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Goals

I Describe basic types of spatial point patterns.

I Introduce mathematical models for random patterns of events.

I Introduce analytic methods for describing patterns in observed
collections of events.

I Illustrate the approaches using examples from archaeology,
conservation biology, and epidermal neurology.

4 / 90



Outline
Preliminaries

Random patterns
Estimating intensities

Second order properties
Case study: Sea turtle nesting

CSR
Monte Carlo testing
Heterogeneous Poisson process

Terminology

I Event: An occurrence of interest (e.g., disease case).

I Event location: Where an event occurs.

I Realization: An observed set of event locations (a data set).

I Point: Any location in the study area.

I Point: Where an event could occur.

I Event: Where an event did occur.
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Random patterns

I We use probability models to generate patterns so, in effect,
all of the patterns we consider are “random”.

I Usually, “random pattern” refers to a pattern not influenced
by the factors under investigation.
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Complete spatial randomness (CSR)

I Start with a model of “lack of pattern”.

I Events equally likely to occur anywhere in the study area.

I Event locations independent of each other.
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Six realizations of CSR
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CSR as a boundary condition

CSR serves as a boundary between:

I Patterns that are more “clustered” than CSR.

I Patterns that are more “regular” than CSR.
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Too Clustered (top), Too Regular (bottom)
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The role of scale

I “Eyeballing” clustered/regular sometimes difficult.

I In fact, an observed pattern may be clustered at one spatial
scale, and regular at another.

I Scale is an important idea and represents the distances at
which the underlying process generating the data operates.

I Many ecology papers on estimating scale of a process (e.g.,
plant disease, animal territories) but little in public health
literature (so far).
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Clusters of regular patterns/Regular clusters
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Spatial Point Processes

I Mathematically, we treat our point patterns as realizations of
a spatial stochastic process.

I A stochastic process is a collection of random variables
X1,X2, . . . ,XN .

I Examples: Number of people in line at Kroger.

I For us, each random variable represents an event location.

13 / 90



Outline
Preliminaries

Random patterns
Estimating intensities

Second order properties
Case study: Sea turtle nesting

CSR
Monte Carlo testing
Heterogeneous Poisson process

Stationarity/Isotropy

I Stationarity: Properties of process invariant to translation.

I Isotropy: Properties of process invariant to rotation around an
origin.

I Why do we need these? They provide a sort of replication in
the data that allows statistical estimation.

I Not required, but development easier.
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CSR as a Stochastic Process

Let N(A) = number of events observed in region A, and λ = a
positive constant.

A homogenous spatial Poisson point process is defined by:

(a) N(A) ∼ Pois(λ|A|)
(b) given N(A) = n, the locations of the events are uniformly

distributed over A.

λ is the intensity of the process (mean number of events expected
per unit area).
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Is this CSR?

I Criterion (b) describes our notion of uniform and
independently distributed in space.

I Criteria (a) and (b) give a “recipe” for simulating realizations
of this process:

* Generate a Poisson random number of events.
* Distribute that many events uniformly across the study area.
runif(n,min(x),max(x))

runif(n,min(y),max(y))
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Compared to temporal Poisson process

Recall the three “magic” features of a Poisson process in time:

I Number of events in non-overlapping intervals are Poisson
distributed,

I Conditional on the number of events, events are uniformly
distributed within a fixed interval, and

I Interevent times are exponentially distributed.

In space, no ordering so no (uniquely defined) interevent distances.
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Spatial Poisson process equivalent

Criteria (a) and (b) equivalent to

1. # events in non-overlapping areas is independent

2. Let A = region, |A| = area of A

lim
|A|→0

Pr[ exactly one event in A]

|A|
= λ > 0

3.

lim
|A|→0

Pr[2 or more in A]

|A|
= 0
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Interesting questions

I Test for CSR

I Simulate CSR

I Estimate λ (or λ(s))

I Compare λ1(s) and λ2(s); s ∈ D for two point processes.
(same underlying intensity?

e.g. Z1(s) = location of disease cases

Z2(s) = location of population at risk

or environmental exposure levels.))
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Monte Carlo hypothesis testing

Review of basic hypothesis testing framework:

I T = a random variable representing the test statistic.

I Under H0 : U ∼ F0.

I From the data, observe T = tobs (the observed value of the
test statistic).
p-value = 1− F0(tobs)

I Sometimes it is easier to simulate F0(·) than to calculate F0(·)
exactly.

Besag and Diggle (1977).
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Steps in Monte Carlo testing

1. observe u1.

2. simulate u2, ..., um from F0.

3. p.value = rank of u1
m .

For tests of CSR (complete spatial randomness), M.C. tests are
very useful since CSR is easy to simulate but distribution of test
statistic may be complex.
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Monte Carlo tests very helpful

1. when distribution of U is complex but the spatial distribution
associated with H0 is easy to simulate.

2. for permutation tests

e.g., 592 cases of leukemia in ∼ 1 million people in 790
regions

I permutation test requires all possible permutations.
I Monte Carlo assigns cases to regions under H0.
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Testing for CSR

A good place to start analysis because:

1. rejecting CSR a minimal prerequisite to model observed
pattern (i.e. if not CSR, then there is a pattern to model)

2. tests aid in formulation of possible alternatives to CSR (e.g.
regular, clustered).

3. attained significance levels measure strength of evidence
against CSR.

4. informal combination of several complementary tests to show
how pattern departs from CSR (although this has not been
explored in depth).
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Final CSR notes

CSR:

1. is the “white noise” of spatial point processes.

2. characterizes the absence of structure (signal) in data.

3. often the null hypothesis in statistical tests to determine if
there is structure in an observed point pattern.

4. not as useful in public health? Why not?
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Heterogeneous population density

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u

v

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u

v

25 / 90



Outline
Preliminaries

Random patterns
Estimating intensities

Second order properties
Case study: Sea turtle nesting

CSR
Monte Carlo testing
Heterogeneous Poisson process

What if intensity not constant?

Let d(x , y) = tiny region around (x , y)

λ(x , y) = lim
|d(x ,y)|→0

E [N(d(x , y))]

|d(x , y)|

≈ lim
|d(x ,y)|→0

Pr[N(d(x , y)) = 1]

|d(x , y)|

If we use λ(x , y) instead of λ, we get a
Heterogeneous (Inhomogeneous) Poisson Process
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Heterogeneous Poisson Process

1. N(A) = Pois
(∫

(x ,y)∈A λ(x , y)d(x , y)
)

(|A| =
∫
(x ,y)∈A d(x , y))

2. Given N(A) = n, events distributed in A as an independent
sample from a distribution on A with p.d.f. proportional to
λ(x , y).
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Example intensity function
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Six realizations
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CSR
Monte Carlo testing
Heterogeneous Poisson process

IMPORTANT FACT!

Without additional information, no analysis can differentiate
between:

1. independent events in a heterogeneous (non-stationary)
environment

2. dependent events in a homogeneous (stationary) environment
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How do we estimate intensities?

For an heterogeneous Poisson process, λ(s) is closely related to the
density of events over A (λ(s) ∝ density).

So density estimators provide a natural approach (for details on
density estimation see Silverman (1986) and Wand and Jones
(1995, KernSmooth R library!)).

Main idea: Put a little “kernel” of density at each data point, then
sum to give the estimate of the overall density function.
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What you need

In order to do kernel estimation, you need to choose:

1. kernel (shape) - Epeuechnikov (1986) shows any reasonable
kernel gives near optimal results.

2. “bandwidth” (range of influence). The larger b, the
bandwidth, the smoother the estimated function.

32 / 90



Outline
Preliminaries

Random patterns
Estimating intensities

Second order properties
Case study: Sea turtle nesting

Kernels and bandwidths
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1-dim kernel estimation

If we have observations u1, u2, . . . , uN (in one dimension), the
kernel density estimate is

f̃ (u) =
1

Nb

N∑
i=1

Kern

(
u − ui

b

)
(1)

where Kern(·) is a kernel function satisfying∫
D

Kern(s)ds = 1

and b the bandwidth. To estimate the intensity function, replace
N−1 by |D|−1.
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What do we do with this?

I Evaluate intensity (density) at each of a grid of locations.

I Make surface or contour plot.
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How do we pick the bandwidth?

I Circular question...

I Minimize the Mean Integrated Squared Error (MISE)

I Cross validation

I Scott’s rule (good rule of thumb).

b̂u = σ̂uN−1/(dim+4) (2)

where σ̂u is the sample standard deviation of the
u-coordinates, N represents the number of events in the data
set (the sample size), and dim denotes the dimension of the
study area.
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Kernel estimation in R

base

I density() one-dimensional kernel

library(MASS)

I kde2d(x, y, h, n = 25, lims = c(range(x),

range(y)))

library(KernSmooth)

I bkde2D(x, bandwidth, gridsize=c(51, 51),

range.x=<<see below>>, truncate=TRUE) block kernel
density estimation

I dpik() to pick bandwidth
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More kernel estimation in R

library(splancs)

I kernel2d(pts,poly,h0,nx=20,

ny=20,kernel=’quartic’)

library(spatstat)

I ksmooth.ppp(x, sigma, weights, edge=TRUE)
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Data Break: Early Medieval Grave Sites

What do we have?

I Alt and Vach (1991). (Data sent from Richard Wright
Emeritus Professor, School of Archaeology, University of
Sydney.)

I Archeaological dig in Neresheim, Baden-Württemberg,
Germany.

I The anthropologists and archaeologists involved wonder if this
particular culture tended to place grave sites according to
family units.

I 143 grave sites.
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What do we want?

I 30 with missing or reduced wisdom teeth (“affected”).

I Does the pattern of “affected” graves (cases) differ from the
pattern of the 113 non-affected graves (controls)?

I How could estimates of the intensity functions for the affected
and non-affected grave sites, respectively, help answer this
question?
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Outline of analysis

I Read in data.

I Plot data (axis intervals important!).

I Call 2-dimensional kernel smoothing functions (choose kernel
and bandwidth).

I Plot surface (persp()) and contour (contour()) plots.

I Visual comparison of two intensities.
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Plot of the data
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Case intensity
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Control intensity
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What we have/don’t have

I Kernel estimates suggest similarities and differences.

I Suggest locations where there might be differences.

I No significance testing (yet!)
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K functions
Estimating K functions
Edge correction
Monte Carlo envelopes

First and Second Order Properties

I The intensity function describes the mean number of events
per unit area, a first order property of the underlying process.

I What about second order properties relating to the
variance/covariance/correlation between event locations (if
events non independent...)?
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Ripley’s K function

Ripley (1976, 1977 introduced) the reduced second moment
measure or K function

K (h) =
E [# events within h of a randomly chosen event]

λ
,

for any positive spatial lag h.

NOTE: Use of λ implies assumption of stationary process!
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Properties of K (h)

I Ripley (1977) shows specifying K (h) for all h > 0, equivalent
to specifying Var[N(A)] for any subregion A.

I Under CSR, K (h) = πh2 (area of circle of with radius h).

I Clustered? K (h) > πh2.

I Regular? K (h) < πh2.
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Second order intensity?

I K (h) not universally hailed as the way (or even a good way)
to describe second order properties.

I Provides a nice introduction for us, but another related
property is...

I The second order intensity, λ2(s,u),

λ2(s,u) = lim
|d(s)|→0

|d(u)|→0

E (N(d(s))N(d(u))

|d(s)||d(u)|
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Relationship to K (h)

I How does K (·) relate to λ2(s,u)?

In <2, for a stationary, isotropic process
λ2(s,u) = λ2(‖s− u‖). Then,

λK (h) =
2π

λ

∫ h

0

uλ2(u)du

So

λ2(h) =
λ2K ′(h)

2πh
.

I Which to use (K (·) or λ2(·))?

I In theory, λ2(h) often used but K (h) is easier to estimate
from a set of data.

50 / 90



Outline
Preliminaries

Random patterns
Estimating intensities

Second order properties
Case study: Sea turtle nesting

K functions
Estimating K functions
Edge correction
Monte Carlo envelopes

Estimating K (h)

Start with definition, replacing expectation with average yields

K̂ (h) =
1

λ̂N

N∑
i=1

N∑
j=1

j 6=i

δ(d(i , j) < h),

for N events, where

I d(i , j) = distance between events i and j

I δ(d(i , j) < h) = 1 if d(i , j) < h, 0 otherwise.
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Edges

I Think about events near “edges” of study area.

I How do we count events within h if distance between edge
and observed event is < h?

I Unobservable data drive increasing.

I More of a problem as h increases...

I “Edge effects” call for “edge correction”.
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Edge correction

I Add “guard area” around study area and only calculate K̂ (h)
for h < width of guard area.

I Toroidal correction.

I Ripley’s (1976) edge correction

K̂ec(h) = λ̂−1
N∑
i=1

N∑
j=1

j 6=i

w−1ij δ(d(i , j) < h)

where wij = proportion of the circumference of the circle
centered at event i with radius d(i , j) within the study area.
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Ripley’s weights

I Conceptually, conditional probability of observing an event at
distance d(i , j) given an event occurs d(i , j) from event i .

I Works for “holes” in study area too. (Astronomy application).

I Requires definition of study boundary (and way of calculating
wij .
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Calculating K (h) in R

library(splancs)

I khat(pts,poly,s,newstyle=FALSE)

I poly defines polygon boundary (important!!!).

library(spatstat)

I Kest(X, r, correction=c("border", "isotropic",

"Ripley", "translate"))

I Boundary part of X (point process “object”).
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Plots with K (h)

I Plotting (h,K (h)) for CSR is a parabola.

I K (h) = πh2 implies (
K (h)

π

)1/2

= h.

I Besag (1977) suggests plotting

h versus L̂(h)

where

L̂(h) =

(
K̂ec(h)

π

)1/2

− h
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Variability and Envelopes

Are there any distributional results for K̂ (h)?

Some, but mostly for particular region shapes. Monte Carlo
approaches more general.

I Observe K̂ (h) from data.

I Simulate a realization of events from CSR.

I Find K̂ (h) for the simulated data.

I Repeat simulations many times.

I Create simulation “envelopes” from simulation-based K̂ (h)’s.
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Example: Regular clusters and clusters of regularity
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Data break: Medieval gravesites
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Clustering!

I Looks like strong clustering, but wait...

I Compares all, cases, controls to CSR.

I Oops, forgot to adjust for polygon, clustering inside square
area!

I Significant clustering, but interesting clustering?

I Let’s try again with polygon adjustment.
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Medieval graves: K functions with polygon adjustment

0 1000 2000 3000 4000 5000

−
40

0
40

0

Distance

Lh
at

 −
 d

is
ta

nc
e

L plot for all gravesites, polygon

0 1000 2000 3000 4000 5000

−
40

0
40

0

Distance

Lh
at

 −
 d

is
ta

nc
e

L plot for affected gravesites, polygon

0 1000 2000 3000 4000 5000

−
40

0
40

0

Distance

Lh
at

 −
 d

is
ta

nc
e

L plot for non−affected gravesites, polygon

61 / 90



Outline
Preliminaries

Random patterns
Estimating intensities

Second order properties
Case study: Sea turtle nesting

K functions
Estimating K functions
Edge correction
Monte Carlo envelopes

Clustering?

I Clustering of cases at very shortest distances.

I Likely due to two coincident-pair sites (both cases in both
pairs).

I Could we try random labelling here?

I Construct envelopes based on random samples of 30 ”cases”
from set of 143 locations.
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A few notes

I Since K (h) is a function of distance (h), it can indicate
clustering at one scale and regularity at another.

I K (h) measures cumulative aggregation (# events up to h).
May result in delayed response to change from clustering to
regularity.

I λ2 (or similar measures) based on K ′(h) may respond more
instantaneously.

I Often see “envelopes” based on extremes, but what does this
mean with respect to increasing numbers of simulations?
Quantiles may be better (at least they will converge to
something).
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Testing

I Envelopes provide pointwise inference at particular values of
h, but not correct to find deviation then assess whether it is
significant.

I Can conduct test of H0 : L(h) = h (equivalent to
H0 : K (h) = πh2) for a predefined interval for h (Stoyan et
al., 1995, p. 51).

I Monte Carlo test based on

T = max
0≤h≤hmax

∣∣∣L̂(h)− h
∣∣∣ .
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Notes

I Just as the first and second moments do not uniquely define a
distribution, λ(s) and K (h) do not uniquely define a spatial
point pattern (Baddeley and Silverman 1984, and in Section
5.3.4 ).

I Analyses based on λ(s) typically assume independent events,
describing the observed pattern entirely through a
heterogeneous intensity.

I Analyses based on K (h) typically assume a stationary process
(with constnat λ), describing the observed pattern entirely
through correlations between events.

I Remember Barlett’s (1964) result (IMPORTANT FACT!
above).
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What questions can we answer?

I Are events uniformly distributed in space?
I Test CSR.

I If not, where are events more or less likely?
I Intensity esimtation.

I Do events tend to occur near other events, and, if so, at what
scale?

I K functions with Monte Carlo envelopes.
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Sea turtle biology

I Existed (at least) since Jurassic period (∼ 200-120 mya).

I Air breathing reptile.

I Spends life in ocean, returns to natal beach to lay eggs.

I Lays eggs on land (∼ 100 eggs per clutch, buried in sand).

I Hatchlings appear en masse, head to the ocean.
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Sea Turtle Species
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Consider the hatchling

I Life fraught with peril.

I On menu for crabs, gulls, etc.

I Goal 1: Get to the ocean. Follow the light!
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Sea Turtles and Humans: Regulatory implications

I All species “threatened” or “endangered”.

I Regulations in place for fisheries (TEDs), beach-front lighting,
beach-front development.

I East coast of Florida (USA), prime nesting site for loggerhead
turtles.

I Also popular among green turtles (biannual cycle).

I We consider impact of two different construction projects on
Juno Beach, Florida.
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Two construction projects

I Construction of 990-foot fishing pier in 1998.

I Environmental impact statement approved if collect data to
determine impact on sea turtle nesting.

I Beach nourishment project 2000.

I Dredge up sand offshore and rebuild beach.

I Past studies on impact of beach nourishment on turtle nesting
(reduced for 2 nesting seasons, off-shore slope impact?)
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“Standard” approach

I Patrol beach each morning during nesting season.

I Count trackways in each Index Nesting Beach Zone.

I Compare distribution of counts between years.
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Juno Beach data

I Marinelife Center of Juno Beach volunteers patrol beach each
morning.

I Differential GPS coordinates for apex of each “crawl”.

I Store: Date. Nest? Species. Predation?

I Approximately 10,000 points per year.
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Juno Beach Data
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Loggerhead Displacement from Beach
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Displacement of Green Emergences
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“Linearizing” the beach

I While we have sub-meter accurate GPS locations, depth on
beach of secondary interest.

I We want to know where differences in nesting pattern occur
and whether these observed differences are significant.

I Treat emergence locations as realization of a spatial point
process in one dimension (events on a line).

I Ignore depth on beach by projecting all points to loess curve
representing beach.

I Three time periods of interest: Pre-pier (1997-1998),
pre-nourishment (post-pier) (1999-2000), post-nourishment
(2001-2002).
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Kernel estimates for each time period

I Let λ(s) denote intensity function of point process (mean
number of events per unit distance).

I Intensity proportional to pdf.

I Data: locations s1, . . . , sn.

I Estimate via kernel estimation:
λ̂(s) = 1

nb

∑n
i=1 Kern

[
(s−si )

b

]
I Kern(·) is kernel function, b bandwidth (governing

smoothness).

78 / 90



Outline
Preliminaries

Random patterns
Estimating intensities

Second order properties
Case study: Sea turtle nesting

Sea Turtle Biology
Juno Beach, Florida
Data
Comparing Nesting patterns
Pre- vs. post-nourishment
Case study conclusion

Ratio of kernel estimates

I Kelsall and Diggle (1995, Stat in Med) consider ratio of two
intensity estimates as spatial measure of relative risk.

I Suppose we have n1 “before” events, n2 “after” events.

I λ1(s), λ2(s) associated before/after intensity functions.

I Conditional on n1 and n2, data equivalent to two random
samples from pdfs:
f1(s) = λ1(s)/

∫
λ1(u)du and

f2(s) = λ2(s)/
∫
λ2(u)du.
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Ratio of kernel estimates

I Consider log relative risk

r(s) = log
f1(s)

f2(s)
.

I Some algebra yields:

r(s) = log

[
λ1(s)

λ2(s)

]
− log

[∫
λ1(u)du∫
λ2(u)du

]
.

I H0 : r(s) = 0 for all s.

I How do we test this?
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Monte Carlo inference

I Conditional on all n1 + n2 locations, randomize n1 to
“before”, n2 to “after”.

I Calculate f̂ ∗(s) and ĝ∗(s), get ratio r∗(s).

I Repeat many (999) times.

I Calculate pointwise 95% tolerance region.
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Pre- vs. post-pier, Loggerheads
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Pre- vs. post-pier, Greens
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Differences

I Green densities smoother (wider bandwidth due to smaller
sample size).

I Clear impact of pier on loggerheads (but very local).

I Conservation strategy? Maintain protected areas nearby.

I Note: impact on all crawls (nesting and non-nesting).
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Pre- vs. post-nourishment, Loggerheads
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Pre- vs. post-nourishment, Greens
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Differences

I Reduced nesting in nourishment zone, increases just to south.

I Offshore current suggests approach from north (left on plot).

I Impact on all crawls (nesting and non-nesting).

I Suggests impact of nourishment before turtle emerges. Slope?
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Conclusions

Pairwise comparisons suggest:

I Local impact of pier for loggerheads, but not for greens.

I Shift to south in emergences (nesting and non-nesting) due to
nourishment for both loggerheads and greens.
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Questions?
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