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Bayesian model testing

• How do we know which models (sequence evolution models, clock 
models, coalescent models, …) we should use? 

• Use a well-developed statistical theory (model selection and model 
averaging) that enables models to be compared according to objective 
criteria (Steel, Trends Genet., 2005)  

• Such approaches penalize the addition of extra parameters, unless there 
is a sufficiently impressive improvement in fit between model and data 

• The approaches discussed here enable the comparison of any two 
models, even if they are not nested 



Bayesian model testing

• Goal: finding the most appropriate model for your data 

• Over-fitting: too many parameters, the model is too complex 
• Under-fitting: too few parameters, the model is too simple 

• Don’t compare all possible model combinations (evolutionary model, 
clock models, coalescent tree prior, …) to one another! 

• Test/compare those models that relate to (or might have an impact on) 
the hypothesis you are interested in testing 

Bayesian model testing

The aim of model selection is not to find the ‘true model’ but to 
find a model with sufficient parameters to capture the key 

features of the data.

‘Better, more realistic models’ should not mean 
‘more parameter-rich models’!

A Bayesian alternative to classical hypothesis testing: the Bayes 
factor (a summary of the evidence provided by the data in favor 
of one scientific theory, represented by a statistical model, as 

opposed to another; Kass & Raftery, 1995).



Model testing using Bayes factors

• Bayes factor

The evaluation of Bayes factors has become a standard 
approach to perform model selection in a Bayesian 

phylogenetic framework.

The Bayes factor is a ratio of two marginal likelihoods (i.e. two 
normalizing constants of the form p(D | M), with D the observed 
data and M an evolutionary model under evaluation) obtained for 
the two models, M0 and M1, under comparison (Jeffreys, 1935):

B01 =    
p(D|M1) 
p(D|M0) 

Model testing using Bayes factors

p(θ|D,M) = 
p(D|θ,M) p(θ|M) 

p(D|M) 

p(D|M) =  p(D|θ,M) p(θ|M) dθ 

B01 =    
p(D|M1) 
p(D|M0) 

∫θ

• posterior

• marginal 
likelihood

• Bayes factor
• normalizing constant
• quantity of interest for 

model selection
• very difficult to compute



Reminder: MHG MCMC Sampling

The algorithm starts from a random state (θ) and ‘proposes’ a new state (θ*)

The new state is accepted with probability: R = min    1,  p (θ*|D)

p (θ|D)

p (θ| θ*)

p (θ*| θ)
x( )

D = Data 
θ = Model parameters (model notation M omitted here)

Posterior 
distribution Prior distribution ”Likelihood”

Normalizing constant

Very ugly integral/sum 
Extremely tedious to calculate even once

p(θ | D) = 
p(θ)  p(D | θ)

p(θ) p(D | θ) dθ∫

More formally, we want to explore the posterior distribution in an efficient manner

Usually fairly easy to calculate

Reminder: MHG MCMC Sampling

Ψ

Ψ*

The algorithm starts from a random state (θ) and 
‘proposes’ a new state (θ*)

The new state is accepted with probability: 

R = min    1,  p (θ*|D)

p (θ|D)

p (θ| θ*)

p (θ*| θ)
x( )

= min    1, p (D|θ*) p (θ*)/p(D)

p (D|θ) p (θ)/p(D)

f (θ| θ*)

f (θ*| θ)
x( )

f (D|θ*)
f (D|θ)

f (θ| θ*)

f (θ*| θ)
xf (θ*)

f (θ)
x= min    1,

Likelihood ratio Prior ratio Proposal ratio

( )

the two marginal likelihoods cancel out 
and don’t have to be computed !



Model testing using Bayes factors

• for model fit, the marginal likelihood p(D|M) is of primary importance (to 
calculate the Bayes factor) 

• among several models, one is led to choose the model with the 
highest marginal likelihood 
  

• when calculated correctly/accurately: takes into account differences in 
dimensions, so higher dimensional models are not automatically 
preferred 

• most/all software packages (including BEAST) estimate the log marginal 
likelihood: log(p(D | M)) 

Calculating marginal likelihoods

• the posterior arithmetic mean estimator (pAME; Aitkin, 1991) 
• the arithmetic mean estimator (AME/ILP; but a misnomer) 
• the importance sampling estimators, and particularly the harmonic mean 

estimator (HME) (Newton and Raftery, 1994) 
• the stabilized harmonic mean estimator (sHME) (Redelings and Suchard, 2005) 
 
 

• path sampling (Gelman, 1998; Ogata, 1989), applied in phylogenetics (Lartillot 
and Philippe, 2006) 

• stepping-stone sampling (Xie et al., 2011) 
• generalised stepping-stone sampling (Fan et al., 2011; Baele et al., 2016) 

Methods of general applicability:

No additional analysis required

Additional analysis required



The arithmetic mean estimator (AME)

• a.k.a. the prior arithmetic mean estimator (but a misnomer) 
• integrates the likelihood against the model prior (unbiased) 
• does not use samples from the likelihood obtained from an MCMC 

analysis used to estimate parameters 
• the high-likelihood region can be very small, hence unless K is very large, 

the sample drawn from the prior will contain virtually no points from the 
high-likelihood region, resulting in a (very) poor estimate of p(D | M) 

What about our MCMC output?

How does this relate to your (regular) MCMC analysis (which can 
already be quite time-consuming, taking days or even weeks)?

Can you use your MCMC output to compute marginal likelihoods?

Yes: some marginal likelihood estimators (HME and sHME) and the 
AICM use the likelihood samples collected during an MCMC run.

No: their accuracy and performance is poor and  their outcomes 
unreliable, thereby completely invalidating their computational 

advantage. Hence, their use should be avoided.

Accurate marginal likelihood estimation hence requires an 
additional MCMC analysis for each model!



What can we do in Tracer?

What can we do in Tracer?
• you can load the .log file from your parameter estimation run into Tracer 

(by default, this file will contain a column of likelihood values) 
• using this likelihood trace/column, you can estimate the HME (but 

currently not the sHME) and the AICM in Tracer 
• PS/SS and GSS are much more accurate marginal likelihood estimators 

but require additional calculations/analyses 
• as such, the PS/SS and GSS estimators can NOT be estimated in Tracer 

(not what Tracer is for) 

DO NOT load the .log output file generated by PS/SS 
and GSS into Tracer

Avoid performing model selection in Tracer altogether



Intuitive reasoning
suppose this is the likelihood (curve) we need to explore to 

obtain an accurate estimate of the marginal likelihood

Intuitive reasoning: ILP
integrating the likelihood over the prior (ILP) draws random values 

for the parameters and then calculates the corresponding likelihood

most of the likelihoods 
will hence be (very) low

but for the ILP to work 
accurately, we need a 

fair amount of high 
likelihood values



Intuitive reasoning: HME/sHME
the HME/sHME use samples from the posterior, which 

tend to be mostly high-likelihood values

for the HME/sHME to 
work well, samples 

from the low likelihood 
region are needed

only once every so often 
does the MHG algorithm 

accept a low value

Path sampling

• reduces to the posterior when β = 1  
• reduces to the prior when β = 0  

• slow / computationally demanding  
• slower convergence than HME/sHME/AICM 

requires samples from a series of power posteriors, not just 
the posterior, along a path between prior and posterior:

qβ(θ) = p(Y | θ,M)βp(θ | M)



Rationale of path sampling
run several power posteriors, including the posterior and the 
prior, and collect samples from each power posterior

Example: run 6 
power posteriors, for 
different values of 
beta: 1.0 (posterior), 
0.8, 0.6, 0.4, 0.2 and 
0.0 (prior).

After each power 
posterior has 
converged, collect 
samples.

Path sampling: the estimator
• points θk are saved before each update of β; let us denote (βk , θk )k=0..K 

the series of points obtained this way 
• one can start at β = 1 (i.e. the posterior), equilibrate the MCMC, and then 

progressively decrease β (BEAST), while sampling along the path 
down to β = 0 (i.e. the prior)  

• one has in particular β0 = 0, βK = 1, and ∀k 0 ≤ k < K, βk+1 − βk = δβ (i.e. 
the original approach assumes equidistant β’s; Lartillot and Philippe, 
2006)  

• the log marginal likelihood estimator is given by: 



Rationale of path sampling

β=1

β=0.8

β=0.6

β=0.4

β=0.2

β=0

Intuitive reasoning: Path Sampling
PS combines the sampling regions from ILP and HME/sHME, 

and adds samples from a series of power posteriors

PS (and later SS) hence 
sample the likelihood curve 

more accurately

leading to PS/SS 
drastically outperforming 

the other marginal 
likelihood estimators

HME/sHME

ILP



Path sampling: a better path

• in the common situation where 
the likelihood is much more 
concentrated than the prior, the 
shape of the power posterior is 
relatively stable except near β = 0 

• placing more computational effort 
near 0 is hence sensible and  
leads to a substantial increase in 
the efficiency of the estimator 

• use a Beta(1.0 ; α) distribution to 
select values of β 

• shown here: α = 0.3 (Xie et al., 
2011) 

• different approaches available in 
BEAST

β=1.0

β=0.48

β=0.18
β=0.05

β=0.005β=0.0

PS/SS can use a Beta(1.0 ; 0.3) distribution to determine the 
series of power posteriors from which to sample

more power posteriors 
closer to the prior are being 

sampled from

leading to more accurate 
ML estimates with PS/SS 
using the same amount of 

computation power

Path sampling: a better path



Path sampling: a better path

β=1.0 β=0.48 β=0.18 β=0.05 β=0.005 β=0.0

gradual decrease of 
the sampled 

likelihood values 
with decreasing β

only when a small 
portion of the data 
(i.e. β close to zero) 
remains are very low 

likelihood values 
observed

‘long way’ from 
posterior to prior

Path sampling: conclusions

• a striking discrepancy between the HME and PS, due to a lack of 
reliability of the HME 

• the HME overestimates the marginal likelihood 
• this overestimation is more pronounced in the case of higher dimensional 

models, which implies that the harmonic estimator will be effectively 
biased in favor of such models 

• PS is included in more software packages, such as BEAST, nowadays 
and should hence be used instead of the HME 

• one downside: PS is computationally (much) more demanding than the 
HME, sHME and AICM 



Stepping-stone sampling

• PS and SS traverse the same path between posterior and prior, the same 
samples can be used for both estimators (i.e. buy one, get one for free) 

• differs from path sampling in the way the collected samples are used 
to estimate the log marginal likelihood 

• does not need to sample the posterior, an initial run that converges 
towards the posterior is used to burn-in the MCMC chain 

requires samples from a series of power posteriors, like path 
sampling, along a path between prior and posterior:

qβ(θ) = p(Y | θ,M)βp(θ | M)

PS/SS: two for the price of one

• when performing PS/SS in a software packages (e.g. BEAST), collecting 
samples from the path between posterior and prior is the computationally 
demanding step 

• from this one collection, two marginal likelihood estimators (i.e. PS and 
SS) are computed, which only takes a few minutes at most  

• BEAST prints both estimates to the screen, i.e. the actual log 
marginal likelihoods are not stored in a file 

• save the screen output when submitting such calculations to a server/
computer cluster/grid system 



Stepping-stone sampling: the estimator

• log(r̂SS) is biased, and its bias appears to be directly proportional to its 
variance, which can be alleviated by increasing K (i.e., the number of 
power posteriors) 

Stepping-stone sampling: phylogenetic example

• HME converges much 
faster than PS and SS, 
but to the wrong value 

• variance of PS and SS 
decreases with 
increasing K 

• SS converges much 
faster to the marginal 
likelihood than PS 

• given sufficiently large K, 
PS and SS converge to 
the same result 



Stepping-stone sampling: conclusions

• SS is a more efficient and less biased estimator for the (log) 
marginal likelihood than PS 

• less computational effort is required for SS compared to PS 

• which settings, i.e. the number of β values and the length of the 
chain at each value of β, produce consistent estimates is subject 
to debate 

• like PS, SS outperforms the HME, sHME and AICM in selecting 
the best model from a collection of candidate models 

PS/SS/GSS: suggestions
• which settings, i.e. the number of path steps and the length of 

the chain at each step, produce a good estimate of the log 
marginal likelihood? 

• when performing model selection, I suggest to use a total 
number of iterations equal to the standard MCMC run used 
to estimate parameters 

• for example, if it takes your standard MCMC run 100 million 
iterations to yield good ESS values, try running 100 path steps of 
1 million iterations each 

• tutorial online (XML code; for BEAST 1.7.x and up):  
http://rega.kuleuven.be/cev/ecv/tutorials/model-selection-tutorial  



Model testing problems: HIV-1 example

• HIV-1 data: 162 taxa, 997 bp (Worobey et al., Nature, 2008) 
• 'The inability to strongly reject the model with a constant population size 

prior is counterintuitive because it is clear that the HIV-1 population size 
has increased notably. We speculate that this finding might be due to the 
simplest model providing a good fit to a relatively short, information-poor 
alignment, in comparison with more parameterized models.' 

Model testing problems: HIV-1 example

• Bayesian skyline plot of HIV-1 group M. The plot begins at the median 
posterior TMRCA (1908). The bold line traces the inferred median 
effective population size over time with the 95% HPD shaded in blue 



Model testing problems: HIV-1 example
• Analysis of the HIV-1 data set using sHME, AICM, PS and SS 

sHME AICM PS SS

Model testing: simulation results

• HME is unable to reach an accuracy higher than 80%  
• AICM outperforms HME in all but one case  
• PS/SS outperform HME and AICM in all cases 

Conclusions: now in BEAST!  
(Baele et al., MBE, 2012)• an exponential demographic prior with a 

growth rate of 0.01 is a difficult case for 
each estimator  



Model testing: simulation results

• HME and AICM perform poorly, almost no correct classifications when simulated 
under a relaxed lognormal clock model 

• PS/SS outperform HME and AICM in all cases 

Conclusions:

Generalised stepping-stone sampling

• reduces to the original SS method if the reference/working distribution is 
equal to the actual prior  

• in practice, samples from the posterior distribution (β = 1) are used to 
parameterize the joint reference/working distribution p0(θ|M) 

• we will use kernel density estimation (KDE) to construct reference/
working priors for each of the parameters being estimated 

requires samples from a series of power posteriors, along a 
path between reference/working prior and posterior:

qβ(θ) = [p(Y | θ,M)p(θ | M)]βp0(θ | M)1-β



GSS: the estimator

GSS: working priors

• reduces to the original SS method if the reference/working distribution is 
equal to the actual prior  

• in practice, samples from the posterior distribution (β = 1) are used to 
parameterize the joint reference/working distribution p0(θ|M) 

• we will use kernel density estimation (KDE) to construct reference/
working priors for each of the parameters being estimated 



Original GSS: fixed tree topology

• original GSS publication (Fan et al., 2011): fixed tree topology 
• GSS analyses with different starting seeds yield almost identical MLEs 
• hence much lower variance compared to PS/SS

PS SS GSS

GSS: phylogenetic uncertainty

• the fixed tree topology restriction has been relaxed 
• e.g. for use in a coalescent-based framework such as BEAST 
• 2 working priors for coalescent models proposed (Baele et al., 2016)  

- matching coalescent model (MCM): for simple parametric models  
- product of exponential distributions (POEL): general use



GSS: phylogenetic uncertainty (variance)

GSS: coalescent models



GSS: decreased run time

• GSS does not need to explore the prior, which avoids computing the likelihood 
for highly unlikely parameter values, which may lead to numerical instabilities 

• combined with a “shorter” path to be traversed, this leads to a drastic 
performance increase (dependent on the actual reference/working prior) 

Bayesian model testing: priors

• a key aspect of any Bayesian analysis is setting priors on the parameters 
being estimated in the process 

• unless there is a priori knowledge concerning some of the parameters, 
uninformative (but proper) priors are used 

• improper priors should be avoided, although many analyses are still 
performed with such priors 

• more importantly: improper priors are to be avoided at all cost when 
performing path sampling (PS) and stepping-stone sampling (SS) as 
these approaches gradually decrease the contribution of the data to the 
posterior and include an exploration of the prior 



Bayesian model testing: priors

A proper prior is a probability distribution that integrates to 1.

The frequently used constant function on an infinite interval 
is often inaccurately called a uniform distribution, although it 

is actually an example of an improper prior.

When no prior is specified in certain software packages, 
an improper prior may be assumed (e.g. BEAST).

Bayesian model testing: proper priors

A proper prior is a probability distribution that integrates to 1.

lognormal prior exponential prior normal prior

uniform priorgamma prior

but not Uniform[-∞,+∞]



End of lecture…

End of lecture / start of practical
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