGACAC-	AGC <mark>AG</mark> C
SIVcpz HIV-1	CTGGCATTAG CAGGTCAG	TGGAAATTAC CCAAAATTAC			

chimpanzee SIV vs HIV-1 envelope gene

Does this matter?

Estimated genetic distances between SIVcpz and HIVlai, under different substitution models:

Observed % mismatches	= 0.406
JC (Jukes-Cantor)	= 0.586
HKY (Hasegawa-Kishino-Yano)	= 0.611
GTR (General Time Reversible)	= 0.620
GTR + gamma	= 1.017

α
1.37
1.05
0.47
0.44
0.40
0.17
0.16

Phylogenetic reconstruction

- **CLUSTERING APPROACHES:** These begin with a genetic distance between each pair of sequences. A 'clustering algorithm' then transforms the genetic distances into a tree.
 - e.g. UPGMA, Neighbour-Joining
 - Simple, faster.
 - No measure of how good the estimated tree is (non-statistical)
- **OPTIMALITY METHODS**: These define a score for each possible tree. 'Search algorithms' are then used to find the tree with the highest score.
 - e.g. Parsimony, Maximum Likelihood (& Bayesian Inference)
 - More complex, slower. Search may not locate the 'best' tree.
 - Quality of each tree can be directly compared (statistical)

Phylogenetic reconstruction

• For n taxa, there are:

(2n-3)!/[(2ⁿ⁻²)*(n-2)!]

rooted, binary trees

# taxa	# trees		
4	15	enumerable by hand	
56	105 945	enumerable by hand on a rainy day enumerable by computer	
7	10395	still searchable very quickly on computer	
8	135135	a bit more than the number of hairs on your head	
9 10	34459425	≈ upper limit for exhaustive searching; about the number	
		of possible combinations of numbers in the National Lottery	
20	8.20 × 10 ²¹	≈ upper limit for branch-and-bound searching	
48	3.21 × 10 ⁷⁰	≈ the number of particles in the universe	
136	2.11 × 10 ²⁶⁷	et al., 1991)	

Rapidly evolving pathogens are unique in that their ecological and evolutionary dynamics occur on the same timescale and can therefore potentially interact.

Pybus & Rambaut (2009) Nat. Rev. Genetics 10:540-50

Fundamental Phylodynamic Questions

- How genetically diverse is a pathogen population?
- How do pathogen genomes change through time?
- How does pathogen genetic diversity vary through time and space?
- What are the effects of pathogen genetic diversity on virulence, transmissibility, resistance to treatment, etc.

Specific questions

- When did a epidemic start?
- Where did it come from?
- How fast is it transmitting?
- In what direction is it spreading?
- Are hosts X, Y & Z epidemiologically linked?
- Of how many strains is the epidemic composed?
- Are strains associated with particular transmission routes?
- What adaptations has it accrued?

Fundamental Phylodynamic Questions

- How genetically diverse is a pathogen population?
- How do pathogen genomes change through time?
- How does pathogen genetic diversity vary through time and space?
- What processes and/or events determine these changes?
- What are the effects of pathogen genetic diversity on virulence, transmissibility, resistance to treatment, etc.

Measuring sequence diversity

• Are you studying an inter-host or intra-host population?

For the former, each sequence represents a different infection. For the latter, each sequence represents a different virion within an infected individual. The measure of diversity must be interpreted accordingly.

- How do we deal with intra-host diversity when studying the inter-host level?
- Intra-host diversity is low for most acute infections (e.g. influenza) but can be high for chronic infections (e.g. HIV).

Fundamental Phylodynamic Questions

- How genetically diverse is a pathogen population?
- How do pathogen genomes change through time?
- How does pathogen genetic diversity vary through time and space?
- What processes and/or events determine these changes?
- What are the effects of pathogen genetic diversity on virulence, transmissibility, resistance to treatment, etc.

'Phylodynamic' Data

- Pathogen genomes are sampled at different points in time and from different locations.
- Hence transmission history is estimated on a real time-scale (e.g. years).

HIV: the ultimate evolver

'Phylodynamic' Data

- Pathogen genomes are sampled at different points in time and from different locations.
- Hence transmission history is estimated on a real time-scale (e.g. years).
- The ability to genetically distinguish sequences sampled at different times depends on:

(i) the rate of evolution of the gene/ genome that is obtained

(ii) the length of time between samples

(iii) the sequence length of the gene/ genome that is obtained

Fundamental Phylodynamic Questions

- How genetically diverse is a pathogen population?
- How do pathogen genomes change through time?
- How does pathogen genetic diversity vary through time and space?
- What processes and/or events determine these changes?
- What are the effects of pathogen genetic diversity on virulence, transmissibility, resistance to treatment, etc.

Evolutionary processes: natural selection

- "the preservation of favourable variations and the rejection of injurious variations, i call natural selection. variations neither useful nor injurious would not be affected by natural selection, and would be left a fluctuating element"
 - darwin, the origin of species

Evolutionary processes: natural selection

 Immune escape (antibodies*, T-cells*, innate immune responses)

- Antiviral drug resistance
- Vaccine escape mutations
- Cell & tissue tropism

• Inter-host viral transmission (i.e. for viral emergence)

Bayesian Evolutionary Analysis Sampling Trees

