MODULE 16: Spatial Statistics in Epidemiology and Public Health Lecture 5: Spatial regression

Jon Wakefield and Lance Waller

- Waller and Gotway (2004, Chapter 9) Applied Spatial Statistics for Public Health Data. New York: Wiley.
- Elliott, P., et al. (2000) Spatial Epidemiology: Methods and Applications, Oxford: Oxford University Press.
- Haining, R. (2003). Spatial Data Analysis: Theory and Practice. Cambridge: Cambridge University Press.
- Bailey, T.C. and Gatrell, A.C. (1995) Interactive Spatial Data Analysis. Essex: Addison Wesley Longman Limited.

- Point process ideas (intensities, K-functions).
 - Data: (x, y) event locations.
 - Where are the clusters? Use intensities.
 - ▶ How are events clusters? Use *K*-functions.

- Disease clustering with point data.
- Disease clustering with regional counts.

- So we know how to describe and evaluate spatial patterns in health outcome data.
- What about linking patterns in health outcomes to patterns in exposures?
- With *independent* observations we know how to use *linear* and generalized linear models such as linear, Poisson, logistic regression.
- What happens with *dependent* observations?

"...all models are wrong. The practical question is how wrong do they have to be to not be useful." Box and Draper (1987, p. 74)

- In statistical modeling, we are often trying to describe the mean of the outcome as a function of covariates, assuming error terms are mutually independent.
- That means we usually model any trend in the data as a trend in *expectations*.
- Allows estimation of covariate effects.
- With *dependent* error terms, observed trends may be due to covariates, correlation, or both.
- May impact the identifiability of covariate effects.
- Could have different effects equally likely under different correlation models.

- Where do correlated errors come from?
- Perhaps outcomes truly correlated (infectious disease).
- Perhaps we omitted an important variable that has spatial structure itself.
- If temperature is important and we left it out of a model applied to the continental U.S., what would the residuals look like?

- If high temperatures associated with high outcomes, we would underfit in southern states (observations > model predictions ⇒ positive residuals), and overfit in northern states (observations < model prediction ⇒ negative residuals).
- The "missing covariate" idea suggests that maps of residuals are important spatial diagnostics.
- Also, we may want to apply tests of clustering or to detect clusters to residuals.
- Moran's I, LISAs.

- We will take the NY leukemia data and add some covariates.
- We will fit linear and Poisson regression models with various spatial correlation structures and compare inferences.
- Remember, all of these models are wrong, but some may be useful.

▶ New York leukemia data from Waller et al. (1994)

- 281 census tracts (1980 Census).
- ▶ 8 counties in central New York.
- ▶ 592 cases for 1978-1982.
- 1,057,673 people at risk.

Crude Rates (per 100,000)

- Let Y_i = count for region i.
- Let $E_i = expected$ count for region *i*.
- $x_{i,TCE}$ = inverse distance to TCE site.
- $x_{i,65}$ = percent over age 65 (census).
- x_{i,home} = percent who own own home (census).
- The model:

$$Y_i = eta_0 + x_{i,TCE}eta_{TCE} + x_{i,65}eta_{65} + x_{i,home}eta_{home} + \epsilon_i.$$

イロン イロン イヨン イヨン 三日

- The error terms, $\epsilon_i \stackrel{ind}{\sim} N(0, \sigma^2)$;
- The data have a constant variance, σ^2 ;
- The data are uncorrelated (OLS) or have a specified parametric covariance structure (GLS);

Transformation?

Outliers, where are the top 3?

(콜) < 콜) 볼 9 Q @ 16/1

Scatterplots

Parameter	Estimate	Std. Error	p-value
\hat{eta}_0 (Intercept)	-0.5173	0.1586	0.0012
\hat{eta}_1 (TCE)	0.0488	0.0351	0.1648
\hat{eta}_2 (% Age $>$ 65)	3.9509	0.6055	< 0.0001
\hat{eta}_{3} (% Own home)	-0.5600	0.1703	0.0011
$\hat{\sigma}^2$	0.4318	277 df	
$R^2 = 0.1932$	AIC=567.5		

- Zs roughly Gaussian (symmetric).
- Do Zs have constant variance?
- No, since population sizes vary.

•
$$\operatorname{Var}(Z_i) = \operatorname{Var}\left(\log\left(\frac{1000(Y_i+1)}{n_i}\right)\right)$$

• Try weighted least squares with weights $1/n_i$.

Parameter	Estimate	Std. Error	p-value
\hat{eta}_0 (Intercept)	-0.7784	0.1412	< 0.0001
\hat{eta}_1 (TCE)	0.0763	0.0273	0.0056
\hat{eta}_2 (% Age $>$ 65)	3.8566	0.5713	< 0.0001
\hat{eta}_{3} (% Own home)	-0.3987	0.1531	0.0097
$\hat{\sigma}^2$	1121.94	277 df	
$R^2 = 0.1977$	AIC=513.5		

- The three outliers are all in regions with small n_i .
- Weighting reduced their impact on estimates.
- Most profound effect is with respect to TCE.

WLS fitted values

Residual plot

Residual map

- Patterns in locations of residuals.
- Model underfit (predictions too low) near cities?

イロン イロン イヨン イヨン 三日

- Correlations in residuals?
- Let's try semivariograms for the residuals.
- Let's try local Moran's *I* for residuals.

Residual correlation? (Tip your head to the right.)

- Residual semivariogram not too impressive.
- We can try maximum likelihood fit incorporating residual correlation via the semivariogram (which defines covariance matrix).

Linear Regression, Correlated Errors (ML)

Parameter	Estimate	Std. Error	p-value
$\hat{\beta}_0$ (Intercept)	-0.7222	0.1972	< 0.0001
\hat{eta}_1 (TCE)	0.0826	0.0434	0.0576
\hat{eta}_2 (% Age $>$ 65)	3.7093	0.6188	< 0.0001
\hat{eta}_{3} (% Own home)	-0.3245	0.2044	0.1136
ĉ₀=0.3740	<i>c</i> _s =0.0558	â=6.93	
AIC=565.6	277 df		

- We also need to include weights to account for heteroskedasticity.
- Again we use weights equal to $1/n_i$.
- What changes?

Parameter	Estimate	Std. Error	p-value
$\hat{\beta}_0$ (Intercept)	-0.9161	0.1648	< 0.0001
\hat{eta}_1 (TCE)	0.0956	0.0322	0.0032
\hat{eta}_2 (% Age $>$ 65)	3.5763	0.5920	< 0.0001
\hat{eta}_{3} (% Own home)	-0.2285	0.1761	0.1956
ĉ ₀ =997.65	ĉ _s =127.12	â=6.86	
AIC=514.7	277 df		

Fitted values (correlated, weighted)

< 돌> < 돌> 돌 ∽ Q (~ 31/1

- Using linear regression required a fair amount of data transformation, just to meet modelling assumptions.
- Can we model the counts directly?
- ► In epidemiology, common to use logistic or Poisson regression.
- ► For rare disease, little difference between logistic and Poisson.
- Both are examples of generalized linear models (McCullagh and Nelder, 1989).

- Let Y_i = count for region i.
- Let $E_i = expected$ count for region *i*.
- ▶ Let (*x_{i,TCE}*, *x_{i,65}*, *x_{i,home}*) be the associated covariate values.
- Poisson regression:

$$Y_i \sim Poisson(E_i\zeta_i)$$

where

$$\log(\zeta_i) = \beta_0 + x_{i,TCE}\beta_{TCE} + x_{i,65}\beta_{65} + x_{i,home}\beta_{home}.$$

- Poisson distribution for counts, rather than transforming proportions for normality.
- Link function: Natural log of mean of Y_i is a linear function of covariates.
- So βs represent multiplicative increases in expected counts, e^β a measure of relative risk associated with one unit increase in covariate.
- ► *E_i* an *offset*, what we expect if the covariates have no impact.
- Age, race, sex adjustments in either E_i (standardization) or covariates.

- Trickier than in regression, since mean and variance are related for Poisson observations.
- Two general approaches:
 - Marginal specification defining correlation among means.
 - Conditional specification defining correlation through the use of random effects.

- We often think of a model representing the marginal mean, E(Y) as a function of fixed, unknown parameters.
- That is, the parameters define the *population average* effect of the covariates ("On average, how does a given level of air pollution impact a person?")
- Another approach is to consider a model of the *conditional* mean for each subject.
- In this setting we think of fixed effects of parameters and random effects specific to the subjects.

Marginal versus conditional interpretation

- ► For us: *fixed effects* apply equally to all subjects, *random effects* apply to a particular subject.
- Interpret fixed effects conditional on levels of the random effects.
- "What is the effect of aspirin on a headache averaged over all individuals in the study?" (Marginal effect).
- "What is the effect of aspirin on a headache in this individual?" (Conditional effect).
- Random effects allow different parameter values for individuals, following some distribution.

- A model with fixed and random effects is a *mixed* model.
- A very common formulation is to have fixed parameter values and a *random intercept*. This says everyone has the same response to the treatment, but that individuals have different starting points.
- In Poisson regression setting, if we add random effects we generate a generalized linear mixed model (GLMM).

- ▶ We add a *random effect* (intercept).
- Represents an impact of region *i*, not accounted for in *E_i* or the covariates.
- We define this random effect to have a *spatial* distribution.

- Let *Y_i* denote the *observed* number of cases in region *i*.
- Let E_i denote the expected number of cases, ignoring covariate effects.
- Assume E_i known, perhaps age-standardized, or based on global (external or internal) rates.
- First stage:

 $Y_i | \zeta_i \stackrel{ind}{\sim} \mathsf{Poisson}(E_i \zeta_i)$

 ζ_i represent a relative risk associated with region i not accounted for by the E_i.

- Note $Y_i/E_i = SMR_i$, the MLE of ζ_i .
- Also note, $E[Y_i|\zeta_i] \neq E_i$, since E_i does not include the impact of the random effect.
- Create a GLMM with log link by

$$\log(E[Y_i|\zeta_i]) = \log(E_i) + \log(\zeta_i)$$

• If we add covariates and rename $log(\zeta_i) = \psi_i$, then

$$\log(\zeta_i) = \mathbf{x}'_i \boldsymbol{\beta} + \psi_i$$

So our model is

$$Y_i|\boldsymbol{\beta},\psi_i \stackrel{ind}{\sim} \mathsf{Poisson}(E_i \exp(\mathbf{x}'_i \boldsymbol{\beta} + \psi_i)),$$

 $\log(\zeta_i) = \beta_0 + x_{i,TCE}\beta_{TCE} + x_{i,65}\beta_{65} + x_{i,home}\beta_{home} + \psi_i.$

- The ψ_i represent the random intercepts.
- Add overdispersion via $\psi_i \overset{ind}{\sim} N(0, v_{\psi})$.
- Add spatial correlation via

 $\psi \sim MVN(\mathbf{0}, \Sigma).$

- Overdispersion model (i.i.d. ψ_i) results in each estimate being a compromise between the *local* SMR and the *global average* SMR.
- "Borrows information (strength)" from other observations to improve precision of local estimate.
- "Shrinks" estimate toward global mean. (Note: "shrink" does not mean "reduce", rather means "moves toward").

- Spatial model (correlated ψ_i) results in each estimate begin a compromise between the *lcoal* SMR and the *local average* SMR.
- Shrinks each ψ_i toward the average of its *neighbors*.
- Can also include *both* global and local shrinkage (Besag, York, and Mollié 1991).
- How do we fit these models?

Bayesian inference regarding model parameters based on *posterior distribution*

 $\Pr[m{eta}, \psi | \mathbf{Y}]$

proportional to the product of the likelihood times the prior

 $\Pr[\mathbf{Y}|\boldsymbol{\beta}, \boldsymbol{\psi}]\Pr[\boldsymbol{\psi}]\Pr[\boldsymbol{\beta}].$

Defers spatial correlation to the prior rather than the likelihood.

Could model *joint* distribution

$$\psi \sim MVN(\mathbf{0}, \Sigma).$$

Could also model conditional distribution

$$\psi_i | \psi_{j \neq i} \sim N\left(\frac{\sum_{j \neq i} c_{ij} \psi_j}{\sum_{j \neq i} c_{ij}}, \frac{1}{v_{CAR} \sum_{j \neq i} c_{ij}}\right), i = 1, \dots, N.$$

where c_{ij} are weights defining the neighbors of region *i*.
Adjacency weights: c_{ij} = 1 if *j* is a neighbor of *i*.

- The conditional specification defines the conditional autoregressive (CAR) prior (Besag 1974, Besag et al. 1991).
- Under certain conditions on the c_{ij}, the CAR prior defines a valid multivariate joint Gaussian distribution.
- Variance covariance matrix a function of the *inverse* of the matrix of neighbor weights.

- Given the values of the random effects (ψ_is), observations
 (Y_is) are independent.
- ► Taking into account correlation in the ψ_is, the Y_is are correlated.
- Conditionally independent $Y_i | \psi_i$ give *likelihood* function.
- ► (Spatially correlated) distribution of the ψ_is a prior distribution.

- Posterior often difficult to calculate mathematically.
- Iterative simulation approach to model fitting.
- Given full conditional distributions, simulate a new value for each parameter, holding the other parameter values fixed.
- The set of simulated values converges to a sample from the posterior distribution.
- WinBUGS software.

www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml

- Suppose we have a model with data **Y** and three parameters θ_1, θ_2 , and θ_3 .
- "Gibbs sampler" simulates values from the *full conditional* distributions

 $f(\theta_1|\theta_2,\theta_3,\mathbf{Y}),$ $f(\theta_2|\theta_1,\theta_3,\mathbf{Y}),$ $f(\theta_3|\theta_1,\theta_2,\mathbf{Y}).$

Start with values $\theta_1^{(1)}$, $\theta_2^{(1)}$, and $\theta_3^{(1)}$.

sample
$$\theta_1^{(2)}$$
 from $f(\theta_1|\theta_2^{(1)}, \theta_3^{(1)}, \mathbf{Y})$,
sample $\theta_2^{(2)}$ from $f(\theta_2|\theta_1^{(2)}, \theta_3^{(1)}, \mathbf{Y})$,
sample $\theta_3^{(2)}$ from $f(\theta_3|\theta_1^{(2)}, \theta_2^{(2)}, \mathbf{Y})$.

As we continue to update θ, sampled values become indistinguishable from a sample from the joint posterior distribution f(θ₁, θ₂, θ₃|Y). ► Gelman et al. (2004). Theoretical and MCMC results. $\begin{bmatrix} Y_1 \end{bmatrix} \sim MVN \left(\begin{bmatrix} \theta_1 \end{bmatrix} \begin{bmatrix} 1 & \rho \end{bmatrix} \right)$

$$\begin{bmatrix} \mathsf{Y}_1 \\ \mathsf{Y}_2 \end{bmatrix} \sim MVN\left(\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}, \begin{bmatrix} \mathsf{I} & \rho \\ \rho & \mathsf{I} \end{bmatrix} \right).$$

• Uniform priors on θ_1 , θ_2 , yield posterior

$$\left[\begin{array}{c} \theta_1 \\ \theta_2 \end{array} \right] \sim MVN \left(\left[\begin{array}{c} Y_1 \\ Y_2 \end{array} \right], \left[\begin{array}{c} 1 & \rho \\ \rho & 1 \end{array} \right] \right).$$

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

Multivariate results give full conditionals

$$\begin{array}{rcl} \theta_1|\theta_2, \mathbf{Y} & \sim & \mathcal{N}(Y_1 + \rho(\theta_2 - Y_2), 1 - \rho^2), \\ \theta_2|\theta_1, \mathbf{Y} & \sim & \mathcal{N}(Y_2 + \rho(\theta_1 - Y_1), 1 - \rho^2). \end{array}$$

 Let's try a Gibbs sampler and compare to the theoretical results.

MCMC example

First 10 iterations

 $\begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

2

- Almost custom-made for MCMC.
- Defined for ψ_i , given ψ_j for $j \neq i$.
- ▶ We define neighborhood weights *c_{ij}*.

$$Y_{i}|\beta, \psi_{i} \stackrel{ind}{\sim} \text{Poisson}(E_{i} \exp(\mathbf{x}_{i}'\beta + \psi_{i})),$$

$$\log(\zeta_{i}) = \beta_{0} + x_{i,TCE}\beta_{TCE} + x_{i,65}\beta_{65} + x_{i,home}\beta_{home} + \psi_{i}.$$

$$\beta_{k} \sim \text{Uniform.}$$

$$\psi_{i}|\psi_{j\neq i} \sim N\left(\frac{\sum_{j\neq i} c_{ij}\psi_{j}}{\sum_{j\neq i} c_{ij}}, \frac{1}{v_{CAR}\sum_{j\neq i} c_{ij}}\right), i = 1, \dots, N.$$

$$\frac{1}{v_{CAR}} \sim \text{Gamma}(0.5, 0.0005).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MCMC trace plots

Posterior densities

Covariate	Posterior	95% Credible
	Median	Set
β_0	0.048	(-0.355, 0.408)
eta_{65}	3.984	(2.736, 5.330)
β TCE	0.152	(0.066, 0.226)
eta_{home}	-0.367	(-0.758, 0.049)

A nifty thing about MCMC estimates:

We get posterior samples from any function of model parameters by taking that function of the sampled posterior parameter values.

- Gives us posterior inference for $SMR_i = Y_{i,fit}/E_i$.
- ► Also can get Pr[SMR_i > 200|Y] and map these exceedence probabilities.

Posterior median SMRs

Posterior exceedence probabilities

< 클 ▶ < 클 ▶ 클 ∽) Q (3 62/1

 Cryptozoology Example: Waller and Carlin (2010) Disease Mapping. In *Handbook of Spatial Statistics*, Gelfand et al. (eds.). Boca Raton: CRC/Chapman and Hall.

Cryptozoology example

- County-specific reports of encounters with Sasquatch (Bigfoot).
- "...which brings us to the appropriateness of the Bigfoot example."
- Data downloaded from www.bfro.net
- Sightings from counties in Oregon and Washington (Pacific Northwest).
- Probability of report related to population density?
- (Hopefully) rare events in small areas.
- Perhaps spatial smoothing will stabilize local rate estimates.
- ► Fit models with no random effects, exchangeable random effects, CAR random effects, convolution random effects.

Sasquatch Data

2000 Population per Square Mile

Reports vs. Population Density

Reports per Census 2000 population size

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Observed vs. Expected

Observed versus Expected Number of Reports

Predicted relative risks and credible sets

Filled circle = Skamania, Filled square = Wasco

Mapped relative risks

Skamania Sasquatch Ordinances

- http://www.skamaniacounty.org/commissioners/ homepage/ordinances-2/
- Big Foot Ordinance 69-1: "THEREFORE BE IT RESOLVED that any premeditated, willful and wonton slaying of any such creature shall be deemed a felony punishable by a fine not to exceed Ten Thousand Dollars (\$10,000.00) and/or imprisonment in the county jail for a period not to exceed Five (5) years. ADOPTED this 1st day of April, 1969."
- ▶ Big Foot Ordinance 1984-2:
 - Repealed felony and jail sentence.
 - Established a Sasquatch Refuge (Skamania County).
 - Clarified penalty (gross misdemeanor vs. misdemeanor) and penalty (fine and jail time), disallowed insanity defense, and clarified distinction between coroner designation of victim as humanoid (murder) or anthropoid (this ordinance).

- What method to use depends on what you want data you have and what question you want to answer.
- All methods try to balance trend (fixed effects) with correlation (here, with random effects).
- All models wrong, some models useful.
- Trying more than one approach often sensible.
- Few methods (including Monte Carlo simulation) in current GIS packages.