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Molecular phylogenies

๏ most molecular phylogenies
‣ are unrooted (or the rooting is 

due to prior information)

‣ have branch lengths 

representing genetic change

Molecular phylogenies

๏ the ideal molecular phylogeny 
‣ is rooted (implies a branching 

order) 
‣ has branch lengths in units of 

time (an evolutionary history) 
๏ how do we construct one of 

these trees?
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A constant evolutionary rate through time
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• Zuckerkandl and Pauling (1962): the rate of amino acid 
replacements in animal haemoglobins was roughly 
proportional to real time, as judged against the fossil record

• to obtain a time 
phylogeny, the 
evolutionary model 
must assume a 
relationship between 
the accumulation of 
genetic diversity and 
time

A constant evolutionary rate through time

• the molecular clock is 
particularly striking 
when compared to 
the obvious 
differences in rates of 
morphological 
evolution... 0
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The molecular clock is not a metronome

• if mutation every MY 
with Poisson variance

‣ 95% of the lineages 
15MY old have 8-22 
substitutions

‣ 8 substitutions also 
could be < 5 MY old

‣ Molecular Systematics, p532.

And there is no global molecular clock

10 10 10 10 10 10 10 10 10-9 -8 -7 -6 -5 -4 -3 -2 -1

nucleotide substitutions per site per year

pl
an

t c
hl

or
op

la
st

 d
na

m
am

m
al

ia
n 

nu
cl

ea
r d

na
e 

co
li 

an
d 

sa
lm

on
el

la
 e

nt
er

ic
a

dr
os

op
hi

la
 n

uc
le

ar
 d

na

hu
m

an
 t 

ce
ll 

ly
m

ph
ot

ro
pi

c 
vi

ru
s

hb
v

rn
a 

vi
ru

se
s

picornaviridae  
calciviridae 
flaviridae 
togaviridae 
coronaviridae 
rhabdoviridae 
paramyxoviridae 
orthomyxoviridae 
reoviridae 
birnaviridae 
retroviridae 



And there is no global molecular clock

• different genes, 
different profiles 

• variation in mutation 
rate? 

• variation in selection   
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calibrating the molecular clock



From substitution units to time units
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point calibrations
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Calibration using sampling times

divergence contemporary sample, 
no time structure

serial sample, with time 
structure

Tip calibration: two major applications

RNA viruses 
evolve quickly: 
10-3 - 10-5 
substitutions per 
site per year.

ancient DNA 
data sets of 
radiocarbon-dated 
specimens

๏ Substitutions accumulate 
between the times of sampling

๏ Serially sampled sequences or 
heterochronous sequences

Measurably e
volvin

g 

population



incorporating sampling time: naive method

sampling time 1 
t1

sampling time 2 
t2

observed number of substitutions 
or genetic divergence 

d

substitution rate, µ  
= d / |t1 - t2|

incorporating sampling time: naive method

ancestral 
diversity

troot t2 t1



incorporating sampling time: naive method

µ = (d1 - d2) / (t1 - t2)

d1

d2

troot t2 t1

linear regression

• can be rearranged: 
di = µ (ti - troot) 

E[di] = µ . ti - µ . troot 

gradient is:  µ 
y-intercept is: - µ . troot 

x-intercept is: troot

t2 t1

d1

d3

troot t3

d2

µ = di / (ti - troot)



Estimating the time-scale

• H1N1/09 ‘Swine Flu’ 
• Rate: 3.14E-3  

mutations/genomic site/year 

• tMRCA: 2009.041 
(15-Jan-2009) 

• Correlation: 0.83 
• R2: 0.69

A DNA virus (smallpox)

Rate estimate: 8.2 x 10-6 Subs/Site/Year

toward zero (fig. 4). Similarly, when the set rate was 10!6

subs/site/year or lower, our tools were unable to recover
a mean rate that was close to the true value, and the
95% HPDs ranged from the highest possible rate supported
by the data to a value approaching zero (fig. 4). We con-
sider these widely skewed posterior distributions of the rate
to signify a lack of significant temporal structure in the
data, an effect not seen in estimates based on our real data
where values close to zero were not observed.

To determine if the high substitution rates recovered for
the dsDNA viruses analyzed in the first part of this study
could be a result of deviations from the molecular clock
model coupled with low temporal signal in the data, we
added branch-rate heterogeneity (i.e., relaxed clock behav-
ior) to the synthetic data sets when the mean rate was set
to 10!6, 10!7, and 10!8 subs/site/year and reestimated the
rate of substitution. The posterior mean and 95% HPDs es-
timated from these synthetic data sets were similar to
those returned from the data simulated under a strict clock
(fig. 5). When the true rate of the VARV-like data was set at
10!6 subs/site/year, the resultant estimates were close to

the true values; however, substantial deviations from the
known values occurred when the rates were set to 10!7

or 10!8 subs/site/year, with correspondingly larger 95%
HPDs (fig. 5). The rates estimated from the HSV-1-like data
simulated with branch-rate heterogeneity also closely mir-
rored those from the data simulated under a strict clock.
The mean substitution rates estimated from all HSV-1-like
data were higher than the true values and again associated
with wide, long-tail posterior distributions that tended to-
ward zero (fig. 5). As before, we consider these distributions
to indicate a lack of temporal structure in the data at these
low evolutionary rates.

Discussion
Based on the distribution of rates from our synthetic data
sets, we are able to make a number of general conclusions
about the use of heterochronous data to estimate the sub-
stitution rates and divergence times of potentially slowly
evolving dsDNA viruses. In particular, given a data set con-
taining a large enough number of variable sites (such as the

FIG. 3. Genetic distance versus sampling year for the dsDNA viruses (clockwise from top left): HPV-16, HSV-1, BK virus (BK), VARV, HAdV-B,
HAdV-C, and VZ virus (VZ). The regression coefficient (R2) estimates the fit of the data to a strict molecular clock by testing the degree of
influence sampling time has over the amount of pairwise diversity in the data. This analysis supports the presence of temporal structure in the
data for VARV and HAdV-B, while suggesting the presence of temporal structure for HSV-1 and VZ. No evidence for temporal structure within
the sampled period was found for the HPV-16, BK, and HAdV-C data sets using this method.

Evolutionary Rates of dsDNA Viruses · doi:10.1093/molbev/msq088 MBE

2045

Variola, Poxviridae, 190kb genome 
Sampling 1946-1977



Salmonella Typhimurium



Two lost decades of seasonal H1N1 evolution

1918

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

H1N1

Two lost decades of seasonal H1N1 evolution

• Linear regression of genetic 
distance against sampling time 
shows no divergence between 
1957 and 1977 (when H1N1 
re-emerged). 

• Also apparent when comparing 
molecular clock trees (A) with 
non-clock trees (B). 

• H1N1 re-emergence is thought 
to have been an accidental lab 
release. 

Wertheim (2010) PLoS One. 5:e11184

To determine how the ‘‘missing’’ evolution affected dating
estimates, Bayesian Markov chain Monte Carlo (BMCMC)
phylogenetic inference was performed on each genome segment
for human influenza viral sequences (not including the 2009 H1N1
pandemic) and related non-human viral sequences in BEAST
v1.5.2 [15]. The first analysis used the same sequences and
sampling dates as Smith et al. [9]. The second analysis used the
same sequences but adjusted the age of all H1N1 viruses isolated
in or after 1977 by shifting their sampling date 27 years earlier.
Multiple independent BMCMC analyses were run for each
genome segment; convergence and adequate mixing (effective
sample size of all relevant parameters.200) was verified in Tracer
v1.5 (http://tree.bio.ed.ac.uk/software/tracer). Each segment was
run between 100 and 300 million total generations, though burnin
size varied. Analysis of the PB1 segment (the largest dataset) is not
presented because it failed to converge.
Accounting for the 27-year shift in sampling dates in the re-

emergent H1N1 clade resulted in significantly lower variance (i.e.,
95% highest posterior density width) in the tMRCA estimates,
compared with the ‘‘uncorrected’’ analysis. The shifted dates
reduced the variance in the tMRCA estimate for the re-emergent
H1N1 viruses by 39% (Wilcoxon signed-rank test, p=0.028)
(Table 1). Moreover, including the unadjusted sampling dates also
significantly increased the variance in divergence time estimation
across all nodes in the phylogeny by an average of 5% (Wilcoxon
signed-rank test, p=0.028). Thus, even distantly related nodes
were affected by the inclusion of the re-emergent H1N1 viral
isolates. However, this pattern of increased variance in divergence
time estimation was not seen in analysis of the M segment. The
reason for this is not clear as the M segment alignment and
BMCMC analysis was not remarkably different from those of the
other genome segments. Statistical analyses were performed using
Stata v11.0 (StataCorp LP).
The re-emergence of H1N1 is not the only instance in which the

year of sampling does not correspond to amount of sequence
evolution. Dozens of other influenza isolates have been identified
as having unrealistically short branch lengths, possibly resulting

from laboratory contamination, mislabeling, and/or re-introduc-
tion ([13,14]; accidental infection of a laboratory worker: A/
Canada/720/05). Many of these additional suspect sequences
were also included in the analysis by Smith et al. [9]. Furthermore,
other included samples are actually reassortant vaccine strains,
whose segments were isolated decades apart from one another
(e.g., A/New Jersey/1976 and A/Leningrad/54/1). In fact, A/
Leningrad/54/1, which has an erroneous sampling date of 1954,
is actually a reassortant vaccine with segments isolated in 1934 and
1977 [16,17,18]. This sequence alone accounts for the bimodal
distribution of node ages observed in the NA analysis (Table 1), as
one of the modes is not sampled after its removal. Based on the
results presented here, the inclusion of these and other sequences
with biologically unrealistic sampling dates can dramatically affect
tMRCA estimates and should be avoided.
Our observation of increased variance when calibrating with

unadjusted sampling dates prompted us to re-estimate the age of the
1977 re-emergent lineage using a dataset free of sequences with
biologically unrealistic sampling dates. Therefore, additional
BMCMC inference was performed on a representative sample of
99 human H1N1 viruses isolated between 1918 and 2009. The
sampling age of the re-emergent isolates was adjusted by 27 years.
Two independent BMCMC runs of 25 million generations were
performed for each segment. Model comparison was performed via
Bayes Factor in Tracer v1.5 (Text S1; Tables S1, S2, S3, S4, S5, S6,
S7, and S8); differences in tMRCA estimates among models were
trivial. Sequence alignments are available upon request.
Smith et al. [9] placed the mean tMRCA of the re-emergent

H1N1 lineage in 1974 or 1975; however, these estimates are
biased by the missing 27 years of sequence evolution. According to
our analysis, the re-emergent H1N1 lineage began diversifying
approximately one year before it was first detected in China and
Russia (sample size weighted average from [19]) (Figure 3); the
posterior distributions for the tMRCA of the re-emergent lineage
excludes the year of re-emergence. If the virus was circulating for
up to a year before detection, then it seems difficult to assign the
geographic source of re-introduction (i.e., China or Russia) based
solely on surveillance in 1977. This interpretation must be treated
with caution as our inference was powered to detect differences on
the order of calendar years, because the date of viral isolation was
measured in years and not in months or days.
We acknowledge that simply adjusting the re-emergent sampling

dates by 27 years may not be an ideal method to estimate the date of
re-emergence; however, the results presented here demonstrate that
some correction to the biased sampling dates is needed before
inferring divergence times. A new method is needed to account for
samples with unrealistic sampling dates. In the case of a re-emergent
clade, the amount of missing evolution along the branch leading to re-
emergence could be estimated as a model parameter in a Bayesian
framework. For single isolates with unrealistic sampling dates (e.g.,
laboratory contaminants and vaccine strains), the posterior distribu-
tion of the sampling date could be estimated during the analysis
instead of being treated as a fixed value.
Re-emergence and laboratory contamination is a problem not

limited to influenza virus. A similar pattern of missing decades of
sequence evolution was recently observed in rabbit hemorrhagic
disease virus [20]. Furthermore, using strains that have undergone
long-term passage and selection in the laboratory, which is not
uncommon in studies estimating viral tMRCAs, would have the
opposite effect of lengthening branches [21]. It is likely that
calibrating a molecular clock using these laboratory-passaged
strains would also have detrimental effects on estimating tMRCAs.
To ensure reliable divergence time estimates, we must start with
high quality datasets.

Figure 1. Maximum clade credibility phylogeny of human
H1N1 influenza virus HA segment with unadjusted sampling
dates. The topologies of (A) a chronogram in which branch lengths
represent time and (B) a phylogram in which branch lengths represent
nucleotide substitutions are identical. Avian and swine influenza virus
lineages were removed for ease of viewing. Arrows indicate the lineage
leading to the re-emergent HIN1 clade; boxes designate the re-
emergent H1N1 clade.
doi:10.1371/journal.pone.0011184.g001
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Supporting Information
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Table S1 Bayes factor model test on HA segment.
Found at: doi:10.1371/journal.pone.0011184.s002 (0.03 MB
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Table S3 Bayes factor model test on NA segment.
Found at: doi:10.1371/journal.pone.0011184.s004 (0.03 MB
DOC)

Table S4 Bayes factor model test on NP segment.

Figure 2. Root-to-tip genetic distance versus sampling year for human influenza virus segments. (A) HA, (B) M, (C), NA, (D) NP, (E), NS, (F)
PA, (G) PB1, and (H) PB2 segments are shown. Pre-1977 H1N1, H2N2, H3N2 isolates are indicated with blue Xs, and re-emergent H1N1 isolates are
indicated with red Os.
doi:10.1371/journal.pone.0011184.g002
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Time structure via tip calibration

timeContemporary sample 
no time structure

Serial sample 
with time structure

2000

1980

1990

‣ Rambaut A. (2000) Bioinformatics, 16, 395-399.

Clock versus non-clock

• strict molecular clock: 
Zuckerkandl & Pauling (1962) in Horizons in Biochemistry, pp. 189–225 

‣ all lineages evolve at the same rate 
‣ allows the estimation of the root of the tree and dates of 

individual nodes 
• unconstrained (unrooted) Felsenstein model: 

Felsenstein (1981) JME, 17: 368 - 376 
‣ each branch has its own rate independent of all others 
‣ time and rate are confounded and can only be estimated as a 

compound parameter (branch lengths)



Likelihood ratio test for molecular clock models

• complex model H1 

P1: IKB

CB502-10 CB502-Salemi & Vandamme CB502-Sample-v3.cls March 18, 2003 13:50 Char Count= 0

268 David Posada

A C

D

E

B

E

C

D

A

B

b6

b4
b4

b3
b1

b2

b6

b7
b5

b8
b3 b2

b5
b7

b1

unrooted tree
2n − 3 independent branches

rooted tree
n − 1 independent branches

All b1, b2, b3, b4, b5, b6, and b7
need to be estimated

Only b1, b3, b4, and b6,
for example, need to be estimated,
because under the molecular clock:

b2 = b1
b5 = b1 + b3 − b6
b7 = b6
b8 = b4 − b5 − b6

A
Nonclocklike phylogenetic tree

n taxa = 5

B
Clocklike phylogenetic tree

n taxa = 5

Figure 10.5 Number of free parameters in clock and nonclock trees. Under the free rates model
(= nonclock), all the branches need to be estimated (2n − 3). Under the molecular clock,
only n − 1 branches have to be estimated. The difference in the number of parameters
among a nonclock and a clock model is n − 2.

Maximum-likelihood methods can estimate the branch lengths of a tree by enforc-
ing or not enforcing a molecular clock. In the absence of a molecular clock (the
free-rates model), 2n − 3 branch lengths must be inferred for a strictly bifurcating
unrooted phylogenetic tree with n taxa (Figure 10.5B). If the molecular clock is
enforced, the tree is rooted, and just n − 1 branch lengths need to be estimated (see
Figure 10.4 and Chapter 1). This should appear obvious considering that under a
molecular clock, for any two taxa sharing a common ancestor, only the length of the
branch from the ancestor to one of the taxa needs to be estimated, the other one be-
ing the same. Statistically speaking, the molecular clock is the null hypothesis (i.e.,
the rate of evolution is equal for all branches of the tree) and represents a special
case of the more general alternative hypothesis that assumes a specific rate for each
branch (i.e., free-rates model). Thus, given a tree relating n taxa, the LRT can be
used to evaluate whether the taxa have been evolving at the same rate (Felsenstein,
1988). In practice, a model of nucleotide (or amino-acid) substitution is chosen
and the branch lengths of the tree with and without enforcing the molecular clock
are estimated. To assess the significance of this test, the LRT can be compared with
a χ2 distribution with (2n − 3) − (n − 1) = n − 2 degrees of freedom, because
the only difference in parameter estimates is in the number of branch lengths that
needs to be estimated.

• likelihood ratio test with N-2 degrees of freedom 
• models are nested because values of b1-b7 can be specified 

that give node heights t1-t4

• null model H0

N-1 parameters2N-3 parameters

t

t

1

2

t3

t4

A

B

C

E

D

LRS = 2(max[lnL(Ha|D)] - max[lnL(H0|D)])

Relaxing the molecular clock



Need for a relaxed molecular clock

• the unrooted model of phylogeny and the strict molecular 
clock model are two extremes of a continuum.  

• dominate phylogenetic inference 
• but both are biologically unrealistic: 

‣ the real evolutionary process lies between these two 
extremes 

‣ model misspecification can produce positively misleading 
results

‣ Pybus (2006) Genome Biol. 4, e151
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‘local’ molecular clock
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autocorrelated relaxed clock
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Relaxed clocks: (1) local molecular clocks
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Figure 10.5 Number of free parameters in clock and nonclock trees. Under the free rates model
(= nonclock), all the branches need to be estimated (2n − 3). Under the molecular clock,
only n − 1 branches have to be estimated. The difference in the number of parameters
among a nonclock and a clock model is n − 2.

Maximum-likelihood methods can estimate the branch lengths of a tree by enforc-
ing or not enforcing a molecular clock. In the absence of a molecular clock (the
free-rates model), 2n − 3 branch lengths must be inferred for a strictly bifurcating
unrooted phylogenetic tree with n taxa (Figure 10.5B). If the molecular clock is
enforced, the tree is rooted, and just n − 1 branch lengths need to be estimated (see
Figure 10.4 and Chapter 1). This should appear obvious considering that under a
molecular clock, for any two taxa sharing a common ancestor, only the length of the
branch from the ancestor to one of the taxa needs to be estimated, the other one be-
ing the same. Statistically speaking, the molecular clock is the null hypothesis (i.e.,
the rate of evolution is equal for all branches of the tree) and represents a special
case of the more general alternative hypothesis that assumes a specific rate for each
branch (i.e., free-rates model). Thus, given a tree relating n taxa, the LRT can be
used to evaluate whether the taxa have been evolving at the same rate (Felsenstein,
1988). In practice, a model of nucleotide (or amino-acid) substitution is chosen
and the branch lengths of the tree with and without enforcing the molecular clock
are estimated. To assess the significance of this test, the LRT can be compared with
a χ2 distribution with (2n − 3) − (n − 1) = n − 2 degrees of freedom, because
the only difference in parameter estimates is in the number of branch lengths that
needs to be estimated.

‣ specify H0 beforehand

‣ problem of identifiability

‣ Yoder and Yang (2000) Mol Biol & Evol 17: 1081-1090.

Bayesian local clocks

Worobey et al., Nature, 2014; 508(7495): 254–257



• rates for each branch are drawn from a distribution centered 
on the rate of the ancestor

Autocorrelated relaxed clocks

€ 

ri ~ LogNormal(rA (i),σ
2Δti)

AA

h3

h1

h2

GA AC GC

r6r5

r4r3r2r1

r7

‣ e.g., Thorne JL, Kishino H, Painter IS (1998) Mol Biol & Evol 15: 1647-1657.

?

?

‣ A prior degree of 
autocorrelation?

‣ not currently possible 
to do phylogenetic 
inference

‣ but what is the rate  
at the root?

Uncorrelated relaxed clocks

• rates for each branch are drawn independently from an 
identical distribution: 
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‣ Drummond et al. (2006) Plos Biology 4: e88.



Bayesian evolutionary analysis sampling trees

• Given sequence data that is temporally 
spaced estimate true values of:  

‣ substitution parameters (µ and Q) 
‣ ancestral genealogy (g = E  , t   ) 

tree topology 

dates of divergence 

‣ population history (θ)

Q

P(g,µ,θ,Q|D)= 1 Pr{D|g,µ,Q}f (g|θ)f (µ)f (θ)f (Q)
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• Bayesian inference time

Ne

g Y

t = { t , t , ... , t     }

R = { r , r , ... , r    }
1 2 2n-1

1 2 2n-1 f (R|g) = f (R) = Π λe
i = 1

-λr i 

“relaxed phylogenetics and 
dating with confidence”

Uncorrelated relaxed clocks: example

‣ Phylogenetic inference

‣ measuring autocorrelation

‣ measuring clock-likeness
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Evaluating clock-like behaviour?

mean stdev
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Model testing using Bayes factors

B01 =    
p(Y|M1) 
p(Y|M0) 

• Bayes factor

• when two models M0 and M1 are being compared, one 
defines the Bayes factor in favor of M1 over M0 as the ratio 
of their respective marginal likelihoods 

• When there are unknown parameters, the Bayes Factor B01 
has in a sense the form of a likelihood ratio  

Guy



Random local clocks
➡ critics on the local clocks 

- specify H0 a priori 

- problem of identifiability 

➡ critics on the uncorrelated relaxed clocks 
- Rate changes do not necessarily occur regularly or on every branch 

- Small number of significant changes
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changes

➡ How to explore 22n-2 clock models? 

So, can we handle the 
uncertainty in the number 
and locations of a small 
number of local clocks?
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➡Using Bayesian stochastic search variable selection: formulate a 
prior that such that many rate changes (indicators) are 0 but allow 
the data to determine which ones are required to explain (most of 
the) rate variation using MCMC

Local Clock Comparison with
Douzery (2003)

3 Nuclear Genes from 42 Mammals (GTR + Γ)
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Consistent
results (5-12
local clocks).

RLC model provides an automated approach to discover local
clocks and their uncertainty.

PhyloGroup, September 2007 – p.9

➡ Three mtDNA nuclear genes from 
42 mammals (Douzery, 2003) 

➡ 5-12 local clocks

Drummond and 
Suchard, 2010.
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➡Testing whether a branch accommodates a rate change using 
Bayes factors 

๏ Data D is assumed to have been arisen under one of two models, or 
one of two hypotheses H1 and H2.

๏ Prior probabilities pr(H1) and pr(H2) = 1 - pr(H1). Posterior 
probabilities pr(H1 |D) and pr(H2 |D) = 1 - pr(H1 |D)

so that

posterior 
odds

prior 
odds

Bayes 
factor

Extensions for testing 
evolutionary rate hypotheses

© Jennifer Gardy



INTRA-HOST EVOLUTION INTER-HOST EVOLUTION

Time (months since seroconversion) Time (year) 

R
oo

t-
to

-t
ip

 d
iv

er
ge

nc
e

R = 0.67
2

R = 0.89 
2 

0 1 2 3 4 5 6 7 8 -1 -2 9 10 12 13 11 1985 1990 1995 1980 1975 1970 1965 1960 

R
oo

t-
to

-t
ip

 d
iv

er
ge

nc
e

Lemey et al 2006 AIDS Rev
months years

Pybus and Rambaut, NGR, 2009

New insights into the evolutionary rate
of HIV-1 at the within-host and

epidemiological levels
Katrina A. Lythgoe* and Christophe Fraser

Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London,
St Mary’s Campus, London W2 1PG, UK

Over calendar time, HIV-1 evolves considerably faster within individuals than it does at the epidemic
level. This is a surprising observation since, from basic population genetic theory, we would expect the
genetic substitution rate to be similar across different levels of biological organization. Three different
mechanisms could potentially cause the observed mismatch in phylogenetic rates of divergence: temporal
changes in selection pressure during the course of infection; frequent reversion of adaptive mutations after
transmission; and the storage of the virus in the body followed by the preferential transmission of stored
ancestral virus. We evaluate each of these mechanisms to determine whether they are likely to make a
major contribution to the mismatch in phylogenetic rates. We conclude that the cycling of the virus
through very long-lived memory CD4þ T cells, a process that we call ‘store and retrieve’, is probably
the major contributing factor to the rate mismatch. The preferential transmission of ancestral virus
needs to be integrated into evolutionary models if we are to accurately predict the evolution of
immune escape, drug resistance and virulence in HIV-1 at the population level. Moreover, early infection
viruses should be the major target for vaccine design, because these are the viral strains primarily involved
in transmission.
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1. INTRODUCTION
Owing to its short-generation time and error-prone
replication, the HIV genome evolves at incredible rates
within hosts [1,2]. However, there is growing evidence
that, over calendar time, HIV accumulates mutations at a
considerably reduced rate (about 2" to 6" slower) at the
between-host (epidemic) level than expected, given what
we know about its rate of evolution within hosts [3–6].
This is surprising because there is no obvious reason
why the virus’s molecular clock should tick slower at
the between-host level. Three mechanisms have been
suggested that could result in the mismatch in phylogenetic
rates of divergence (‘rate mismatch’ hereafter), which we
have termed ‘stage-specific selection’, ‘adapt and revert’,
and ‘store and retrieve’ [6–8].

First, under stage-specific selection, it is argued that the
rate mismatch occurs because selection is weaker in early
infection, resulting in a lower rate of diversification per
unit time when measured from the time of infection to
transmission (the period that determines between-host
rates of divergence), than when measured during chronic
infection (the period during which within-host rates of
divergence are measured). In the absence of stage-specific
selection, we would expect the rate of evolution per unit
time to be independent of when transmission occurs.
If transmission tends to occur during early infection, the
rate of divergence per transmission event will be slower
than if transmission tends to occur late, but when measured
over calendar time, the two rates will be the same.

Second, under adapt and revert, it is argued that
mutations that are adaptive in one individual are likely
to be maladaptive in another owing to, for example,
different human leukocyte antigen (HLA) backgrounds,
and thus will revert after transmission. If a sufficient pro-
portion of mutations that are fixed within an infected host
revert once a new host is infected, then a mismatch in
phylogenetic rates is likely to emerge because not all
mutations accumulating at the within-host level will
accumulate at the between-host level.

Finally, under store and retrieve, it is argued that
ancestral sequences (i.e. those that are more similar to
the infecting viral strain than to contemporary circulating
virus strains within the host) are stored in the body
and are preferentially transmitted, resulting in faster rates
of divergence when measured at the within-host level
compared with the between-host level. Preferential trans-
mission of ancestral strains could occur either because
ancestral strains have an intrinsic transmission advantage,
or because virus is more likely to be stored in the genital
tract, thus leading to preferential transmission during
sexual transmission.

Our aim is to establish which, if any, of these
mechanisms are likely to make major contributions to
the observed mismatch in phylogenetic rates, or whether
additional or alternative mechanisms are required. We
select among plausible mechanisms by a process of elim-
ination. By comparing previously published estimates of
the rate of synonymous and non-synonymous mutations
at the within- and between-host levels, we argue that
neither stage-specific selection nor adapt and revert is
likely to explain a substantial proportion of the mismatch,* Author for correspondence (k.lythgoe@imperial.ac.uk).
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