
MODULE 16: Spatial Statistics in Epidemiology
and Public Health

Lecture 5: Spatial regression

Jon Wakefield and Lance Waller
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What do we have so far?

I Point process ideas (intensities, K -functions).
I Data: (x , y) event locations.
I Where are the clusters? Use intensities.
I How are events clusters? Use K -functions.

I Disease clustering with point data.

I Disease clustering with regional counts.
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What’s left?

I So we know how to describe and evaluate spatial patterns in
health outcome data.

I What about linking patterns in health outcomes to patterns in
exposures?

I With independent observations we know how to use linear and
generalized linear models such as linear, Poisson, logistic
regression.

I What happens with dependent observations?
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Caveat

“...all models are wrong. The practical question is how
wrong do they have to be to not be useful.”
Box and Draper (1987, p. 74)
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What changes with dependence?

I In statistical modeling, we are often trying to describe the
mean of the outcome as a function of covariates, assuming
error terms are mutually independent.

I That means we usually model any trend in the data as a trend
in expectations.

I Allows estimation of covariate effects.

I With dependent error terms, observed trends may be due to
covariates, correlation, or both.

I May impact the identifiability of covariate effects.

I Could have different effects equally likely under different
correlation models.

6 / 1



Residual correlation

I Where do correlated errors come from?

I Perhaps outcomes truly correlated (infectious disease).

I Perhaps we omitted an important variable that has spatial
structure itself.

I If temperature is important and we left it out of a model
applied to the continental U.S., what would the residuals look
like?
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Residual maps important

I If high temperatures associated with high outcomes, we would
underfit in southern states (observations > model predictions
⇒ positive residuals), and overfit in northern states
(observations < model prediction ⇒ negative residuals).

I The “missing covariate” idea suggests that maps of residuals
are important spatial diagnostics.

I Also, we may want to apply tests of clustering or to detect
clusters to residuals.

I Moran’s I , LISAs.
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Our plan

I We will take the NY leukemia data and add some covariates.

I We will fit linear and Poisson regression models with various
spatial correlation structures and compare inferences.

I Remember, all of these models are wrong, but some may be
useful.
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Illustrating regression models

I New York leukemia data from Waller et al. (1994)

I 281 census tracts (1980 Census).

I 8 counties in central New York.

I 592 cases for 1978-1982.

I 1,057,673 people at risk.
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Crude Rates (per 100,000)

Central New York Census Tracts, 1980
Leukemia rates 1978-1982

0.000000 - 0.000021

0.000022 - 0.000324

0.000325 - 0.000588

0.000589 - 0.001096

0.001097 - 0.006993
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Building the model

I Let Yi = count for region i .

I Let Ei = expected count for region i .

I xi ,TCE = inverse distance to TCE site.

I xi ,65 = percent over age 65 (census).

I xi ,home = percent who own own home (census).

I The model:

Yi = β0 + xi ,TCEβTCE + xi ,65β65 + xi ,homeβhome + εi .
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Assumptions for regression

I The error terms, εi
ind∼ N(0, σ2);

I The data have a constant variance, σ2;

I The data are uncorrelated (OLS) or have a specified
parametric covariance structure (GLS);
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Y normally distributed?

Histogram
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Transformation?

Zi = log

(
1000(Yi + 1)

ni

)
.

Transformed Incidence Proportions
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Outliers, where are the top 3?
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Scatterplots
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Linear Regression (OLS)

Parameter Estimate Std. Error p-value

β̂0 (Intercept) -0.5173 0.1586 0.0012

β̂1 (TCE) 0.0488 0.0351 0.1648

β̂2 (% Age > 65) 3.9509 0.6055 <0.0001

β̂3 (% Own home) -0.5600 0.1703 0.0011

σ̂2 0.4318 277 df

R2=0.1932 AIC=567.5
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Is OLS appropriate?

I Z s roughly Gaussian (symmetric).

I Do Z s have constant variance?

I No, since population sizes vary.

I Var(Zi ) = Var
(

log
(
1000(Yi+1)

ni

))
I Try weighted least squares with weights 1/ni .
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Linear Regression (WLS)

Parameter Estimate Std. Error p-value

β̂0 (Intercept) -0.7784 0.1412 <0.0001

β̂1 (TCE) 0.0763 0.0273 0.0056

β̂2 (% Age > 65) 3.8566 0.5713 <0.0001

β̂3 (% Own home) -0.3987 0.1531 0.0097

σ̂2 1121.94 277 df

R2=0.1977 AIC=513.5
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What changed?

I The three outliers are all in regions with small ni .

I Weighting reduced their impact on estimates.

I Most profound effect is with respect to TCE.
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WLS fitted values
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Residual plot
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Residual map
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What are we looking for?

I Patterns in locations of residuals.

I Model underfit (predictions too low) near cities?

I Correlations in residuals?

I Let’s try semivariograms for the residuals.

I Let’s try local Moran’s I for residuals.
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Residual correlation? (Tip your head to the right.)
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Comments

I Residual semivariogram not too impressive.

I We can try maximum likelihood fit incorporating residual
correlation via the semivariogram (which defines covariance
matrix).
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Linear Regression, Correlated Errors (ML)

Parameter Estimate Std. Error p-value

β̂0 (Intercept) -0.7222 0.1972 <0.0001

β̂1 (TCE) 0.0826 0.0434 0.0576

β̂2 (% Age > 65) 3.7093 0.6188 <0.0001

β̂3 (% Own home) -0.3245 0.2044 0.1136

ĉ0=0.3740 ĉs=0.0558 â=6.93

AIC=565.6 277 df
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Weighting?

I We also need to include weights to account for
heteroskedasticity.

I Again we use weights equal to 1/ni .

I What changes?
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Linear regression, Correlated, Weighted

Parameter Estimate Std. Error p-value

β̂0 (Intercept) -0.9161 0.1648 <0.0001

β̂1 (TCE) 0.0956 0.0322 0.0032

β̂2 (% Age > 65) 3.5763 0.5920 <0.0001

β̂3 (% Own home) -0.2285 0.1761 0.1956

ĉ0=997.65 ĉs=127.12 â=6.86

AIC=514.7 277 df
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Fitted values (correlated, weighted)
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Modelling counts directly

I Using linear regression required a fair amount of data
transformation, just to meet modelling assumptions.

I Can we model the counts directly?

I In epidemiology, common to use logistic or Poisson regression.

I For rare disease, little difference between logistic and Poisson.

I Both are examples of generalized linear models (McCullagh
and Nelder, 1989).
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Building the model

I Let Yi = count for region i .

I Let Ei = expected count for region i .

I Let (xi ,TCE , xi ,65, xi ,home) be the associated covariate values.

I Poisson regression:

Yi ∼ Poisson(Eiζi )

where

log(ζi ) = β0 + xi ,TCEβTCE + xi ,65β65 + xi ,homeβhome .

33 / 1



What’s different?

I Poisson distribution for counts, rather than transforming
proportions for normality.

I Link function: Natural log of mean of Yi is a linear function
of covariates.

I So βs represent multiplicative increases in expected counts, eβ

a measure of relative risk associated with one unit increase in
covariate.

I Ei an offset, what we expect if the covariates have no impact.

I Age, race, sex adjustments in either Ei (standardization) or
covariates.
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How do we add spatial correlation?

I Trickier than in regression, since mean and variance are
related for Poisson observations.

I Two general approaches:
I Marginal specification defining correlation among means.
I Conditional specification defining correlation through the use

of random effects.
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Marginal and conditional models

I We often think of a model representing the marginal mean,
E (Y) as a function of fixed, unknown parameters.

I That is, the parameters define the population average effect
of the covariates (“On average, how does a given level of air
pollution impact a person?”)

I Another approach is to consider a model of the conditional
mean for each subject.

I In this setting we think of fixed effects of parameters and
random effects specific to the subjects.
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Marginal versus conditional interpretation

I For us: fixed effects apply equally to all subjects, random
effects apply to a particular subject.

I Interpret fixed effects conditional on levels of the random
effects.

I “What is the effect of aspirin on a headache averaged over all
individuals in the study?” (Marginal effect).

I “What is the effect of aspirin on a headache in this
individual?” (Conditional effect).

I Random effects allow different parameter values for
individuals, following some distribution.
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Random intercepts

I A model with fixed and random effects is a mixed model.

I A very common formulation is to have fixed parameter values
and a random intercept. This says everyone has the same
response to the treatment, but that individuals have different
starting points.

I In Poisson regression setting, if we add random effects we
generate a generalized linear mixed model (GLMM).
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Random effects and the conditional specification

I We add a random effect (intercept).

I Represents an impact of region i , not accounted for in Ei or
the covariates.

I We define this random effect to have a spatial distribution.
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Building the model

I Let Yi denote the observed number of cases in region i .

I Let Ei denote the expected number of cases, ignoring
covariate effects.

I Assume Ei known, perhaps age-standardized, or based on
global (external or internal) rates.

I First stage:

Yi |ζi
ind∼ Poisson(Eiζi )

I ζi represent a relative risk associated with region i not
accounted for by the Ei .
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Building the model

I Note Yi/Ei = SMRi , the MLE of ζi .

I Also note, E [Yi |ζi ] 6= Ei , since Ei does not include the impact
of the random effect.

I Create a GLMM with log link by

log(E [Yi |ζi ]) = log(Ei ) + log(ζi )

I If we add covariates and rename log(ζi ) = ψi , then

log(ζi ) = x′iβ + ψi
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New York data

I So our model is

Yi |β, ψi
ind∼ Poisson(Ei exp(x′iβ + ψi )),

log(ζi ) = β0 + xi ,TCEβTCE + xi ,65β65 + xi ,homeβhome + ψi .

I The ψi represent the random interecpts.

I Add overdispersion via ψi
ind∼ N(0, vψ).

I Add spatial correlation via

ψ ∼ MVN(0,Σ).
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Priors and “shrinkage”

I Overdispersion model (i.i.d. ψi ) results in each estimate being
a compromise between the local SMR and the global average
SMR.

I “Borrows information (strength)” from other observations to
improve precision of local estimate.

I “Shrinks” estimate toward global mean. (Note: “shrink” does
not mean “reduce”, rather means “moves toward”).
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Local shrinkage

I Spatial model (correlated ψi ) results in each estimate begin a
compromise between the lcoal SMR and the local average
SMR.

I Shrinks each ψi toward the average of its neighbors.

I Can also include both global and local shrinkage (Besag, York,
and Mollié 1991).

I How do we fit these models?
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Bayesian inference

Bayesian inference regarding model parameters based on posterior
distribution

Pr [β,ψ|Y]

proportional to the product of the likelihood times the prior

Pr [Y|β,ψ]Pr [ψ]Pr [β].

Defers spatial correlation to the prior rather than the likelihood.
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Spatial priors

I Could model joint distribution

ψ ∼ MVN(0,Σ).

I Could also model conditional distribution

ψi |ψj 6=i ∼ N

(∑
j 6=i cijψj∑

j 6=i cij
,

1

vCAR
∑

j 6=i cij

)
, i = 1, . . . ,N.

where cij are weights defining the neighbors of region i .

I Adjacency weights: cij = 1 if j is a neighbor of i .
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CAR priors

I The conditional specification defines the conditional
autoregressive (CAR) prior (Besag 1974, Besag et al. 1991).

I Under certain conditions on the cij , the CAR prior defines a
valid multivariate joint Gaussian distribution.

I Variance covariance matrix a function of the inverse of the
matrix of neighbor weights.
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Perspective: Generalized linear mixed model

I Given the values of the random effects (ψi s), observations
(Yi s) are independent.

I Taking into account correlation in the ψi s, the Yi s are
correlated.

I Conditionally independent Yi |ψi give likelihood function.

I (Spatially correlated) distribution of the ψi s a prior
distribution.
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Fitting Bayesian models: Markov chain Monte Carlo

I Posterior often difficult to calculate mathematically.

I Iterative simulation approach to model fitting.

I Given full conditional distributions, simulate a new value for
each parameter, holding the other parameter values fixed.

I The set of simulated values converges to a sample from the
posterior distribution.

I WinBUGS software.
www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
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Conceptual MCMC example

I Suppose we have a model with data Y and three parameters
θ1, θ2, and θ3.

I “Gibbs sampler” simulates values from the full conditional
distributions

f (θ1|θ2, θ3,Y),

f (θ2|θ1, θ3,Y),

f (θ3|θ1, θ2,Y).
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Conceptual MCMC

I Start with values θ
(1)
1 , θ

(1)
2 , and θ

(1)
3 .

sample θ
(2)
1 from f (θ1|θ(1)2 , θ

(1)
3 ,Y),

sample θ
(2)
2 from f (θ2|θ(2)1 , θ

(1)
3 ,Y),

sample θ
(2)
3 from f (θ3|θ(2)1 , θ

(2)
2 ,Y).

I As we continue to update θ, sampled values become
indistinguishable from a sample from the joint posterior
distribution f (θ1, θ2, θ3|Y).
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MCMC example

I Gelman et al. (2004). Theoretical and MCMC results.[
Y1

Y2

]
∼ MVN

([
θ1
θ2

]
,

[
1 ρ
ρ 1

])
.

I Uniform priors on θ1, θ2, yield posterior[
θ1
θ2

]
∼ MVN

([
Y1

Y2

]
,

[
1 ρ
ρ 1

])
.
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Full conditionals

I Multivariate results give full conditionals

θ1|θ2,Y ∼ N(Y1 + ρ(θ2 − Y2), 1− ρ2),

θ2|θ1,Y ∼ N(Y2 + ρ(θ1 − Y1), 1− ρ2).

I Let’s try a Gibbs sampler and compare to the theoretical
results.
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MCMC example
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Back to CAR prior

I Almost custom-made for MCMC.

I Defined for ψi , given ψj for j 6= i .

I We define neighborhood weights cij .
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Complete model specification

Yi |β, ψi
ind∼ Poisson(Ei exp(x′iβ + ψi )),

log(ζi ) = β0 + xi ,TCEβTCE + xi ,65β65 + xi ,homeβhome + ψi .

βk ∼ Uniform.

ψi |ψj 6=i ∼ N

(∑
j 6=i cijψj∑

j 6=i cij
,

1

vCAR
∑

j 6=i cij

)
, i = 1, . . . ,N.

1

vCAR
∼ Gamma(0.5, 0.0005).
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MCMC trace plots
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Posterior densities
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MCMC posterior estimates

Covariate Posterior 95% Credible
Median Set

β0 0.048 (-0.355, 0.408)
β65 3.984 (2.736, 5.330)
βTCE 0.152 (0.066, 0.226)
βhome -0.367 (-0.758, 0.049)
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But there’s more!

I A nifty thing about MCMC estimates:

We get posterior samples from any function of model
parameters by taking that function of the sampled posterior
parameter values.

I Gives us posterior inference for SMRi = Yi ,fit/Ei .

I Also can get Pr [SMRi > 200|Y] and map these exceedence
probabilities.
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Posterior median SMRs
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Posterior exceedence probabilities

62 / 1



Example 2

I Cryptozoology Example: Waller and Carlin (2010) Disease
Mapping. In Handbook of Spatial Statistics, Gelfand et al.
(eds.). Boca Raton: CRC/Chapman and Hall.
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Cryptozoology example

I County-specific reports of encounters with Sasquatch
(Bigfoot).

I “...which brings us to the appropriateness of the Bigfoot
example.”

I Data downloaded from www.bfro.net

I Sightings from counties in Oregon and Washington (Pacific
Northwest).

I Probability of report related to population density?

I (Hopefully) rare events in small areas.

I Perhaps spatial smoothing will stabilize local rate estimates.

I Fit models with no random effects, exchangeable random
effects, CAR random effects, convolution random effects.
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Sasquatch Data
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Reports vs. Population Density
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Observed vs. Expected
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Predicted relative risks and credible sets
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Mapped relative risks
No random  effect RRs Exchangeable RRs

CAR RRs Convolution RRs
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Skamania Sasquatch Ordinances

I http://www.skamaniacounty.org/commissioners/

homepage/ordinances-2/

I Big Foot Ordinance 69-1: “THEREFORE BE IT RESOLVED
that any premeditated, willful and wonton slaying of any such
creature shall be deemed a felony punishable by a fine not to
exceed Ten Thousand Dollars ($10,000.00) and/or
imprisonment in the county jail for a period not to exceed
Five (5) years. ADOPTED this 1st day of April, 1969.”

I Big Foot Ordinance 1984-2:
I Repealed felony and jail sentence.
I Established a Sasquatch Refuge (Skamania County).
I Clarified penalty (gross misdemeanor vs. misdemeanor) and

penalty (fine and jail time), disallowed insanity defense, and
clarified distinction between coroner designation of victim as
humanoid (murder) or anthropoid (this ordinance).
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Conclusions

I What method to use depends on what you want data you
have and what question you want to answer.

I All methods try to balance trend (fixed effects) with
correlation (here, with random effects).

I All models wrong, some models useful.

I Trying more than one approach often sensible.

I Few methods (including Monte Carlo simulation) in current
GIS packages.
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