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This course (SISMID module 13)
๏ Wednesday, July 20 

➡ Introduction 
➡ Alignment, substitution models and 

phylogenetic inference 

๏ Thursday, July 21 
➡ Phylogenetic inference practical 
➡ Bayesian phylogenetics 
➡ Molecular clocks and model testing 
➡ BEAST practical

๏ Friday, July 22 
➡ Viral epidemiology and the 

coalescent 
➡ BEAST practical 
➡ Phylogeography 
➡ BEAST practical

๏ Bonus 
➡ Phylo-Alignment 
➡ Recombination 
➡ Robust Counting

(We are here to cater for 
your needs!)

http://rega.kuleuven.be/cev/ecv/



Molecular evolution and phylogenetics

HIV-1 (UK)  ATC---TGCTAAAGCATATGACACAGAGGTACATAATGTTT
HIV-1 (USA) ATCGGATGCTAGAGCTTATGATACAGAGGTACA---TGTTT

๏ biological sequences (DNA, RNA, 
protein) contain information about the 
processes and events that formed them 

๏ this information is often scrambled, 
fragmentary, hidden, or lost completely 

๏ our aim is to use mathematical models 
to recover and decipher this information 

๏ The central concept is a phylogeny: a 
diagram depicting the ancestral relationships 
among characters or genetic sequences

Phylogenetics

๏ Darwin, 1837 ๏ Haeckel, 1866



๏ Darwin, 1837

Genome distance tree with lateral gene transfers

Phylogenetics

Information in (viral) molecular sequences

HIV-1 (UK)  ATC---TGCTAAAGCATATGACACAGAGGTACATAATGTTT
HIV-1 (USA) ATCGGATGCTAGAGCTTATGATACAGAGGTACA---TGTTT

๏ Genetic distances among strains ๏ Dates of historical events 
๏ Evolutionary processes 

➡ recombination 
➡ natural selection 

๏ Epidemiological processes 
➡ transmission rates 
➡ movement among locations 

๏ Phenotypic trait evolution? 

๏ Phylogeny 
➡ subtyping/classification 
➡ identification of transmission clusters 
➡ association with risk factors / traits 
➡ forensics



Our goal

ALIGNMENT

MOLECULAR SEQUENCES
Alignment Methods BIOINFORMATICS

EVOLUTIONARY TREE 
(time scale = genetic distance)

Sequence Evolution Models 
Phylogenetic Methods PHYLOGENETICS

EVOLUTIONARY TREE 
(time scale = years)

Molecular Clock Models

EPIDEMIOLOGY

Phylodynamic Models POPULATION GENETICS

PHYLOGENETICS
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Progressive alignment

sequences
pairwise alignment

sequence-group alignment

group-group alignment

final multiple alignment

guide tree

http://www.kuleuven.be/aidslab/phylogenybook/Table3.1.html

Genetic distances

SIVcpz    ATGGGTGCGA GAGCGTCAGT TCTAACAGGG GGAAAATTAG ATCGCTGGGA
HIV-1     ATGGGTGCGA GAGCGTCAGT ATTAAGCGGG GGAGAATTAG ATCGATGGGA
SIVcpz    AAAAGTTCGG CTTAGGCCCG GGGGAAGAAA AAGATATATG ATGAAACATT
HIV-1     AAAAATTCGG TTAAGGCCAG GGGGAAAGAA AAAATATAAA TTAAAACATA
SIVcpz    TAGTATGGGC AAGCAGGGAG CTGGAAAGAT TCGCATGTGA CCCCGGGCTA
HIV-1     TAGTATGGGC AAGCAGGGAG CTAGAACGAT TCGCAGTTAA TCCTGGCCTG
SIVcpz    ATGGAAAGTA AGGAAGGATG TACTAAATTG TTACAACAAT TAGAGCCAGC
HIV-1     TTAGAAACAT CAGAAGGCTG TAGACAAATA CTGGGACAGC TACAACCATC
SIVcpz    TCTCAAAACA GGCTCAGAAG GACTGCGGTC CTTGTTTAAC ACTCTGGCAG
HIV-1     CCTTCAGACA GGATCAGAAG AACTTAGATC ATTATATAAT ACAGTAGCAA
SIVcpz    TACTGTGGTG CATACATAGT GACATCACTG TAGAAGACAC ACAGAAAGCT
HIV-1     CCCTCTATTG TGTGCATCAA AGGATAGAGA TAAAAGACAC CAAGGAAGCT
SIVcpz    CTAGAACAGC TAAAGCGGCA TCATGGAGAA CAACAGAGCA AAACTGAAAG
HIV-1     TTAGACAAGA TAGAG--GAA -----GAGCA AAACAAAAGT AA---GAAAA
SIVcpz    TAACTCAGGA AGCCGTGAAG GGGGAGCCAG TCAAGGCGCT AGTGCCTCTG
HIV-1     AAGCACAGCA AGC-----AG CAGCTGACA- -CAGGACAC- AG--CAGC--
SIVcpz    CTGGCATTAG TGGAAATTAC
HIV-1     CAGG--TCAG CCAAAATTAC

chimpanzee SIV vs HIV-1 envelope gene



• some point substitutions are 
more likely to occur than others: 
transitions are more likely than 
transversions  
‣ transitions:  

purine↔purine or  
pyrimidine↔pyrimidine  

‣ transversions:  
purine↔pyrimidine

A↔G C↔T

A↔C A↔T
G↔C G↔T

Not all mutations are equally likely

A C G T
A
C
G
T

Transitions
Transversions

Unambiguous changes on most 
parsimonious tree of Ciliate SSUrDNA

Substitution models
๏ During evolution, ‘multiple hits’ can occur at a single position: the 

evolutionary distance is almost always larger than the dissimilarity (% nt 
or aa divergence)
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Nucleotide substitution models

1. Base frequencies are equal and 
all substitutions are equally likely

(Jukes-Cantor)

2. Base frequencies are equal but transitions and 
transversions occur at different rates

(Kimura 2-parameter) 

3. Unequal base frequencies and transitions and
transversions occur at different rates

(Hasegawa-Kishino-Yano)

4. Unequal base frequencies and all 
substitution types occur at different rates

(General Reversible Model)

Simplest 
(few parameters)

Most complex 
(many parameters)
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(a=b=c=d=e=f)

(a=c=d=f, b=e)

(a=c=d=f, b=e)

(a, b, c, d, e, f)

Does this matter?

Gene    α 
Prolactin   1.37 
Albumin   1.05 
C-myc    0.47 
Ctyochrome β (mtDNA) 0.44 
Insulin    0.40 
D-loop (mtDNA)  0.17 
12S rRNA (mtDNA)  0.16

r

pdf(r)

= 0.5

= 2.0

= 10.0

frequent among-site rate variation

little among-site 
rate variation

Observed % mismatches = 0.406
JC (Jukes-Cantor) = 0.586
HKY (Hasegawa-Kishino-Yano) = 0.611
GTR (General Time Reversible) = 0.620
GTR + gamma                     = 1.017

Estimated genetic distances between SIVcpz and HIVlai, 
under different substitution models:



Phylogenetic reconstruction

ALIGNMENT

MOLECULAR SEQUENCES
Alignment Methods BIOINFORMATICS

EVOLUTIONARY TREE 
(time scale = genetic distance)

Sequence Evolution Models 
Phylogenetic Methods PHYLOGENETICS

EVOLUTIONARY TREE 
(time scale = years)

Molecular Clock Models

EPIDEMIOLOGY

Phylodynamic Models POPULATION GENETICS

PHYLOGENETICS

monophyletic

What is a tree?

root



Tree terminology: unrooted and rooted
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• CLUSTERING APPROACHES: These begin with a genetic distance between each 
pair of sequences. A ‘clustering algorithm’ then transforms the genetic distances into 
a tree. 

• e.g. UPGMA, Neighbour-Joining 

• Simple, faster. 

• No measure of how good the estimated tree is (non-statistical) 

• OPTIMALITY METHODS: These define a score for each possible tree. ‘Search 
algorithms’ are then used to find the tree with the highest score.  

• e.g. Parsimony, Maximum Likelihood (& Bayesian Inference) 

• More complex, slower. Search may not locate the ‘best’ tree. 

• Quality of each tree can be directly compared (statistical)

Phylogenetic reconstruction

Phylogenetic reconstruction

enumerable by hand 
enumerable by hand on a rainy day 
enumerable by computer 
still searchable very quickly on computer 
a bit more than the number of hairs on your head 
population of Glasgow 
≈ upper limit for exhaustive searching; about the number  
 of possible combinations of numbers in the National Lottery 
≈ upper limit for branch-and-bound searching 
≈ the number of particles in the universe 
=number of trees to choose from in the “Out of Africa” data (Vigilant 
et al., 1991) 

15 
105 
945 
10395 
135135 
2027025 
34459425 

8.20 × 1021  
3.21 × 1070  
2.11 × 10267 

4 
5 
6 
7 
8 
9 
10 
  
20 
48 
136 

๏ For n taxa, there are: 
(2n-3)!/[(2n-2)*(n-2)!]  
rooted, binary trees

# taxa # trees



Phylogenetic inference: books

•Yang Z. (2003). Computational Molecular Evolution.  
Oxford University Press 

•Nei M & Kumar S. (2000). Molecular Evolution and 
Phylogenetics. Oxford University Press. 

•Page RDM & Holmes EC. (1998). Molecular 
Evolution: A Phylogenetic Approach. Blackwell 
Science Ltd, Oxford. 

•Yang Z (2014) Molecular Evolution: A Statistical 
Approach 

•Bayesian Phylogenetics: Methods, Algorithms, and 
Applications. Chen M-H, Kuo L. and Lewis PO. 
Chapman & Hall/CRC. 

•Lemey P, Salemi M & Vandamme A-M. (2009). The 
Phylogenetic Handbook, 2nd Edition. Cambridge 
University Press. 

•Felsenstein J. (2003). Inferring phylogenies.  Sinauer 
Associates

Computer Software:   http://evolution.genetics.washington.edu/phylip/software.html

PhylodynamicsTM
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Measles

Influenza

GENETIC DIVERSITY 
(phylogenetics & 

molecular evolution)

EPIDEMIC DYNAMICS 
(mathematical epidemiology)

NATURAL SELECTION 
(population genetics & 

immunology)



Pybus & Rambaut (2009) Nat. Rev. Genetics 10:540-50

“
”

Unifying principle

Fundamental Phylodynamic Questions

• How genetically diverse is a pathogen population? 
• How do pathogen genomes change through time? 
• How does pathogen genetic diversity vary through time and 

space? 
• What are the effects of pathogen genetic diversity on virulence, 

transmissibility, resistance to treatment, etc.



Specific questions

• When did a epidemic start? 
• Where did it come from?  
• How fast is it transmitting? 
• In what direction is it spreading? 
• Are hosts X, Y & Z epidemiologically linked? 
• Of how many strains is the epidemic composed? 
• Are strains associated with particular transmission routes? 
• What adaptations has it accrued?

Fundamental Phylodynamic Questions

• How genetically diverse is a pathogen population? 
• How do pathogen genomes change through time? 
• How does pathogen genetic diversity vary through time and 

space? 
• What processes and/or events determine these changes? 
• What are the effects of pathogen genetic diversity on virulence, 

transmissibility, resistance to treatment, etc.



Measuring sequence diversity

• Not as straightforward as you might think... 
• Are your pathogen sequences all sampled at the same time? 

If sequences not sampled over time it’s difficult to separate the effects of 
diversity and divergence on genetic diversity. 

• Are you measuring sample diversity or population diversity? 
The former is simply a summary of your data, the latter is an inference 
about the population you have sampled.  Sequences should be sampled 
randomly to estimate the latter.

Weak/No Immune Selection  Continual Immune 
Selection
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Measuring sequence diversity

• Are you studying an inter-host or intra-host population? 
For the former, each sequence represents a different infection. 
For the latter, each  sequence represents a different virion within 
an infected individual. The measure of diversity must be 
interpreted accordingly. 

• How do we deal with intra-host diversity when studying the 
inter-host level? 

• Intra-host diversity is low for most acute infections (e.g. 
influenza) but can be high for chronic infections (e.g. HIV).
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The changing face of HIV and AIDS

British Medical Bulletin 2001;58

Fig. 1 A comparison of evolutionary distances of HIV-1 envelope sequences encoding V2-C5 and influenza HA1 domain
of the HA gene through phylogenetic analysis. All panels show maximum likelihood trees using a REV model allowing
for rate variation at different sites, following  the strategy described in Korber et al14. The scale bar is the same in a–f for
comparisons. (a) Tree based on 20 HA1 domain sequences of A/Sydney-like viruses circulating in Canada during the first
half of the 1997–1998 flu season (Osiowy CK, unpublished observations. Accession numbers: AF087700-AF087708 and
AF096306-AF096316). (b) Tree based on 96 HA1 domain sequences of human influenza H3N2 viruses. The tree contains
all sequences from the Influenza Sequence Database, Los Alamos National Laboratory131, with an isolation year of 1996.
(c) Tree based on 9 V2-C5 sequences from a single asymptomatic individual collected at one time point 73 months post-
seroconversion – this was a subtype B infection, and is typical of intrapatient diversity7. (d) Tree based on HIV-1 subtype
CRF03_AB V2-C5 sequences from 26 individuals from Kaliningrad, representing a unique situation where a recombinant
form of the virus spread explosively through a population of i.v. drug users, and all viruses were very closely related to a
single common ancestor65. These samples were collected during 1997–1998, within a year of the introduction of the
strain into the population. (e) Tree based on HIV-1 V2-C5 env sequences from a subtype B epidemic, sampled from 23
individuals residing in Amsterdam in 1990–1991117. (f) Tree based on HIV-1 V2-C5 sequences sampled in 1997 from 193
individuals residing in the Democratic Republic of the Congo (DRC), a remarkably diverse set53.
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Scale bar represents a genetic distance of 0.1 substitutions per site. 
Korber et al. 2001. British Medical Bulletin 58:19-42

Example: diversity of HIV-1 versus influenza

Weak/No Immune Selection  Continual Immune 
Selection

Idealised
Phylogeny 

Shapes 

Population dynamics

Population growth

Population decline

Spatial dynamics 

Strong spatial structure 

A

B

C

A

B

C

C

B

A

Weak spatial structure 
A

A

A

B

B

B

C

C

C

Examples Human influenza A 

within-host HIV 

among-host HIV 

among-host HCV 

Measles

Rabies, Dengue 

Phylodynamic Patterns



• How genetically diverse is a pathogen population? 
• How do pathogen genomes change through time? 
• How does pathogen genetic diversity vary through time and 

space? 
• What processes and/or events determine these changes? 
• What are the effects of pathogen genetic diversity on virulence, 

transmissibility, resistance to treatment, etc.

Fundamental Phylodynamic Questions

• Pathogen genomes are sampled at 
different points in time and from 
different locations. 

• Hence transmission history is 
estimated on a real time-scale (e.g. 
years).

time

2000

1980

1990

‘Phylodynamic’ Data



Molecular clocks
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HIV: the ultimate evolver

measurable evolution of HIV-1

INTRA-HOST EVOLUTION INTER-HOST EVOLUTION
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Cercopithecus aethiops

Cercopithecus cephus

Cercopithecus l’hoesti

Cercopithecus neglectus

Cercopithecus albogularis

Cercopithecus nictitans

Mandrillus leucophaeus

Mandrillus sphinx

Cercocebus torquatus

Colobus guereza

Pan troglodytes

Cercocebus atys

The origin of HIV-1
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R E V I EW S

with recombination among currently recognized types
and more widespread sampling. The mean genetic
divergence of subtype A, B, C and D genomes isolated
in 1999 (9.8%, 10.0%, 7.9% and 8.5%, respectively)
each equal that of the whole group M epidemic in 1985
(8.8%). The genetic divergence of the entire group M
has increased to 14.9% in the same period (data from
the HIV Database; see online links box). Although
some of this increase can be ascribed to increased sam-
pling, the substitution rate that this implies (~0.002
substitutions per site, per year) lies within the range cal-
culated previously for the viral env (envelope) and gag
(group-specific antigen) genes (0.0028 and 0.0019,
respectively)17.

Emergence of the human diseases. By what mechanisms
did HIV jump to humans? Although several theories
have been proposed, there is little evidence to suggest
that anything other than entirely ‘natural’ processes are
responsible for its emergence2. In particular, given the
frequency with which primate bushmeat that is sold in
African markets is infected with SIV24, it is easy to envis-
age how individuals that are involved in the slaughter of
animals or the preparation of food could become
infected. Indeed, it is likely that SIV jumped into
humans many times before the transmission pathways
leading to the current AIDS epidemics were established,
and that these incipient infections occurred in isolated
rural communities and soon burnt out because of a lack
of susceptible hosts.

It is also important to explain why HIV-1 forms sub-
types, such that virus sequences tend to fall into distinct
clusters with approximately equal genetic distances
between them (10–30%, depending on the genes com-
pared). These clusters are most likely to be produced by
a combination of FOUNDER EFFECTS and incomplete sam-
pling. In particular, intensive viral collection from West
and Central Africa has now uncovered strains that fall
between the previously described subtypes25. This indi-
cates that these parts of Africa were the source of the
strains that ignited successful epidemics in other locali-
ties, in Africa and beyond, and that the subtype struc-
ture of the HIV-1 tree to a large extent reflects sampling
bias26. For example, most HIV-1 strains that were iso-
lated in North America and Europe fall into subtype B,
and their relative similarity reflects their recent common
origin from a founder in, or from, Africa. Under the
evolutionary timescale proposed for group M, the indi-
vidual subtypes would have diversified in the last 40
years or so17,27, although there is debate as to whether
subtype B originated in the 1960s or the 1970s28.

The phylogenesis of HIV-1 is therefore a dynamic
process, such that subtypes will disappear and new epi-
demics arise (FIG. 3). More importantly, the current
recommendations of what constitutes a subtype
will become meaningless as phylogenetic complexity
increases through the continued spread of the epidemic,

VIRULENCE 

The ability to cause disease by
breaking down the protective
mechanisms of the host.

MOLECULAR CLOCK 

The principle that any gene or
protein has a near-constant rate
of evolution in all branches of a
clade, which means that the
amount of sequence divergence
between two sequences will be
proportional to the amount of
time elapsed since their shared
ancestor existed.

FOUNDER EFFECTS 

A situation in which a new
population is founded by 
a small number of incoming
individuals. Similar to a
bottleneck, the founder effect
severely reduces genetic
diversity, increasing the effect 
of random drift.

Box 2 | Analysing rates of nucleotide substitution in HIV

Numerous methods have been described for estimating the rate of genetic change in viruses105. The common feature of
these techniques is the use of viral sequences sampled over time to directly observe evolutionary change. This is possible
owing to the exceptional rate of nucleotide substitution of RNA
viruses, such as the human immunodeficiency virus (HIV). One of
the most straightforward methods — a linear regression of genetic
divergence against the time of isolation of the viruses — was used to
estimate the date of the most recent common ancestor of HIV-1
group M to the 1930s (REF. 17). Although this study has been
criticized for not adequately accounting for recombination, which
could affect its accuracy75, and for flaws in the statistical methods,
which could affect its precision105, it remains our best estimate so far.
Reassuringly, the inferred regression slope (shown in the figure)
almost exactly predicts the position of the oldest HIV sequence, a
1959 sample from the Democratic Republic of Congo (DRC). Figure
modified with permission from REF. 17 © (2000) American
Association for the Advancement of Science.
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Figure 3 | The phylogenesis of HIV. The current global
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mosaic complexity of which has steadily been increasing.
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• Pathogen genomes are sampled at 
different points in time and from 
different locations. 

• Hence transmission history is 
estimated on a real time-scale (e.g. 
years). 

• The ability to genetically distinguish 
sequences sampled at different times 
depends on: 
(i) the rate of evolution of the gene/
genome that is obtained 
(ii) the length of time between 
samples 
(iii) the sequence length of the gene/
genome that is obtained
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substitution rate was contained within the 95% HPDs of
the estimated rate, as were the estimated TMRCAs (data
not shown). We were considerably less successful at recov-
ering the true substitution rates for the HSV-1-like syn-

thetic data sets. When the true substitution rate was
10!5 subs/site/year, the posterior mean estimates were
close to the true value; however, some of the individual
posterior distributions of the rate were highly skewed

FIG. 1. Tree diagrams with identical taxa numbers sampled over identical time intervals. When the sampling interval is similar to the time frame
over which sequence evolution occurs (10!4 subs/site/year), it is possible to assess the long-term rate of evolution with high precision (a).
When the sampling interval is small relative to the time frame of sequence evolution (10!8 subs/site/year), it may become difficult to
accurately estimate substitution rates (b). The scale bars indicate the branch lengths in number of years.

FIG. 2. Posterior mean and 95% HPDs of the substitution rates estimated from the actual data sets (far left value for each virus) and the
20 tip-date randomizations for the dsDNA viruses HPV-16, HSV-1, BK virus (BK), VARV, HAdV-B, HAdV-C, and VZ virus (VZ). The mean rates
estimated for the HAdV-C and VZ data sets were not significantly different from those estimated from the randomized data sets.
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Rate estimate: 8.2 x 10-6 Subs/Site/Year

A DNA virus (smallpox)

toward zero (fig. 4). Similarly, when the set rate was 10!6

subs/site/year or lower, our tools were unable to recover
a mean rate that was close to the true value, and the
95% HPDs ranged from the highest possible rate supported
by the data to a value approaching zero (fig. 4). We con-
sider these widely skewed posterior distributions of the rate
to signify a lack of significant temporal structure in the
data, an effect not seen in estimates based on our real data
where values close to zero were not observed.

To determine if the high substitution rates recovered for
the dsDNA viruses analyzed in the first part of this study
could be a result of deviations from the molecular clock
model coupled with low temporal signal in the data, we
added branch-rate heterogeneity (i.e., relaxed clock behav-
ior) to the synthetic data sets when the mean rate was set
to 10!6, 10!7, and 10!8 subs/site/year and reestimated the
rate of substitution. The posterior mean and 95% HPDs es-
timated from these synthetic data sets were similar to
those returned from the data simulated under a strict clock
(fig. 5). When the true rate of the VARV-like data was set at
10!6 subs/site/year, the resultant estimates were close to

the true values; however, substantial deviations from the
known values occurred when the rates were set to 10!7

or 10!8 subs/site/year, with correspondingly larger 95%
HPDs (fig. 5). The rates estimated from the HSV-1-like data
simulated with branch-rate heterogeneity also closely mir-
rored those from the data simulated under a strict clock.
The mean substitution rates estimated from all HSV-1-like
data were higher than the true values and again associated
with wide, long-tail posterior distributions that tended to-
ward zero (fig. 5). As before, we consider these distributions
to indicate a lack of temporal structure in the data at these
low evolutionary rates.

Discussion
Based on the distribution of rates from our synthetic data
sets, we are able to make a number of general conclusions
about the use of heterochronous data to estimate the sub-
stitution rates and divergence times of potentially slowly
evolving dsDNA viruses. In particular, given a data set con-
taining a large enough number of variable sites (such as the

FIG. 3. Genetic distance versus sampling year for the dsDNA viruses (clockwise from top left): HPV-16, HSV-1, BK virus (BK), VARV, HAdV-B,
HAdV-C, and VZ virus (VZ). The regression coefficient (R2) estimates the fit of the data to a strict molecular clock by testing the degree of
influence sampling time has over the amount of pairwise diversity in the data. This analysis supports the presence of temporal structure in the
data for VARV and HAdV-B, while suggesting the presence of temporal structure for HSV-1 and VZ. No evidence for temporal structure within
the sampled period was found for the HPV-16, BK, and HAdV-C data sets using this method.
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with recombination among currently recognized types
and more widespread sampling. The mean genetic
divergence of subtype A, B, C and D genomes isolated
in 1999 (9.8%, 10.0%, 7.9% and 8.5%, respectively)
each equal that of the whole group M epidemic in 1985
(8.8%). The genetic divergence of the entire group M
has increased to 14.9% in the same period (data from
the HIV Database; see online links box). Although
some of this increase can be ascribed to increased sam-
pling, the substitution rate that this implies (~0.002
substitutions per site, per year) lies within the range cal-
culated previously for the viral env (envelope) and gag
(group-specific antigen) genes (0.0028 and 0.0019,
respectively)17.

Emergence of the human diseases. By what mechanisms
did HIV jump to humans? Although several theories
have been proposed, there is little evidence to suggest
that anything other than entirely ‘natural’ processes are
responsible for its emergence2. In particular, given the
frequency with which primate bushmeat that is sold in
African markets is infected with SIV24, it is easy to envis-
age how individuals that are involved in the slaughter of
animals or the preparation of food could become
infected. Indeed, it is likely that SIV jumped into
humans many times before the transmission pathways
leading to the current AIDS epidemics were established,
and that these incipient infections occurred in isolated
rural communities and soon burnt out because of a lack
of susceptible hosts.

It is also important to explain why HIV-1 forms sub-
types, such that virus sequences tend to fall into distinct
clusters with approximately equal genetic distances
between them (10–30%, depending on the genes com-
pared). These clusters are most likely to be produced by
a combination of FOUNDER EFFECTS and incomplete sam-
pling. In particular, intensive viral collection from West
and Central Africa has now uncovered strains that fall
between the previously described subtypes25. This indi-
cates that these parts of Africa were the source of the
strains that ignited successful epidemics in other locali-
ties, in Africa and beyond, and that the subtype struc-
ture of the HIV-1 tree to a large extent reflects sampling
bias26. For example, most HIV-1 strains that were iso-
lated in North America and Europe fall into subtype B,
and their relative similarity reflects their recent common
origin from a founder in, or from, Africa. Under the
evolutionary timescale proposed for group M, the indi-
vidual subtypes would have diversified in the last 40
years or so17,27, although there is debate as to whether
subtype B originated in the 1960s or the 1970s28.

The phylogenesis of HIV-1 is therefore a dynamic
process, such that subtypes will disappear and new epi-
demics arise (FIG. 3). More importantly, the current
recommendations of what constitutes a subtype
will become meaningless as phylogenetic complexity
increases through the continued spread of the epidemic,

VIRULENCE 

The ability to cause disease by
breaking down the protective
mechanisms of the host.

MOLECULAR CLOCK 

The principle that any gene or
protein has a near-constant rate
of evolution in all branches of a
clade, which means that the
amount of sequence divergence
between two sequences will be
proportional to the amount of
time elapsed since their shared
ancestor existed.

FOUNDER EFFECTS 

A situation in which a new
population is founded by 
a small number of incoming
individuals. Similar to a
bottleneck, the founder effect
severely reduces genetic
diversity, increasing the effect 
of random drift.

Box 2 | Analysing rates of nucleotide substitution in HIV

Numerous methods have been described for estimating the rate of genetic change in viruses105. The common feature of
these techniques is the use of viral sequences sampled over time to directly observe evolutionary change. This is possible
owing to the exceptional rate of nucleotide substitution of RNA
viruses, such as the human immunodeficiency virus (HIV). One of
the most straightforward methods — a linear regression of genetic
divergence against the time of isolation of the viruses — was used to
estimate the date of the most recent common ancestor of HIV-1
group M to the 1930s (REF. 17). Although this study has been
criticized for not adequately accounting for recombination, which
could affect its accuracy75, and for flaws in the statistical methods,
which could affect its precision105, it remains our best estimate so far.
Reassuringly, the inferred regression slope (shown in the figure)
almost exactly predicts the position of the oldest HIV sequence, a
1959 sample from the Democratic Republic of Congo (DRC). Figure
modified with permission from REF. 17 © (2000) American
Association for the Advancement of Science.
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Figure 3 | The phylogenesis of HIV. The current global
genetic diversity of HIV-1 group M is the result of several
historical events in which geographically isolated epidemics
(lower coloured triangles) were founded from strains that were
present in a source population (large base triangle), most likely
in the west of Central Africa25. Within each of these epidemics,
frequent mixing of strains results in a complex recombinant
structure (arrows within triangles). Subsequently, owing to
global travel, the geographical ranges of these epidemics have
increasingly overlapped, resulting in inter-subtype circulating
recombinant forms (arrow between triangles), the number and
mosaic complexity of which has steadily been increasing.
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with recombination among currently recognized types
and more widespread sampling. The mean genetic
divergence of subtype A, B, C and D genomes isolated
in 1999 (9.8%, 10.0%, 7.9% and 8.5%, respectively)
each equal that of the whole group M epidemic in 1985
(8.8%). The genetic divergence of the entire group M
has increased to 14.9% in the same period (data from
the HIV Database; see online links box). Although
some of this increase can be ascribed to increased sam-
pling, the substitution rate that this implies (~0.002
substitutions per site, per year) lies within the range cal-
culated previously for the viral env (envelope) and gag
(group-specific antigen) genes (0.0028 and 0.0019,
respectively)17.

Emergence of the human diseases. By what mechanisms
did HIV jump to humans? Although several theories
have been proposed, there is little evidence to suggest
that anything other than entirely ‘natural’ processes are
responsible for its emergence2. In particular, given the
frequency with which primate bushmeat that is sold in
African markets is infected with SIV24, it is easy to envis-
age how individuals that are involved in the slaughter of
animals or the preparation of food could become
infected. Indeed, it is likely that SIV jumped into
humans many times before the transmission pathways
leading to the current AIDS epidemics were established,
and that these incipient infections occurred in isolated
rural communities and soon burnt out because of a lack
of susceptible hosts.

It is also important to explain why HIV-1 forms sub-
types, such that virus sequences tend to fall into distinct
clusters with approximately equal genetic distances
between them (10–30%, depending on the genes com-
pared). These clusters are most likely to be produced by
a combination of FOUNDER EFFECTS and incomplete sam-
pling. In particular, intensive viral collection from West
and Central Africa has now uncovered strains that fall
between the previously described subtypes25. This indi-
cates that these parts of Africa were the source of the
strains that ignited successful epidemics in other locali-
ties, in Africa and beyond, and that the subtype struc-
ture of the HIV-1 tree to a large extent reflects sampling
bias26. For example, most HIV-1 strains that were iso-
lated in North America and Europe fall into subtype B,
and their relative similarity reflects their recent common
origin from a founder in, or from, Africa. Under the
evolutionary timescale proposed for group M, the indi-
vidual subtypes would have diversified in the last 40
years or so17,27, although there is debate as to whether
subtype B originated in the 1960s or the 1970s28.

The phylogenesis of HIV-1 is therefore a dynamic
process, such that subtypes will disappear and new epi-
demics arise (FIG. 3). More importantly, the current
recommendations of what constitutes a subtype
will become meaningless as phylogenetic complexity
increases through the continued spread of the epidemic,

VIRULENCE 

The ability to cause disease by
breaking down the protective
mechanisms of the host.

MOLECULAR CLOCK 

The principle that any gene or
protein has a near-constant rate
of evolution in all branches of a
clade, which means that the
amount of sequence divergence
between two sequences will be
proportional to the amount of
time elapsed since their shared
ancestor existed.

FOUNDER EFFECTS 

A situation in which a new
population is founded by 
a small number of incoming
individuals. Similar to a
bottleneck, the founder effect
severely reduces genetic
diversity, increasing the effect 
of random drift.

Box 2 | Analysing rates of nucleotide substitution in HIV

Numerous methods have been described for estimating the rate of genetic change in viruses105. The common feature of
these techniques is the use of viral sequences sampled over time to directly observe evolutionary change. This is possible
owing to the exceptional rate of nucleotide substitution of RNA
viruses, such as the human immunodeficiency virus (HIV). One of
the most straightforward methods — a linear regression of genetic
divergence against the time of isolation of the viruses — was used to
estimate the date of the most recent common ancestor of HIV-1
group M to the 1930s (REF. 17). Although this study has been
criticized for not adequately accounting for recombination, which
could affect its accuracy75, and for flaws in the statistical methods,
which could affect its precision105, it remains our best estimate so far.
Reassuringly, the inferred regression slope (shown in the figure)
almost exactly predicts the position of the oldest HIV sequence, a
1959 sample from the Democratic Republic of Congo (DRC). Figure
modified with permission from REF. 17 © (2000) American
Association for the Advancement of Science.
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Figure 3 | The phylogenesis of HIV. The current global
genetic diversity of HIV-1 group M is the result of several
historical events in which geographically isolated epidemics
(lower coloured triangles) were founded from strains that were
present in a source population (large base triangle), most likely
in the west of Central Africa25. Within each of these epidemics,
frequent mixing of strains results in a complex recombinant
structure (arrows within triangles). Subsequently, owing to
global travel, the geographical ranges of these epidemics have
increasingly overlapped, resulting in inter-subtype circulating
recombinant forms (arrow between triangles), the number and
mosaic complexity of which has steadily been increasing.
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For nucleotide analyses, we apply this hierarchical
setup to the strict clock evolutionary rate (on the log
scale), the mean evolutionary rate parameter of the log-
normal relaxed clock (log), the constant population size
(log) of the demographic prior, the GTR substitution pa-
rameters (log), and the shape parameter (log) of the dis-
crete gamma distribution modeling rate variation among
sites. For codon model analyses, a hierarchical transition/
transversion rate parameter and a hierarchical dN/dS rate
ratio (Goldman and Yang 1994) replace the GTR model
parameters.

Hierarchical Estimation with Population-Specific Fixed
Effects
For hypothesis-testing purposes, we extend the HPM to in-
clude across-population fixed effects. Each patient belongs
to one of four fixed population groups that we can desig-
nate using two indicator factors: LTNPi 5 0(1) for short
(long)-term progressors and D32i 5 0(1) for deletion 32
absent (present) patients. Our HPM assumes

loghi 5 b0 þ dLTNPbLTNPLTNPi þ dD32bD32D32i þ ei;

where b0 is an unknown grand mean, dLTNP and dD32 are bi-
nary indicator variables, bLTNP and bD32 are conditional effec-
tive sizes, and ei are independent and normally distributed
random variables with mean 0 and an estimable variance.
The inclusion of the indicator variables follows from a Bayesian
stochastic search variable selection approach (Kuo and
Mallick 1998; Chipman et al. 2001) that simultaneously esti-
mates the posterior probabilities of all possible linear models
that may or may not include LTNP or D32 status effects.
When an indicator equals 1, this effect is included in the
model, demonstrating that the evolutionary process param-
eter differs with high probability between patient population
groups. Lemey et al. (2009) discuss Bayesian stochastic search
variable selection in further detail.

We complete this HPM model with variable selection
through assigning independent Bernoulli prior probabil-
ity distributions on dLTNP and dD32. These distributions
place equal probability on each factor’s inclusion and ex-
clusion. We further assume diffuse priors on the un-

known grand mean and error variance and specify that
a priori bLTNP and bD32 are normally distributed with
mean 0 and a variance of 1/2. We choose 1/2, as, before
seeing the data, we believe that if a factor does result in
different evolutionary parameters across population
groups, process parameters should differ by at most an
order of magnitude on their original scale. The introduc-
tion of HPMs into BEAST necessitates the development of
MCMC transition kernels to efficiently explore that space
of the grand mean and effect size, model indicator, and
random-effects variance parameters. Given our judicious
prior choices, the full conditional distributions of these
parameters are in standard form: multivariate normal, bi-
nomial, and inverse gamma, respectively. This enables us
to build highly effective Gibbs samplers (Casella and
George 1992; Suchard et al. 2003) over the joint space
of these parameters. Suchard et al. (2003) provide de-
tailed derivations of the full condition distributions
and their Gibbs samplers (Suchard et al. 2003). We imple-
ment these Gibbs samplers as regular BEAST ‘‘operators’’
that are now accessible to interested readers through
BEAST’s XML model specification language. Supplemen-
tary Material online to this paper reports the transition
kernels’ XML syntax and gives examples on their use to
implement HPMs.

To assign statistical significance to differences between
population groups, we employ Bayes factors (BFs) (Jeffreys
1998; Suchard et al. 2001) that report how much the data
change our prior opinion (here, 1:1 odds) about the inclu-
sion of each factor. These BFs are straightforward to esti-
mate through the variable selection procedure, as the BF
equals the posterior odds that a factor indicator equals
1 divided by the corresponding prior odds. The posterior
odds follow immediately from the marginal posterior prob-
ability that a factor indicator equals 1 that we estimate
through the posterior expectation of the factor indica-
tor. In cases where an estimate of this expectation ap-
proaches very closely to 0 or 1, an estimator based on a
Rao-Blackwellization procedure is available (Casella and
Robert 1996).
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FIG. 2. Evolutionary rate estimates using an HPM applied separately to four patient groups (progressors, LTNP, WT, and D32). Evolutionary rate
estimated under strict clock model (A). Mean evolutionary rate estimated under relaxed-clock model (B). LTNP (Long-term non-progressors); WT
(CCR5 wt/wt); D32 (CCR5 wt/D32).
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may be because dN rates are determined primarily by the
strength of selection on viral mutations, rather than by the
absolute rate at which those mutations are generated.
Furthermore, most diversifying selection in env results from
nAb responses [31], which are not expected to moderate
replication rates and disease progression. To demonstrate
this, we further analyzed env sequences sampled through time
from two patients with markedly distinct rates of phenotypic
escape from nAb responses [31] (patient 01–0083 and patient
01–0127; Figure 4). As in Frost et al. [2], we show that the virus
that rapidly escaped nAb responses in patient 01–0127
accumulated nonsynonymous substitutions at a considerably
higher rate on backbone branches, while synonymous
divergence rates appear to be unaffected (similar plots were
obtained for internal branches, unpublished data).

Because it has been shown that viral divergence stabilizes
close to disease onset [14], we estimated mean divergence
rates prior to the progression time in the analyses above. Two
hypotheses have been proposed to explain this stabilization:
reduced availability of target cells late in infection (the
‘‘cellular exhaustion’’ hypothesis), or reduced selective
pressure because of deteriorating immune responses (the
‘‘immune relaxation’’ hypothesis) [32]. A recent statistical
analysis provided support for the immune relaxation hy-

pothesis by showing that nonsynonymous divergence stabil-
izes at about the same time as progression time, while
synonymous divergence does not [32]. Our analysis provides
further evidence that nonsynonymous divergence stabilizes in
some patients and that this is less pronounced for synon-
ymous divergence (Figure 2). Using the empirical relaxed-
clock approach, we directly estimated dN and dS substitution
rates before and after progression time (Table 1). These
estimates indicate that dN is significantly lower after
progression time both for internal and backbone branches
(paired t test: p¼ 0.012 and p¼ 0.001, respectively; Wilcoxon
signed rank test: p ¼ 0.016 and p ¼ 0.008, respectively), while
there is no significant difference in dS before and after
progression time (paired t test: p ¼ 0.424 and p ¼ 0.333,
respectively; Wilcoxon signed rank test: p¼ 0.461 for internal
and backbone branches).
As an extension to the analysis of closely related HIV-1

strains, we further explored differences among within-patient
substitution rates for more divergent HIV lineages. Table 2
lists average dS and dN rates for HIV-1 subtype B infected
patients, HIV-1 group O infections, and HIV-2 datasets.
Although studies of HIV-1 group O infection are limited, no
differences in disease progression between group O and
group M infections have been observed [33]. HIV-2, on the

Figure 2. Mean Synonymous and Nonsynonymous Divergence for Internal and Backbone Branches over the Course of HIV Infection in Nine Individuals

Patients with moderate and slow disease progression, categorized by progression time less than or greater than seven years [17], are shown in pink and
blue, respectively. Individual patient numbers from Shankarappa et al. [14] are shown in circles, and progression times for each patient are indicated in
italics.
doi:10.1371/journal.pcbi.0030029.g002
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What drives the tempo of pathogen evolution?
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• How genetically diverse is a pathogen population? 
• How do pathogen genomes change through time? 
• How does pathogen genetic diversity vary through time and 

space? 
• What processes and/or events determine these changes? 
• What are the effects of pathogen genetic diversity on virulence, 

transmissibility, resistance to treatment, etc.

Fundamental Phylodynamic Questions
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Evolutionary processes: natural selection

• “the preservation of favourable 
variations and the rejection of 
injurious variations, i call natural 
selection. variations neither useful 
nor injurious would not be affected 
by natural selection, and would be 
left a fluctuating element” 
- darwin, the origin of species

Evolutionary processes: natural selection

Sanjuan et al., 2004, PNAS
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Evolutionary processes: natural selection

• Immune escape  
(antibodies*, T-cells*, 
innate immune responses) 

• Antiviral drug resistance 

• Vaccine escape mutations 

• Cell & tissue tropism  

• Inter-host viral 
transmission (i.e. for viral 
emergence)
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Demography and coalescent theory

• The rate at which lineages ‘coalesce’ depends 
on population size and population structure. 

Pybus et al. (2000) Genetics 155:1429-37 

Drummond, Rambaut, Shapiro & Pybus (2005) Mol Biol Evol 22:1185-92 

Minin, Bloomquist and Suchard (2008) Mol Biol Evol 25:1459-71 

R0=β/γ

• Population dynamics can be reconstructed using 
parametric or flexible nonparametric models (the 
‘skyline or skyride plot’ method)

Stadler et al. (2012) MBE 29:347-357

Kingman JFC (1982) Journal of Applied Probability 19A:27–43

• Birth-death models can also be used as the tree-
generative model and just like coalescent models 
they can be parametrized in terms of 
compartmental epidemic models.

HBV Vaccination in Amsterdam

the strength of evidence for one model over another, in
a way similar to the likelihood ratio. The common guideline
for interpreting 10log Bayes factors (and 10log-likelihood
ratios) is that values of 0–1/2 provide no evidence, values
of 1/2–1 provide weak evidence, and values of 1 or more
provide strong-to-decisive evidence in favor of the hypoth-
esis with the maximum marginal likelihood (21). Here, the
log marginal likelihood indicated that the model with

a change in HBV genetic diversity gave the best fit to the
data; the log Bayes factor indicated that the data provided
strong evidence for a model with a change in HBV genetic
diversity over a model with a constant genetic diversity.

The population histories sampled from the posterior
showed a mean reduction in the genetic diversity to 17%
(95% confidence interval: 3, 65) of its former magnitude.
The interval estimate of the relative change was below
100%, which therefore provides strong statistical support
for the change being a decrease. The stepwise model places
a high posterior probability on a change occurring just after
the vaccination program was implemented in 1998, with
a maximum posterior probability near the year 2000
(Figure 5).

Coalescent-based approaches can underestimate genetic
diversity when the number of lineages in the phylogenetic
tree is large compared with the number of infected persons
in the population, which can be cause for concern when, in
a phylogeny, the number of lineages increases toward the

1982 1986 1990 1994 1998 2002 2006

Year

Figure 3. Maximum clade credibility phylogenetic tree from the
Bayesian skyline analysis to detect trends in the transmission of
hepatitis B virus in Amsterdam, the Netherlands. Information from
the time-spaced samples was used to calibrate the phylogeny in
real time.

Figure 4. Trends in the genetic diversity of hepatitis B virus
(genotype A) in men who have sex with men in Amsterdam, the
Netherlands. This Bayesian skyline plot (gray area) was estimated
from viral sequences collected between 1992 and 2006. The genetic
diversity is expressed as Nes/r

2, where Ne is the effective number of
infections, s is the generation interval, and r2 is the variance in the
number of new infections that infected cases cause. Median genetic
diversity declined sharply during 1998–2000 (black line).

Table 1. Comparison of the Hypothesis of a Constant HBV Genetic
Diversity (Model 1) With the Hypothesis of a Change in Genetic
Diversity (Model 2)

Model 1 Model 2

HBV genetic diversity Constant Stepwise change

Mean genetic diversity (Nes/r
2)a 308 602

97

95% Credible interval 68, 996 126, 1,417

5, 290
10Log marginal likelihood (L) !1,332.1 !1,329.1
10Log Bayes’ factor (Lmax!L) 3.0 0

Abbreviation: HBV, hepatitis B virus.
a Ne, the effective number of infections; s, the generation interval;

r2, the variance in the number of new infections that infected cases
cause.
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Figure 5. Dating the moment of change, from sequence data, in
hepatitis B virus (genotype A) genetic diversity among men who have
sex with men in Amsterdam, the Netherlands. The graph represents
the posterior probability distribution for this date in the stepwise
model, given the sequence data. The stepwise model used allowed
for a single change in genetic diversity between 1991 and 2003. The
maximum posterior probability density, peaking around 2000, may
correspond to onset of the vaccination program in 1998.
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Figure 5. Dating the moment of change, from sequence data, in
hepatitis B virus (genotype A) genetic diversity among men who have
sex with men in Amsterdam, the Netherlands. The graph represents
the posterior probability distribution for this date in the stepwise
model, given the sequence data. The stepwise model used allowed
for a single change in genetic diversity between 1991 and 2003. The
maximum posterior probability density, peaking around 2000, may
correspond to onset of the vaccination program in 1998.
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Influenza H3N2 epidemic dynamics

Rambaut et al. 2009. Nature
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Bayesian Evolutionary Analysis Sampling Trees

ALIGNMENT

MOLECULAR SEQUENCES

EVOLUTIONARY TREE 
(time scale = genetic distance)

EVOLUTIONARY TREE 
(time scale = years)

EPIDEMIOLOGY
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Diversifying selection
Any form of natural selection 
that generates high levels of 
genetic diversity; for example, 
recurrent positive selection or 
balancing selection.

Parsimony approach
A principle of evolutionary 
inference, based on  
the assumption that the 
best-supported evolutionary 
history for a characteristic is 
the one that requires the 
fewest number of changes  
in that characteristic.

Box 1 | Phylodynamic techniques

Rooted molecular phylogenies can be estimated from viral gene sequences (see the figure, part a). Depending on the 
scale of the analysis undertaken, the sampled sequences (red circles) may represent infected individuals, infected cells, 
virions or higher-level units such as villages. The phylogeny branching order shows the shared ancestry of the sequences, 
which usually — but not always — reflects the history of pathogen transmission between these units (discussed in main 
text). This phylogeny has no timescale, so the branch lengths represent the genetic divergence from the ancestor (black 
circle). If the sequences of interest undergo recombination, then a single phylogenetic tree may not adequately describe 
evolutionary history and alternative methods can be applied (for example, REF. 104).

The same phylogeny can also be reconstructed using a molecular clock model (see the figure, part b), which defines a 
relationship between genetic distance and time. The pathogen sequences have been sampled at known time points and 
the phylogeny branches have lengths in units of years. This approach estimates the ages of branching events, including 
that of the common ancestor. The simplest, ‘strict’ clock model assumes that all lineages evolve at the same rate. More 
complex, ‘relaxed’ models allow evolutionary rates to vary through time or among lineages, resulting in variation around 
an average rate25. In this phylogeny, unusually fast or slow evolving lineages are shown as thick or thin lines, respectively. 
The relationships among genetic distance, evolutionary rate and time can be understood by comparing the branch 
lengths in part a and part b.

Phylodynamic data can also highlight the evolution through time of mutations that may reflect viral adaptations  
(see the figure, part c). Observed amino acid changes (crosses) are shown mapped onto specific phylogeny branches. 
Amino acid sites under positive selection can be identified using dn/ds methods, which compare the rate of replacement 
substitutions (that change the amino acid) with the rate of silent substitutions (that do not change the amino acid)18,105. 
Such methods are most powerful when detecting diversifying selection, making them appropriate for the analysis of 
infectious disease, but the results obtained using these methods require careful interpretation106. Of particular interest 
are the replacement mutations that are found on the persisting phylogenetic ‘backbone’ that represents the ancestor of 
future virus populations (blue branches), as opposed to those occurring on branches that die out (black branches).

The data can also be analysed using temporal phylogeography (see the figure, part d). The nine sequences were sampled 
from France (green, A), the United Kingdom (blue, B) and two locations in Spain (red, C

1
 and C

2
). Statistical methods can be 

used to reconstruct the history of pathogen spread, so that each branch is labelled with its estimated geographic position. 
Current reconstruction methods mostly use simple parsimony approaches107 that reconstruct a minimum set of migration 
events consistent with the observed phylogeny. Lineage movement events are marked on the phylogeny with crosses. 
Combining the spatial and temporal information provides further insights — this hypothetical pathogen spread to 
location C

1
 years before independently arriving at location C

2
. Such analyses are not limited to hypotheses concerning 

physical geography, as the labels A, B, C can stand for any trait of interest, for example, host species, cell tropism during 
infection, host risk factors or clinical outcome.

The principles of coalescent analyses, which incorporate an explicit model of the sampled pathogen population, are 
illustrated in figure, part e. Each circle represents an infection, and circles on the same row occur during the same period 
of time. The increasing width of each row therefore reflects the growth of the epidemic through time. Starting from the 
sampled infections (red), the sampled lineages (black lines) can be traced back through unsampled infections (grey)  
to the common ancestor (black circle). The rate at which the sampled lineages merge or coalesce depends on population 
processes such as population dynamics, population structure, selection and recombination (only change in population size 
is represented here). Coalescent methods are used to infer these processes from randomly sampled pathogen sequences.
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Rooted molecular phylogenies can be estimated from viral gene sequences (see the figure, part a). Depending on the 
scale of the analysis undertaken, the sampled sequences (red circles) may represent infected individuals, infected cells, 
virions or higher-level units such as villages. The phylogeny branching order shows the shared ancestry of the sequences, 
which usually — but not always — reflects the history of pathogen transmission between these units (discussed in main 
text). This phylogeny has no timescale, so the branch lengths represent the genetic divergence from the ancestor (black 
circle). If the sequences of interest undergo recombination, then a single phylogenetic tree may not adequately describe 
evolutionary history and alternative methods can be applied (for example, REF. 104).

The same phylogeny can also be reconstructed using a molecular clock model (see the figure, part b), which defines a 
relationship between genetic distance and time. The pathogen sequences have been sampled at known time points and 
the phylogeny branches have lengths in units of years. This approach estimates the ages of branching events, including 
that of the common ancestor. The simplest, ‘strict’ clock model assumes that all lineages evolve at the same rate. More 
complex, ‘relaxed’ models allow evolutionary rates to vary through time or among lineages, resulting in variation around 
an average rate25. In this phylogeny, unusually fast or slow evolving lineages are shown as thick or thin lines, respectively. 
The relationships among genetic distance, evolutionary rate and time can be understood by comparing the branch 
lengths in part a and part b.

Phylodynamic data can also highlight the evolution through time of mutations that may reflect viral adaptations  
(see the figure, part c). Observed amino acid changes (crosses) are shown mapped onto specific phylogeny branches. 
Amino acid sites under positive selection can be identified using dn/ds methods, which compare the rate of replacement 
substitutions (that change the amino acid) with the rate of silent substitutions (that do not change the amino acid)18,105. 
Such methods are most powerful when detecting diversifying selection, making them appropriate for the analysis of 
infectious disease, but the results obtained using these methods require careful interpretation106. Of particular interest 
are the replacement mutations that are found on the persisting phylogenetic ‘backbone’ that represents the ancestor of 
future virus populations (blue branches), as opposed to those occurring on branches that die out (black branches).

The data can also be analysed using temporal phylogeography (see the figure, part d). The nine sequences were sampled 
from France (green, A), the United Kingdom (blue, B) and two locations in Spain (red, C
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). Statistical methods can be 

used to reconstruct the history of pathogen spread, so that each branch is labelled with its estimated geographic position. 
Current reconstruction methods mostly use simple parsimony approaches107 that reconstruct a minimum set of migration 
events consistent with the observed phylogeny. Lineage movement events are marked on the phylogeny with crosses. 
Combining the spatial and temporal information provides further insights — this hypothetical pathogen spread to 
location C
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 years before independently arriving at location C
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. Such analyses are not limited to hypotheses concerning 

physical geography, as the labels A, B, C can stand for any trait of interest, for example, host species, cell tropism during 
infection, host risk factors or clinical outcome.

The principles of coalescent analyses, which incorporate an explicit model of the sampled pathogen population, are 
illustrated in figure, part e. Each circle represents an infection, and circles on the same row occur during the same period 
of time. The increasing width of each row therefore reflects the growth of the epidemic through time. Starting from the 
sampled infections (red), the sampled lineages (black lines) can be traced back through unsampled infections (grey)  
to the common ancestor (black circle). The rate at which the sampled lineages merge or coalesce depends on population 
processes such as population dynamics, population structure, selection and recombination (only change in population size 
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