'Rega Institute, Department of Microbiology
and Immunology, K.U. Leuven, Belgium.

Bayesian model testing

* How do we know which models (sequence evolution models, clock
models, coalescent models, ...) we should use?

» Use a well-developed statistical theory (model selection and model
averaging) that enables models to be compared according to objective
criteria (Steel, Trends Genet., 2005)

» Such approaches penalize the addition of extra parameters, unless there
is a sufficiently impressive improvement in fit between model and data

* The approaches discussed here enable the comparison of any two
models, even if they are not nested




Bayesian model testing

* Goal: finding the most appropriate model for your data

Over-fitting: too many parameters, the model is too complex
Under-fitting: too few parameters, the model is too simple

» Don’t compare all possible model combinations (evolutionary model,
clock models, coalescent tree prior, ...) to one another!

- Test/compare those models that relate to (or might have an impact on)
the hypothesis you are interested in testing

Bayesian model testing

The aim of model selection is not to find the ‘true model’ but to
find a model with sufficient parameters to capture the key
features of the data.

‘Better, more realistic models’ should not mean
‘more parameter-rich models’!

A Bayesian alternative to classical hypothesis testing: the Bayes
factor (a summary of the evidence provided by the data in favor
of one scientific theory, represented by a statistical model, as
opposed to another; Kass & Raftery, 1995).




Model testing using Bayes factors

The evaluation of Bayes factors has become a standard

approach to perform model selection in a Bayesian
phylogenetic framework.

The Bayes factor is a ratio of two marginal likelihoods (i.e. two
normalizing constants of the form p(D | M), with D the observed
data and M an evolutionary model under evaluation) obtained for

the two models, Mo and M1, under comparison (Jeffreys, 1935):

__ p(OIM)
p(DIMo)

o Bayes factor

Model testing using Bayes factors

p(DI6,M) p(6IM)

e posterior p(6|D,M) =
p(DIM)

* marginal | p(D|M) =_|;P(DI9,M) p(6|M) dé

likelihood

* normalizing constant
. _ p(OIM) | clizing ‘
ayes factor Bg1 = —— quantity of interest for
p(D|Mo) model selection
* very difficult to compute




Reminder: MHG MCMC Sampling

More formally, we want to explore the posterior distribution in an efficient manner

D = Data
6 = Model parameters (model notation M omitted here)

Posterior Prior distribution ~Likelihood”
distribution
\ Usually fairly easy to calculate
p@]D) =

Very ugly integral/sum
Extremely tedious to calculate even once

Normalizing constant

The algorithm starts from a random state (6) and ‘proposes’ a new state (6)

The new state is accepted with probability: R = min (1 P (61D) x p (6167 )
p(6D)  p(676)

Reminder: MHG MCMC Sampling

The algorithm starts from a random state (6) and
‘proposes’ a new state (6*)

The new state is accepted with probability:

R=min (1, 210 x @O
p@OD) P (&10)

T
1\|\' ||!‘ v' ‘|\ M i
ﬂyll"ﬂ"‘\“ |“ i

‘1 “‘l'\th\‘ﬂ
' .|| i

=min(1, P (DIE")p (€YPD)  f(618) )

p (DI6) p (O)lp(D) (671 6)

the two marginal likelihoods cancel out
and don’t have to be computed !

= min (1, (Dle) e  Fe1e)
f(Dle)  f(6)  f(e"6)
Likelihood ratio Prior ratio Proposal ratio




Model testing using Bayes factors

¢ for model fit, the marginal likelihood p(D|M) is of primary importance (to
calculate the Bayes factor)

e among several models, one is led to choose the model with the
highest marginal likelihood

e when calculated correctly/accurately: takes into account differences in
dimensions, so higher dimensional models are not automatically
preferred

» most/all software packages (including BEAST) estimate the log marginal
likelihood: log(p(D | M))

Calculating marginal likelihoods

Methods of general applicability:

. rior arithmetic mean estimator (PAME; Aitkin, 1991) M
+ the arithmetic m timator (AME/ILP; but a misnomga="_
. N\

(the importance sampling esti arly the harmonic mean
estimator (HME) (Newton and R

the stabilized hari

ean estimator (SHME) (Redell d Suchard, 2005)

(No additional analysis requmad)

rpath sampling (Gelman, 1998; Ogata, 1989), applied in phylogenetics (Lanillot‘
and Philippe, 2006)

stepping-stone sampling (Xie et al., 2011) (Additional analysis required

kgeneralised stepping-stone sampling (Fan et al., 2011; Baele et al., 2016)




The arithmetic mean estimator (AME)

P(D [ M) = Eprior[P(D | 6, M)]

K

1

~ 2 PD 16 M.
k=1

* a.k.a. the prior arithmetic mean estimator (but a misnomer)

integrates the likelihood against the model prior (unbiased)

* does not use samples from the likelihood obtained from an MCMC
analysis used to estimate parameters

« the high-likelihood region can be very small, hence unless K'is very large,

the sample drawn from the prior will contain virtually no points from the

high-likelihood region, resulting in a (very) poor estimate of p(D | M)

What about our MCMC output?

How does this relate to your (regular) MCMC analysis (which can
already be quite time-consuming, taking days or even weeks)?

Can you use your MCMC output to compute marginal likelihoods?

Yes: some marginal likelihood estimators (HME and sHME) and the
AICM use the likelihood samples collected during an MCMC run.

No: their accuracy and performance is poor and their outcomes
unreliable, thereby completely invalidating their computational
advantage. Hence, their use should be avoided.

Accurate marginal likelihood estimation hence requires an
additional MCMC analysis for each model!




What can we do in Tracer?
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What can we do in Tracer?

» you can load the .log file from your parameter estimation run into Tracer
(by default, this file will contain a column of likelihood values)

using this likelihood trace/column, you can estimate the HME (but

currently not the sHME) and the AICM in Tracer

* PS/SS and GSS are much more accurate marginal likelihood estimators
but require additional calculations/analyses

* as such, the PS/SS and GSS estimators can NOT be estimated in Tracer

(not what Tracer is for)

DO NOT load the .log output file generated by PS/SS
and GSS into Tracer

[ Avoid performing model selection in Tracer altogether ]




Intuitive reasoning

suppose this is the likelihood (curve) we need to explore to
obtain an accurate estimate of the marginal likelihood

Intuitive reasoning: ILP

integrating the likelihood over the prior (ILP) draws random values
for the parameters and then calculates the corresponding likelihood

T T T

most of the likelihoods
will hence be (very) low

but for the ILP to work
accurately, we need a
fair amount of high
likelihood values




Intuitive reasoning: HME/sHME

the HME/sHME use samples from the posterior, which
tend to be mostly high-likelihood values

only once every so often
g does the MHG algorithm
accept a low value

for the HME/sHME to
work well, samples

from the low likelihood
region are needed

Path sampling

requires samples from a series of power posteriors, not just
the posterior, along a path between prior and posterior:

as(®) = p(Y | 8,MPp(® | M)

reduces to the posterior when 3 = 1

reduces to the prior when 3 =0

slow / computationally demanding
slower convergence than HME/sHME/AICM




Rationale of path sampling
run several power posteriors, including the posterior and the
prior, and collect samples from each power posterior

-350 T T T T
Example: run 6 -
power posteriors, for -400 —— bl
different values of Tk p=08

. -450 - : e s

beta: 1.0 (posterior), 5 B=0.6
08,0.6,04,02and 500 |- 4
0.0 (prior). £ p=0.4

-550 F SRRy
After each power v _B=02
posterior has -600 =0
converged, collect -850 ) \ | | |
samples. 0 200 400 600 800 1000

# iterations

Path sampling: the estimator

* points Bk are saved before each update of 3; let us denote (Bk , 6k )k=0..K
the series of points obtained this way

* one can start at 3 = 1 (i.e. the posterior), equilibrate the MCMC, and then
progressively decrease B (BEAST), while sampling along the path
down to B = 0 (i.e. the prior)

* one has in particular Bo = 0, Bk = 1, and vk 0 < k < K, Bk+1 — Bk = OB (i.e.
the original approach assumes equidistant 3’s; Lartillot and Philippe,
2006)

the log marginal likelihood estimator is given by:

. 1/1 = 1
s = % (EU(GQ) + kz:; u@o + Eu(ol())




Rationale of path sampling

a) b)
-350 T T T T T T T T
-400 Bl
08
as0 b ensend -
P06
> 500 B 1
B0
550 - 1
p02 ”
-600 £ T 1
650 . " . L i I
0 200 400 600 80 1000 O 02 04 06 08 1
#iterations B

) d)

o 02 04 06 08 1
B
FIGURE]. Rati ici ion method. a, A series of i hai run under different values of 8, and for
each of them, the mean posterior expectation of the potential U = a Ing,/3p is computed (hori Tines). b, These mean posterior i

are plotted against f. ¢, The integral of the curve is estimated by the Simpson procedure. d, Illustration of the quasistatic version, in which #
moves continuously from 0 to 1 during MCMC (see text for details).

Intuitive reasoning: Path Sampling

PS combines the sampling regions from ILP and HME/sHME,
and adds samples from a series of power posteriors

HME/sHME

PS (and later SS) hence
sample the likelihood curve
more accurately

leading to PS/SS
drastically outperforming
the other marginal
likelihood estimators




Path sampling: a better path

* in the common situation where
the likelihood is much more
concentrated than the prior, the
shape of the power posterior is
relatively stable except near 3 = 0

08

* placing more computational effort
near O is hence sensible and
leads to a substantial increase in
the efficiency of the estimator

beta values

* use aBeta(1.0 ; a) distribution to
select values of B

¢ shown here: a = 0.3 (Xie et al.,
2011)

« different approaches available in E S—
BEAST T T T T T T

steps

Path sampling: a better path

PS/SS can use a Beta(1.0 ; 0.3) distribution to determine the
series of power posteriors from which to sample

more power posteriors
closer to the prior are being
sampled from

leading to more accurate

ML estimates with PS/SS

using the same amount of
computation power




Path sampling: a better path
R gy YOSV gradual decrease of
25000 the sampled
likelihood values
- “ with decreasing B
€
75000 ! only when a small
portion of the data
o (i.e. B close to zero)
remains are very low
- likelihood values
observed
‘long way’ from
B=1.0 B=0.48 B=0.18 B=0.05 p=0.005 B=0.0 pOStel’iOl’ to priOr

Path sampling: conclusions

a striking discrepancy between the HME and PS, due to a lack of
reliability of the HME

* the HME overestimates the marginal likelihood

this overestimation is more pronounced in the case of higher dimensional
models, which implies that the harmonic estimator will be effectively
biased in favor of such models

PS is included in more software packages, such as BEAST, nowadays
and should hence be used instead of the HME

one downside: PS is computationally (much) more demanding than the
HME, sHME and AICM




Stepping-stone sampling

requires samples from a series of power posteriors, like path
sampling, along a path between prior and posterior:

as(©) = p(Y | 8,MPp(© | M)

PS and SS traverse the same path between posterior and prior, the same
samples can be used for both estimators (i.e. buy one, get one for free)

differs from path sampling in the way the collected samples are used
to estimate the log marginal likelihood

does not need to sample the posterior, an initial run that converges
towards the posterior is used to burn-in the MCMC chain

PS/SS: two for the price of one

when performing PS/SS in a software packages (e.g. BEAST), collecting
samples from the path between posterior and prior is the computationally
demanding step

from this one collection, two marginal likelihood estimators (i.e. PS and
SS) are computed, which only takes a few minutes at most

BEAST prints both estimates to the screen, i.e. the actual log
marginal likelihoods are not stored in a file

save the screen output when submitting such calculations to a server/
computer cluster/grid system




Stepping-stone sampling: the estimator

K
log#ss = Y log(Pss )
=1
K
= [(Bk — Br-1) 108 Linaxs]
=1

K n
+> log (% > exp {(Be — Be1)
k=1 i=1
 [log f(y/k-1,) — log Lmax,k]})

« log(fss) is biased, and its bias appears to be directly proportional to its
variance, which can be alleviated by increasing K (i.e., the number of
power posteriors)

Stepping-stone sampling: phylogenetic example
2

* HME converges much
faster than PS and SS,
but to the wrong value
variance of PS and SS
decreases with
increasing K

6600
I

.
log(marginal likelihood)
6700
I

6800
I

* SS converges much
faster to the marginal
likelihood than PS

6900
i

« given sufficiently large K, } B B o 0 o
PS and SS converge to K
the same result FIGURE 5. Log marginal likelihood for three estimation methods

as a function of the number of B intervals, K, for the green plant
Ribulose Bisphosphate Carboxylase/Oxygenase large subunit (rbcL)
example.  values are evenly spaced quantiles from a Beta(0.3,1.0) dis-
tribution. Error bars represent 1 standard error based on 30 indepen-
dent MCMC analyses.




Stepping-stone sampling: conclusions

* SSis a more efficient and less biased estimator for the (log)
marginal likelihood than PS

* less computational effort is required for SS compared to PS

which settings, i.e. the number of 3 values and the length of the
chain at each value of B, produce consistent estimates is subject
to debate

like PS, SS outperforms the HME, sHME and AICM in selecting
the best model from a collection of candidate models

PS/SS/GSS: suggestions

» which settings, i.e. the number of path steps and the length of
the chain at each step, produce a good estimate of the log
marginal likelihood?

* when performing model selection, | suggest to use a total
number of iterations equal to the standard MCMC run used
to estimate parameters

« for example, if it takes your standard MCMC run 100 million
iterations to yield good ESS values, try running 100 path steps of
1 million iterations each

+ tutorial online (XML code; for BEAST 1.7.x and up):
http://rega.kuleuven.be/cev/ecv/tutorials/model-selection-tutorial




Model testing problems: HIV-1 example

o HIV-1 data: 162 taxa, 997 bp (Worobey et al., Nature, 2008)

* 'The inability to strongly reject the model with a constant population size
prior is counterintuitive because it is clear that the HIV-1 population size
has increased notably. We speculate that this finding might be due to the
simplest model providing a good fit to a relatively short, information-poor
alignment, in comparison with more parameterized models."

Table 1| HIV-1M group TMRCA estimates from BEAST analyses under different coalescent tree priors

Coalescent tree prior DRC60 and ZR59 excluded* DRC60 and ZR59 included
Constant 1933 (1919-1945)1, 0.0
Exponential 1907 (1874-1932), ~3.5+ 08
Expansion 1882 (1834-1917), ~2.7 =08

ogistic 1913 (1880-1937), ~23* 08 1913 (1891-1930
Bayesian skyline plot 1882 (1831-1916), 2.7 = 08 1908 (1884-1924)1, —0.4 =

15
15

Shown for each coalescent tree prior is the median, with the 95% highest probability distribution of TMRCA in parentheses. Also shown is the log:, Bayes factor difference in estimated marginal
likelihood (= estimated standard error) compared with the coalescent model with strongest support

*Concatenated gag-pol-env fragments available for either or both of ZRS9 and DRC60 (994 nucleatides total, 507 from DRC60).

+TMRCAS for the best-fit model and models not significantly worse than it are written in bold.

Model testing problems: HIV-1 example

» Bayesian skyline plot of HIV-1 group M. The plot begins at the median
posterior TMRCA (1908). The bold line traces the inferred median
effective population size over time with the 95% HPD shaded in blue
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g
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Model testing problems: HIV-1 example

* Analysis of the HIV-1 data set using sHME, AICM, PS and SS

sHME AICM PS SS

10
150
150

’ ED[|:| ‘ a a
i o B 2
] ol— [ B—
Gon Expan Expo Log  BSP Gon Expan Expo Log  BSP Gon Expan Expo Log BSP Gon Expen Expo Log BSP

FiG. 1. Differences in log-marginal likelihood estimates and AICM for two independent fittings (first fitting shown in white and second in gray) of
the HIV data set using the HME, posterior-simulation Akaike information content (AICM), PS, and SS sampling. For each estimator, the constant
population size model (Con) was used as the reference model, and the top-performing model for each fitting s indicated with a star (*). For all
estimators, we employ equal amounts of computational work (MCMC iterations) as well as an equal numb which

the marginal likelihood. The HME shows drastic differences in the overall ranking of the demographic models and, depending on the fitting, may
very well select a constant population size as the preferred coalescent prior. The AICM is consistent across both fittings but selects a constant
population size above all other coalescent priors. PS and SS consistently select the BSP coalescent prior as the optimal choice and put the constant
population size far behind the other coalescent priors. PS and SS indicate that the expansion growth model (Expan) yields the second highest fit,
whereas the exponential (Expo) and logistic (Log) growth models yield similar performance.

Model testing: simulation results

Table 1. Marginal Likelihood Estimator Performance for 100 Simulated Data Sets under Various Coalescent Priors Using the HME, AICM, PS,

and .

Coalescent Prior Growth Rate HME AlCM PS 3 Log BF HME AAICM Log BF PS Log BF S§
Constant - 48 59 72 72 061 057 176 176
Exponential 0.010 50 45 57 57 028 020 —0.81 —0.80
Exponential 0.025 59 73 92 92 133 —136 —6.81 —681
Exponential 0.050 80 99 100 100 —4.43 —4.34 —1254 —1254
Exponential 0.100 78 100 100 100 -7.75 ~7.66 —1824 —1824

We employed equal amounts of computational work (MCMC iterations) for all estimators as well as an equal number of posterior samples being used to estimate
the marginal likelihood. The HME, PS, and S5 columns report the number of correct classifications obtained out of 100 simulations. The log BF HME, log BF PS, and
log BF SS report the mean log BF over all replicates between the constant population size and exponential growth coalescent priors (a positive number indicates a
preference for the constant population size), whereas AAICM reports the mean difference of the AICM values acrossallreplicates.

Conclusions: now in BEAST!

* an exponential demographic prior with a (Baele et al., MBE, 201 2)
growth rate of 0.01 is a difficult case for ! ’
each estimator

* HME is unable to reach an accuracy higher than 80%
» AICM outperforms HME in all but one case
* PS/SS outperform HME and AICM in all cases




Model testing: simulation results

Table 3.1: model selection performance for 100 simulated datasets, consisting of
32 taxa, under either a balanced or Yule tree and two relaxed molecular clock
models using HME, sHME, AICM, PS, SS and the maximum a posteriori model
estimated under BMA. The columns report the number of correct classifications
obtained out of 100 simulations.

Tree Clock Length HME sHME AICM PS SS MAP
Balanced UCED  1.000 92 100 100 94 94 90
Balanced UCLD  1.000 28 5 1 99 99 99
Yule UCED  1.000 92 100 100 99 99 97
Yule UCLD  1.000 11 1 1 61 61 65
Yule UCED  2.500 89 100 100 98 98 99
Yule UCLD  2.500 26 5 9 83 82 81
Yule UCED  5.000 78 99 99 98 98 98
Yule UCLD  5.000 38 11 12 82 82 82
Conclusions:

» HME and AICM perform poorly, aimost no correct classifications when simulated
under a relaxed lognormal clock model

« PS/SS outperform HME and AICM in all cases

Generalised stepping-stone sampling

requires samples from a series of power posteriors, along a
path between reference/working prior and posterior:

as(©) = [o(Y | 8,M)p(® | M)IPpo(® | M)™*

« reduces to the original SS method if the reference/working distribution is
equal to the actual prior

* in practice, samples from the posterior distribution (3 = 1) are used to
parameterize the joint reference/working distribution po(6|M)

* we will use kernel density estimation (KDE) to construct reference/
working priors for each of the parameters being estimated




GSS: the estimator

Numerical stability can be improved by factoring out the
largest sampled term, 7, = max i< {f(y|Ok—1;,M)
7 (0c—1; M) /mo(Bhc 1 [M) }:

K
logr = Z log Fx
k=1

= Z[(ﬁk 7,8k—1)10g77k]
k=1

3 IR [f(y|9 —1i,M) w(O_1;|M) Be—Bi—1
+;1og{52[ kao(ok_u\,kw) ] }

i=1

GSS: working priors

Density function
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 reduces to the original SS method if the reference/working distribution is
equal to the actual prior

* in practice, samples from the posterior distribution (3 = 1) are used to
parameterize the joint reference/working distribution po(6|M)

« we will use kernel density estimation (KDE) to construct reference/
working priors for each of the parameters being estimated




Original GSS: fixed tree topology

PS

SS

GSS

Seed 2
20 0

-60 -40

Seed 2

-60 -40 -20

0

0

Seed 2

-60 -40 -20

40 20 0 20
Seed 1

 original GSS publication (Fan et al., 2011): fixed tree topology
* GSS analyses with different starting seeds yield almost identical MLEs
* hence much lower variance compared to PS/SS

GSS: phylogenetic uncertainty

* the fixed tree topology restriction has been relaxed
* e.g. for use in a coalescent-based framework such as BEAST

« 2 working priors for coalescent models proposed (Baele et al., 2016)
- matching coalescent model (MCM): for simple parametric models
- product of exponential distributions (POEL): general use
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GSS: phylogenetic uncertainty (variance)
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GSS: coalescent models
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GSS: decreased run time

HIV-1 - Timings for different demographic priors
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* GSS does not need to explore the prior, which avoids computing the likelihood
for highly unlikely parameter values, which may lead to numerical instabilities

* combined with a “shorter” path to be traversed, this leads to a drastic
performance increase (dependent on the actual reference/working prior)

Bayesian model testing: priors

* akey aspect of any Bayesian analysis is setting priors on the parameters
being estimated in the process

* unless there is a priori knowledge concerning some of the parameters,
uninformative (but proper) priors are used

« improper priors should be avoided, although many analyses are still
performed with such priors

* more importantly: improper priors are to be avoided at all cost when
performing path sampling (PS) and stepping-stone sampling (SS) as
these approaches gradually decrease the contribution of the data to the
posterior and include an exploration of the prior




Bayesian model testing: priors

[ A proper prior is a probability distribution that integrates to 1. ]

The frequently used constant function on an infinite interval
is often inaccurately called a uniform distribution, although it
is actually an example of an improper prior.

When no prior is specified in certain software packages,
an improper prior may be assumed (e.g. BEAST).

Bayesian model testing: proper priors

A proper prior is a probability distribution that integrates to 1.

lognormal prior exponential prior normal prior

M(\ ”I‘\ ‘/\
.
/ — | — |
030 = !
0 2 4 6 8 10 12 o 2 4 6 8 10 12 17 8 19 20 21 22 23

gamma prior uniform prior

\ but not Uniform[-00,+00]




End of lecture...

End of lecture / start of practical
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