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Disease mapping

Disease mapping has a long history in epidemiology, and may be defined
as the estimation and presentation of summary measures of health
outcomes.

The aims of disease mapping include
I simple description,
I hypothesis generation,
I allocation of health care resources, assessment of inequalities, and
I estimation of background variability in underlying risk in order to

place epidemiological studies in context.

In this section we consider models for count data aggregated over areas
at a single time point,in the situation in which we have (hopefully!) a
complete enumeration of the cases (so not small area estimation).

Background reading, Wakefield et al. (2000).

The models we describe in this section, can also be used for regression
modeling.
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Motivation and Context

We begin by noting a number of non-statistical issues, for more
background see Chapters 12 and 13 of Elliott et al. (2000):

I In broad-scale studies (in particular international endeavors), data
comparability is a major issue.

I Precise disease definition (via ICD codes) is also extremely
important.

I Mortality data tend to be more reliable than incidence data, but the
latter are in general of greater epidemiological interest, because
incident cases are closer in time to exposure.
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Motivation and Context

There is a trade-off when a geographical scale is chosen:

I Larger geographical areas providing more stable rates and less
problems of migration, but relative risk summaries may be distorted
due to the large aggregation of individuals.

I If the relative risk shows marked variation within a particular area
this information will be lost – if a particular subregion has a high
relative risk then this will be diluted under aggregation.

I Larger study regions are likely to offer greater contrasts (range of
covariates x) in relative risks and exposures.

I Localized effects can only be detected with data at a smaller level of
aggregation.
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Presentation

Chloropleth (areas shaded) are the most popular kind of maps, but
isopleth (contours) and cartograms (size of areas proportional to
denominator) have also been used.

Choice of color is important – multiple colors can be confusing, shading
with a single color can work well.

Cut-points should be chosen to be epidemiologically meaningful and
convey as much information as possible.

Use common cutpoints if multiple maps are to be compared/examined.
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Instability of the Naive Relative Risk Estimate

We begin by concentrating on count (aggregated) data, since these are
most common for mapping.

Unfortunately there are well-documented difficulties with the mapping of
raw estimates since, for small areas and rare diseases in particular, these
estimates will be dominated by sampling variability.

For the model Yi |θi ∼ Poisson(Eiθi ) the MLE is

θ̂i = SMRi =
Yi

Ei
,

with variance

var(θ̂i ) =
θi
Ei
,

which is estimated by

v̂ar(θ̂i ) =
θ̂i
Ei

so that areas with small Ei have high associated variance.
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Surveillance

We imagine separate monthly surveillance for each of three areas over a
10-year period.

Data simulated from the model

Yt |θ ∼ind Poisson(Eθ),

t = 1, ..., 120 months, where the relative risk is θ = 1 in each case.

Recall that the MLE of the SMR in each time period is θ̂t = Yt/E with
variance proportional to 1/E so that areas with small expected numbers
have high variability.

The expected numbers differ in the three plots in Figure 1, and the
resultant instability in the SMR is apparent.

For the E = 0.2 case there are a number of time periods with high
estimates (and estimates of zero also!).
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Surveillance

In general, maps showing p-values of exceedence of 1 are even less
informative than maps of SMRs since areas with large populations may
provide statistically significant SMRs, even for small deviations from a
relative risk of 1.
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Surveillance
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Figure 1 : Simulations from the Poisson distribution under different expected
numbers.
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Scottish Lip Cancer Data

Incidence rates of lip cancer in males in 56 counties of Scotland,
registered in 1975–1980. These data were originally reported in the
mapping atlas of Kemp et al. (1985).

The Scottish lip cancer data have been widely analyzed, because they
have been around a long time, and the SIRs display a lot of spatial
variability.

The form of the data is:
I Observed and expected number of cases (based on the county age

populations, details shortly) – allows the calculation of the
standardized morbidity ratio, the ratio of the observed to the
expected cases (according to Clayton and Kaldor (1987) these are
based on the MLEs for the age effects from a multiplicative model).

I A covariate measuring the proportion of the population engaged in
agriculture, fishing, or forestry (AFF).

I The projections of the longitude and latitude of the area centroid,
and the “position” of each county expressed as a list of adjacent
counties.
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Area Cases Exp Prop SMR Project Project Adjacent
i Yi Ei AFF N (km) E (km) Counties

1 9 1.4 0.16 6.43 834.7 162.2 5,9,19
2 39 8.7 0.16 4.48 852.4 385.8 7,10
3 11 3.0 0.10 3.67 946.1 294.0 12
4 9 2.5 0.24 3.60 650.5 377.9 18,20,28
5 15 4.3 0.10 3.49 870.9 220.7 1,12,19
6 8 2.4 0.24 3.33 1015.2 340.2 Island
7 26 8.1 0.10 3.21 842.0 325.0 2,10,13,16,17
8 7 2.3 0.07 3.04 1168.9 442.2 Island
...
48 3 9.3 0.01 0.32 654.7 282.0 24,44,47,49
49 28 88.7 0.00 0.32 666.7 267.8 38,41,44,47,48,52,53,54
50 6 19.6 0.01 0.31 736.5 342.2 21,29
51 1 3.4 0.01 0.29 678.9 274.9 34,38,42,54
52 1 3.6 0.00 0.28 683.7 257.8 34,40,49,54
53 1 5.7 0.01 0.18 646.6 265.6 41,46,47,49
54 1 7.0 0.01 0.14 682.3 267.9 34,38,49,51,52
55 0 4.2 0.16 0.00 640.1 321.5 18,24,30,33,45,56
56 0 1.8 0.10 0.00 589.9 322.2 18,20,24,27,55
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Scottish Lip Cancer Data

Figure 2 shows the SMRs for the Scottish lip cancer data, and indicates a
large spread with an increasing trend in the south-north direction.

As just discussed, the variance of the estimate is var(SMRi ) = SMRi/Ei ,
which will be large if Ei is small.

For the Scottish data the expected numbers are highly variable, with
range 1.1–88.7.

This variability suggests that there is a good chance that the extreme
SMRs are based on small expected numbers (many of the large,
sparsely-populated rural areas in the north have high SMRs).

Figure 3 (left panel) shows the SMRs versus the estimated standard
errors and clearly illustrates that the high SMRs have high associated
standard error.
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Figure 2 : In 56 counties of Scotland: (a) SMRs and (b) expected numbers.

14 / 76



●

●

●●
●

●
●

●●●
●

● ●

●

●

●
●

●●●●
●

●●●● ●●●● ● ●●●●●●●●
●

●● ●●● ●●●●● ●●
●●

●●

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

6

SE SMR

SM
R

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

● ●●●●
●

●●●●●●●●●●●●●●●●●●

●●
●

●
●

●●●
● ●

●●

●●●

●

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

6

SE Emp Bayes

Em
p B

aye
s

Figure 3 : Comparison of estimates and standard errors 56 counties of
Scotland. On the left are the raw SMRs plotted against the standard errors on
the right are estimates from a Bayesian smoothing model.
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Smoothing Models

The above considerations of instability led to methods being developed to
smooth the SMRs using hierarchical/random effects models that use the
data from the totality of areas to provide more reliable estimates in each
of the constituent areas.

Overview of Models:

I Basic Poisson Model: No smoothing.

I Random Effects Models:
I Poisson-Gamma: Non-spatial smoothing.
I Poisson-Lognormal: Non-spatial smoothing.
I Poisson-Lognormal-Spatial: Spatial and non-spatial smoothing.

I Covariates may be added to each of these in order to smooth over
covariate space.

I Estimation in these models is a separate issue.
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Overview of Models

All of these models are of the form:

Yi |θi ∼ Poisson (Eiθi ) .

Having unconstrained θi and taking the MLE’s leads to θ̂i = Yi/Ei .
1

Now suppose
θi = exp(β0 + xiβ1)δiηi ,

with δi and ηi random effects.

Poisson-Gamma: δi independent gamma with ηi = 1.

Poisson-Lognormal: δi independent lognormal with ηi = 1.

Poisson-Lognormal-Spatial: δi independent lognormal with ηi dependent
multivariate lognormal.

1Equivalent to taking the posterior mean in a Bayesian analysis with independent
(improper) uniform prior on log θi or, equivalently, π(θ) ∝

∏
i θ

−1
i .
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Poisson-Gamma Model Without Covariates

We begin by describing a simple Poisson-Gamma two-stage model that
offers analytic tractability and ease of estimation.

I A very simple model (when there are no covariates) is

Yi |β0 ∼ind Poisson
(
eβ0Ei

)
,

so that the relative risk is constant across all areas, and equal to eβ0 .
The latter is the overall relative risk, and reflects differences between
the reference rates and the rates in the study region.

I We would like a model between the above form with one parameter
and the n distinct, unrelated relative risks model, which leads to the
SMRs, Yi/Ei .

I We assume there are no covariates and assume the first stage
likelihood is given by

Yi |δi , β0 ∼ind Poisson
(
eβ0Eiδi

)
, (1)

where eβ0 is again the overall relative risk.
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Poisson-Gamma Model Without Covariates

At the second stage the random effects δi are assigned a distribution.

The δi are the deviations of the relative risk in area i from the level
across the whole region (eβ0).

We initially assume that across the map the deviations of the relative
risks from the mean, eβ0 , are modeled by

δi |α ∼iid Ga(α, α), (2)

a gamma distribution with mean 1, and variance 1/α.

If α is small we have a wide gamma distribution, and we would expect
little shrinkage of an area’s estimate to the overall level, but if α is large
we have a narrow distribution and large shrinkage is anticipated.

δi are the residual relative risks, the relative risks are

RRi = eβ0 × δi .
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Poisson-Gamma Model Without Covariates

The rationale here is that we expect some similarity of residual relative
risks δi across the map.

How do we decide upon a value for α, which determines the spread of the
δi?

I We might hope that the totality of data might aid in estimating the
δi in each area.

I One possibility would be to simply fix α, based on the
context/historical data.

I However, estimating a from the data will often lead to an
appropriate measure of the spread of the distribution.

I Estimation may be carried out using empirical Bayes or full Bayes
methods.

Before we discuss estimation of α we see how we would proceed, if it
were known.

20 / 76



Poisson-Gamma Model Without Covariates

The model is

Yi |δi , β0 ∼ind Poisson
(
eβ0Eiδi

)
δi |α ∼iid Ga(α, α)

This leads to a gamma posterior for δi :

δi |yi , α, β0 ∼ Ga(α + yi , α + Eie
β0).

Hence, the posterior mean residual relative risk estimate is

δ̂i =
α + yi

α + Eieβ0
=
α

α

α

α + Eieβ0
+

yi
Ei

Ei

α + Eieβ0

= 1× α

α + Eieβ0
+ SMRi ×

Ei

α + Eieβ0
.
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Poisson-Gamma Model Without Covariates

The residual relative risk estimate is:

δ̂i = 1× α

α + Eieβ0
+ SMRi ×

Ei

α + Eieβ0
.

If α is large then the random effects have a tight spread, and there is
more shrinkage towards the prior mean of 1, since SMRs that are far from
1 are inconsistent with the total collection of estimates.

However, an outlying estimate that is not based on a large expected
number, will be shrunk, and we may miss an important excess.
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Poisson-Gamma Model Without Covariates

We have obtained the form of the smoothed estimate for the residual
relative risk.

The posterior mean estimate of the relative risk is

R̂Ri = eβ0 × δ̂i = eβ0 × α + yi
α + Eieβ0

= eβ0
α

α + Eieβ0
+

yi
Ei

Eie
β0

α + Eieβ0

= eβ0 × (1−Wi ) + SMRi ×Wi

where

Wi =
Eie

β0

α + Eieβ0

is the weight on the SMR in area i .

The weight on the observed SMR increases as Ei increases so for areas
with large populations the estimate is dominated by the data.
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Poisson-Gamma Model Without Covariates

Since
δi |yi , α, β0 ∼ Ga(α + yi , α + Eie

β0)

then
RRi |yi , α, β0 ∼ Ga[α + yi , (α + Eie

β0)/eβ0 ].

Let RR0
i is the true relative risk of area i ; this is not Yi/Ei but the

hypothetical parameter that gave rise to this observed relative risk.

Note that the SMR is unbiased:

E[SMRi ] = E

[
Yi

Ei

]
=

E[Yi ]

Ei
=

Eiθi
Ei

= θi .

An important aspect of this shrinkage model is that it introduces
finite-sample bias, e.g. for the posteror mean:

E[RRi |yi , α, β0] = E[R̂Ri ] = eβ0 × (1−Wi ) + E[SMRi ]×Wi 6= RR0
i .

Notice that
E[RRi |yi , α, β0]→ SMRi ,

as Ei →∞, as we would hope.
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Poisson-Gamma Model Without Covariates

The estimated variance of the SMR in area i is estimated as

yi
E 2
i

,

so the variance of the SMR can grow without bound as Ei decreases.

For the smoothed estimate the variance is obtained from the gamma
posterior – recall the variance of a Ga(a, b) is a/b2.

We have

var(eβ0δi |yi , α, β0) =
(α + yi )e2β0

(α + Eieβ0)2

showing that the posterior variances are bounded above.

We now turn to the question of how we estimate α and β0.
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Empirical Bayes Estimation in the Poisson-Gamma Model
Without Covariates

In an empirical Bayes approach the random effects δi are eliminated from
the model to give a negative binomial likelihood that depends on β0 and
α only:

Pr(Yi |β0, α) =

∫
Pr(Yi |β0, δi )× p(δi |α)dδi

=
Γ(yi + α)

Γ(α)

(
Eie

β0

Eieβ0 + α

)yi (
α

Eieβ0 + α

)α
.

The likelihood is

L(β0, α) =
n∏

i=1

Pr(Yi |β0, α),

which is maximized as a function of β0 and α – R can do this for us using
the glm.nb() function in the MASS library.

We then proceed as if α and β0 are known, i.e. the estimates are
E[δi |yi , α̂, β̂0].

26 / 76



Full Bayes Estimation in the Poisson-Gamma Model
Without Covariates

The full Bayes approach assigns a (hyper) prior to the (hyper) parameters
α, β0 to give the three stage hierarchical model:

Stage 1: Yi |δi , β0 ∼ind Poisson(eβ0Eiδi ), i = 1, . . . , n.

Stage 2: δi |α ∼iid Ga(α, α), i = 1, . . . , n.

Stage 3: Priors for α, β0.

The posterior is

p(δ1, ..., δn, α, β0|y) ∝

[
n∏

i=1

p(yi |δi , β0)p(δi |α)

]
p(α, β0).

This model is not analytically tractable and we do not discuss further
(including the issue of prior choice), since the Poisson-Lognormal model
we describe shortly is more flexible.
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Full Bayes Estimation in the Poisson-Gamma Model
Without Covariates

What do we gain by full Bayes? Uncertainty in α, β0 can be
acknowledged.

The posterior distribution is analytically intractable but can be
implemented using

I Markov chain Monte Carlo (MCMC). WinBUGS and more specifically
the GeoBUGS module is a convenient way to do this. Other (generic)
MCMC environments include JAGS (very similar to WinBUGS) and
Stan.

I This is the method that has been used since the early 1990s (Besag
et al., 1991).

I More recently (Rue et al., 2009) the integrated nested Laplace
approximation (INLA) has been developed — can’t be used for this
model, but for the lognormal models we will see later.

Note: the Poisson-Gamma model is useful to introduce the smoothing
concept and for non-spatially dependent random effects, but cannot be
extended easily.
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Assumptions in the Poisson-Gamma Model Without
Covariates

We have a Poisson model for the data with random effects assumed to
follow a gamma distribution.

We therefore need to check whether this gamma distribution appears
reasonable.

One way to assess this is to form a so-called QQ plot in which

I The observed ordered residual relative risks are plotted against the
expected ordered residual relative risks.

I The latter are given (approximately) by fi = F−1GAMMA

(
i−0.5

n |α
)

where
F−1GAMMA(·|α) is the inverse cumulative distribution function of a
Ga(α, α) distribution.

29 / 76



Poisson-Gamma Model with Covariates

With area-level covariates we have the model

Yi |δi , β0, β1 ∼ind Poisson
(
eβ0+β1xiEiδi

)
,

where we have assumed a loglinear regression model for area-level
covariates xi .

The random effect δi now describes the deviation of area i ’s relative risk
from the loglinear mean model.

Letting µi = E[Yi |δi , β0, β1] notice that on the log scale we have

logµi = [β0 + β1xi + log(Ei )] + log(δi )︸ ︷︷ ︸
Residual

,

so that the log random effects, log δi , may be viewed as residuals.
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Poisson-Gamma Model with Covariates

At the second stage the random effects δi are assigned a distribution.

We assume that across the map the deviations of the relative risks from
the mean, eβ0+β1xi , are again modelled by

δi |α ∼iid Ga(α, α),

a gamma distribution with mean 1, and variance 1/α.

Everything follows through as before.
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Poisson-Lognormal Models

The gamma model is computationally convenient but cannot easily be
extended to allow for residual spatial dependence.

Hence, we turn our attention to Poisson-Lognormal models.

A Poisson-lognormal non-spatial random effect model is given by:

Yi |β0, β1, εi ∼ind Poisson(Eie
β0+xiβ1eεi ) (3)

εi |σ2
ε ∼iid N(0, σ2

ε ) (4)

where εi are area-specific random effects that capture the residual or
unexplained (log) relative risk of disease in area i , i = 1, . . . , n.

Whereas in the Poisson-Gamma model we have δi ∼ Ga(α, α), here we
have

δi = eεi ∼ LogNormal(0, σ2
ε ).

We still have a single parameter controlling the spread of the random
effects, now σ2

ε , rather than α.
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Poisson-Lognormal Models

The model given by (3) and (4) does not give a marginal distribution for
the data of known form (in contrast to the gamma model), but does
naturally lead to the addition of spatial random effects.

Empirical Bayes is not so convenient for this model, though see the
function lognormalEB() within the DCluster() package.

Hence, we resort to a fully Bayesian approach for which we need to
specify prior distributions.
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Prior Choice for Poisson-Lognormal Models

We need to specify priors for:

I The intercept β0 and regression coefficient β!.

I The variance of the normal random effects σ2
ε .

An improper prior2

p(β0, β1) ∝ 1

may often be used, but in some circumstances such a choice may lead to
an improper posterior.

If there are a large numbers of covariates, or high dependence amongst
multiple covariates then more informative priors will be beneficial.

If an informative prior is required, then a multivariate normal distribution
is the natural choice.

This is equivalent to a multivariate lognormal distribution for the relative
risks.

2This means that it doesn’t integrate to 1
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Prior Choice for Poisson-Lognormal Models

It is convenient to specify lognormal priors for a positive parameter
exp(β), since one may specify two quantiles of the distribution, and
directly solve for the two parameters of the lognormal.

Denote by LogNormal(µ, σ) the lognormal distribution for a generic
parameter θ with

E[log(θ)] = µ, var(log(θ)) = σ2,

and let θ1 and θ2 be the q1 and q2 quantiles of this prior.

In our example, θ = exp(β).

Then it is straightforward to show that

µ = log(θ1)

(
zq2

zq2 − zq1

)
− log(θ2)

(
zq1

zq2 − zq1

)
,

σ =
log(θ1)− log(θ2)

zq1 − zq2
.
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Prior Choice for Poisson-Lognormal Models

As an example, suppose that for the ecological relative risk

θ = exp(β)

we believe there is a 50% chance that the relative risk is less than 1 and
a 95% chance that it is less than 5.

This gives

q1 = 0.5, θ1 = 1.0, q2 = 0.95, θ2 = 5.0,

we obtain lognormal parameters

µ = 0, σ =
log 5

1.645
= 0.98.

The density is shown in Figure 4.
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Figure 4 : Lognormal density with 50% point 1 and 95% point 5.
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Prior Choice for Poisson-Lognormal Models

The priors τε = σ−2ε ∼ Ga(1, 0.0260) or τε = σ−2ε ∼ Ga(0.5, 0.0005) will
often be suitable in a mapping context.

τε is the precision, i.e., the reciprocal variance.

For the Ga(1,0.026) prior the 2.5%, 50% (median) and 97.5% quantiles
for σε are:

(0.014, 0.047, 1.01).

For the Ga(0.5,0.0005) prior the 2.5%, 50% (median) and 97.5%
quantiles for σε are:

(0.084, 0.194, 1.01).

So the Ga(1,0.026) prior favors smaller values, i.e. more shrinkage is
anticipated.
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Prior Choice for Poisson-Lognormal Models

Interpretation is helped by approximation of the residual relative risk

exp(ε) ≈ 1 + ε

for small ε and so
s.d(eε) = σε

is approximately the standard deviation of the residual relative risks.

Sensitivity of the results to the specification should be carried out,
particularly if the number of areas is not large.
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Poisson-Lognormal Spatial Model

In general we might expect residual relative risks in areas that are “close”
to be more similar than in areas that are not “close”.

In other words we would like to smooth in space.

We would like to exploit this information in order to provide more reliable
relative risk estimates in each area.

This is analogous to the use of a covariate x , in that areas with similar x
values are likely to have similar relative risks.

Unfortunately the modelling of spatial dependence is much more difficult
since spatial location is acting as a surrogate for unobserved covariates.

We need to choose an appropriate spatial model, but do not directly
observe the covariates whose effect we are trying to mimic.
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Poisson-Lognormal Spatial Model

We first consider the model

Yi |θi ∼ind Poisson(Eiθi ) (5)

with
log θi = β0 + xiβ1 + si1γ1 + si2γ2 + Si + εi , (6)

where

I si = (si1, si2) denotes spatial location, the centroid of area i ,

I the large-scale spatial trend is captured by

si1γ1 + si2γ2. (7)

I the random effects εi |σ2
ε ∼iid N(0, σ2

ε ) represent non-spatial
overdispersion,

I Si are random effects with local spatial structure.

I We describe two possible forms for the spatial random effects.
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Spatial Models Overview

In general, there have been two approaches to modeling spatial
dependence:

I Local conditional modeling.

I Multivariate (geostatistical) modeling.

The local approach, an early reference to which is Besag (1974), is based
on conditional specifications Si |S−i , where

S−i = (S1, . . . ,Si−1,Si+1, . . . ,Sn).

In general, the only variables in S−i that are relevant are the neighbors
(suitably defined, which we write as Si |Sj , j ∈ ne(i).

In words, what is the distribution of Si , given we know the values taken
by the neighboring random variables.

The multivariate approach, see for example Stein (1999), is based on the
specification of the full multivariate distribution of S = (S1, . . . ,Sn).
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A Multivariate Spatial Model

Assume that
S = (S1, . . . ,Sn)

arise from a zero mean multivariate normal distribution with variances

var(Si ) = σ2
s

and correlations corr(Si ,Sj).

The obvious approach in a spatial setting is to assume a form such that
the correlation between Si and Sj decreases as dij , the distance between
the locations at which Si and Sj are measured, decreases.

A model in which the correlations are a function of distance only between
the points is known as isotropic.

Care must be taken with specification of the function relating correlations
to distance, as the resulting variance-covariance matrix must be
invertible.
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A Multivariate Spatial Model

A simple form is
corr(Si ,Sj) = ρdij

where

I dij = ||si − sj || is the distance between the centroids of areas i and j ,
and

I ρ > 0 is a parameter that determines the extent of the correlation; ρ
is the correlation between the residual spatial variability in two
locations that are one unit of distance apart.

The correlation above is the marginal correlation between the random
variables Si and Sj .

This multivariate spatial model has two parameters, σ2
s , which determines

the scale of the spatial variability, and ρ, which determines the extent of
the spatial variability.
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A Multivariate Spatial Model

More generally the correlations can be modeled as a Matérn correlation
function (Stein, 1999):

corr(Si ,Sj) =
1

Γ(υ + 1/2)(4π)1/2κ2υ2υ−1
(κdij)

υKυ(κdij)

where Kυ(·) is a modified Bessel function of the second kind, κ > 0 is a
scale parameter and υ > 0 is a smoothness parameter.

In general, difficult to estimate many parameters in a spatial model and
often υ is fixed.

45 / 76



A Multivariate Spatial Model

The multivariate model with correlations of this form is computationally
expensive to fit, because one has to carry out operations on the n × n
covariance matrix, which we call Σ.

The multivariate normal distribution s|Σ ∼ N(0,Σ) is given by

p(s) = (2π|Σ|)−1/2 exp

(
−1

2
sTΣ−1s

)
,

so to evaluate the density we need to calculate a determinant and an
inverse.

We consider the multivariate normal model no more in a mapping
context, but return to it when we consider exposure surface modeling and
Kriging.
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A Conditional Spatial Model

An alternative approach is to specify the distribution of each Si as if we
knew the values of the spatial random effects Sj in neighboring areas.

Hence, we have a conditional specification since we are conditioning on
knowing the neighbors.
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A Conditional Spatial Model

We need to specify a rule for determining the neighbors of each area.

In an epidemiological context the areas are not regular in shape.

This is in contrast to image processing applications in which the data are
collected on a regular grid.

Hence, there is an arbitrariness in specification of the neighborhood
structure.
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A Conditional Spatial Model

To define neighbors, a number of authors have taken the neighborhood
scheme to be such that two areas are taken to be neighbors if they share
a common boundary.

This is reasonable if all regions are (at least roughly) of similar size and
arranged in a regular pattern (as is the case for pixels in image analysis
where these models originated), but is not particularly attractive
otherwise (but reasonable practical alternatives are not available).

Various other neighborhood/weighting schemes are possible:

I One can take the neighborhood structure to depend on the distance
between area centroids and determine the extent of the spatial
correlation (i.e. the distance within which regions are considered
neighbors).

I One could also define neighbors in terms of cultural similarity.

In typical applications it is difficult to assess whether the spatial model
chosen is appropriate, which argues for a simple form, and to assess the
sensitivity of conclusions to different choices.
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A Conditional Spatial Model

A common model, due to Besag et al. (1991), is to assign the spatial
random effects an intrinsic conditional autorgressive (ICAR) prior.

Under this specification it is assumed that the spatial random effect is
drawn from a normal distribution whose mean is the mean of the
neighbors random effects, with variance proportional to one over the
number of neighbors (so more neighbors, less variability).

In math-speak:

Si |Sj , j ∈ ne(i) ∼ N

(
S i ,

σ2
s

mi

)
,

where ne(i) is the set of neighbors of area i , mi is the number of
neighbours, and

S i =
1

mi

∑
j∈ne(i)

Sj

is the mean of the spatial random effects of these neighbors.
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A Conditional Spatial Model

The parameter σ2
s is a conditional variance and its magnitude determines

the amount of spatial variation.

The variance parameters σ2
ε and σ2

s have different interpretations.

Both are defined with respect to the log relative risk scale, but σε has a
marginal interpretation while σs has a conditional interpretation.

Specifically, for area i , the variance of Si is conditional on Sj , j ∈ ne(i).

Hence the variances are not directly comparable (in contrast to the joint
model in which σs is on the same scale as σε).

Notice that if σ2
s is “small” then although the residual is strongly

dependent on the neighboring value the overall contribution to the
residual relative risk is small.

It is not necessary to include the Si1γ1 + Si2γ2 term in the model with
the ICAR formulation, since local linear trends are accommodated.
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A Conditional Spatial Model

This is a little counterintuitive but stems from spatial models having two
aspects, the strength of dependence and the magnitude of spatial
dependence, and in the ICAR model there is only a single parameter
which controls both aspects.

In the joint model (with covariance σ2
s ρ

dij for example) the strength is
determined by ρ and the total amount by σ2

s .

A non-spatial random effect should always be included along with the
ICAR random effect since this model cannot take a limiting form that
allows non-spatial variability.

In the joint model with Si only, this is achieved as ρ→ 0.

If the majority of the variability is non-spatial, inference for this model
might incorrectly suggest that spatial dependence was present.

Prior specification is difficult for the conditional variance is difficult
because it has a conditional rather than a marginal interpretation.

See Fong et al. (2010) for a discussion of prior choice and simulation for
an ICAR model.
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Computation for the Conditional Model

Let Q/σ2
s denote the precision matrix of the ICAR model.

For simplicity, suppose all areas are connected to at least one other area.

The elements Qij = 0 if Si and Sj are conditionally independent, i.e., not
neighbors.

The elements Qij = −1 if Si and Sj are conditionally dependent,
i.e., neighbors.

The elements Qii = mi , where mi is the number of neighbors of area i .

Hence, most of the elements of Q are zero (so the matrix is sparse) and
this aids greatly in computation, see Rue and Held (2005) for details.
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Computation for the Conditional Model

The form of the joint ‘density’ is

p(s|Q, σ2
s ) = (2π)−1/2|Q|1/2σ−(n−1)/2s exp

(
− 1

2σ2
s

sTQs

)

= (2π)−1/2|Q|1/2σ−(n−1)/2s exp

− 1

2σ2
s

∑
i∼j

(si − sj)
2


where i ∼ j means i and j are neighbors.

This is not a true density since it is not proper; Q is singular and has
rank n − 1.

The ICAR model is an example of a Gaussian Markov Random Field.

Note the contrast with the multivariate model in which Σij = 0 if the
marginal covariance between Si and Sj is zero.
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Discussion

Often SMRs are unstable because of small denominators.

More reliable estimates can be obtained by using the totality of data to
inform on the distribution, both locally and globally, of the relative risks
across the study region.

The gamma model is mathematically convenient, but is not well suited to
modeling spatial dependence.

A lognormal model can be extended to allow spatial dependence
relatively easily, with the ICAR model being particularly popular.

55 / 76



Spatio-Temporal Disease Mapping

We now consider space-time modeling of disease counts.

Suppose now that we are in the situation where we have population
counts Nitj in area i , time period t and stratum j , with associated disease
counts Yitj , i = 1, . . . , n, t = 1, . . . ,T , j = 1, . . . , J.

We first form expected numbers

Eit =
J∑

j=1

qjNitj .

Note that the reference rates are for stratum only and not time;
evaluating over time also would lead to the loss of the temporal
component.

We allow for the possibility of counts changing over time, however.

The SMRs are, as usual, SMRit = Yit/Eit .

56 / 76



Spatio-Temporal Disease Mapping

Recall that in a mapping context we wish to obtain best guesses at risk
over space and time, along with assessment of trends.

An overall aim in spatio-temporal disease mapping is to apportion the
variability in the data to:

I space,

I time,

I space-time (i.e., the interaction) and

I covariates.
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Ohio lung cancer mortality data

We examine data on lung cancer deaths in 88 counties of Ohio over the
years 1968–1988.

We adjust for gender and race and for age, the latter via 5 age bands:
0–44, 45–54, 55–64, 65–74, 75+.

These data have been analyzed by a number of authors including Waller
et al. (1997), Xia and Carlin (1998), Knorr-Held and Besag (1998).
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Figure 5 : SMRs over time for Ohio lung cancer mortality.
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A Quick Tangent on Time Series Smoothing Models

Suppose we have counts Yt of disease from denominators N (constant
across time) and with equally-spaced time intervals t = 1, . . . ,T .

The model is Yt |θt ∼ Poisson(Nθt) with

log θt = β0 + ωt + τt

with

I independent terms
ωt ∼iid N(0, σ2

ω)

and

I first-order (random walk) smoothing

τt |τt−1, τt+1 ∼ N

(
1

2
(τt−1 + τt+1),

σ2
τ

2

)
.
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A Quick Tangent on Time Series Smoothing Models

A second-order (random walk) smoothing model would have

τt |τt−1, τt+1, τt−2, τt+2 ∼ N

(
4

6
(τt−1 + τt+1)− 1

6
(τt+2 − τt−2),

σ2
τ

6

)
.

These two models are often abbreviated to RW1 and RW2 and the RW1
is the 1D analog of the ICAR model we have used for spatial smoothing.

Both RW1 and RW2 are local smoothing models.

Rue and Held (2005) is the definitive text on Gaussian Markov random
field (GMRF) models.

We will now describe the combination of spatial and temporal models.
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Figure 6 : RW1 and RW2 fits to simulated data; note the greater smoothness
of the RW2 model.
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Simple Space-Time Models

As a starting point we assume Yit |θit ∼ Poisson(Eitθit)

We can first fit separate models

log θit = β0i + β1i t,

with quasi-likelihood used for inference.

We can then informally examine the variability in the area-specific
relative risk slopes exp(β1i ).

Mapping these slopes may give indication of space-time interaction.

63 / 76



exp(β1)

F
re

q
u

e
n

c
y

1.01 1.03 1.05

0
5

1
0

1
5

5 10 15 20

−
1

.0
0

.0
0

.5

Time
lo

g
(S

M
R

)
Figure 7 : Ohio lung cancer data: fitted slopes (on log relative risk scale) and
histogram of slopes. Clearly the trend in relative risk is increasing across all
areas.
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Figure 8 : Map of exponentiated slopes for Ohio lung cancer data; there is no
obvious pattern.
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Simple Space-Time Models

Bernardinelli et al. (1995) suggested the model

log θit = β0 + εi + Si + (β1 + ηi )t

where

I β0 is the intercept,

I εi and Si are non-spatial and spatial random effects and

I ηi are area-specific interaction parameters that adjust the average
slope β1; the ηi may or may not have spatial structure.

Hence, this model assumes temporal trends are linear (on the log scale)
but that the slopes differ between areas.
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Simple Space-Time Models

Waller et al. (1997) assume that

log θit = β0 + εit + Sit

with non-spatial and spatial random effects εit and Sit , respectively.

These random effects are assumed independent across time (though we
may allow the variances of the distributions to depend on time).

As pointed out by Knorr-Held and Besag (1998) there is no structure
(smoothing) across time in this model which is not realistic.
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Main Effects and Interactions

Suppose we have a univariate continuous response Y .

Suppose we have two factors with levels, A and B, with i = 1, . . . , I and
j = 1, . . . , J indexing the levels.

A main effects only model takes the form

E[Y |β0, ηi , φj ] = β0 + ηi + φj .

Interpretation: ηi is the effect of being at level i for factor A, regardless
of the level assumed by B, i.e. there is no interaction.
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Main Effects and Interactions

An interaction model adds a set of interaction parameters

E[Y |β0, ηi , φj , δij ] = β0 + ηi + φj + δij .

Interpretation: δij is the additional effect, beyond ηi + φj of being
simultaneously at levels i and j of factors A and B.

If the factor correspond to nominal levels (e.g., a factor for color with 2
levels: ”red”, ”blue”) then we would not expect similarity between
adjacent levels.

In a space-time context the “factors” space and time have structure and
we would expect similarity.
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Separable Main Effects Model

First, consider a separable space-time model

Yit |θit ∼ Poisson(Eitθit)

log θit = β0 + εi + Si + ωt + τt

Components:

I Unstructured spatial term εi ∼iid N(0, σ2
v ), i = 1, . . . , n.

I Smooth spatial term (S1, . . . ,Sn) smooth in space (e.g. ICAR
model).

I Smooth temporal term (τ1, . . . , τT ) smooth in time (e.g. follows a
random walk of first or second order).

I Unstructured temporal term ωt ∼iid N(0, σ2
ω), t = 1, . . . ,T .

Notice there is no interaction between space and time. The spatial effects
are constant across time and temporal trends are constant across space.

70 / 76



Inseparable Space-Time Interaction Models

Knorr-Held (2000) considered the model:

θit = β0 + εi + Si + ωt + τt + δit

with εi , Si , ωt , ηt are as in the separable model.

Four different models for the interaction δit :

I Type I: Independent interaction.

I Type II: Temporal trends differ between areas but don’t have spatial
structure.

I Type III: Spatial patterns differ between time points but don’t have
temporal structure.

I Type IV: Temporal trends differ between areas but more likely to be
similar for adjacent areas.
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Inseparable Space-Time Interaction Models

Type II: Temporal trends differ between areas but don’t have spatial
structure. For example, an RW(2) model in each area has conditional
distribution:

δit |δi,t−1, δi,t+1, δi,t−2, δi,t+2 ∼ N

(
4

6
(δi,t−1 + δi,t+1)− 1

6
(δi,t+2 − δi,t−2),

σ2
δ

6

)
.

The joint distribution for this model can also be written

f (δ|σ2
δ) ∝ exp

(
− 1

2σ2
δ

I∑
i=1

T∑
t=3

(δit − 2δi,t−1 + δi,t−2)2

)
.

Realistic to assume that time trends have no spatial structure?
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Inseparable Space-Time Interaction Models

Type III: Spatial patterns differ between time points but without
temporal structure:

f (δ|σ2
δ) ∝ exp

− 1

2σ2
δ

T∑
t=1

∑
i∼j

(δit − δjt)2
 .

So this model says we have independent ICAR models at each time point
(though with the same variance, σ2

δ).

Realistic to assume that spatial structure changes at every time point
without smooth patterns in space?
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Inseparable Space-Time Interaction Models

Type IV: Temporal trends differ between areas but more likely to be
similar for adjacent areas.

This will often be the most realistic model if interactions are present.

In the case of a RW1 temporal model and an ICAR spatial model, the
joint distribution can be written:

f (δ|σ2
δ) ∝ exp

(
− 1

2σ2
δ

T∑
t=3

∑
i∼j

(δit − δjt − 2δi,t−1 + 2δj,t−1 + δi,t−2 − δj,t−2)2
)

The inla implementation of Type II, III and IV interaction models is
complex.

On the class website is code to fit Type II–IV interaction models.
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Conclusions

Raw estimates of area relative risks can be unstable when population
sizes/expected numbers are small.

Random effects shrinkage models can stabilize rates by jointly estimating
the complete set of relative risks over the complete study region.

These models have good properties to describe the complete collection of
areas estimates, but any one area can be poorly estimated, since the
accuracy depends on the appropriateness of the model for that area.

One common model includes a set of independent random effects and a
set of spatial (ICAR) random effects.

Bayesian modeling is the most common approach so priors must be
specified, and the sensitivity to the priors on the variances is important to
examine.

Examination of model assumptions is important, though very difficult to
asses whether the spatial model is reasonable.

Outlying areas should be examined to see how influential they are.

The inla computational technique provides a quick implementation.
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Conclusions

For chronic diseases such as cancer the time trends are often slow,
though may change more abruptly if large-scale screening is implemented.

Often there are more areas than time points (though counts in areas may
be small), and so the sophistication of the temporal model may be
restricted.

Age-period-cohort (APC) models may be used if there are sufficient
periods, spatial-APC models have been developed.
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