
Bayesian phylogenetics

the one ‘true’ tree?

• the methods we’ve learned so 
far try to get a single tree that 
best describes the data

• however, they admit that they 
don’t search everywhere, and 
that it is difficult to find the “best” 
tree

• are we doing a good job 
reporting a single tree ??

2introduction         Bayes Rule           phylogenetics         sampling         priors and posteriors           summary

Bayesian phylogenetics

• using Bayesian principles, we will search for a set of plausible 
trees (weighed by their probability) instead of a single best tree

• in this method, the “space” that you search in is limited by prior 
information and the data

• the posterior distribution of trees can be translated to a 
probability of any branching event

- allows estimate of uncertainty!
- BUT incorporates prior beliefs
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World championship medalists
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World championship medalists
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Bayes rule:

• H represents a specific hypothesis

• Pr(H) is called the prior probability of H that was assumed before new 
data, D, became available.

• Pr(D|H) is called the conditional probability of seeing D if H is true. It is also 
called a likelihood function when it is considered as a function of H for 
fixed D

• Pr(D) is called the marginal probability of D: the a priori probability of 
witnessing the D under all possible hypotheses. It can be calculated as 
the sum of the product of all probabilities of any complete set of mutually 
exclusive hypotheses and corresponding conditional probabilities: 

Pr(D) =  ∑Pr(D|Hi)P(Hi)
• Pr(H|D) is called the posterior probability of H given D.
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Pr(H|D) = Pr(D|H)Pr(H) 
Pr(D) 
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Bayes rule

• I choose a cookie from a jar at random, and it turns out to be a 
sugar cookie

• how probable is it that I picked from Jar #1?
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Pr(H|D) = Pr(D|H)Pr(H) 
Pr(D) 

20x

20x

10x

30x

Jar #1 Jar #2

Pr(Jar1|sc) =             Pr(sc|Jar1)*Pr(Jar1) 

[Pr(sc|Jar1)*Pr(Jar1)]+ [Pr(sc|Jar2)*Pr(Jar2)]

=          0.75 * 0.5
(0.75 * 0.5) + (0.5 * 0.5)

= 0.6
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Bayesian phylogenetic inference

A

B

C
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Bayesian phylogenetic inference
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↑
alignment sites

Bayesian inference of phylogeny

f(τi|X) =       f(X|τi) f(τi) 

The posterior probability of a phylogenetic tree, τ :
Likelihood: 

L(τ, η, Θ|y1,...,y6) =       Pr[yi |τ, η, Θ]Π
I=1

n

G G T T

υ1 υ2 υ3 υ4

υ5 υ6

A C G T 

A 

C 

G 

T

B(s)
1Prior:

B(s) = (2n—3)!!

f(X|τj) f(τj)ΣB(s)
j=1 f(X)
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←number of topologies for s taxa

↑
model 
parameters

topology 
            ↓

branch 
lengths 
↓
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2000 random samples

Bayesian inference: numerical integration via 
sampling as a solution?

10000 random samples
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Markov chain Monte Carlo (MCMC) integration
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• Metropolis et al. (1953) and Hastings 
(1970) proposed a stochastic 
algorithm (a variant of MCMC) to 
explore vast parameter spaces

• the frequency at which a tree is 
visited will be proportional to the 
posterior probability of this tree 

- trees with higher posterior 
probability will be visited more 
often

- Ergodic Theorem
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MCMC
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Metropolis-Hastings algorithm

Ψ

Ψ*

The algorithm starts from a random state (Ψ = {τ,υ,θ}) 
and ‘proposes’ a new state (Ψ*)

The new state is accepted with probability: 

R = min    1,  f (Ψ*|X)

f (Ψ|X)

f (Ψ| Ψ*)

f (Ψ*| Ψ)
x( )

= min    1, f (X|Ψ*) f (Ψ*)/f(X)

f (X|Ψ) f (Ψ)/f(X)

f (Ψ| Ψ*)

f (Ψ*| Ψ)
x

f (X|Ψ*)

f (X|Ψ)

f (Ψ| Ψ*)

f (Ψ*| Ψ)
xf (Ψ*)

f (Ψ)
x= min    1,

Likelihood ratio Prior ratio Proposal ratio

Draw random variable  q~(0,1):

q < R: Ψ= Ψ*
Otherwise chain remains in original state

( )

( )
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Metropolis-Hastings / MCMC

This process of proposing a new state, 
calculating the acceptance probability, and 
either accepting or rejecting the proposed 
move is repeated many millions of times.

The samples from the algorithm 
form a Markov chain of valid, albeit 
correlated, sample from the 
posterior probability distribution

The initial sampling (=burn-in) 
is required to reach stationarity 
and should be discarded when 
summarizing the results
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Metropolis-coupled MCMC

How to cross deep valleys?

Heating results in lower peaks and filling in valleys

Running multiple chains, some of which are heated:

After a step in the chain, a swap is attempted
If the swap is accepted, then the states are exchanged
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Bayesian inference in phylogeny

We have almost no prior knowledge for the parameters of interest....

So why bother doing Bayesian inference?

A Bayesian analysis expresses its results as the probability of the 
hypothesis given the data

!

MCMC is a stochastic algorithm and thus is able to avoid getting stuck in 
a local suboptimal solution.

!

By sampling a set of plausible trees, MCMC allows estimating of the 
uncertainty of any branching event!
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summarizing MCMC results

*

Logging trees and 
continuous parameters 
for each sample

 [ID: 9409050143]
  Gen     LnL        TL      r(A<->C)  ...  pi(G)    pi(T)     alpha     pinvar  
  1       -5723.498  3.357   0.067486  ...  0.098794 0.247609  0.580820  0.124136
  10      -5727.478  3.110   0.030604  ...  0.072965 0.263017  0.385311  0.045880
  ....
  9990    -5727.775  2.687   0.052292  ...  0.086991 0.224332  0.951843  0.228343
  10000   -5720.465  3.290   0.038259  ...  0.076770 0.240826  0.444826  0.087738

continuous parameters
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✓Trees in the file can be analyzed for tree partitions, 
from which a consensus tree can be made. The 
proportion of a given tree partition in the trees is the 
posterior probability of that partition

✓The proportion of a given tree topology (after burn-in) 
in these logs is an approximation of the posterior 
probability of that tree topology

summarizing MCMC results
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*

Logging trees and 
continuous parameters 
for each sample
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posterior probabilities
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Tree 1 Tree 2 Tree 3

A B C D E A B C D E A B C D E

A B C D E

Majority-rule 
consensus tree

A B C D E

Strict 
consensus tree

0.67

0.67

1
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summarizing trees
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MCMC diagnostics

measure the behavior of a single chain

states

Ln
L

visually inspect 
output traces
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within a chain: the 
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size (ESS)
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states
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output traces

compare different runs = comparing the variance among and within runs.
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MCMC diagnostics

compare samples from different runs
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(Only if convergence diagnostics indicate problem!)

• run the chain longer

• increase the number of heated chains

• change heating temperature to bring acceptance rate of swaps between 

adjacent chains into the range 10 % to 70 %.

• change tuning parameters of proposals to bring acceptance rate into the 

range 10 % to 70 %

• propose changes to ‘difficult’ parameters more often

• use different proposal mechanisms

• make the model more realistic
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improving convergence
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Bayesian analyses gives you a lot of rope...

... to hang yourself with (J.P. Huelsenbeck)

26

improving MCMC mixing

1. chain length
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2. proposals
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improving MCMC mixing
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a brief recap... to be followed up

1. frequentist "probability" = long-run fraction having this 
characteristic.

2. Bayesian "probability" = degree of believability.

3. A frequentist is a person whose long-run ambition is to be 
wrong 5% of the time.

4. A Bayesian is one who, vaguely expecting a horse, and 
catching a glimpse of a donkey, strongly believes he has seen a 
mule.
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- charles annis
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