

Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology and Immunology KU Leuven, Belgium.

Phylogenetic diffusion models

Philippe Lemey¹, Guy Baele¹ & Marc Suchard²

- 1.Rega Institute, Department of Microbiology and Immunology, K.U. Leuven, Belgium.
- 2.Departments of Biomathematics and Human Genetics, David Geffen School of Medicine at UCLA. Department of Biostatistics, UCLA School of Public Health

SISMID, July 20-22, 2016

Phylogeography

"a field of study concerned with the principles and processes governing the geographic distribution of genealogical lineages, especially those within and among closely related species."

Avise, 2000

Phylogeographic inference (road II)

Coalescent theory:

- is a statistical framework for the analysis of genetic polymorphism data
- is an extension of classical population-genetics theory and models
- one can estimate time (number of generations) for lineages to coalesce
- many applications (including migration analysis)

Phylogenetic diffusion models

Phylogenetic diffusion models • Do we need all those С А В D parameters? Rate Indicators I_[0,1] Α π_Bili πcjl_j TDK В π_Aili πc/I $\pi_{D}m$ С π_Ajl_j π_{B}/I_{I} $\pi_{\mathsf{D}} n \mathsf{I}_{\mathsf{n}}$ С A D $\pi_A k \mathbf{I}_k$ $\pi_B m l_n$ π_⊂n λ В СТМС R Poisson Prior 0.5 D D В 0.3 В 0.2 С 0. A 0 3 4 5 6 7 1 2 С offset = K - 1 $\sum \mathsf{I}_j$ mean = log(2)

H5N1 'bird flu'

- Wild fowl act as natural asymptomatic carriers
- first HPAI outbreak in Guangdong, China in 1996
- 'Bird flu' outbreak in Hong Kong in 1997
- the A/goose/Guangdong/ 1/96 (Gs/GD) virus lineage has become the longest recorded HPAI virus to remain endemic in poultry

Predictors of dog rabies diffusion in Morocco

Uncovering cross-species dynamics bat rabies

Uncovering bat rabies transmission dynamics

Uncovering bat rabies transmission dynamics

Antigenic Cartography

Developed by Derek Smith and colleagues

Uses multidimensional scaling (MDS) to position viruses in 2D space such that the distances in this space best fit the HI assay titres.

Antigenic Cartography

Developed by Derek Smith and colleagues

Uses multidimensional scaling (MDS) to position viruses in 2D space such that the distances in this space best fit the HI assay titres.

Smith et al. 2004. Mapping the antigenic and genetic evolution of the influenza virus. Science.

