
Clinical and Epidemiological Virology,  
Rega Institute, Department of Microbiology 
and Immunology 
KU Leuven, Belgium. 

SISMID, July 20-22, 2016

Phylogenetic diffusion models
Philippe Lemey1, Guy Baele1 & Marc Suchard2

1.Rega Institute, Department of Microbiology 
and Immunology, K.U. Leuven, Belgium. 

2.Departments of Biomathematics and Human 
Genetics, David Geffen School of Medicine at 
UCLA. Department of Biostatistics, UCLA 
School of Public Health



Phylogeography

“a field of study concerned with 
the principles and processes 
governing the geographic 
distribution of genealogical 
lineages, especially those 
within and among closely 
related species.”

Avise, 2000



Phylogeography: three roads diverged?

Population genetics
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Phylogeographic inference (road I)

Nested clade 
phylogeographic 
analysis (NCPA)



Phylogeographic inference (road II)

Coalescent theory: 
๏ is a statistical framework for the 

analysis of genetic 
polymorphism data 

๏ is an extension of classical 
population-genetics theory and 
models 

๏ one can estimate time (number 
of generations) for lineages to 
coalesce 

๏ many applications (including 
migration analysis)
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MIGRATE-N
estimation of population sizes 

and gene flow using the coalescent

LAMARC - Likelihood Analysis with 
Metropolis Algorithm using Random Coalescence

http://evolution.genetics.washington.edu/lamarc.html

Batwing: http://www.maths.abdn.ac.uk/~ijw/downloads/download.htm

MDIV: http://www.biom.cornell.edu/Homepages/Rasmus_Nielsen/files.htm

http://popgen.sc.fsu.edu/Migrate-n.html  http://genfaculty.rutgers.edu/hey/software

Structured coalescent (road II)

BEAST2: http://compevol.github.io/MultiTypeTree / BASTA
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http://gcid.jcvi.org/projects/msc/influenza/

HA amino acid sequences taken from influenza H3N2 at 2 month intervals

Keele et al., 2006, Science



Inferring discrete ancestral state locations

Parsimony analysis
Location 1 Location 2

ML analysis

Bayesian analysis
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• Given sequence and trait data (X,Y) that is 
temporally spaced estimate true values of:  

‣ substitution parameters (µ and Q ) 

‣ ancestral genealogy (g = E , t  ) 

tree topology 

dates of divergence 
‣ population history (θ) 

‣ trait evolution (𝚿 ) 
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• Bayesian inference
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Phylogenetic diffusion models
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discrete continuous

∆Y = BVN(0,St)

Lemey et al., MBE, 2010Lemey et al., PLoS Comp Bio, 2009
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๏ Discrete Model: A B C D

A . πBi πCj πDk

B πAi . πCl πDm

C πAj πBl . πDn

D πAk πBm πCn .
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๏ priors A B C D

A . πBi πCj πDk

B πAi . πCl πDm

C πAj πBl . πDn

D πAk πBm πCn .
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Phylogenetic diffusion models

๏ Do we need all those 
parameters?
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A B C D

A . πBiIi πCjIj πDkIk

B πAiIi . πClIl πDmIm

C πAjIj πBlIl . πDnIn

D πAkIk πBmIm πCn .

๏ Do we need all those 
parameters?
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Rate Indicators I[0,1]

mean = log(2)
offset = K -1

Poisson Prior
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Phylogenetic diffusion models

๏ Bayesian stochastic search variable selection procedure

➡ support for a particular rate (connection)?

posterior odds 
prior odds

Bayes factor = 

Pr(I=1| D)/(1-Pr(I=1| D)

Pr(I=1)/(1-Pr(I=1)

Poisson offset+ mean

K(K-2)/2
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๏ Wild fowl act as natural asymptomatic carriers

H5N1 ‘bird flu’

๏ first HPAI outbreak in 
Guangdong, China in 1996

๏ the A/goose/Guangdong/
1/96 (Gs/GD) virus lineage 
has become the longest 
recorded HPAI virus to 
remain endemic in poultry

๏ ‘Bird flu’ outbreak in Hong 
Kong in 1997
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Influenza A H5N1

Wallace et al., PNAS, 2007
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Influenza A H5N1: discrete model
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Understanding the evolutionary history of human viruses, 
along with the factors that have shaped their spatial 
distributions, is one of the most active areas of study in the 
field of microbial evolution.

Eddie Holmes, Ann Rev Microbiol 2008 

Phylogeographic patterns in RNA viruses



๏ priors A B C D
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Phylogeographic hypothesis testing?

Equal rates -320
Distance -299.8
Population sizes -381
Gravity model -388.6
Population surface -335.9

Road distances -298.5

Accessibility -313.7

Ln Marginal
likelihoodPredictor

Predictors of dog rabies diffusion in Morocco

Talbi et al (2010) PLoS Pathogens



Predictors of phylogenetic diffusion
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to the 15-geographic region partition, we subsequently obtain the average a�nity for each
airport to the communities in this partition. We assign each airport to the community for
which it shows the highest average a�nity, but we take into account its uncertainty by also
considering assignments that yield a�nities that are > 2/3 of the highest a�nity score. This
cut-o↵ resulted in 771 ambiguous airport assignments. Finally, we partitioned the sequence
data according to the air community assignment and accommodate 368 (24%) ambiguous
sequence locations, i.e. those sequences related to airports with ambiguous community as-
signments, using ambiguity coding in our phylogeographic approach.

1.3 Bayesian statistical analysis of sequence and trait evolution

We integrate genetic, spatial and air transportation data within a single full probabilistic
evolutionary model and simultaneously estimate the parameters of phylogeographic di↵u-
sion using Markov chain Monte Carlo (MCMC) analysis implemented in BEAST [3]. We
introduce a novel phylogenetic di↵usion model and associated inference procedures in the
subsections below. To model sequence evolution, we partition the hemagglutinin codon posi-
tions into first+second and third positions [4] and apply a separate HKY85 [5] CTMC model
of nucleotide substitution with discrete gamma-distributed rate variation [6] to both. We
assume a flexible Bayesian skyride prior over the unknown phylogeny [7]. Exploratory runs
using the data for the 26 locations indicated that a relaxed molecular clock represented an
over-parametrization [8]. A strict clock was therefore used in subsequent analyses. Because
the exact date of sampling was not known for some additional publicly available sequences,
we integrated out their dates over the known sampling time interval [9]. We capitalize on
BEAGLE [10] in conjunction with BEAST to improve computational performance on our
large data sets. MCMC analyses were run su�ciently long to ensure stationarity as diag-
nosed using Tracer. We used the TreeAnnotator tool in BEAST to summarize trees in the
form of maximum clade credibility (MCC) trees. As part of the supplementary files (Dataset
S1), we make available an XML document specifying the data and analysis settings for main
analysis of the air communities, and the associated empirical trees required to run the anal-
ysis (section 1.3.3). This includes accession numbers for all the sequences as well as their
sampling dates, the locations we assigned them to (section 1.1), the di↵erent sub-samplings,
the (GLM) model settings and the predictors (section 1.3.1 and 1.3.2).

1.3.1 GLM di↵usion implementation and predictor support

Bayesian phylogeographic inference models discrete di↵usion as a continuous-time Markov
chain process parameterized in terms of a K ⇥ K infinitesimal rate matrix ⇤ of discrete
location change withK representing the number of location states. The GLM di↵usion model
extends this by adopting a generalized linear model (GLM) approach that takes an arbitrary
number P of predictors X = (x1, . . . ,xP ), where a single predictor xp is a flattened vector of
quantities corresponding to entries in the i to j rate matrix xp = (x1,2,p, . . . xK�1,K,p)

0
. The

GLM considers every instantaneous movement rate ⇤ij for i 6= j in ⇤ as a log linear function
of the set of predictors X, such that:

log⇤ij = �1�1xi,j,1 + �2�2xi,j,2 + . . .+ �P �Pxi,j,P , (1)
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We integrate genetic, spatial and air transportation data within a single full probabilistic
evolutionary model and simultaneously estimate the parameters of phylogeographic di↵u-
sion using Markov chain Monte Carlo (MCMC) analysis implemented in BEAST [3]. We
introduce a novel phylogenetic di↵usion model and associated inference procedures in the
subsections below. To model sequence evolution, we partition the hemagglutinin codon posi-
tions into first+second and third positions [4] and apply a separate HKY85 [5] CTMC model
of nucleotide substitution with discrete gamma-distributed rate variation [6] to both. We
assume a flexible Bayesian skyride prior over the unknown phylogeny [7]. Exploratory runs
using the data for the 26 locations indicated that a relaxed molecular clock represented an
over-parametrization [8]. A strict clock was therefore used in subsequent analyses. Because
the exact date of sampling was not known for some additional publicly available sequences,
we integrated out their dates over the known sampling time interval [9]. We capitalize on
BEAGLE [10] in conjunction with BEAST to improve computational performance on our
large data sets. MCMC analyses were run su�ciently long to ensure stationarity as diag-
nosed using Tracer. We used the TreeAnnotator tool in BEAST to summarize trees in the
form of maximum clade credibility (MCC) trees. As part of the supplementary files (Dataset
S1), we make available an XML document specifying the data and analysis settings for main
analysis of the air communities, and the associated empirical trees required to run the anal-
ysis (section 1.3.3). This includes accession numbers for all the sequences as well as their
sampling dates, the locations we assigned them to (section 1.1), the di↵erent sub-samplings,
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location change withK representing the number of location states. The GLM di↵usion model
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of the set of predictors X, such that:
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Hypothetical scenario for discretely and continuously distributed samples on the same geographical scale (top) and modeling assumptions underlying
the discrete and continuous phylogeographic approaches (bottom). The choice of the phylogeographic approach depends on whether the sampling
scheme is amenable to discretization or not. For example, if sequences are drawn from a single city in each country or if only the country of sampling is
known (panel a; k represents the number of sequences available for each state or location), a discrete diffusion model may be preferred, although such
sampling does not necessarily preclude the application of a continuous diffusion model. Intermediate scenarios may be treated either way (panel b). In
this case, the choice may more depend on the objectives of the analysis (see Box 1). Phylogeographic inference for sequences drawn from unique
locations that are continuously distributed over this geographic area and for which administrative borders do not offer a realistic discretization (panel c)
will have to resort to continuous diffusion models. To illustrate the assumptions underlying for the discrete model, we consider a graphical
representation of a four-state CTMC path (panel d). All possible transitions from state i to state j are color-labeled according to the end state j (diffusion
to a location) within a time interval, although other arbitrary labels can be considered to build different counting processes [52,53]. Conditioning on the
observed locations at the tips of a rooted phylogeny, CTMCs model the instantaneous locations along each branch of a tree [9!,56!,57] to infer the
ancestral states at the internal nodes (panel e). Continuous diffusion approaches are based in Brownian diffusion models and can account for
variability on the branch dispersal rates [10!]. We consider a simulation of a Brownian diffusion process, in which the lines represent branches of the
tree projected on a two-dimensional arbitrary map (panel f). In this case, only diffusion pathways for the tips are shown.

www.sciencedirect.com Current Opinion in Virology 2011, 1:423–429

Sampling

Geography
complete abstraction

flexible

dispersal ~ f(distance)

Ancestral 
locations

(host mobility dependent)

sampling locations anywhere

hypothesis 
testing

GLM

distance = euclidean!

discrete continuous

BIAS!!

Dellicour, BMC 
Bioinformatics, 2016

Astrakhan

Bangkok

Fujian

Guandong

Guangdong

Hebei

Henan

HongKong

Hunan

Indonesia

Japan

Kamphaeng

Mongolia

NakonSawan

NakonSawan+Phitsanulok

Novosibirsk

Phitsanulok

Qinghai

Shanghai

Uthai

Vietnam

xGuangxi 0

0.15

0.3

0.45

0.6

Hong Kong Guangdong



Astrakhan

Bangkok

Fujian

Guandong

Guangdong

Hebei

Henan

HongKong

Hunan

Indonesia

Japan

Kamphaeng

Mongolia

NakonSawan

NakonSawan+Phitsanulok

Novosibirsk

Phitsanulok

Qinghai

Shanghai

Uthai

Vietnam

xGuangxi 0

0.25

0.5

0.75

1

Hong Kong Guangdong

Astrakhan

Bangkok

Fujian

Guandong

Guangdong

Hebei

Henan

HongKong

Hunan

Indonesia

Japan

Kamphaeng

Mongolia

NakonSawan

NakonSawan+Phitsanulok

Novosibirsk

Phitsanulok

Qinghai

Shanghai

Uthai

Vietnam

xGuangxi

0

0.175

0.35

0.525

0.7

Hong Kong Guangxi



Astrakhan

Bangkok

Fujian

Guandong

Guangdong

Hebei

Henan

HongKong

Hunan

Indonesia

Japan

Kamphaeng

Mongolia

NakonSawan

NakonSawan+Phitsanulok

Novosibirsk

Phitsanulok

Qinghai

Shanghai

Uthai

Vietnam

xGuangxi 0

0.175

0.35

0.525

0.7

Hong Kong Guangxi

A_Goose_Guangdong_1_1996 

A_duck_Guangdong_12_2000 

A_duck_Guangdong_07_2000 

A_duck_Guangdong_40_2000

100

101

102

G
ui

ne
a

100

101

102

103

Li
be

ria

100

101

102

103

Si
er

ra
 L

eo
ne

How to reconstruct spread?
What factors predict geographical spread?

by district: 63 x 62 parameters
by country: 3 x 2 parameters
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Temporal heterogeneity
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Data takes the form of a table of cross-reactivities

Influenza A (H3N2) from 1968 to 2011: 
340 virus isolates 
438 ferret antisera 
338 strains 
7232 HI titers 
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dated to ensure sufficient efficacy against
newly emerging variants (7, 8). The World
Health Organization coordinates a global
influenza surveillance network, currently
consisting of 112 national influenza centers
and four collaborating centers for reference
and research. This network routinely char-
acterizes the antigenic properties of influ-
enza viruses using a hemagglutination in-
hibition (HI) assay (1). The HI assay is a
binding assay based on the ability of influ-
enza viruses to agglutinate red blood cells
and the ability of animal antisera raised
against the same or related strains to block
this agglutination (9). Additional surveil-
lance information is provided by sequenc-
ing the immunogenic HA1 domain of the
HA gene for a subset of these strains. The
combined antigenic, epidemiological, and
genetic data are used to select strains for
use in the vaccine.

Retrospective quantitative analyses of the
genetic data have revealed important insights
into the evolution of influenza viruses (10–
13). However, the antigenic data are largely
unexplored quantitatively because of difficul-
ties in interpretation, even though antigenic-
ity is a primary criterion for vaccine strain
selection and is thought to be the main driv-
ing force of influenza virus evolution. When
antigenic data have been analyzed quantita-
tively, it has usually been with the methods
of, or methods equivalent to, numerical tax-
onomy (14–16). These methods have pro-
vided insights (15–19); however, they
sometimes give inconsistent results, do not
properly interpret data that are below the
sensitivity threshold of the assay, and approx-
imate antigenic distances between strains in
an indirect way [discussed by (4, 16, 18)].
Lapedes and Farber (4 ) solved these prob-
lems with a geometric interpretation of bind-
ing assay data, in which each antigen and
antiserum is assigned a point in an “antigenic
map” [based on the theoretical concept of
“shape space” (20–23)], such that the dis-
tance between an antigen and antiserum in
the map directly corresponds to the HI mea-
surement. Lapedes and Farber used ordinal
multidimensional scaling (MDS) (24 ) to po-
sition the antigens and antisera in the map.

The method used in this manuscript is
based on the fundamental ideas described
by Lapedes and Farber (4 ) and, in particu-
lar, takes advantage of their observation
that antigenic distance is linearly related to
the logarithm of the HI measurement. Ex-
ploiting this observation allowed us to cre-
ate a new method that is parametric yet still
handles HI measurements that are beyond
the sensitivity of the HI assay (9). We use
a modification of metric MDS (25 ) to po-
sition the antigens and antisera in the map
(9). This new approach offers computation-
al advantages over the ordinal approach,

including reduced running time and fewer
local minima, making it tractable to run on
datasets the size of the one used in this
manuscript, and on larger datasets.
Antigenic map of human influenza A

(H3N2) virus. We applied this method to
mapping the antigenic evolution of human
influenza A (H3N2) viruses, which became
widespread in humans during the 1968 Hong
Kong influenza pandemic and have been a
major cause of influenza epidemics ever
since. Antigenic data from 35 years of influ-
enza surveillance between 1968 and 2003
were combined into a single dataset. We se-
quenced the HA1 domain of a subset of these
virus isolates (26, 27 ) and restricted the an-
tigenic analysis to these sequenced isolates to
facilitate a direct comparison of antigenic and
genetic evolution. The resulting antigenic
dataset consisted of a table of 79 postinfec-
tion ferret antisera by 273 viral isolates, with
4215 individual HI measurements as entries
in the table. Ninety-four of the isolates were
from epidemics in the Netherlands, and 179
were from elsewhere in the world.

We constructed an antigenic map from
this dataset to determine the antigenic evolu-
tion of influenza A (H3N2) virus from 1968
to 2003 (Fig. 1). Because antigen-antiserum
distances in the map correspond to HI values,
it was possible to predict HI values that were
missing in the original dataset and subse-
quently to measure those values using the HI
assay, so as to determine the resolution of the
map. We predicted and then measured 481
such HI values with an average absolute pre-
diction error of 0.83 (SD 0.67) units (each
unit of antigenic distance corresponds to a
twofold dilution of antiserum in the HI assay)
and a correlation between predicted and mea-
sured values of 0.80 (p !! 0.01). The accu-
racy of these predictions indicates that the
map has resolution higher than that previous-
ly considered available from HI data and
higher than the resolution of the assay. The
resolution of the map can be greater than the
resolution of the assay because the location of
a point in the map is fixed by measurements
to multiple other points, thereby averaging
out errors (9).

The map reveals high-level features of the
antigenic evolution of influenza A (H3N2)
virus. The strains tend to group in clusters
rather than to form a continuous antigenic
lineage, and the order of clusters in the map is
mostly chronological; from the original Hong
Kong 1968 (HK68) cluster, to the most recent
Fujian 2002 (FU02) cluster. The antigenic
distance from the HK68 cluster, through con-
secutive cluster centers, to the FU02 cluster is
44.6 units, and the average antigenic distance
between the centers of consecutive clusters is
4.5 (SD 1.3) units. The influenza vaccine is
updated between influenza seasons when
there is an antigenic difference of at least 2

units between the vaccine strain and the
strains expected to circulate in the next sea-
son; thus, not unexpectedly, we find at least
one vaccine strain in each cluster.

The ability to define antigenic clusters
allows us to identify the amino acid substitu-
tions that characterize the difference between
clusters (Table 1, fig. S1). Some of these
“cluster-difference” substitutions (9) will
contribute to the antigenic difference between
clusters, some may be compensatory muta-

Fig. 1. Antigenic map of influenza A (H3N2)
virus from 1968 to 2003. The relative positions
of strains (colored shapes) and antisera (uncol-
ored open shapes) were adjusted such that the
distances between strains and antisera in the
map represent the corresponding HI measure-
ments with the least error (9). The periphery of
each shape denotes a 0.5-unit increase in the
total error; thus, size and shape represent a
confidence area in the placement of the strain
or antiserum. Strain color represents the anti-
genic cluster to which the strain belongs. Clus-
ters were identified by a k-means clustering
algorithm (9) and named after the first vaccine-
strain in the cluster—two letters refer to the
location of isolation (Hong Kong, England, Vic-
toria, Texas, Bangkok, Sichuan, Beijing, Wuhan,
Sydney, and Fujian) and two digits refer to year
of isolation. The vertical and horizontal axes
both represent antigenic distance, and, because
only the relative positions of antigens and an-
tisera can be determined, the orientation of the
map within these axes is free. The spacing
between grid lines is 1 unit of antigenic dis-
tance—corresponding to a twofold dilution of
antiserum in the HI assay. Two units corre-
spond to fourfold dilution, three units to eight-
fold dilution, and so on.
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multidimension scaling (MDS) and Bayesian MDS

= map distance between virus i at Xi and sera j at Yj

Evolutionary cartography
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Philippe Lemey and Marc A. Suchard

Abstract

[Insert abstract]

1 Probabilistic cartographic model

Let Xi ⇥ ⇤P represent the cartographic location of virus i for i = 1, . . . , N and let Xj ⇥ ⇤P

identify the cartographic location of antisera j for j = 1, . . . , J . Typically, P = 2, but higher

or lower dimensions may better reflex the data. We define the immunological distance

between virus i and antisera j

dij = max (Hij) + log2

�
Hij
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⇥
(1)

and let the set I = {(i, j) : Hij is measured}.

The goal of multidimensional scaling (MDS) optimizes over Z = (X1, . . . ,XN ,X1, . . . ,XJ)

such that
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Connecting antigenic to genetic evolution

A Brownian phylogenetic diffusion process as hierarchical prior on X

Lemey et al., MBE, 2010

Comparison of antigenic drift across influenza lineages

Bedford et al., eLife, 2014
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Bedford et al., eLife, 2014

PhylodynamicsTM

 

 

 

Time 

Measles

Influenza

GENETIC DIVERSITY 
(phylogenetics & 

molecular evolution)

EPIDEMIC DYNAMICS 
(mathematical epidemiology)

NATURAL SELECTION 
(population genetics & 

immunology)

48 50 52 54 56 58 60 Year 

200 
400 

600 
800 

1000 

Weekly Cases 

90 92 94 96 98 Year 

200 

400 

600 

800 

Weekly Cases 



Across subtypes
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South America
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B/Vic: 1999 B/Yam: 1455

H3N2 phylogeny
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H1N1 phylogeny
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Vic phylogeny
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Yam phylogeny
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Summary

Diversity (yrs)
Persistence (yrs)

Migration rate (# lineage/yr)

3.03  4.59  5.46  6.83
0.50  0.79  1.07  1.03
1.99  1.27  0.93  0.98
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Antigenic drift 
(antigenic units per yr) 

 

1.01  0.62  0.42  0.32

Bedford et al., Nature, 2015

Age distribution across viruses
H3N2 median age = 30y

H1N1 median age = 20y

B median age = 16y



Air travel differences between adults and children

Bedford et al., Nature, 2015

Epidemiological modeling

• Base transmission rate β = 0.88 per day
• Duration of infection 1/𝜈 = 5 days
• Birth/death rate = 1/50 years
• Total population size N = 45 million
• Seasonal forcing in north and south ε = 0.15
• Antigenic scaling s = 0.07
• Antigenic mutation rate μ = 0.5 to 6.5 × 10-4 per day
• Average mutation size δavg = 0.3 units
• Child-to-child transmission 𝛼cc = 1.00
• Child-to-adult transmission 𝛼ca = 0.21
• Adult-to-child transmission 𝛼ac = 0.21
• Adult-to-adult transmission 𝛼cc = 0.26
• Child between-region transmission mc = 0.0020 vs 0.0011
• Adult between-region transmission ma = 0.0020 vs 0.0060

Bedford et al., BMC Biology, 2012



Epidemiological results age-independent mixing
age-stratified mixing 

Interaction between virus evolution, 
epidemiology and human behaviour 

drives migration rate differences

be a virus, see the world

evade immunity more efficiently

more of the
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