
2016 SISMID Module 16
Lecture 10: Small Area Estimation

Jon Wakefield and Lance Waller

Departments of Statistics and Biostatistics
University of Washington

1 / 133



Outline

Motivation

Design-Based Inference

Model-Based Approaches

Non-Response via Hierarchical Models

BRFSS Example

Tanzania U5M Example

Model Comparison

Conclusions

Traditional SAE Approaches

Direct Domain Estimation

Indirect Domain Estimation

Model-Based Approaches

2 / 133



Background reading on SAE

The classic text on SAE is Rao (2003), with a new edition just appeared
(Rao and Molina, 2015).

Lohr (2010, Chapter 14).

Särndal et al. (1992) also have a section, but do not describe
model-based approach (their general mantra is model-assisted inference).

Valliant et al. (2000, Section 11.5).

An excellent recent review of SAE is Pfeffermann (2013).

The sae package in R fits a number of models including Fay-Herriot.
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Motivation

Small area estimation (SAE) is an important endeavor since many
agencies require estimates of health, education and environmental
measures in order to plan and allocate resources and target interventions.

SAE is an example of domain (sub-population) estimation.

“Small” here refers to the fact that we will typically base our inference on
a small sample from each area (so it is not a description of geographical
size).

In the limit there may some areas in which there are no data.

So far we have considered situations in which we have either a complete
enumeration of cases and populations, a cross-sectional (random
sampling) survey, or case-control sampling.

4 / 133



Design-Based Inference

If survey data are collected from a simple random sample (SRS) then
there is no problem in using the methods we have already seen.

Often, however, surveys are carried out in which the design is not SRS.

In particular complex sample schemes are often carried out in which
certain populations are disproprtionately sampled, clustered samples are
collected,. . .

In this case, each individual response is accompanied with a weighting
factor to account for the unequal probability of selection and also for
non-response.

Post-stratification or raking may also be carried out in which estimated
population totals of demographic groups are matched to the known
totals.

We motivate this section with some examples.
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Motivating Example: Diabetes in King County

Arises out of a joint project between Laina Mercer/Jon Wakefield and
Seattle and King County Public Health.

Aim we will concentrate on here is to estimate the number of 18 years or
older individuals with diabetes, by health reporting areas (HRAs) in King
County in 2011.

HRAs are city-based sub-county areas with a total of 48 HRAs in King
County. Some of these are as are a single city, some are a group of
smaller cities, and some are unincorporated areas. Larger cities such as
Seattle and Bellevue include more than one HRA.

Data are based on the question, “Has a doctor, nurse, or other health
professional ever told you that you had diabetes?”, in 2011.
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Figure 1 : Health reporting areas (HRAs) in King County.
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Motivating BRFSS Example

Estimates are used for a variety of purposes including summarization for
the local communities and assessment of health needs.

Analysis and dissemination of place-based disparities is of great
importance to allow efficient targeting of place-based interventions.

Because of its demographics, King County looks good compared to other
areas in the U.S., but some of its disparities are among the largest of
major metro areas.

Estimation is based on Behavioral Risk Factor Surveillance System
(BRFSS) data.

The BRFSS is an annual telephone health survey conducted by the
Centers for Disease Control and Prevention (CDC) that tracks health
conditions and risk behaviors in the United States and its territories since
1984.
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Figure 2 : Public Health: Seattle and King County website.
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Figure 3 : Summaries from Public Health: Seattle King County.
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Motivating BRFSS Example

The BRFSS sampling scheme is complex. . .

The Sample Wt, is calculated as the product of four terms

Sample Wt = Strat Wt× 1

No Telephones
× No Adults× Post Strat Wt

where Strat Wt is the inverse probability of a “likely” or “unlikely”
stratum being selected (stratification based on county and “phone
likelihood”).

Table 1 : Summary statistics for population data, and 2011 King County
BRFSS diabetes data, across health reporting areas.

Mean Std. Dev. Median Min Max Total

Population (>18) 31,619 10,107 30,579 8,556 56,755 1,517,712
Sample Sizes 62.9 24.3 56.5 20 124 3,020
Diabetes Cases 6.3 3.1 6.3 1 15 302

Sample Weights 494.3 626.7 280.4 48.0 5,461 1,491,880
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Motivating BRFSS Example

A total of 3, 020 individuals answered the diabetes question.

About 35% of the areas have sample sizes less than 50 (CDC
recommended cut-off), so that the diabetes prevalence estimates are
unstable in these areas.

We would like to use the totality of the data to aid in estimation in the
data sparse areas.

The variability in the weights is high, from 48 to 5,461, with mean 494.

The coefficient of variation (CV) of the weights is 1.27.

Therefore, the inefficiency of using the sample weights under the
assumption that unweighted mean is unbiased is about 62%, calculated
as CV 2/(CV 2 + 1) (Korn and Graubard, 1999).
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BRFSS Sample Size by HRA

under 25
25 − 50
50 − 75
75 − 100
over 100

Figure 5 : Sample sizes across 48 HRAs in 2011.
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Observed prevalence by HRA

under 0.05
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Figure 6 : Diabetes prevalence by HRAs in 2011: crude proportions.
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Observed prevalence by HRA

under 0.05
0.05 − 0.1
0.1 − 0.15
0.15 − 0.2
over 0.2

Figure 7 : Diabetes prevalence by HRAs in 2011: Horvitz-Thompson weighted
estimator.
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Another Example of a Survey: NHANES

The National Health and Nutrition Examination Survey (NHANES) is
designed to assess the health and nutritional status of adults and children
in the United States.

The sampling uses multistage, probability sampling.

We take details from http://www.cdc.gov/nchs/tutorials/nhanes/

surveydesign/SampleDesign/intro.htm.
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Another Example of a Survey: NHANES

Stage 1: Primary sampling units (PSUs) are selected. These are mostly single
counties or, in a few cases, groups of contiguous counties. Sampling
carried out with probability proportional to a measure of size (PPS).

Stage 2: The PSUs are divided up into segments (generally city blocks or
their equivalent). As with each PSU, sample segments are selected
with PPS.

Stage 3: Households within each segment are listed, and a sample is randomly
drawn. In geographic areas where the proportion of age, ethnic, or
income groups selected for oversampling is high, the probability of
selection for those groups is greater than in other areas.

Stage 4: Individuals are chosen to participate in NHANES from a list of all
persons residing in selected households. Individuals are drawn at
random within designated age-sex-race/ethnicity screening
subdomains. On average, 1.6 persons are selected per household.
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Approaches to Inference: Overview

If the data are not a random sample, this must be accounted for in the
analysis.

We have already seen an example of non-random sampling: case-control
studies!

A key distinction is between design- and model-based approaches to
inference.

To add to the confusion there is also model-assisted inference.

Standard hierarchical model-based approaches to analysis ignore the
sampling mechanism and do not adjust for non-response and are subject
to biases, which may be large.

A notable exception is the model due to Fay and Herriot (1979).
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Design-Based Inference

Examples of non-SRS designs include:

I Stratified Random Sampling: The population is categorized into
strata and simple random sampling is carried out within each strata,
with sample sizes set by the sampler.

I Single Stage Cluster Sampling: Partition the total population into
“clusters”. Randomly sample clusters and then obtain information
from all individuals within clusters.

I Two-Stage Cluster Sampling: Partition the total population into
“clusters”. Randomly sample clusters and then sample individuals
within each of the sampled clusters.

I Multistage Sampling: More stages, for example sample clusters
within strata.
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Design-Based Inference

So in this section we will start by considering a single area only.

Suppose the population is of size N with individual responses Y1, . . . ,YN .

A survey of size m is carried out.

We collect measurements yk along with sampling weights wk , k ∈ S ,
where S denotes the random set of indices that are selected, with
m = |S |, i.e. the number of individuals sampled.

The sampling weight wk can be thought of as the number of people that
response k represents.

The sampling weights are defined as the inverse of the inclusion
probabilities πk = Pr( sampling individual k ), i.e. wk = π−1k .
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Design-Based Inference

The mean of the response over the total population is P = 1
N

∑N
k=1 Yk .

Suppose further we wish to estimate the mean θ based on yk , k ∈ S .

The Horovitz-Thompson (HT) estimator of P is

P̂HT =

∑
k∈S wkyk

N
.

For a SRS, πk = m/N and so wk = N/m. Therefore,

P̂HT =

∑
k∈S

N
myk

N
=

∑
k∈S yk

m
,

the sample mean.
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Horvtiz-Thompson Estimator

In design-based inference the data Yk are viewed as fixed (non-random),
it is the binary indicators of inclusion in the sample that are viewed as
random.

Let Ik be a 0-1 indicator of whether person k was sampled, with

Ik |πk ∼ind Bernoulli(πk),

k = 1, . . . ,N.

The HT estimator is an unbiased estimator as we now show.
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Horvtiz-Thompson Estimator

Recall, we have fixed constants Y1, . . . ,YN and random variables
I1, . . . , IN . Hence,

E

[∑
k∈S wkyk

N

]
= E

[∑N
k=1 wk IkYk

N

]

=

∑N
k=1 wkE[Ik ]Yk

N

=

∑N
k=1 π

−1
k πkYk

N

=

∑N
k=1 Yk

N
= P
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Horvtiz-Thompson Estimator

It can also be shown that the variance of P̂HT is

var
(

P̂HT

)
=

1

N

 N∑
j=1

Y 2
j

(1− πj)
πj

+ 2
N∑
j=1

∑
k>j

YjYk
(πjk − πjπk)

πjπk

 (1)

where πjk is the joint inclusion probability of samples j and k.

The estimator of this variance is

v̂ar
(

P̂HT

)
=

1

N

∑
j∈S

y2
j

(1− πj)
πj

+ 2
∑
j∈S

∑
k>j

yjyk
(πjk − πjπk)

πjπk

 (2)

These estimators are known as design-based variance estimators.

An equivalent form for the variance is

v̂ar
(

P̂HT

)
=

1

N

∑
j∈S

∑
k∈S

yjyk
πjk
− yj
πj

yk
πk

(3)

The estimator is also asymptotically normal, which allows confidence
intervals to be derived.
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Horvtiz-Thompson Estimator

For the case of SRS, the variance formula (1) simplies to

v̂ar
(

P̂HT

)
=
(

1− m

N

) S2

m

where

S2 =
1

N − 1

N∑
j=1

(Yj − Y )2

and (2) replaces S2 by

s2 =
1

m − 1

∑
j∈S

(yj − y)2.

Sanity checks: If the population is large then m/N ≈ 0 and we obtain the
usual formula. And if m = N we have no uncertainty, since we know the
answer.
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Weighting

We return to our notation with i = 1, . . . , n indexing areas.

We have Ni individuals in area i and the indices of those selected in a
sample of size mi is denoted Si .

The weights are often formed via

wik = wd
ik × wp

ik (4)

where wd
ik is the design weight and wp

ik is the post-stratification weight.

For the design weights

wd
ik =

1

πik

where πik is the probability of selection.
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Weighting

If Ni is not known it may be estimated by

N̂i =
∑
k∈Si

wd
ik

is an estimate of the total population in area i , in line with interpreting
wd
ik as the number of individuals that this individual represents.

Note that,

E [N̂i ] =

Ni∑
k=1

E [Iik ]π−1ik = Ni ,

so that this estimator is unbiased.

Post-stratification, as the name suggests, adjusts the weights after
sampling, so that population totals in a set of stratum (e.g., age/gender)
are recovered.
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Post-stratification and Raking

If the post-stratification groups are indexed by j the weights are

wp
ik =

Nj(k)

N̂j(k)

where j(k) indicates the group to which individual k belongs, Nj are the
known totals and Nj(k) =

∑
k∈Sj

wd
ik . This procedure adjusts the weights

so that the known totals are recovered.

Previously in BRFSS in King County, post-stratification was used based
only on age and gender.

Raking now used for BRFSS, adjusting for more factors: age, gender,
race/ethnicity, marital status, education, owner/renter status, and cell
phone/landline status).

Cannot exactly match all cross-classified tables of counts, so instead
lower dimensional margins are controlled using a procedure known as
iterative proportional fitting.
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SAE under SRS

As discussed, the data upon which SAE is based are often gathered via
complex designs but we begin with simple random sampling (SRS).

Let Yi represent the total number in area i with the characteristic of
event, and Ni the population size; Yi is unobserved but assume Ni is
known.

Interest focusses on the proportion Pi = Yi/Ni or the total Yi .

Note the notation here: Pi is the unobserved proportion and not the
proportion in an infinite population from which Ni are drawn.

A SRS is taken in area i of size mi , of which yi have the characteristic.

The obvious estimators are

P̂i =
yi
mi

(5)

Ŷi = Ni ×
yi
mi

(6)

30 / 133



SAE under SRS

A serious problem with SAE is that areas with small mi will have large
sampling variability.

To overcome this problem hierarchical modeling is used.

This approach performs global and/or local smoothing, which introduces
bias in the estimator, but the variance is reduced, so that usually the
mean squared error (MSE)1 of the estimator is reduced compared to the
original estimator.

The hierarchical models we have previously examined can be used, with
some post-processing to obtain inference on the quantities of interest.

1MSE=Bias2 + Variance
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SAE under SRS

A starting model is,

yi |Pi ∼ Binomial(mi ,Pi )

logit Pi = β0 + εi + Si

with unstructured residual log odds εi ∼ N(0, σ2
ε ) and spatial residual log

odds Si ∼ ICAR(σ2
s ).

Finally we specify (hyper-)priors for β0, σ2
ε and σ2

s .

Inference for Yi is straightforward since Yi = yi + (Ni −mi )× Pi under
the binomial approximation.

So if we have a posterior for Pi we can easily convert into a posterior for
Yi .
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Model-Based Inference for Stratified Random Sampling

Suppose we sample on the basis of a discrete (design) variable
X ∈ (X1, . . . ,XJ), for example, age, gender, race, area,. . .

Stratified random sampling provides one example: we sample mij people
within area i and stratum j .

Simple example:

I Suppose that gender is the design variable and

I we sample twice as many women as men, and that the outcome of
interest is diabetes,

I women have lower risk of diabetes than men.

I if we take the simple proportion (ignoring gender) then our area-level
estimate will be downwardly biased.
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Model-Based Inference for Stratified Random Sampling

Suppose the stratum membership of all sampled individuals is known,
and zij are the number of responders from a sample mij in stratum j .

Could set up as a product of hypergeometric distributions.

More simply, we can model as:

zij |pi (Xj) ∼ Binomial(mij , pi (Xj))

log

[
pi (Xj)

1− pi (Xj)

]
= βj + εi + Si

with (say) εi ∼ N(0, σ2
ε ) and Si ∼ ICAR(σ2

s ).

Hyperpriors for βj , σ
2
ε and σ2

s .
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Model-Based Inference

Then prediction is

Ŷi =
J∑

j=1

Nij p̂i (Xj)

where Nij is the size of the population in group j and area i ; this is the
post-processing step.

Problems:

I X ’s are not routinely known for sampled individuals in public-use
databases.

I Nij are also not routinely known.

For example, in BRFSS, we would need to know which telephone list
each individual came from, and the population numbers in each area
from each telephone list.

Alternative: Design-based inference (the appendix contains details on
direct and indirect approaches to SAE).
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Model-based approaches

Indirect methods provide a link, often with an implicit model, between
different areas; we now turn to explicit models that provide such a link.

The models we describe are hierarchical (or mixed-effects) models which
aim to accurately describe between area differences.

Such models offer several advantages:

I Models can be tuned to the application, building on the existing
theory and practical experience of mixed models, including
non-linear models, such as logistic mixed models.

I Area-specific measures of uncertainty are produced.

I Estimates for areas with no data can be formed.

I One can attempt to check assumptions using diagnostics.

I A variety of area-specific random effects, including spatial, are
available.
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Model-based approaches

The use of explicit models has not been carried out greatly in survey
sampling, where design-based inference is historically the norm.

The design consistency of model-based estimators is therefore of interest.

Disadvantages of mixed models:

I How to incorporate the design weights/acknowledge the design?

I It is often difficult to check modeling assumptions.

I Computation can be demanding, though this is improving.

Models can be specified at the level of the area or the unit
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Hierarchical modeling: notes

Inference may be carried out via likelihood or Bayes, with the latter
placing priors on β, σ2

ε, σ
2
ε .

If a likelihood approach is taken, the random effect estimates ε̂i , are
obtained as best linear unbiased predictors (BLUPs).

If there are no data in particular areas we can still make predictions, if we
assume the model holds for all areas.

Note: can add area level covariates to model.
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Hierarchical Modeling of Survey Sample Data

A Horvitz-Thompson weighted estimator of the log-likelihood for binary
data is

n∑
i=1

mi∑
k=1

wik {yik log Pi + (1− yik) log(1− Pi )} (7)

(Binder, 1983) where yik is the binary outcome on person k in area i ,
with associated weight wik .

Method known as pseudo-likelihood.

Pseudo-likelihood (Skinner, 1989; Pfeffermann et al., 1998) has been
used within a hierarchical modeling framework with the scaling of the
weights being a major issue (Potthoff et al., 1992; Longford, 1996;
Asparouhov, 2006; Rabe-Hesketh and Skrondal, 2006).

Congdon and Lloyd (2010) use a weighted likelihood to analyze BRFSS
data and introduce residual spatial random effects at the state level.
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Further References

Although there is a huge literature on small area estimation the spatial
smoothing of survey data with complex weights is not routinely carried
out.

In terms of spatial smoothing techniques, a number of authors allow for
spatial correlation between areas, see for example Singh et al. (2005),
Pratesi and Salvati (2008) and Pereira and Coelho (2010).

These models are subject to bias, however, since they do not adjust for
the sampling scheme.

We shortly describe a relatively new approach based on the concept of
“effective sample size” and “effective number of cases”.

A related Bayesian model has recently been suggested by Ghitza and
Gelman (2013), while a quite different approach, based on a penalized
spline model, is described in Zheng and Little (2003) and Zheng and
Little (2005).
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Adjustment for non-response using hierarchical models

Suppose we have a binary response of interest, Y , and we wish to
estimate (predict) the proportion and total in a region of interest,
perhaps by domain (e.g. smaller geographical areas).

A model-based approach would assume

Yj(x)|pj(x) ∼ Binomial(nj(x), pj(x)),

where:

I x is a vector of dummy variables that defines which group the unit
lies within; typical strata include age, gender, race, ethnicity,
geographical area; assume J groups in total.

I nj(x) is the number in the sample, with characteristics x.

I Yj(x) is the number with Y = 1 with characteristics x.

I pj(x) = Pr(Y = 1|x, group j).
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Adjustment for non-response using hierarchical models

Hierarchical model:

pj(xk) = expit

αi [k] +
J∑

j=1

βj × 1(group of unit k = j)


αi [k] ∼ N(0, σ2

α)

where αi [k] is the random effect associated with area i , within which unit
k resides.

Once we have estimated the parameters of the model we can estimate
the total in area i via

Ti =
J∑

j=1

Nijpj(x)

where Nij are the known totals in group j and area i .
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Adjustment for non-response using hierarchical models

Under this approach, which does not explicitly use the weights, it is
assumed that the design variables are included in x.

With many groups (i.e. large J), estimation is unstable and so
hierarchical models are used (Gelman, 2007).

We describe the example in Gelman and Hill (2007, Chapter 14) which
concerns combining pre-election opinion polls.

The outcome we consider is the probability that a survey respondent
prefers the Republican candidate for president, using a set of seven CBS
News polls conducted during the week before the 1988 presidential
election.
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State-level opinion polls

We first fit a simple model, to understand the parameters.

The model is fitted in Stan a computing environment that includes
various possibilities for fitting, including an MCMC algorithm based on
Hamiltonian Monte Carlo (the No U-Turns Sampler).

Model 1:

Pr(yi = 1|xi ) = expit(αj[i ] + b1 × 1( black)i + b2 × 1( female )i )

αj |σ2
state ∼ N(µα, σ

2
state),

for j = 1, . . . , 51 states and i = 1, . . . , 13, 544 survey responses and with
xi containing the information on the state, race and gender of individual
i .

Notes:
I αj is a state-level random effect and αj[i ] picks up the state for

individual i ,
I 1( black)i and 1( female )i are indicators for whether individual i is

black or female, respectively.
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State-level opinion polls

Parameter interpretation: note that

Pr(Yi = 1|xi )
Pr(Y = 0|xi )

= exp(αj[i ] + b1 × 1( black)i + b2 × 1( female )i ).

Hence, for example,

exp(b2) =

Pr(Yi |1( female )i=1, state j[i ])

Pr(Yi |1( female )i=1, state j[i ])

Pr(Yi |1( male )i=0, state j[i ])

Pr(Yi |1( male )i=0, state j[i ])

is the odds of being Republican for a female, as compared to a male of
the same race and in the same state.

From the output below, the posterior mean is exp(−0.09) = 0.91, so that
females have a 9% reduction in the odds.
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State-level opinion polls

Edited stan code (election88.stan):

transformed parameters {
vector[N] y_hat;

for (i in 1:N)
y_hat[i] <- b[1] * black[i] + b[2] * female[i] + a[state[i]];

}
model {

mu_a ~ normal(0, 1);
a ~ normal (mu_a, sigma_a);
b ~ normal (0, 100);
y ~ bernoulli_logit(y_hat);

}

Summary:

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
b[1] -1.76 0.01 0.21 -2.17 -1.89 -1.75 -1.61 -1.36 1440 1.00
b[2] -0.09 0.00 0.10 -0.29 -0.16 -0.09 -0.03 0.09 640 1.00
mu_a 0.44 0.00 0.11 0.24 0.37 0.44 0.52 0.64 556 1.00
sigma_a 0.44 0.01 0.09 0.28 0.38 0.44 0.50 0.63 189 1.01
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State-level opinion polls

Now for a more realistic model, which includes the demographics used by
CBS in the survey weighting: age, sex, race and education.

Random effects are used for some of these, as data in some cells are
small.

Model 2:

Pr(yi = 1|xi ) = expit(β1 + dstate[i ] + β21( black)i + β31( female )i

+ β41( black.female )i + β5vprevi + aage[i ]

+ bedu[i ] + cage.edu[i ] + dstate[i ] + eregion[i ]) (8)

aage |σ2
a ∼ N(0, σ2

a)

bedu|σ2
b ∼ N(0, σ2

b)

cage.edu|σ2
c ∼ N(0, σ2

c )

dstate |σ2
d ∼ N(0, σ2

d)

eregion|σ2
e ∼ N(0, σ2

e ).
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State-level opinion polls

Terms:
I vprevi is a measure of the previous Republican vote in the state.
I region is a factor with 5 levels.
I We include gender and race, and the interaction of the two, as fixed

effects.
I There are random effects for age (4 levels), education (4 levels), and

state (51 levels).

For state j the estimated Republican vote is

θj =

∑
l∈j Nlpjl∑
l∈j Nl

,

where each summation is over the 4× 4× 4 categories, and pjl is the
estimated probability of Republican in category l and state j .

Figure 8 plots

Pr(yi = 1|xi ) = expit(linpredi + dstate[i ]),

versus linpredi as in (8).
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State-level opinion polls

Stan code (election88 full.stan):

transformed parameters {

vector[N] y_hat;

for (i in 1:N)

y_hat[i] <- beta[1] + beta[2] * black[i] + beta[3] * female[i]

+ beta[5] * female[i] * black[i]

+ beta[4] * v_prev_full[i] + a[age[i]] + b[edu[i]]

+ c[age_edu[i]] + d[state[i]] + e[region_full[i]];

}

model {

a ~ normal (0, sigma_a);

b ~ normal (0, sigma_b);

c ~ normal (0, sigma_c);

d ~ normal (0, sigma_d);

e ~ normal (0, sigma_e);

beta ~ normal(0, 100);

y ~ bernoulli_logit(y_hat);

}

Summary:

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

beta[1] 0.86 0.07 1.79 -2.77 -0.30 0.85 1.96 4.46 613 1.00

beta[2] -1.68 0.01 0.34 -2.34 -1.90 -1.67 -1.44 -1.04 1346 1.00

beta[3] -0.09 0.00 0.10 -0.28 -0.16 -0.09 -0.03 0.10 2000 1.00

beta[4] -0.59 0.12 3.02 -6.80 -2.49 -0.58 1.32 5.68 686 1.00

beta[5] -0.17 0.01 0.42 -0.99 -0.45 -0.17 0.12 0.63 1121 1.00

sigma_a 0.24 0.02 0.34 0.01 0.08 0.14 0.28 1.02 285 1.01

sigma_b 0.32 0.02 0.36 0.02 0.13 0.23 0.39 1.12 363 1.01

sigma_c 0.15 0.01 0.10 0.02 0.08 0.14 0.21 0.37 96 1.02

sigma_d 0.46 0.00 0.10 0.27 0.39 0.45 0.52 0.67 419 1.01

sigma_e 0.68 0.10 1.17 0.02 0.13 0.30 0.65 4.18 146 1.04
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Figure 8 : Estimated probability of a survey respondent supporting Bush for
president as a function of the linear predictor for the demographics, for 8
states. Dots show the respondents, the solid line the median and the light lines
20 draws from the posterior.
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BRFSS Example

We analyze the HRA King County diabetes data using different models:

I Direct estimator2 (no smoothing).

I A beta-binomial model with no adjustment for the design.

I Take as data the logit of the HT estimator:

yi = log

[
P̂HT

i

1− P̂HT

i

]
|Pi ∼ N

(
log

[
Pi

1− Pi

]
,

v̂ar(P̂HT

i )

(P̂HT)2i (1− (P̂HT

i ))2

)
.

I That is, the first stage of the hierarchical model is
yi |ηi ∼iid N(η, V̂DES,i ), where V̂DES,i is the known design-based
variance.

I Add independent area-specific normal random effects to the linear
predictor.

I Logit normal with independent area-specific normal random effects
and spatial (ICAR) random effects to the linear predictor,
i.e., ηi = β0 + εi + Si .

I The spatial model took less than one second to run using INLA.
2A direct estimator is based on data from the area only
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BRFSS Example

Figure 9 shows the estimates under the different models.

The large variability in the non-hierarchical estimates is evident, and
unrealistic.

The beta (empirical Bayes) and non-spatial normal models give very
similar answers.

The weighting (adjustment) makes gives a small shift, but the variance
reduction is the dominant factor for these (sparse) data.

Figure 10 shows the spatially smoothed estimates: large counts around
Puget Sound.

Figure 11 shows the posterior standard deviation of the counts. Large
uncertainty where the counts are high.

Weighting does not make a great deal of difference here, but spatial
smoothing does.
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Figure 9 : Estimated diabetes prevalence by HRA: the left axis is on the logit
scale and the right is on the [0,1] scale.
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Figure 10 : Estimates of the total diabetes counts by HRA in King County
under binomial, Horvitz-Thompson and weighted spatial models.
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Figure 11 : Estimated uncertainty of the adjusted estimates of the total
diabetes counts by HRA in King County under the spatial model.
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Model Validation

To validate the model we examine a “large” area and take only a small
sample of 20 individuals.

In particular, we treat the direct estimates for West Seattle in 2011 (with
mi = 117 samples) as the “gold standard”.

Then repeatedly sample 20 individuals without replacement from this
area and carry out prediction using different models.

The mean squared error of the estimates is then evaluated, by comparing
the estimates with the gold standard.

Table 2 : Validation results for West Seattle.

Direct Bayesian Indept Bayesian Spatial
Unadjust Adjust Unadjust Adjust Unadjust Adjust

Bias2 0.70 0.00 3.73 0.38 4.35 0.25
Variance 2.49 1.16 0.04 0.06 0.06 0.06
MSE 3.19 1.16 3.76 0.44 4.40 0.31
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Figure 12 : Model validation: estimates of diabetes prevalence across
simulations for West Seattle. The red line denotes the “truth”.
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Motivation for Tanzania study (Mercer et al., 2016)

MDG4: Target 4.A: Reduce by two-thirds, between 1990 and 2015, the
under-five mortality rate (U5MR).

How can we determine the U5MR? Vital registration is the ideal, but in
many places this does not exist.

As an alternative, relevant information may be gathered in surveys, which
often have complex designs.

National U5MR rates can obscure important subnational variability;
highlighting areas with relatively high U5MR allows prioritizing of
resources.

Here: analyze survey data on child mortality from 21 regions of Tanzania
over 1980–2010.

Modeling: Use totality of data to smooth in space and time, to alleviate
low power associated with direct estimates.
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Available data

We focus on child mortality using data from:

I Five Tanzanian Demographic and Health Surveys (DHS).

I One Tanzania HIV and Malaria Indicator Survey (HMIS).

I Two health and demographic surveillance system (HDSS) sites in
Ifakara and Rufiji.

Over the period 1980–2010 estimates of child mortality from the two
types of data sources (surveys, surveillance sites) are generally similar but
different in useful ways.

The HDSS estimates are accurate (low bias) and precise (small variance)
measurements for comparatively small, geographically-defined
populations, and the DHS/HMIS estimates are less accurate and much
less precise but representative of large populations.

59 / 133



Demographic Household Surveys (DHS)

Full DHS surveys that collected data necessary for child mortality
estimates were conducted in Tanzania in 2010, 2004–05, 1999, 1996, and
1991–92, in addition to the HMIS that included child mortality
conducted in 2007–08.

The 2010 DHS, 2007–08 HMIS and 2004–05 DHS surveys used 2-stage
cluster samples:

1. Clusters were sampled from enumeration areas (EAs) from the 2002
Tanzania census.

2. Sampling of households within each cluster was carried out.

First stage: 150–375 EAs sampled from ≈50,000 EAs.
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Demographic Household Surveys (DHS)

The 1999 DHS, 1991–92 DHS and 1996 DHS used 3-stage cluster
design:

1. Selecting wards and branches using the 1988 Tanzania Census as a
sampling frame.

2. Using probability proportional to size sampling to select EAs from
each selected ward or branch, and

3. Selecting households from a new list of all households in each
selected EA.

Stratification by urban/rural and region was done at the first stage, with
oversampling of Dar es Salaam, other urban areas, and Zanzibar (which
is excluded in the results presented here, because of its non-comparability
and data issues).

We focus on the 21 mainland regions of Tanzania (up to 2010).
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Demographic Household Surveys (DHS)

All women age 15 to 49 who slept in the household the night before were
interviewed in each selected household and response rates were high
(above 95% for households in all surveys).

DHS provides sampling (design) weights, assigned to each individual in
the dataset.

Limited information is provided for each survey concerning the calculation
of survey weights, but the general explanation indicates that raw survey
weights are the inverse of the product of the 2–3 probabilities of selection
from each stage.

These raw weights were then adjusted to reflect household response and
individual response rates.

Since the design variables are not available on the population, and the
final weighting steps are mysterious, it is not straightforward to use a
conventional model-based approach.
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Health and Demographic Surveillance System (HDSS)

The Ifakara Health Institute (IHI), Tanzania runs a number of health and
population research projects including two HDSS sites: Ifakara and Rufiji.

The HDSS data are generated through repeated household visits.

For the data we use, each household was visited three times per year at
regular intervals.

During each visit a ‘household roster’ was updated and all new vital and
migration events for all members of the household were recorded.

Because both HDSS sites are long-lived surveillance projects, there are
many repeated observations on households and individuals, and all of
these must be linked in order to conduct survival analysis.

63 / 133



10
0

15
0

20
0

25
0

30
0

35
0

40
0

Clusters by Survey and Period

Years

# 
cl

us
te

rs

80−84 85−89 90−94 95−99 00−04 05−09

1991 TDHS
1996 TDHS
1999 TDHS
2004 TDHS
2007 THMIS
2010 TDHS

Figure 13 : Numbers of selected clusters (enumeration areas) by survey and
period.
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Figure 14 : Numbers of mothers by survey and period.
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Figure 15 : Numbers of children, by survey and period.
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Figure 16 : Regional sample sizes (numbers of births) in DHSs.
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Relevant substantive literature

Previously, United Nations Inter-Agency Group for Child Mortality
Estimation (UN IGME) produced national estimates (United Nations
Inter-Agency Group for Child Mortality Estimation, 2011), with a local
smoother in time.

IHME produced national estimates, summarized in Lozano et al. (2011) a
complex method with many moving parts is used.

Alkema and You (2012) compared approaches and looked at reasons for
discrepancies between estimates.

Alkema et al. (2014) and Alkema and New (2014) describe a Bayesian
method, using B-splines, for national modeling — this has been adopted
by the UN.
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Relevant substantive literature

Dwyer-Lindgren et al. (2014) considered small area U5MR estimation
with space-time smoothing:

I Extensive simulation study compared a variety of space-time models
in terms of bias, variance and coverage.

I Survey acknowledged in point estimates, single unknown variance.

I Estimates (with uncertainty) obtained for districts in Zambia over
1980–2010 with careful examination of between district variability.
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Discrete survival model

Define

nqx = Pr(dying before x + n | lived until x).

Split the [0,5) period into J + 1 intervals

[x0, x1), [x1, x2), . . . , [xJ , xJ+1),

where xj+1 = xj + nj so that nj is the length of the interval beginning at
xj , j = 0, . . . , J.

The probability of death in [xj , xj+1), given survival until xj is nj qxj .

The U5MR is calculated as

5q0 = 1−
J∏

j=0

(1−nj qxj ). (9)
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Discrete survival model

The monthly probability of death for each interval,

pj = Pr(dying in any month in the interval xj + nj | lived until xj),

may be estimated using a logistic generalized linear model (GLM):

logit (pj) =
J∑

j=0

βj Ij ,

where Ij is the indicator for the [xj , xj+1) time interval.

In the complex survey context an important consideration is that the
design weights must be acknowledged.

This is achieved by solving a (design) weighted score statistic (Binder,
1983): implemented in the survey package.

Results in parameter estimates β̂ and associated variance-covariance
matrix, which accounts for the design.
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Pseudo likelihood

Once estimates β̂j are estimated we can calculate

p̂j =
exp(β̂j)

1 + exp(β̂j)
.

The complement of surviving each month of the interval [xj , xj + nj) is
used to calculate

nj q̂xj = 1− (1− p̂j)
nj

which may be substituted into (9) to give 5q̂0.

How to determine the variance?
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Pseudo likelihood

Transform to logit(5q̂0) and use the delta method to find the asymptotic
design-based variance, VDES.

Let

y = log

(
5q̂0

1−5 q̂0

)
η = log

(
5q0

1−5 q0

)
Bottom line: We have a “working likelihood”:

y |η ∼ N (η,VDES) .
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Framework

Components of the model to distinguish sources of variability:

I Likelihood: Sampling variability, including which individual’s are
selected, i.e. hypergeometric sampling variability.

I Spatial Prior Model: Main effect of space: proxy for health care
availability, disease burden (malaria and HIV), etc, in each area.

I Temporal Prior Model: Main effect of time, reflecting overall
changes in risk factors.

I Spatio-temporal Model: Interaction: how are risk factors.

I Survey Model: Particular surveys may be systematically biased, and
this bias may change over time and space. The HDSS only cover a
small region within the areas we consider, and may not reflect the
U5MR in the complete area and may be vulnerable to the
Hawthorne effect.

How to define a likelihood when the design variables are not available?

Key Idea: Use the design-based (weighted estimator) and its sampling
distribution as the “working likelihood”.
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Space-time-survey model

Let 5q̂0its represent the weighted estimate of U5MR from survey s in
region i and in period t.

We summarize the data in area i at time point t from survey s via the
asymptotic distribution of the estimator of the empirical logit:

yits = log

(
5q̂0its

1−5 q̂0its

)
.

We define the area, period and survey summary as

ηits = log

(
5q0its

1−5 q0its

)
.

We take as working likelihood the asymptotic distribution

yits | ηits ∼ N
(
ηits , V̂DES,its

)
(10)

which has been shown to perform well in the context of small area
estimation from complex surveys (Mercer et al., 2014).
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Random Effect Models

Table 3 : Random effects models for time period t, region i and survey s.

Model Linear Predictor ηits
I µ+ αt + γt + θi + φi + δit
II µ+ αt + γt + θi + φi + δit + νs
III µ+ αt + γt + θi + φi + δit + νs + νis
IV µ+ αt + γt + θi + φi + δit + νs + νts
V µ+ αt + γt + θi + φi + δit + νs + νts + νis
VI µ+ αt + γt + θi + φi + δit + νs + νts + νis + νits

I Time: Indept: αt ∼iid N(0, σ2
α), Smooth: γt ∼ RW1(σ2

γ),

I Space: Indept: θi ∼iid N(0, σ2
θ), Smooth: φi ∼ ICAR(σ2

φ),

I Space-Time Interaction: δit ∼iid N(0, σ2
δ).

I Survey: Indept: νs ∼iid N(0, σ2
ν1), Space-Survey Interaction:

νis ∼iid N(0, σ2
ν2), Time-Survey Interaction: νts ∼iid N(0, σ2

ν3),
Space-Time-Survey Interaction: νits ∼iid N(0, σ2

ν4).
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Hyperpriors

Hyperpriors on variances:

σ2
α, σ2

γ , σ2
θ, σ2

φ, σ2
δ , σ2

ν1, σ2
ν2, σ2

ν3, σ2
ν4

are difficult to specify in this setting.

We followed the procedure described in Wakefield (2009).

Briefly, one specifies a range of residual odds and a prior is assigned that
results in this range.

The intrinsic models (RW1 and ICAR) need a fix up since their marginal
variance does not exist.
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Computation

Model fitting was carried out within the R computing environment.

Weighted logistic regressions were fit using the svyglm() function from
the survey package (Lumley, 2004) from which the design-based
variance was extracted.

The hierarchical Bayesian space-time models were fitted using the
Integrated Nested Laplace Approximation (INLA) (Rue et al., 2009) as
implemented in the INLA package.
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Model Comparison

Markov chain Monte Carlo in particular has allowed the fitting of more
and more complex models, often hierarchical in nature with layers of
random effects.

The search for a method to find the “best” of a set of candidate models
has also grown.

Let p(y|θ) represent a generic likelihood for y = [y1, . . . , yn] and let

D(θ) = −2 log[p(y|θ)]

represent the deviance.

For example, in an iid N(µi (θ), σ2) normal the deviance is

1

σ2

n∑
i=1

[yi − µi (θ)]2.

Frequentist model comparison for nested models is often carried out
using likelihood ratio statistics, which corresponds to the comparison of
deviances in generalized linear models (GLMs), see for example
McCullagh and Nelder (1989). 79 / 133



Model Comparison: AIC

One approach to model comparison is based on a model’s ability to make
good predictions.

Such an objective, and predicting the actual observed data, leads to
Akaike’s an information criterion (AIC), derived in Akaike (1973).

In AIC one tries to estimate the (Kullback-Leibler) distance between the
true distribution of the data, and the modeled distribution of the data.
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Model Comparison: AIC

AIC is given by
AIC = −2 log[p(y |θ̂)] + 2k

where θ̂ is the MLE and k is the number of parameters in the model,
i.e. the size of θ.

Small values of the AIC are favored, since they suggest low prediction
error.

The penalty term 2k penalizes the double use of the data.

In general for prediction: overly complex models are penalized since
redundant parameters “use up” information in the data.
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Model Comparison: BIC

Another approach is based on trying to identify the “true” model.

Schwarz (1978) developed the Bayesian Information Criterion (BIC)
which is given by

BIC = −2 log[p(y |θ̂)] + k log n.

BIC approximates −2 log p(y|θ) under a certain unit information prior
(Kass and Wasserman, 1995).

BIC is consistent3 for finding the true model, if that model lies in the set
being compared.

AIC is not consistent for finding the true model, but recall is intended for
prediction.

3meaning the BIC hones in on the true model as the sample size increases
82 / 133



Model Comparison: DIC

Spiegelhalter et al. (2002) introduced what has proved to be a very
popular model comparison statistic, the deviance information criterion
(DIC).

To define the DIC, define an “effective number of parameters” as

pD = Eθ|y{−2 log[p(y|θ)]}+ 2 log[p(y|θ)]

= D + D(θ)

where θ = E [θ|y] is the posterior mean, D(θ) is the deviance evaluated
at the posterior mean and D = E [D|y].

Hence, pD is the

posterior mean deviance− deviance of posterior means.
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Model Comparison: DIC

The DIC is given by

DIC = D(θ) + 2pD

= D + pD ,

so that we have a measure of goodness of fit + complexity.

DIC is straightforward to evaluate using MCMC or INLA.
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Model Comparison: DIC

DIC has been heavily criticized (Spiegelhalter et al., 2014):

I pD is not invariant to parameterization.

I DIC is not consistent for choosing the correct model.

I DIC has a weak theoretical justification and is not universally
applicable.

I DIC has been shown to under penalize complex models (Plummer,
2008; Ando, 2007).

I See Spiegelhalter et al. (2014) for an interesting discussion of the
history of DIC, including a summary of attempts to improve DIC.

I According to Google Scholar, as of June 20th, 2014, Spiegelhalter
et al. (2002) has 5251 citations. . .
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Model Comparison: CPO

Another approach based on prediction uses the conditional predictive
ordinate (CPO).

Let
y−i = [y1, . . . , yi−1, yi+1, . . . , yn]

represent the vector of data with the i-th observation removed.

The idea is to predict the density ordinate of the left-out observation,
based on those that remain.

Specifically, the CPO for observation i is defined as:

CPOi = p(yi |y−i )

=

∫
p(yi |θ)p(θ|y−i ) dθ

= Eθ|y−i
[p(yi |θ)]
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Model Comparison: CPO

The CPOs can be used to look at local fit, or one can define an overall
score for each model:

log (CPO) =
n∑

i=1

log CPOi .

Good models will have relatively high values of log (CPO).

See Held et al. (2010) for a discussion of shortcuts for estimation
(i.e. avoidance of fitting the model n times) using MCMC and INLA.
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Results

Table 4 : Model comparison: pD is the effective degrees of freedom, as defined
for the calculation of the deviance information criteria (DIC), which also uses
the deviance evaluated at the posterior mean, D; LCPO is defined as∑
its

log(CPOits). Also include the marginal distribution of the data.

Model No Pars log p(y) pD D DIC LCPO
I 181 -311 75 409 484 -294
II 189 -305 80 384 464 -287
III 313 -258 119 222 341 -194
IV 223 -302 89 368 456 -283
V 347 -255 122 210 332 -183
VI 920 -255 135 199 334 -184

I p(y) =
∫

p(y|θ)π(θ)dθ is the evidence in the data for a particular
model.

I The ratio of marginal distrbutions under different models constitutes
the Bayes factor.
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Components of variability

Table 5 : Summaries of variance components. The proportion of variation is
calculated as the contribution the relevant set of random effects makes to the
total variation. In the case of the RW1 and ICAR models, the relevant
contribution is evaluated empirically, since the variance parameter is conditional
rather than marginal.

Variance Interpretation Median (95% Interval) Percent Var

σ2
α Indept Time 0.003 (0.001, 0.035) 2.5
σ2
γ RW1 Time 0.038 (0.012, 0.146) 43.3
σ2
θ Indept Space 0.067 (0.033, 0.131) 32.0
σ2
φ ICAR Space 0.016 (0.002, 0.342) 5.0
σ2
δ Indept Space-Time Interaction 0.005 (0.001, 0.013) 2.4
σ2
νs Indept Survey 0.002 (0.001, 0.013) 1.5
σ2
νst Indept Survey-Time Interaction 0.004 (0.001, 0.012) 2.1
σ2
νsi Indept Survey-Space Interaction 0.024 (0.015, 0.038) 11.2
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Figure 17 : Structured time RW1 random effects, (γt).
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under −0.06
−0.06 − −0.04
−0.04 − −0.02
−0.02 − 0
0 − 0.02
0.02 − 0.04
over 0.04

under −0.4
−0.4 − −0.2
−0.2 − 0
0 − 0.2
over 0.2

Figure 18 : ICAR random effects, φi (left) and unstructured spatial random
effects, θi (right). Note the difference in the scales, and the heterogeneity in
the right plot.
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Figure 19 : Smoothed regional estimates of child mortality (per 1000 births).
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regional estimates of child mortality (per 1000 births).
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Prior Sensitivity

We consider three ranges of residual odds: [0.5,2], [0.2,5], [0.1,10].

We see sensitivity for the spatial random effects, though the total spatial
random effects contributions remain relatively constant since as the
structured random effects increase, the unstructured random effects
decrease.

The structured temporal random effects are robust, which is reassuring
since these provide the largest contribution to the overall variability;
these are well-estimated since the trend is strong.

Similarly, the unstructured survey-area random effects are robust, but all
of the standard deviations of the remaining independent random effects
show modest increases as the prior moves further from zero.
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Figure 21 : Prior sensitivity of the standard deviations of the eight random
effects in the model. The three priors are based on 95% prior intervals on the
residual odds of [0.5,2], [0.2,5], [0.1,10].
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Figure 22 : Posterior distributions (2.5, 50, 97.5% points) of the U5MR for
each of the regions, as a function of period.
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function of period.
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Figure 24 : Effect of weighting: national estimates.
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Figure 25 : Effect of weighting: regional estimates.
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Figure 26 : Effect of weighting: national variances.
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Figure 27 : Effect of weighting: regional variances.
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Conclusions: Hierarchical Modeling

Hierarchical models allow complex dependencies within data to be
modeled.

Prior specification for variance components (in particular) is not
straightforward, and sensitivity analysis is a good idea.

No universally agreed upon approach to carrying out model comparison.

Model checking is difficult.
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Conclusions: Spatial Modeling of Survey Data

No widely accepted approach to spatial smoothing that adjusts for the
sampling scheme.

Whether to weight or not is contentious, it depends on how bad the bias
is, since weighting in general increases the variance.

If the design variables upon which sampling is based are available then a
model-based hierarchical approach is available.

Gelman (2007) and discussants provide a range of views.
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Traditional SAE Approaches: Notation

We use notation more consistent with the survey sampling literature in
this section.

We assume the study region can be partitioned into d = 1, . . . ,D
sub-regions (domains) with Nd being the population of the domain,
which may or not be known.

A survey is carried out and nd is the sample size in domain d ; if the
survey was not designed to fix the sample size nd for domain d then it is
a random variable with respect to the randomization distribution and we
need to consider ratio estimation.

Let Ud and Sd , d = 1, . . . ,D, be the index sets for the units of the
population and the sample respectively in domain d with
U = U1 ∪ · · · ∪ UD and S = S1 ∪ · · · ∪ SD .

104 / 133



Notation

The population mean in domain d is

yUd
=

∑
k∈Ud

yk

Nd
.

We define

zdk =

{
1 if k ∈ Ud

0 if k /∈ Ud

udk = ykzdk =

{
yk if k ∈ Ud

0 if k /∈ Ud

so that zdk is just an indicator of whether unit k lies within domain d and
udk is the value of y for such units.

Two key quantities:

I td =
∑N

k=1 udk is the population total in domain d .

I Nd =
∑N

k=1 zdk is the population size in domain d .
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Direct estimation without auxiliary information

A direct estimator is one in which response data y from the domain only
are used.

An indirect estimator uses responses from other domains.

The population average in domain d can be written as a ratio of totals:

yUd
=

td
Nd

= B.

If Nd is unknown, this suggests ratio estimation as a way forward.
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Direct domain estimation

Under a general design πk is the probability of selection for unit k and
wk = π−1k is the associated design weight.

The domain sample sizes are

nd =
∑
k∈U

zdk Ik =
∑
k∈Ud

Ik ,

where Ik are the usual sample membership indicators.

Note that
E[nd ] =

∑
k∈U

zdkπk =
∑
k∈Ud

πk ,

so that the choice of πk indicates whether we are likely to have a
sufficiently large sample in domain d .
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Direct domain estimation

For general sampling we refer to Särndal et al (1992, Section 10.3).

Whether Nd is known or unknown, Särndal et al (1992, p. 391)
recommend the domain mean (Hajek) as:

ŷd =
1

N̂d

∑
k∈Sd

wkyk =
1

N̂d

∑
k∈S

zkwkyk ,

where wk = 1/πk and

N̂d =
∑
k∈Sd

wk =
∑
k∈S

zkwk .
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Direct domain estimation

To estimate the domain total when Nd is unknown

t̂d =
∑
k∈Sd

wkyk .

To estimate the domain total when Nd is known

t̃d = Nd × ŷd =
Nd

N̂d

∑
k∈Sd

wkyk .

Variance estimators are given in Särndal et al (1992, Section 10.3).
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Direct domain GREG with study auxiliary information

The problem with using the direct ratio estimators is that the variance
may be large in areas with low nd .

When auxiliary variable is available, this may be used to define a new
estimator; suppose we have a single variable x for which the total is
known, across all domains, tx , and we have a HT estimator t̂x .

In general, GREG with multiple x values and a linear regression model
may be utilized; we describe some special cases.

A ratio estimator is

t̂ dir,rat1

d = t̂d ×
tx

t̂x
, (11)

where t̂d is the usual HT estimator.

This is a direct domain estimator because y values only from the domain
are used, though the total x , tx from all domains are used.
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Direct domain GREG with study auxiliary information

This estimator is approximately unbiased, if the overall sample size n is
large (because t̂x → tx) , and design consistency occurs as the domain
sample size nd increases.

See Rao and Molina (2015, Section 2.4.2) describe GREG estimators,
and give a number of special cases including (11).

Notice that the same adjustment is made to every area.
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Example: Smoking by county in Washington State

As an example suppose we wish to estimate the number of current
smokers across the 40 counties of Washington State, based on a survey.

For each individual in the survey, information is collected on yk , k ∈ S , a
binary indicator of current smoking status, along with xk , the income and
the basic demographics (age and gender).

Suppose we know the total income of residents in Washington State, tx ;
then (11) may be directly applied with t̂x =

∑
k∈s wkxk being the

estimated total income from the sample.
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Direct domain GREG with study auxiliary information

Suppose now we have auxiliary information on the population sample
sizes across (usually demographic) groups g , g = 1, . . . ,G .

A post-stratified estimator (Rao and Molina 2015, Section 2.4.2) is

t̂ dir,ps1

d =
G∑

g=1

N.g

N̂.g

∑
k∈Sdg

wkyk =
G∑

g=1

N.g

N̂.g
t̂dg . (12)

where

I Sdg is the set of samples falling in post-stratification group g of
domain d ,

I t̂dg is the estimate of the total for y in domain d and group g (note
that t̂d =

∑
g t̂dg ), and

I N̂.g =
∑

k∈S.g
wk .

This estimator is approximately unbiased (and is design consistent) but
the variance can be large since the adjustments between domain d and
the whole region may be large.
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Example: Smoking by county in Washington State

Suppose we know the population totals for Washington State by 18 age
bands and gender, N.g , g = 1, . . . ,G = 36.

In county d , to use (12), we would estimate:

I the total number of smokers by stratum g , t̂dg =
∑

k∈sdg wkyk , this

may have high variability as |sdg | = ndg may be small,

I the population total by group g , across the state, N̂.g =
∑

k∈s.g wk .
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Direct domain GREG with domain auxiliary information

To reduce the bias we may use domain-specific auxiliary information, as
described in (Rao and Molina 2015, Section 2.4.3).

A ratio estimator is

t̂ dir,rat2

d = t̂d ×
txd

t̂xd
, (13)

where t̂d is the HT estimator.

This gives an area-specific adjustment.

This is a direct domain estimator since it uses y (and x values) only from
the domain.
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Direct domain GREG with domain auxiliary information

A post-stratified estimator is

t̂ dir,ps2

d =
G∑

g=1

Ndg

N̂dg

t̂dg , (14)

where N̂dg =
∑

k∈Sdg
wk .
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Example: Smoking by county in Washington State

For (13), suppose we know the income totals by county (from the census,
for example), txd , and we then estimate t̂xd =

∑
k∈sd wkxk .

For (14) ,suppose we know the population totals for Washington State by
18 age bands and gender and by domain, Ndg , g = 1, . . . ,G = 36.

In county d we would then estimate:

I the total number of smokers by stratum g , t̂dg =
∑

k∈sdg wkyk ,

I the population total by group g , across the state, N̂.g =
∑

k∈s.g wk .
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Synthetic estimation

Now we consider indirect estimators, and begin with synthetic estimation,
as described in (Rao and Molina 2015, Section 3.2).

The simplest synthetic estimator of a domain mean for area d does not
use auxiliary information and is

ŷ
syn,basic1

d =
t̂y

N̂
, (15)

which is the mean over the complete study region.

Large bias will result in domains within which the means deviate from the
overall mean, i.e. in which it is not true that yUd

≈ yU .

The variance of the estimator will be very small, however.
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Synthetic estimation

One possibility is to consider a larger region r that contains d rather than
the complete study region and use

ŷ
syn,basic2

d =
t̂y (r)

N̂(r)
, (16)

which is approximately design unbiased if yUd
≈ yU(r).

These estimators are not design consistent, though the MSE may be
relatively small, if the regional sample size is large.

This is a very basic form of spatial smoothing.
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Example: Smoking by county in Washington State

For (15), we would estimate the total number of smokers in Washington

State, t̂y =
∑

k∈s wkyk , and the total population size N̂ =
∑

k∈s wk .

For (16), we could split Washington State into (say) contiguous regions
based on predictors of smoking.

For example, we could group together contiguous urban and rural
counties (this categorization could be based on population density, or
percent of farmland,...).

We would estimate the total number of smokers in region r ,
t̂y (r) =

∑
k∈s(r) wkyk , where s(r) is the set of indices of samples in

region r and the total population size N̂(r) =
∑

k∈s(r) wk .
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Synthetic estimation

With auxiliary information consisting of known totals in domain d , xd ,
the synthetic estimator is

t̂ syn,reg

d = xT

d B̂, (17)

where

B̂ =

(
D∑

d=1

∑
k∈sd

wdkxT

dkxdk

)−1 D∑
d=1

∑
k∈sd

wdkxT

dkydk , (18)

is the WLS estimator over all of the units who provide responses, and
wdk are the design weights.

This estimator is not design unbiased.
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Synthetic estimation

The design bias of t̂ syn,reg

d is approximately xT

dB− td , where

B =

(
D∑

d=1

∑
k∈Ud

xT

dkxdk

)−1 D∑
d=1

∑
k∈Ud

xT

dkydk , (19)

is the population regression coefficient.

The bias will be small if the domain specific regression coefficient

Bd =

(∑
k∈Ud

xT

dkxdk

)−1 ∑
k∈Ud

xT

dkydk ,

is close to B.
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Synthetic estimation

A special case is the ratio estimator

t̂ syn,rat

d = t̂y ×
txd

t̂x
. (20)

Another special case is the post-stratification estimator

t̂ syn,ps

d =
G∑

g=1

Ndg

N̂.g
t̂.g . (21)

These estimators have low variance since information from all domains is
used, but the bias may be large.

Notice that, in contrast to the direct GREG estimators described
previously, these forms are adjusting a global response estimate, using
domain specific auxiliary information.
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Example: Smoking by county in Washington State

For (17), suppose we have domain-specific totals on income
xd = [1, txd ]T, along with individual income levels in the sample; the
latter are used to estimate the population regression coefficient (18).

To examine whether Bd is close to B we could calculate

B̂d =

(∑
k∈sd

wkxT

dkxdk

)−1 ∑
k∈sd

wkxT

dkydk ,

and see how close these estimates are to B̂ (though the former may have
large uncertainty).
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Example: Smoking by county in Washington State

For (20), we use the total incomes in domain d and the estimated
income across the whole state t̂x =

∑
k∈s wkxk , along with the estimated

total smokers across the state t̂y =
∑

k∈s wkyk .

For (21), we use the total population in domain d and stratum g , Ndg

and the estimated stratum g population across the whole state
N̂.g =

∑
k∈s wk , along with the estimated total stratum g population

across the state t̂.g =
∑

k∈sg wk .
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Composite estimators

The direct estimator is approximately unbiased but will have large
variance if nd is small, while the synthetic estimator may have large bias
but has small variance.

This suggests the composite estimator:

y comp

d = φd × y dir

d + (1− φd)× y syn

d .

Rao and Molina (2015, Section 3.3) discusses how φd may be estimated,
by attempting to minimize the MSE of y comp

d .

Next we will consider model-based approaches in which a formal method
is used to balance using data from domain d , and the totality of data.

126 / 133



Model-based approaches

Indirect methods provide a link, often with an implicit model, between
different areas; we now turn to explicit models that provide such a link.

The models we describe are hierarchical (or mixed-effects) models which
aim to accurately describe between domain (area) differences.

Such models offer several advantages:

I Models can be tuned to the application, building on the existing
theory and practical experience of mixed models, including
non-linear models, such as logistic mixed models.

I Domain-(Area)-specific measures of uncertainty are produced.

I Estimates for areas with no data can be formed.

I One can attempt to check assumptions using diagnostics.

I A variety of area-specific random effects, including spatial, are
available.
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Model-based approaches

The use of explicit models has not been carried out greatly in survey
sampling, where design-based inference is historically the norm.

The design consistency of model-based estimators is therefore of interest.

Disadvantages of mixed models:

I How to incorporate the design weights/acknowledge the design?

I It is often difficult to check modeling assumptions.

I Computation can be demanding, though this is improving.

Models can be specified at the level of the area or the unit

128 / 133



Fay-Herriot area-level model

Fay and Herriot (1979) introduced a model which has been highly
influential.

Let θd = g(yUd
) be a domain-specific quantity of interest, and xd be a

vector of domain-specific covariates.

Specify the linear model

θd = xT

dβ + Ud , (22)

for d = 1, . . . ,D with random effects E[Ud ] = 0 and var(Ud) = σ2
u.

Now assume we have direct estimators θ̂d with associated design-based
estimated variances V̂d . Assume

θ̂d = θd + εd , (23)

with E[εd ] = 0 and var(εd) = V̂d , i.e., θ̂d ∼ N(0, V̂d).
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Fay-Herriot area-level model

Combining (22) and (23) gives the model:

θ̂d = xT

dβ + Ud + εd . (24)

Often it is assumed that:

Ud |σ2
v ∼iid N(0, σ2

u)

εd |V̂d ∼iid N(0, V̂d).
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Example: Smoking by county in Washington State

To fit the FH model, we can take g(·) to be the logit transform of the

proportion of smokers, so that θ̂d is the design-weighted logit estimator
in domain d and V̂d is the associated design variance.

We could take xd = [1 xd ]T where xd is the median income in domain d .
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Unit-level model

For a continuous response, ydk , a conventional hierarchical model would
typically have first stage:

ydk = xT

dkβ + Ud + εdk

where

I xdk are unit-level covariates, for example age, gender, race, with
associated regression parameters β.

I Area-specific random effects:

Ud |σ2
u ∼iid N(0, σ2

u),

which forms the second stage of the model.

I Unit-level errors:
εdk |σ2

ε ∼iid N(0, σ2
ε ).

I The error terms εdk , Ud are assumed independent.

No mention of weights! The required assumption is that the selection
probabilities in domain d do not depend on ydk , but may depend on xdk .
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