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Overview of Clustering

Background reading: Chapter 8 of Elliott et al. (2000) and Chapters 6
and 7 of Waller and Gotway (2004).

We begin with an obvious statement: the distribution of the population
across space is not uniform, and so even if cases occur completely at
random amongst the population, the pattern of cases will not be uniform.

Informally clustering occurs when the spatial pattern of the cases is more
“clumped” than the non-cases.

Mechanisms for clustering:

I Infectious diseases.

I Genetics.

I Risk factors, measured or unmeasured.

I Data anomalies (which may have spatial pattern).
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A Definition of Clustering

(My) Definition of clustering: A disease exhibits spatial clustering if
there is epidemiologically-significant local spatial variation in
residual risk.

I Residual here acknowledges that known risk factors (e.g. age,
gender) have been accounted for.

I Local recognizes that clustering is not simply large-scale trends.
This is a subjective descriptor.

I The epidemiologically-significant part is clearly also subjective but
acknowledges that there will always be some level of residual
variability.

I This definition is relative to the data we collect, and is not
necessarily an intrinsic characteristic of the disease. For example, a
particular set of data may have missing confounders, which induce
clustering.
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A Definition of a Cluster

(My) Definition of a cluster: If a disease has increased residual risk in
an area then this will lead in expectation to an ‘excess’ of cases –
such a collection of cases is what we define as a cluster.

I With this definition a cluster may be over a very large geographical
area – some previous epidemiological definitions of a cluster are in
terms of a realization of cases that are close in space.

I For example, Knox (1989) gives the definition, “a cluster is a
geographically bounded group of occurrences of sufficient size and
concentration to be unlikely to have occurred by chance”.

I If a disease exhibits clustering then this may result in multiple
clusters.

I Surveillance systems are built around cluster detection.
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Overdispersion and Spatial Dependence

We first look at measures of overdispersion and spatial dependence for
count data.

Due to unmeasured risk factors, data anomalies and within-area
variability in confounders/exposures, it is usual for count data to exhibit
overdispersion.

Overdispersion with rare events in the form of counts is often known as
excess-Poisson variability, that is, independent counts with
var(Yi ) > E[Yi ] for i = 1, . . . , n.

Spatial dependence is a different concept, namely, dependence between
Yi and Yj that depends on the geographical positions of areas indexed by
i and j , i , j = 1, . . . , n, i 6= j .
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Overdispersion

If we find evidence in the data that overdispersion is present then this is
telling us that the data are not following the (Poisson) model that is
often assumed.

The discrepancies may occur due to:

I unmeasured risk factors,

I the latter include infectious agents (which will often lead to spatial
dependence also),

I data anomalies include under/count of disease cases and populations
at risk,

I inaccurately measured exposures,

I model inadequacies.

We describe a number of statistics that may be used in exploratory
analyses.
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Methods for Detecting Overdispersion: Pearson’s χ2

Pearson’s chi-squared statistic is one measure of overdispersion.

Suppose we fit the quasi-likelihood model:

E[Yi ] = Eiθi

var(Yi ) = κ× E[Yi ],

where θi = exp(β0 + xT

i β1) with dim(β1) = p − 1.

Then a common approach (for example, as described in McCullagh and
Nelder, 1989) is to estimate the overdispersion via Pearson’s chi-squared
statistic

κ̂ =
1

n − p

n∑
i=1

(Yi − Ei θ̂i )
2

Ei θ̂i
. (1)

where p is the number of parameters in β = [β0,β1].

It is not straightforward to obtain the standard error of κ̂ — its difference
from 1 can be assessed via simulation (though usually it’s obvious!).

An alternative measure of lack of fit is the residual deviance.
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Methods for Detecting Heterogeneity: Pearson’s χ2

High values of κ̂ will result if there is overdispersion.

If the Poisson model is adequate then both the deviance (likelihood ratio
statistic) and Pearson’s chi-square statistic have an asymptotic chi-square
statistic on n − p degrees of freedom, under certain assumptions.

Specifically, we need the number of “x-values” (predictors) in the model
to remain fixed as the data grow (hypothetically) larger; this occurs when
the predictors are factors with a fixed number of levels.

Alternatively (and preferably) significance may be assessed via calculation
of a Monte Carlo p-value in which observations are randomly simulated
under the null hypothesis and the test statistic is calculated under each
simulation.

These are measures of unmodeled heterogeneity and say nothing about
spatial dependence.

The residuals may be examined for clues to excesses at particular
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Autocorrelation Statistics for Assessment of Clustering of
Count Data

A number of approaches have been suggested for measuring spatial
autocorrelation – these are global measures and so address “clustering”
and not “cluster detection”.

A large number of statistics have been suggested to assess global
clustering, and are typically of the form:

T = c

∑n
i=1

∑n
j=1 wij × Similarij∑n
i=1

∑n
j=1 wij

(2)

where

I c is a constant,

I n is the number of areas,

I wij is a weight reflecting the proximity between areas i and j , and

I Similarij is a measure of the similarity between data values Zi and Zj

in areas i and j .
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Assessing Significance

For many common choices the mean and variance of the statistics under
the null of no clustering are available, and asymptotic normality may be
appealed to under certain assumptions – not reliable and to be avoided.

In a permutation test approach (also known as a randomization or exact
test) a test statistic is evaluated under all possible permutations of the
data.

Unless the data set is small this is usually too computationally expensive,
and so under a Monte Carlo test the distribtion of the test statistic is
evaluated under a large number of randomizations.

In a Monte Carlo approach the data Zi , i = 1, . . . , n, may be repeatedly
randomly assigned to different areas, and the statistic calculated under
each assignment, yielding a comparison distribution.

Under a bootstrap approach the data are sampled, with replacement
from the observed data.
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Measures of Proximity

As with disease mapping there are various ways of measuring the
‘closeness’ of two areas, for example:

I Take wij = 1 if areas i and j are adjacent (i.e. have a boundary in
common) and 0 otherwise.

I In the previous version the weights may be standardized so that they
sum to 1 for each area.

I Take wij = 1 if the centroids of areas i and j are within the q
nearest of each other.

I Take wij = d−1ij where d−1ij is the inverse distance between the area
centroids of areas i and j .

I More generally, take wij = d−αij for some power α > 0.

I Take wij = 1 if the centroids of areas i and j are within a certain
distance of each other.
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Measures of Proximity

The choice of weights depends on the type of spatial dependence that
one is trying to detect.

For example, a distance-based measure may be appropriate if a
smoothly-varying environmental pollutant is thought to be responsible for
the clustering.

See Bivand et al. (2013, Sections 9.2, 9.3).
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What to use as the “data”?

Considerations:

1. Standardization: We will almost always want to standardize the
observations in some way (and not use the raw counts, since these
are based on different population sizes).

As an example we could take Zi = Yi/Ni if we have counts within
an age-gender stratum (e.g. men over 65).

Alternatively, to control for confounders we might take Zi = Yi/Ei ,
the SMRs, of area i .

Unfortunately the above choices do not yield data, Zi , i = 1, ..., n,
with the same variance which can induce anomalous behavior.

2. Detrending Spatial large-scale trends should be removed before the
statistic is calculated, e.g.. look at residuals after putting latitude
and longitude in the model.
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A Time Series Tangent

In a time series context with equally-spaced data the correlation between
observations Zi at lag k = 1, 2, . . . is

ρ(k) =
1
n

∑n−k
i=1 (Zi − Z )(Zi+k − Z )
1
n

∑n
i=1(Zi − Z )2

.

This can be rewritten as

ρ(k) =
1

S2

∑n
i=1

∑n
j=1 wij(Zi − Z )(Zj − Z )

n
(3)

where

S2 =
1

n

n∑
i=1

(Zi − Z )2

and wij are weights such that wij = 1 if i + k = j and = 0 otherwise.

The ρ(k) are plotted versus k to give a correlogram.

As usual, space is more complex because it is 2D and the areas are
irregular, but the form (3) suggests a way forward.
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Moran’s I statistic (Moran, 1948)

Moran’s I statistic (Moran, 1948) is given by

I =
1

S2

∑n
i=1

∑n
j=1 wij(Zi − Z̄ )(Zj − Z̄ )∑n

i=1

∑n
j=1 wij

, (4)

where

S2 =
1

n

n∑
i=1

(Zi − Z̄ )2.

I If there is no spatial dependence I will be close to zero.

I If there is clustering then areas close together (as defined by wij) will
tend to have responses that are similar and so the term
(Zi − Z̄ )(Zj − Z̄ ) will be positive and the statistic I will be positive.

I The statistic is similar to the regular correlation coefficient though it
need not lie in [−1,+1]. Under the null, E[I ] = −1/(n − 1).
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Geary’s c statistic (Geary, 1954)

Geary’s c statistic is closely related to Moran’s statistic and is given by

c =
1

s2

1
2

∑n
i=1

∑n
j=1 wij(Zi − Zj)

2∑n
i=1

∑n
j=1 wij

. (5)

where

s2 =
1

n − 1

n∑
i=1

(Zi − Z̄ )2.

I If there is spatial dependence, terms in the numerator will be small
(similar responses in “close” regions) and the value of the statistic
will be close to zero.

I The absence of spatial dependence leads to c close to 1, with
c = 0/2 corresponding to perfect positive/negative correlation.

Note the similarity of the numerator to the semi-variogram:

1

2
var(Zi − Zj).

17 / 49



Non-parametric Statistic

Letting Z∗i denote the ranks of the Zi we may calculate a non-parametric
measure of spatial dependence

D =

∑
i

∑
j wij |Z∗i − Z∗j |∑
i

∑
j wij

, (6)

with small values of D implying positive dependence.

Suggested by Cliff and Ord (1981, p. 46).
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Issues with Assessment of Clustering

There are complications when using these measures for SMRs unless they
are based on equal expected numbers.

High or low values of Zi will tend to occur in areas with small
populations, i.e. in rural areas, and these are likely to be close together,
inducing positive dependence.

The problem is that under permutations under the null the spatial
distribution of the expected numbers is not retained (we permute (Yi ,Ei )
pairs) which would compensate for the increased variability.
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Disease Mapping Methods

Recall the Poisson log-linear model we used for disease mapping and
spatial regression:

Yi |θi ∼iid Poisson(Eiθi )

log θi = β0 + β1xi + εi + Si

where εi |σ2
ε ∼iid N(0, σ2

ε ) and Si are spatial random effects with ICAR
structure.

We can examine (for example) the fitted surface or probabilities above a
threshold to find areas of high risk, i.e. clusters (but recall the smoothing
aspect which may effectively remove clusters).

To determine clustering we may examine the magnitude of the variance
of the spatial random effects.
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Clustering for Count Data Conclusions

General Approach

I We have defined a pair of statistics (Moran, Geary) to determine the
level of clustering in a set of data.

I In the context of count data in spatial epidemiology these methods
have some drawbacks, due to the non-constant variance of the
response, for example.

I We use the residuals to overcome this difficulty; the use of residuals
from a model also allows the modeling of the mean function, so that
the variable used (the residuals) has constant mean.

I I view these methods as useful in an exploratory first step in an
analysis.

I The hierarchical model provides greater information but is based on
many assumptions.
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Overview of Moving Window Methods

In this section we describe methods that superimpose a number of
circular regions onto the study region and then determine the significance
of the number of cases that fall within each circle – these methods assess
cluster detection and may be used for surveillance.

Different methods define the circles in terms of:

I distance (Openshaw).

I the number of cases (Besag and Newell) and,

I the population size (scan statistics).

These methods may be used as screening devices by which particular
regions may be highlighted and subsequently investigated.
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Openshaw’s method

Openshaw et al. (1987) proposed a ‘Geographical Analysis Machine’
method in which a regular grid is superimposed on the study region and
circles of constant radius are drawn on the intersections of the grid lines.

Typically a range of radii are constructed based on the scale at which
clustering is expected and the grid-lines are such that adjacent circles
overlap by 80%.

A common geography for populations and cases is established (census
Enumeration Districts are recommended for the UK) and then ‘jagged’
circles are formed containing the area centroids.

Circles are ‘flagged’ if they attain a certain level of significance, under the
assumption that cases within circles follow a Poisson distribution.

The p-value is small to address the multiple testing problem but there is
no theoretical development of a particular size; p = 0.005 has often been
used in applications.
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Difficulties with Openshaw Method

Openshaw’s method has been heavily criticized in the literature since
there is clearly a huge multiple testing problem:

I There are a large number of tests, and

I The tests are dependent.

Obviously the size of p is crucial to the sensitivity (probability of flagging
given a true cluster) and specificity (probability of non-flagging given a
true non-cluster) of the method and the lack of guidelines for this choice
remains a major drawback.

Since the different circles contain different numbers of cases and different
populations at risk the power to detect clusters will vary across circles
which makes interpretation difficult.

If overdispersion is present then the Poisson distribution is not
appropriate (extension to negative binomial straightforward).

Openshaw’s method is not recommended but of historical interest since it
started the ball rolling...
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Besag and Newell’s Method

The method of Besag and Newell (1991) was developed to rectify some
of the problems of Openshaw’s method.

The first step in applying the method is to select a cluster size k. For
each case in turn a circle is drawn, centered on that case, with radius
such that the k-th nearest neighboring case is included.

As with Openshaw’s method the expected number of cases is calculated
for each circle.

Unlike Openshaw’s method the circles are now more comparable since
they are all based on k cases.

By defining the cluster in terms of the number of cases the method has a
greater chance of detecting small rural clusters than the distance-based
method of Openshaw.
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Besag and Newell’s Method

The expected number of clusters under the null may be calculated, and
compared with the actual number found, as an aid to deciding whether
any of the highlighted regions should be investigated further.
Specifically, consider:

I a generic circle containing k cases in addition to the case upon
which the circle is centered,

I let Y represent the number of cases in this circle, and

I E the expected number of cases in the areas within which the k
cases are found.
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Besag and Newell’s Method

Then

Pr(Y ≥ k |H0) = 1− Pr(Y < k) = 1−
k−1∑
s=0

e−EE s

s!

where H0 is the null that the cases are randomly distributed amongst the
population at risk.

The choice of k is clearly vital and several values are typically selected.
The more values that are chosen, the more difficulty in interpretation.

Still a multiple testing problem.

If overdispersion is present then the Poisson distribution is not appropriate
(but relatively straightforward to extend to a negative binomial).
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Scan statistics

Scan statistics were originally developed to ‘scan’ across a time region of
interest with the test statistic being the maximum number of events to
occur within windows of constant size

The fixed window and maximum number of the original formulation
makes it clear that the statistic is being compared to an underlying
intensity that is uniform.

In a spatial context this is clearly unreasonable.
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Scan statistics

Turnbull et al. (1990) suggested an approach by which the ‘windows’ are
defined to contain a constant population, N∗, and are centered on each
area centroid.

The maximum number of cases across the windows may then be used as
a test statistic, i.e.

M = max
j

Yj(N
∗), (7)

where j indexes the areas as defined via the population N∗.

As an alternative, Kulldorff and Nargarwalla (1995) suggested the use of
the likelihood ratio test statistic.
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Scan Statistics

A Monte Carlo test is then performed under random distribution of cases
across the study region.

The approach therefore differs from those of Openshaw and Besag and
Newell since the most significant circle over the whole study region is
searched for instead of all circles significant at a certain level.

Since only a single test is carried out it is straightforward to determine
the correct statistical properties of the procedure.

However, in practice the statistic is repeated using various values of the
population size upon which circle construction is based, thus producing a
set of non-independent tests.

We describe for count data, for which numbers of cases and size of
population are required along with the centroids of each area.

If adjustment for covariates is required, then expected numbers should
replace the population numbers.
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Scan Statistics

Potential clusters are defined as circles centered on the centroids of the
areas (though grid lines can be given).

The user is required to specify the maximum circle size – the default is
50% of the population.

Then circles are examined centered on each centroid and ranging
between zero, to whatever the specified maximum is.

Various probability models may be assumed, including Poisson and
Bernoulli.
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Scan Statistics

We concentrate on the Poisson model with adjustment for confounders
within the expected numbers, for which for a given circle

Y1 ∼ Poisson(E1θ1)

Y0 ∼ Poisson(E0θ0)

where

I Y1 and Y0 are the numbers of cases inside and outside the circle,

I E1 and E0 the respective expected numbers, and

I θ1 and θ0 the relative risks.
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Scan statistics

The approach is to evaluate a likelihood ratio statistic comparing the
hypotheses

H0 : θ1 = θ0, HA : θ1 > θ0

for each circle c .

The overall test statistic of the significance of the “most likely” statistic
is then the maximum of these statistics, over c = 1, ...,C .

For the Poisson model, the total number of cases Y+ = Y0 + Y1 is
conditioned upon, in which case

Y1|Y+ ∼ Binomial(Y+, π)

where

π =
E1θ1

E1θ1 + E0θ0
.
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Scan statistics

Under the null, π̂0 = E1/(E1 + E0) and under the alternative
π̂A = Y1/Y+.

This gives the likelihood ratio statistic:

T =
Pr(Y1|HA)

Pr(Y1|H0)
=

(
Y1

E1

)Y1
(
Y0

E0

)Y0

I (Y1 > E1)

The significance level is assessed by carrying out a Monte Carlo
procedure in which the pairs

(Yi ,Ei ), i = 1, ..., n,

are randomly relabeled.
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Scan statistics

If the Poisson model is wrong then the procedure is not invalidated (since
all the Poisson assumption is being used for is to define the test statistic)
– but power will be reduced when compared to a statistic derived from
the true distribution.

Once the window with the greatest exceedence is identified, the sampling
distribution of T is evaluated using a Monte Carlo test.

The SatScan software, written by Martin Kulldorff, to implement the
scan test statistic is available from

http://srab.cancer.gov/satscan/
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Difficulties with Scan Statistics

The choice of population size is somewhat arbitrary and there are no
clear guidelines for a choice, Hjalmars et al. (1996) use 10% of the total
population to define the windows while Kulldorff et al. (1997) use 50%.

In practice the method is not just used to indicate a single cluster but a
number of potential clusters are highlighted.

Once this is done the properties of the procedure become unknown (in
common with the methods of Openshaw and Besag and Newell).

The circles are also not completely comparable since it is populations and
not expected numbers that are defining the choice of radii (although it is
straightforward to use expected numbers).

For this and all methods the choice of a p-value threshold is difficult.

More subtly p-value thresholds should be a function of sample size, and
so there should be different thresholds for different window sizes.
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A Bayesian Model

We describe the method of Wakefield and Kim (2013); Kim and
Wakefield (2015), which is available in the SpatialEpi packages.

Built on previous work of Gangnon and Clayton (2000, 2003); Gangnon
(2006); Gangnon and Clayton (2007).

Partition the study region so each area is either within a
cluster/anti-cluster or is null.

Single clusters defined as in SatScan: we call these zones.

Multiple clusters are formed as combinations of single clusters.
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A Bayesian Model

The number of clusters/anti-clusters can be j = 0, ...,K , with K fixed:
with each consisting of a single zone.

No overlap allowed, and there has to be a buffer between any two zones.

We place priors on numbers of clusters (usually strongly encouraging zero
or few clusters).

Relative risks associated with null areas arise from a “narrow” gamma,
centered at 1.

Relative risks associated with cluster areas arise from a “wide” gamma,
centered at 1.
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Details of Bayesian Model

We define a configuration as a legal collection of single zones, and for
j = 0, ...,K suppose there are Nj configurations of such zones. For j = 0
(no clusters/anti-clusters) we set N0 = 1 for notational consistency.

We label the null configuration as c01 and cjl as the l-th configuration of
j single zones, for j = 1, ...,K , and l = 1, ...,Nj .

cjl denotes a collection of indices of single zones:

I c01 = φ,

I c1l = l , l = 1, ...,N1,

I c2l = { l(1), l(2) } for the pair of single zones that correspond to
configuration l . These labels range over all pairs that are “legal”,
i.e. non-overlapping with a buffer between. There are N2 such pairs.

I c3l = { l(1), l(2), l(3) }, etc...

I The indices l(k) ∈ {1, 2, ...,N1}, i.e. are from the collection of single
zone labels.
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A Bayesian Model

Basic model is again:
Yi |θi ∼ Poisson(Eiθi )

where θi is the relative risk associated with area i .

The prior assigned the θi depends on whether area i is null, or lies within
a cluster/anti-cluster.

If area i is null, assume a narrow gamma prior θi ∼ Ga(aN, bN) with aN, bN

fixed. This allows some “wobble” about 1.

Consequently, PrN(yi ) is NegBin(aN, bN).

Under the null configuration:

Pr(y|c01) =
n∏

i=1

PrN(yi ).
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A Bayesian Model

For those areas in zone z , θi = θ? ∼ Ga(aW, bW), a wide prior with aW, bW

fixed.

Marginally, yi is NegBin(aW, bW).

Non-null configuration cjl , contains j single zones each with vectors of
counts and expected numbers yZ

z , EZ

z , and summed counts and expected
numbers, y Z

z ,E
Z
z , z = 1, ..., j .

The associated likelihood for y is composed of two parts corresponding to
null and non-null areas:

Pr(y|cjl) =
∏

null areas

PrN(yi )×
∏
z∈cjl

{PrW(y Z

z )× Pr(yZ

z |y Z

z )} .

Pr(yZ
z |y Z

z ) is a multinomial distribution with dimension the number of
areas in zone z , |yZ

z |, total y Z
z and vector of probabilities EZ

z/E
Z
z .
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A Bayesian Model

It is useful to recognize that

Pr(y|cjl)
Pr(y|c01)

=
∏
z∈cjl

BF(z) (8)

where

BF(z) =
PrW(y Z

z )× Pr(yZ
z |y Z

z )∏
null areas

PrN(yi )

This is the Bayes factor comparing the distribution of the data under
configuration cjl to that under the null model.

Hence, for a configuration with j zones (8) is the product of j Bayes
factors.

One consequence of this expression is that computation is vastly
simplified since we only need to consider calculations for single zones.

42 / 49



Bayes Factors and Likelihood Ratios

In the case of a single zone, the Bayes factor

BF(z) =

∏
z∈cjl PrW(y Z

z )× Pr(yZ
z |y Z

z )∏
areas in zone z

PrN(yi )

may be compared with the LR statistic of SatScan:

LR(z) =
Pr(y| alternative )

Pr(y| null )
=

∏
areas not in zone z

Pr(yi |θi = 1)× Pr(y Z
z |θ̂z)∏n

i=1 Pr(yi |θi = 1)

=
Pr(y Z

z |θ̂z)∏
areas in zone z

Pr(yi |θi = 1)

I In the denominator: conditions on θ = 1, Bayes integrates over the
narrow prior.

I In the numerator, maximizes over θz (subject to θz > 1), Bayes
integrates over the wide prior.

I The multiple zone version is based on sequential LR statistics, Bayes
based on products of Bayes factors.
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Prior Distribution on Single Zones

Priors for all configurations are constructed from single zones.

For single zone z there are various possible priors, but a simple on is
uniform on the N1 possibilities.

We typically place a mass close to 1 on zero clusters.

Priors on multiple (legal) zones are proportional to the product of the
individual single zone prior probabilities.
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What to Report?

The obvious quantity is Pr( configuration |y) = Pr(cjl |y), but these will
typically be small: if a true cluster, lots of overlapping zones.

A useful summary is

Pr( number of clusters = j |y), j = 0, . . . ,K .

Maps of Pr( area is “high” |y).

Influence of prior may be removed via looking at Bayes factors comparing
posterior to prior odds of an area being high.

Operating characteristics may be examined via simulation.

Need to trade-off sensitivity and specificity.

Prior Choices: Narrow range of RRs: (0.848, 1.169). Wide range of RRs:
(0.037, 5.323).

Computation via MCMC, sampling over the possible configurations.
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Computation

Single parameter is cjl : sample using MCMC. Given cjl we propose a new
configuration c?jl via one of five moves:

1. Growth: The index set cjl , is increased by aggregating nearest free
neighboring areas to the single zone’s centering area.

2. Trim: The index set cjl , is reduced by dropping areas that are
furthest from the centering area. Trim moves are reciprocal to
growth moves.

3. Replacement: Replace an element cjl with another single zone with
a different centering area.

4. Death: drop one of the j single zones to form a configuration of
j − 1 single zones.

5. Birth: add a new single zone to cjl to form a a new configuration of
j + 1 single zones. Birth moves are reciprocal to death moves.

Configurations c?jl are proposed randomly via one of two
mechanisms:

I Uniformly from the N1 single zones, i,e. N−1
1 , or

I Proportional to the posterior probabilities Pr(c?jl |y),
i.e. ∝

∏j
k=1 BF(k).
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Computation

Original

x
x

1. Growth

x
x

2. Trim

x
x

3. Replacement

x

x

4. Death

x

5. Birth

x
x

x

Figure 1 : MCMC Move types.
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Cluster Detection for Count Data Conclusions

Of the frequentist moving window methods the Kulldorff procedure has
the best statistical foundation but it has drawbacks.

How to deal with the possibility of multiple clusters?

I Original version simply compared the p-values of the second, third,...
most significant zone (discarding those with overlap).

I Recent version Zhang et al. (2010) removes a significant zone, and
then repeats...until no more significant zones found.

How to choose a significance level?

The power may be very different in different studies: no balancing of
Type I and Type II errors if α fixed in all studies.
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Cluster Detection for Count Data Conclusions

Can also use hierarchical models for detecting clusters but be wary of
shrinkage which could remove true clusters (Richardson et al., 2004).

In terms of clustering:
I We can examine the random effects Si and examine maps of these

(to compare with maps of εi ).
I We can also examine the empirical variance of the Si ’s and compare

to σ2
ε .

In terms of cluster detection:
I we can threshold the fitted surface and examine those areas that are

highlighted (and the cases in these areas).
I For example, we could only plot those areas in which the odds of

disease is greater than some critical value with a certain posterior
probability.

Bayesian cluster method has a probabilistic foundation, but many prior
inputs required.

Kulldorff (2001) proposes a space-time version of SatScan, while Li et al.
(2012) describe a Bayesian model for space-time data.
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