

Bayesian model testing

- How do we know which models (sequence evolution models, clock models, coalescent models, ...) we should use?
- Use a well-developed statistical theory (model selection and model averaging) that enables models to be compared according to objective criteria (Steel, Trends Genet., 2005)
- Such approaches penalize the addition of extra parameters, unless there
 is a sufficiently impressive improvement in fit between model and data
- The approaches discussed here enable the comparison of any two
 models, even if they are not nested

Bayesian model testing

- · Goal: finding the most appropriate model for your data
- Over-fitting: too many parameters, the model is too complex
- Under-fitting: too few parameters, the model is too simple
- Don't compare all possible model combinations (evolutionary model, clock models, coalescent tree prior, ...) to one another!
- Test/compare those models that relate to (or might have an impact on)
 the hypothesis you are interested in testing

Bayesian model testing

The aim of model selection is not to find the 'true model' but to find a model with sufficient parameters to capture the key features of the data.

> 'Better, more realistic models' should not mean 'more parameter-rich models'!

A Bayesian alternative to classical hypothesis testing: the Bayes factor (a summary of the evidence provided by the data in favor of one scientific theory, represented by a statistical model, as opposed to another; Kass & Raftery, 1995).

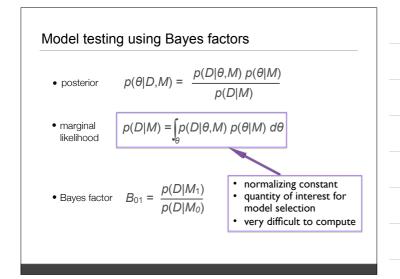
Model testing using Bayes factors

The evaluation of Bayes factors has become a standard approach to perform model selection in a Bayesian phylogenetic framework.

The Bayes factor is a ratio of two marginal likelihoods (i.e. two <u>normalizing constants</u> of the form $p(D \mid M)$, with *D* the observed data and *M* an evolutionary model under evaluation) obtained for the two models, M_0 and M_1 , under comparison (Jeffreys, 1935):

Bayes factor

 $B_{01} = \frac{p(D|M_1)}{p(D|M_0)}$



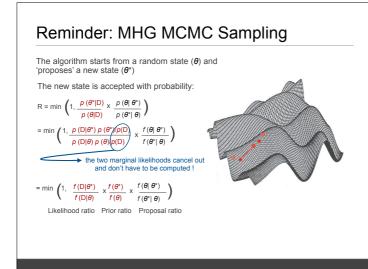
Reminder: MHG MCMC Sampling

More formally, we want to explore the posterior distribution in an efficient manner

Posterior distribution $p(\theta \mid D) = \begin{array}{c} p(\theta) p(D \mid \theta) \\ p(\theta) p(\theta) p(\theta) \\ p(\theta) p($

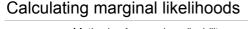
The algorithm starts from a random state (θ) and 'proposes' a new state (θ^*)

The new state is accepted with probability: $\mathsf{R} = \min \left(1, \frac{\rho\left(\theta^{*}|\mathsf{D}\right)}{\rho\left(\theta|\mathsf{D}\right)} \times \frac{\rho\left(\theta|\theta^{*}\right)}{\rho\left(\theta'|\theta\right)}\right)$



Model testing using Bayes factors

- for model fit, the marginal likelihood p(D|M) is of primary importance (to calculate the Bayes factor)
- among several models, one is led to choose the model with the highest marginal likelihood
- when calculated correctly/accurately: takes into account differences in dimensions, so higher dimensional models are not automatically preferred
- most/all software packages (including BEAST) estimate the log marginal likelihood: log(p(D | M))



Methods of general applicability:

- the pesterior arithmetic mean estimator (pAME; Aitkin, 1991)
- the arithmetic mean estimator (AME/ILP; but a misnome)
 the importance sampling estimators, and particularly the harmonic mean
- estimator (HME) (Newton and Raftery, 1994)
 the stabilized harmonic mean estimator (sHME) (Redelings and Suchard, 2005)
 No additional analysis required
- path sampling (Gelman, 1998; Ogata, 1989), applied in phylogenetics (Lartillot and Philippe, 2006)
- stepping-stone sampling (Xie et al., 2011)
 Additional analysis required
- generalised stepping-stone sampling (Fan et al., 2011; Baele et al., 2016)

The arithmetic mean estimator (AME)

$$p(D \mid M) = E_{\text{prior}}[p(D \mid \theta, M)]$$
$$\simeq \frac{1}{K} \sum_{k=1}^{K} p(D \mid \theta_k, M).$$

- a.k.a. the prior arithmetic mean estimator (but a misnomer)
- integrates the likelihood against the model prior (unbiased)
- does **not** use samples from the likelihood obtained from an MCMC analysis used to estimate parameters
- the high-likelihood region can be very small, hence unless K is very large, the sample drawn from the prior will contain virtually no points from the high-likelihood region, resulting in a (very) poor estimate of p(D | M)

What about our MCMC output?

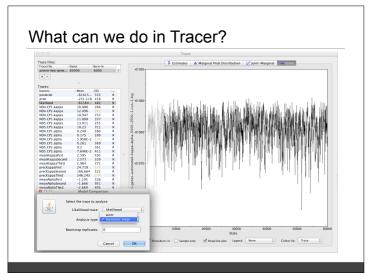
How does this relate to your (regular) MCMC analysis (which can already be quite time-consuming, taking days or even weeks)?

Can you use your MCMC output to compute marginal likelihoods?

Yes: some marginal likelihood estimators (HME and sHME) and the AICM use the likelihood samples collected during an MCMC run.

No: their accuracy and performance is poor and their outcomes unreliable, thereby completely invalidating their computational advantage. Hence, their use should be avoided.

Accurate marginal likelihood estimation hence requires an additional MCMC analysis for each model!

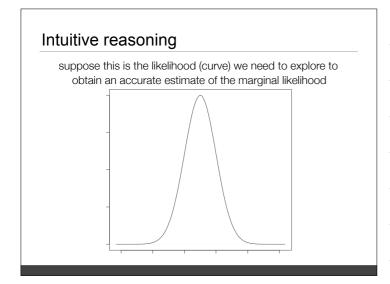


What can we do in Tracer?

- you can load the .log file from your parameter estimation run into Tracer (by default, this file will contain a column of likelihood values)
- using this likelihood trace/column, you can estimate the HME (but currently not the sHME) and the AICM in Tracer
- PS/SS and GSS are much more accurate marginal likelihood estimators but require additional calculations/analyses
- as such, the PS/SS and GSS estimators can **NOT** be estimated in Tracer (not what Tracer is for)

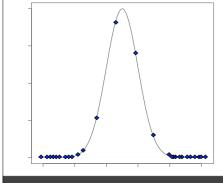
DO NOT load the .log output file generated by PS/SS and GSS into Tracer

Avoid performing model selection in Tracer altogether



Intuitive reasoning: ILP

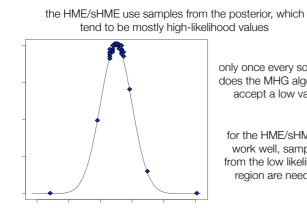
integrating the likelihood over the prior (ILP) draws random values for the parameters and then calculates the corresponding likelihood



most of the likelihoods will hence be (very) low

but for the ILP to work accurately, we need a fair amount of high likelihood values

Intuitive reasoning: HME/sHME



only once every so often does the MHG algorithm accept a low value

for the HME/sHME to work well, samples from the low likelihood region are needed

Path sampling

requires samples from a series of power posteriors, not just the posterior, along a path between prior and posterior:

 $q_{\beta}(\theta) = p(Y \mid \theta, M)^{\beta} p(\theta \mid M)$

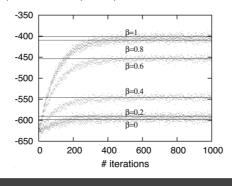
- reduces to the posterior when $\beta = 1$
- reduces to the prior when $\beta=0$
- slow / computationally demanding
- slower convergence than HME/sHME/AICM

Rationale of path sampling

run several power posteriors, including the posterior and the prior, and collect samples from each power posterior

Example: run 6 power posteriors, for different values of beta: 1.0 (**posterior**), 0.8, 0.6, 0.4, 0.2 and 0.0 (**prior**).

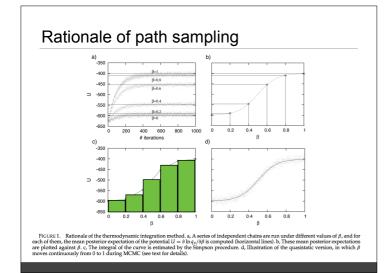
After each power posterior has converged, collect samples.

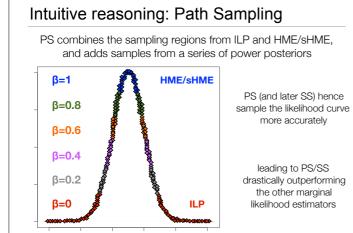


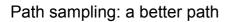
Path sampling: the estimator

- points θ_k are saved before each update of β ; let us denote (β_k , θ_k)k=0..K the series of points obtained this way
- one can start at $\beta = 1$ (i.e. the posterior), equilibrate the MCMC, and then **progressively decrease** β (BEAST), while sampling along the path down to $\beta = 0$ (i.e. the prior)
- one has in particular $\beta_0 = 0$, $\beta_K = 1$, and $\forall k \ 0 \le k < K$, $\beta_{k+1} \beta_k = \delta\beta$ (i.e. the original approach assumes equidistant β 's; Lartillot and Philippe, 2006)
- the log marginal likelihood estimator is given by:

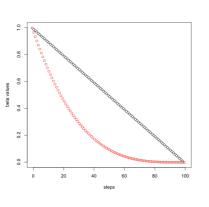
$$\hat{\mu}_{qs} = rac{1}{K}\left(rac{1}{2}U(heta_0) + \sum_{k=1}^{K-1}U(heta_k) + rac{1}{2}U(heta_K)
ight)$$

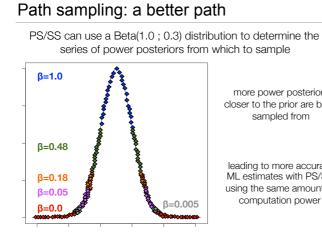






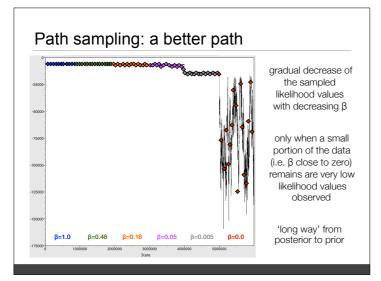
- in the common situation where the likelihood is much more concentrated than the prior, the shape of the power posterior is relatively stable except near $\beta = 0$
- placing more computational effort near 0 is hence sensible and leads to a substantial increase in the efficiency of the estimator
- use a Beta(1.0 ; α) distribution to select values of β
- shown here: $\alpha = 0.3$ (Xie et al., 2011)
- different approaches available in BEAST





more power posteriors closer to the prior are being sampled from

leading to more accurate ML estimates with PS/SS using the same amount of computation power



Path sampling: conclusions

- a striking discrepancy between the HME and PS, due to a lack of reliability of the HME
- the HME overestimates the marginal likelihood
- this overestimation is more pronounced in the case of higher dimensional models, which implies that the harmonic estimator will be effectively biased in favor of such models
- PS is included in more software packages, such as BEAST, nowadays and should hence be used instead of the HME
- one downside: PS is computationally (much) more demanding than the HME, sHME and AICM

Stepping-stone sampling

requires samples from a series of power posteriors, like path sampling, along a path between prior and posterior:

 $q_{\beta}(\theta) = p(Y \mid \theta, M)^{\beta} p(\theta \mid M)$

- PS and SS traverse the same path between posterior and prior, the same samples can be used for both estimators (i.e. buy one, get one for free)
- differs from path sampling in the way the collected samples are used to estimate the log marginal likelihood
- does not need to sample the posterior, an initial run that converges
 towards the posterior is used to burn-in the MCMC chain

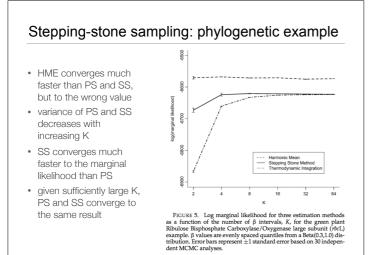
PS/SS: two for the price of one

- when performing PS/SS in a software packages (e.g. BEAST), collecting samples from the path between posterior and prior is the computationally demanding step
- from this one collection, two marginal likelihood estimators (i.e. PS and SS) are computed, which only takes a few minutes at most
- BEAST prints both estimates to the screen, i.e. the actual log marginal likelihoods are not stored in a file
- save the screen output when submitting such calculations to a server/ computer cluster/grid system

Stepping-stone sampling: the estimator

$$\begin{split} \log \hat{r}_{SS} &= \sum_{k=1}^{K} \log(\hat{r}_{SS,k}) \\ &= \sum_{k=1}^{K} [(\beta_k - \beta_{k-1}) \log \ L_{\max,k}] \\ &+ \sum_{k=1}^{K} \log\left(\frac{1}{n} \sum_{i=1}^{n} \exp\left\{(\beta_k - \beta_{k-1}) \right. \\ &\left. \times \left[\log \ f(\mathbf{y}|\boldsymbol{\theta}_{k-1,i}) - \log \ L_{\max,k}]\right\}\right) \end{split}$$

 log(Pss) is biased, and its bias appears to be directly proportional to its variance, which can be alleviated by increasing K (i.e., the number of power posteriors)



Stepping-stone sampling: conclusions

- SS is a more efficient and less biased estimator for the (log) marginal likelihood than PS
- · less computational effort is required for SS compared to PS
- which settings, i.e. the number of β values and the length of the chain at each value of $\beta,$ produce consistent estimates is subject to debate
- like PS, SS outperforms the HME, sHME and AICM in selecting the best model from a collection of candidate models

PS/SS/GSS: suggestions

- which settings, i.e. the number of path steps and the length of the chain at each step, produce a good estimate of the log marginal likelihood?
- when performing model selection, I suggest to use a total number of iterations equal to the standard MCMC run used to estimate parameters
- for example, if it takes your standard MCMC run 100 million iterations to yield good ESS values, try running 100 path steps of 1 million iterations each
- tutorial online (XML code; for BEAST 1.7.x and up): http://rega.kuleuven.be/cev/ecv/tutorials/model-selection-tutorial

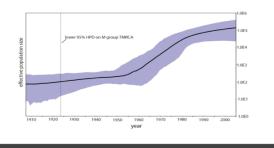
Model testing problems: HIV-1 example

- HIV-1 data: 162 taxa, 997 bp (Worobey et al., Nature, 2008)
- 'The inability to strongly reject the model with a constant population size prior is counterintuitive because it is clear that the HIV-1 population size has increased notably. We speculate that this finding might be due to the simplest model providing a good fit to a relatively short, information-poor alignment, in comparison with more parameterized models.'

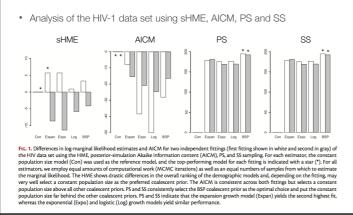
	Coalescent tree prior	DRC60 and ZR59 excluded*	DRC60 and ZR59 included		
	Constant	1933 (1919-1945)†, 0.0	1921 (1908-1933)†, 0.0		
	Exponential	1907 (1874-1932), -3.5 ± 0.8	1914 (1891-1930), -2.1 ± 1.5		
	Expansion	1882 (1834-1917), -2.7 ± 0.8	1902 (1873-1922)†, -1.6 ± 1.5		
	Logistic	1913 (1880-1937), -2.3 ± 0.8	1913 (1891-1930), -3.2 ± 1.5		
	Bayesian skyline plot	1882 (1831-1916), -2.7 ± 0.8	1908 (1884-1924)†, -0.4 ± 1.5		
_	Bayesian skyline plot for each coalescent tree prior is the median, with the od (± estimated standard error) compared with the	1882 (1831–1916), -2.7 ± 0.8 95% highest probability distribution of TMRCA in parentheses. A coelescent model with strongest support. both of ZR59 and DRC60 (994 nucleotides total, 507 from DRC	1908 (1884–1924) [†] , -0.4 ± 1.5 Also shown is the \log_{10} Bayes factor difference in estimate		

Model testing problems: HIV-1 example

• Bayesian skyline plot of HIV-1 group M. The plot begins at the median posterior TMRCA (1908). The bold line traces the inferred median effective population size over time with the 95% HPD shaded in blue



Model testing problems: HIV-1 example



Model testing: simulation results

-						$\Delta AICM$	Log BF PS	Log BF SS
	48	59	72	72	0.61	0.57	1.76	1.76
0.010	50	45	57	57	0.28	0.20	-0.81	-0.80
0.025	59	73	92	92	-1.33	-1.36	-6.81	-6.81
0.050	80	99	100	100	-4.43	-4.34	-12.54	-12.54
0.100	78	100	100	100	-7.75	-7.66	-18.24	-18.24
	0.025 0.050 0.100 of computati	025 59 050 80 0.100 78 of computational work ()	025 59 73 050 80 99 0100 78 100 of computational work (MCMC iterat	025 59 73 92 1.050 80 99 100 1.100 78 100 100 of computational work (MCMC iterations) for all 100 100	025 59 73 92 92 1.050 80 99 100 100 1.100 78 100 100 100 of computational work (MCMC iterations) for all estimators a 99 100 100	x025 59 73 92 92 1.33 x050 80 99 100 100 4.43 x100 78 100 100 100 7.75 of computational work (MCMC lterations) for all estimators as well as an equal nur	0.025 59 73 92 92 -1.33 -1.36 0.050 80 99 100 100 -4.43 -4.34 1.00 78 100 100 00 -7.75 -7.66 o computational work (MCMC iterations) for all estimators as well as an equal number of posteric -1.36 -1.36 -1.36	0.025 59 73 92 92 -1.33 -1.36 -6.81 1.050 80 99 100 100 -4.43 -4.34 -12.54

now in **BEAST**!

(Baele et al., MBE, 2012)

Conclusions:

- an exponential demographic prior with a growth rate of 0.01 is a difficult case for each estimator
- HME is unable to reach an accuracy higher than 80%
- AICM outperforms HME in all but one case
- PS/SS outperform HME and AICM in all cases

Model testing: simulation results

Table 3.1: model selection performance for 100 simulated datasets, consisting of 32 taxa, under either a balanced or Yule tree and two relaxed molecular clock models using HME, sHME, AICM, PS, SS and the maximum *a posteriori model* estimated under BMA. The columns report the number of correct classifications obtained out of 100 simulations.

Tree	Clock	Length	HME	sHME	AICM	\mathbf{PS}	SS	MAP
Balance	ed UCED	1.000	92	100	100	94	94	90
Balance	ed UCLD	1.000	28	5	1	99	99	99
Yule	UCED	1.000	92	100	100	99	99	97
Yule	UCLD	1.000	11	1	1	61	61	65
Yule	UCED	2.500	89	100	100	98	98	99
Yule	UCLD	2.500	26	5	9	83	82	81
Yule	UCED	5.000	78	99	99	98	98	98
Yule	UCLD	5.000	38	11	12	82	82	82

Conclusions:

- HME and AICM perform poorly, almost no correct classifications when simulated
 under a relaxed lognormal clock model
- PS/SS outperform HME and AICM in all cases

Generalised stepping-stone sampling

requires samples from a series of power posteriors, along a path between reference/working prior and posterior:

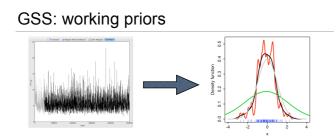
 $q_{\beta}(\theta) = [p(Y \mid \theta, M)p(\theta \mid M)]^{\beta}p_{0}(\theta \mid M)^{1-\beta}$

- reduces to the original SS method if the reference/working distribution is
 equal to the actual prior
- in practice, samples from the posterior distribution ($\beta=1)$ are used to parameterize the joint reference/working distribution $p_0(\Theta|M)$
- we will use kernel density estimation (KDE) to construct reference/ working priors for each of the parameters being estimated

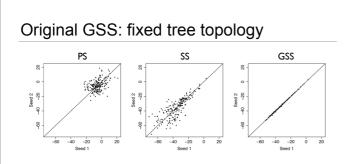
GSS: the estimator

Numerical stability can be improved by factoring out the largest sampled term, $\eta_k = \max_{1 \le i \le n} \{f(\mathbf{y}|\theta_{k-1,i}, M) \ \pi(\theta_{k-1,i}|M)\}$:

$$\begin{split} \log \hat{r} &= \sum_{k=1}^{K} \log \hat{r}_{k} \\ &= \sum_{k=1}^{K} [(\beta_{k} - \beta_{k-1}) \log \eta_{k}] \\ &+ \sum_{k=1}^{K} \log \Biggl\{ \frac{1}{n} \sum_{i=1}^{n} \Biggl[\frac{f(\mathbf{y} | \boldsymbol{\theta}_{k-1i}, \boldsymbol{M}) \, \pi(\boldsymbol{\theta}_{k-1i} | \boldsymbol{M})}{\eta_{k} \pi_{0}(\boldsymbol{\theta}_{k-1i} | \boldsymbol{M})} \Biggr]^{\beta_{k} - \beta_{k-1}} \Biggr\} \end{split}$$



- reduces to the original SS method if the reference/working distribution is equal to the actual prior
- in practice, samples from the posterior distribution ($\beta = 1$) are used to parameterize the joint reference/working distribution $p_0(\Theta|M)$
- we will use kernel density estimation (KDE) to construct reference/ working priors for each of the parameters being estimated



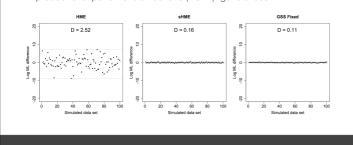
• original GSS publication (Fan et al., 2011): fixed tree topology

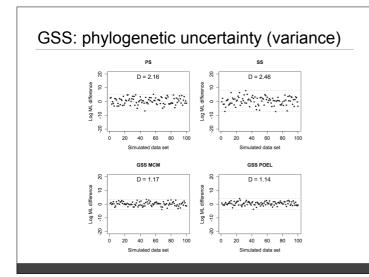
- GSS analyses with different starting seeds yield almost identical MLEs
- hence much lower variance compared to PS/SS

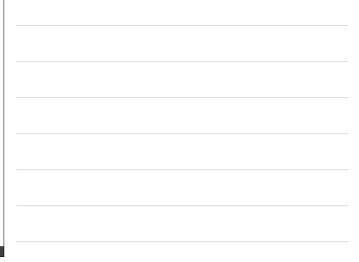
GSS: phylogenetic uncertainty

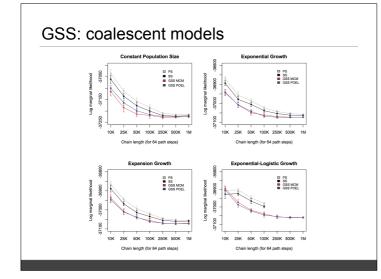
• the fixed tree topology restriction has been relaxed

- e.g. for use in a coalescent-based framework such as BEAST
- 2 working priors for coalescent models proposed (Baele et al., 2016)
 matching coalescent model (MCM): for simple parametric models
 product of exponential distributions (POEL): general use

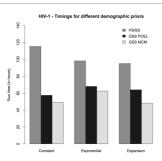








GSS: decreased run time



 GSS does not need to explore the prior, which avoids computing the likelihood for highly unlikely parameter values, which may lead to numerical instabilities

combined with a "shorter" path to be traversed, this leads to a drastic performance increase (dependent on the actual reference/working prior)

Bayesian model testing: priors

- a key aspect of any Bayesian analysis is setting priors on the parameters being estimated in the process
- unless there is a priori knowledge concerning some of the parameters, uninformative (but proper) priors are used
- **improper priors should be avoided**, although many analyses are still performed with such priors
- more importantly: improper priors are to be avoided at all cost when performing path sampling (PS) and stepping-stone sampling (SS) as these approaches gradually decrease the contribution of the data to the posterior and include an exploration of the prior

Bayesian model testing: priors

A proper prior is a probability distribution that integrates to 1.

The frequently used constant function on an infinite interval is often inaccurately called a uniform distribution, although it is actually an example of an improper prior.

When no prior is specified in certain software packages, an improper prior may be assumed (e.g. BEAST).

Bayesian model testing: proper priors

A proper prior is a probability distribution that integrates to 1.

exponential prior

gamma prior

but not Uniform[- ∞ ,+ ∞]

End of lecture...

End of lecture / start of practical

Main papers discussed (1)

• Newton, M.A., Raftery, A.E. (1994) Approximating Bayesian inference with the weighted likelihood bootstrap. J. R. Stat. Soc. B. 56:3-48.

- Kass, R.E., Raftery, A.E. (1995) Bayes factors. J. Am. Stat. Assoc. 90:773-795.
- Lartillot, N., Philippe, H. (2006) Computing Bayes factors using thermodynamic integration. Syst. Biol. 55:195-207.
- Xie, W., Lewis, P.O., Fan, Y., Kuo, L., Chen, M.H. (2011) Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst. Biol. 60:150-160.
- Fan, Y., Wu, R., Chen, M.H., Kuo, L., Lewis, P.O. (2011) Choosing among partition models in Bayesian phylogenetics. Mol. Biol. Evol. 28:523-532.

Main papers discussed (2)

- Baele, G., Lemey, P., Bedford, T., Rambaut, A., Suchard, M. A., Alekseyenko, A. V. (2012) Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol. Biol. Evol. 29(9), 2157-2167.
- Li, W. L. S., Drummond, A. J. (2012) Model averaging and Bayes factor calculation of relaxed molecular clocks in Bayesian phylogenetics. Mol. Biol. Evol. 29:751-761.
- Baele, G., Li, W. L. S., Drummond, A. J., Suchard, M. A., Lemey, P. (2013) Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Mol. Biol. Evol. 30(2), 239-243.
- Baele, G., Lemey, P., Suchard, M. A. (2016) Genealogical working distributions for Bayesian model testing with phylogenetic uncertainty. Syst. Biol. 65:250-264.